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ABSTRACT
We present an analytical calculation of the extreme value statistics for dark matter haloes –
i.e., the probability distribution of the most massive halo within some region of the universe
of specified shape and size. Our calculation makes use of the counts-in-cells formalism for the
correlation functions, and the halo bias derived from the Sheth–Tormen mass function.

We demonstrate the power of the method on spherical regions, comparing the results to
measurements in a large cosmological dark matter simulation and achieving good agreement.
Particularly good fits are obtained for the most likely value of the maximum mass and for
the high-mass tail of the distribution, relevant in constraining cosmologies by observations of
most massive clusters.

Key words: methods: analytical – methods: statistical – dark matter – large-scale structure
of Universe.

1 IN T RO D U C T I O N

Extreme value (or Gumbel) statistics are concerned with the extrema
of samples drawn from random distributions. If a large number of
samples are drawn from some distribution, the Central Limit The-
orem states that their respective means will follow a distribution
which tends, in the limit of large sample size, to a member of the
family of normal distributions. Analogously, the maximum (or min-
imum) values u of the samples will have a distribution whose large
sample size limit – where such a stable limit exists1 – is a member
of the family of Generalized Extreme Value (GEV) distributions as
detailed by Gumbel (1958):

− ln PGEV(y) = (1 + γ y)−1/γ , y = (u − α)/β. (1)

The shape parameter γ is sensitive to the underlying distribution
from which the maxima are drawn, while α and β are position and
scale parameters.

Despite their wide use in other fields, extreme value statistics
have historically seen very little application in astrophysics; some
exceptions are the work of Bhavsar & Barrow (1985) on the brightest
galaxies in clusters and the study of Coles (1988) on the hottest hot
spots of the cosmic microwave background (CMB) temperature
fluctuations.

�E-mail: olaf.davis@astro.ox.ac.uk
1 Although it can be shown that where a stable limiting distribution exists
it will take the form (1), certain pathological distributions give no such
limit. For our purposes it is sufficient to note that the limit indeed exists
for distributions which are of exponential type, meaning the cumulative
distribution function F obeys limx→∞ d/dx{(1 − F (x))/F ′(x)} = 0, and
that this class includes all physical distributions relevant to our applications.

The past year or so, however, has shown a resurgence of in-
terest in the application of extreme value statistics to cosmology
and questions of extreme structures, as revealed either in the clus-
tering of galaxies (Antal et al. 2009), the prevalence of massive
clusters (Holz & Perlmutter 2010; Cayón, Gordon & Silk 2010)
or the temperature extrema of the CMB (Mikelsons, Silk & Zuntz
2009).

In this paper, we are interested in the dark matter haloes of mas-
sive galaxy clusters. The number density of extremely massive
clusters is indeed a sensitive probe of the effects of the underly-
ing cosmological model and laws of physics on large scales (Mantz
et al. 2010a). These include for instance the equation of state of
dark energy (Mantz et al. 2008), the possibility of modified gravity
(Rapetti et al. 2010) the physical properties of neutrinos (Mantz,
Allen & Rapetti 2010b) and primordial non-Gaussian density fluc-
tuations (Cayón et al. 2010). Although the majority of the previously
mentioned studies focus on the growth of massive clusters, simply
knowing the mass of the most massive cluster in a survey can al-
ready provide strong constraints on cosmology (Holz & Perlmutter
2010).

In the present work, we outline an analytical derivation of the
extremal halo mass distribution in standard cosmologies with Gaus-
sian initial conditions. Rather than taking a phenomenological ap-
proach, we aim to predict the distribution of the most massive halo in
a region for any specified combination of power spectrum, cosmo-
logical parameters and region size and shape. The paper is organized
as follows. In Section 2 we outline the basics of our method for ob-
taining an analytical expression of the Gumbel distribution of most
massive clusters masses and make an explicit link with equation (1).
In Section 3, the theoretical predictions are checked against mea-
surements in a very large N-body cosmological simulation. Finally,
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Section 4 follows with a short summary of the main results and
conclusions.

2 TH E O RY

Consider a large patch of the universe, which can be thought
of as representing the space covered by a volume-limited sam-
ple of clusters, and denote by mmax the mass of the most mas-
sive dark matter halo in that patch. We wish to study analytically
the Gumbel statistics, that is the probability distribution function
pG(mmax)dmmax of the values taken by mmax if we sample a large
number of such patches. Obviously, this distribution will depend on
the size and shape of the patch, as well as its redshift.

2.1 General expression of the Gumbel statistics

Let us define the cumulative Gumbel distribution by

PG(m) ≡ Prob.(mmax ≤ m) ≡
∫ m

0
pG(mmax)dmmax. (2)

Such a probability is also the probability P0(m) that the patch is
empty of haloes of mass above the threshold m (Colombi et al.
2011), hence

pG(m) = dP0

dm
. (3)

Note that this assumes that there are no significant edge effects, i.e.
the boundaries of the catalogue do not cross too many clusters. This
effect is negligible if the patch is large compared to the halo size
(and sufficiently compact).

If haloes are unclustered then the void probability follows simply
from Poisson statistics,

P0(m) = exp(−nV ), (4)

where V is the volume of the patch and n = n(> m) the mean density
of haloes above mass m, with the appropriate spatial average with
redshift made implicit n(>m) = 〈n[>m, z(x)]〉x∈V .

We expect the Poisson limit to be reached for patches of size
above a few hundred Mpc, where the matter distribution becomes
homogeneous. Below this patch size, however, haloes are signifi-
cantly clustered. In that case, the calculation of the void probability
can be performed using a standard count-in-cell formalism if the
connected N-point correlations functions, ξ h

N (x1, . . . , xN), of haloes
above the threshold are known (e.g. Szapudi & Szalay 1993; Balian
& Schaeffer 1989). The superscript h in the previous expression
indicates halo correlation functions, while the naked ξN refer to
correlations of the underlying matter density field. Since deviations
from Poisson behaviour occur only for moderate patch sizes, the
complex lightcone effects on the correlations induced by the evo-
lution of clustering with redshift inside the patch (e.g. Matsubara,
Suto & Szapudi 1997) can safely be neglected.

In particular, one can define the averaged correlations over a patch
of volume V:

ξ̄ h
N ≡ 1

V N

∫
V

d3x1 . . . d3xNξ h
N (x1, . . . , xN ), (5)

and the typical number of haloes above the threshold m in excess to
the average in overdense patches as

Nc ≡ nV ξ̄ h
2 . (6)

In the high-m limit, the void probability can be written

P0(m) = exp [−nV σ (Nc)] , (7)

where the function σ (y) reads

σ (y) =
(

1 + 1

2
θ

)
e−θ , θeθ = y, (8)

(Bernardeau & Schaeffer 1999). Note that, as pointed out by these
authors, this expression for σ (y) follows from a specific hierarchical
behaviour of higher order correlation functions of very massive
haloes at large separations, ξ̄ h

N � NN−2(ξ̄ h
2 )N−1.

We now proceed to specify the cumulative halo number density
and the average two-point correlation function of haloes in order to
fully determine the Gumbel statistics.

2.2 Halo number density

The number density n(m, z) of haloes at a given mass m and redshift
z, a.k.a. the halo mass function, we adopt is the one calculated by
Sheth & Tormen (1999). It is based on a modification of the original
model of Press & Schechter (1974), which links the statistics of the
initial matter density field to the distribution of virialized dark matter
haloes through a spherical top hat description of their gravitational
collapse. As a result, this mass function can be expressed as a
universal function of ν ≡ (δc/σ (m, z))2, where σ (m, z)2 is the
variance of the initial density field smoothed over spheres of radius
R(m) containing an average average mass m linearly extrapolated
to z, and δc is the critical overdensity threshold needed to turn an
initial spherical top hat density perturbation into a collapsed halo at
redshift z. More specifically, the number density of mass-m haloes
is given by

m2 n(m, z)

ρ̄m

d log m

d log ν
= A

(
1 + (aν)−p

) ( aν

2π

)1/2
e−aν/2 (9)

with ρ̄m ≡ �mρ̄ the averaged matter density of the Universe. The
shape of this mass function is parametrized by a and p, and A is
simply a normalization factor.

2.3 Halo correlation functions

At sufficiently large separations, the two-point correlation of haloes
of mass m can be related to that of the matter density through the
bias function

ξ h
2 (x1, x2, z) = b(m, z)2ξ2(x1, x2, z), (10)

where ξ 2 is the linear dark matter density autocorrelation at redshift
of interest. The function b(m, z) can be estimated analytically using
the Press–Schechter formalism (Mo & White 1996). Here, to remain
consistent with equation (9), we use the expression for the bias of
Sheth & Tormen (1999)

b(m, z) = 1 + aν − 1

δc
+ 2p/δc

1 + (aν)p
. (11)

This result is valid in the regime where the separation x = |x2 −
x1| is large enough compared to the mass scale R(m). This has
been tested successfully against N-body simulations by Mo, Jing
& White (1996) (see, however, e.g. Tinker et al. 2010, for possible
improvements on equation 11).

We obtain the bias of haloes exceeding mass threshold m by
calculating the weighted average

b(> m, z) =
∫ ∞

m
b(m′, z)n(m′, z)dm′∫ ∞

m
n(m′, z)dm′ , (12)

and hence the averaged two-point correlation function for haloes
above the threshold,

ξ̄ h
2 (>m, z) = b(> m, z)2ξ̄2(z). (13)
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Recall that this equation should be valid in the regime where the
patch size is large compared to R(m),

L � R(m) =
(

3πm

4ρ̄m

)1/3

, (14)

but small enough that light cone effects on the clustering inside it
are negligible.

2.4 Generalized extreme value parametrization

The method outlined above allows us to compute the complete dis-
tribution function of of the most massive clusters. However, due
to its complexity and the necessity of computing some of the in-
tegrals numerically, it does not provide us with a neat analytic
parametrization of the distribution. Therefore, in order to achieve
such a parametrization, we turn to the general theory of extremes,
equation (1), using u = log10 m as the random variable. In order to
calculate the parameters γ , α and β, we perform Taylor expansions
of the analytic PGEV, and P0 as computed by our method in the Pois-
son regime (equation 4). This Taylor expansion is performed about
the peaks of the two distributions dP0/du and dPGEV/du. Equating
the first two terms in these expansions give us expressions for the
three parameters:

γ = n(> m0)V − 1, β = (1 + γ )(1+γ )

n(m0)V m0 ln 10
,

α = log10 m0 − β

γ

[
(1 + γ )−γ − 1

]
, (15)

where m0 is the mass at which the distribution dP0/dz =
ln(10) m pG(m) peaks – hence close to the most likely value of
m – and is given implicitly by

A
ρ̄mV

m0

√
a

2πν0
e−aν0/2

(
1 + (aν0)−p

) =

a

2
+ 1

2ν0
+ ap(aν0)−(p+1)

1 + (aν0)−p
− ν ′′

0

ν ′2
0

,
(16)

where ν0, ν ′
0 and ν

′′
0 are ν and its derivatives with respect to m

evaluated at m = m0.
These equations, then, allow us to neatly summarize the infor-

mation contained in the extreme value distribution with the single
parameter γ which describes its shape. This statistic has the poten-
tial to be used as a tool to compare models with data or with each
other, as Mikelsons et al. (2009) proposed for the CMB.

3 N U M E R I C A L E X P E R I M E N T

To test our halo mass Gumbel distribution we compare the analyti-
cal result to measurements on the Horizon 4
 Simulation (Teyssier
et al. 2009), a large cosmological dark matter simulation performed
using the RAMESES N-body code (Teyssier 2002). The simulation
followed the evolution of a cubic piece of the universe 2 h−1 Gpc on
a side containing 40963 particles, i.e. with a particle mass of 7.7 h−1

× 109 M
. Initial conditions were based on the 3-yr Wilkinson Mi-
crowave Anisotropy Probe (WMAP3) results (Spergel et al. 2007),
with the Hubble constant, density and characteristic parameters of
the power spectrum given by (h,��,�m,�b, σ8, ns) = (0.73, 0.76,
0.24, 0.042, 0.77, 0.958). Haloes in the simulation were identi-
fied at present time, z = 0, using a ‘Friends-of-Friends’ algorithm
(e.g. Zeldovich, Einasto & Shandarin 1982; Davis et al. 1985) with
a standard linking length parameter value given by 0.2 times the
mean interparticle distance.

Figure 1. The upper panel shows the mass function of haloes in the sim-
ulation (points), compared to the Sheth–Tormen mass function with (p, a)
equal to (0.3, 0.707) and (−0.19, 0.777) (solid blue and dashed green lines,
respectively). The lower panel shows the residuals of the two theoretical
curves compared to the data, i.e. (theory−data)/data.

3.1 Fit of the mass function

Any discrepancies between our derived Gumbel distribution and
the true distribution can be thought of as arising from one of two
sources: either inaccuracies in our chosen mass function, or inaccu-
racies due to the various assumptions made in proceeding from the
mass function to pG. In order to quantify the respective contribu-
tions of each of these two sources, we repeat our calculations with
two sets of parameters for the mass function: (i) once taking the
parameters used in Sheth & Tormen (1999), (p, a) = (0.3, 0.707),
and, since the Sheth & Tormen form is its standard parametrization
is known to perform only approximately (e.g. Warren et al. 2006;
Jenkins, Frenk & White 2001), (ii) once with a best fit for a and p to
the simulation’s mass function, leading to (p, a) = (−0.19, 0.777).
For this latter, we also weight bins by their mass, since it is the
high-mass end of the distribution which is of interest to us. Fig. 1
shows both these mass functions along with that measured in the
simulation.

3.2 Results

Fig. 2 shows the distribution pG(mmax) calculated as above, both
for Poisson statistics (equation 4, red dots) and incorporating full
clustering (equation 7, blue solid lines) using our best-fitting mass
function. The full clustering calculation is also shown for the orig-
inal Sheth–Tormen parameters (green dashes). Points show mea-
surements from the Horizon 4
 simulation for comparison.

Fitting a Gumbel distribution equation (1) to the data presented
in the four panels of this figure yields a single value of γ around
−0.21 ± 0.02

0.01 with reduced χ 2 ≤ 1.1, whereas the analytic prediction
presented in Section 2.4 gives −0.14 ≤ γ ≤ −0.1. This lack of
agreement has its root in the fact that γ is very sensitive to the higher
order (skewness and kurtosis) moments of the data distribution
around its peak, and these are poorly captured by assuming Poisson
statistics, even on 100 h−1 Mpc scales.

However, for a patch (in this case a sphere of radius L) of size
L = 100 h−1 Mpc, Fig. 2(a) shows that pG(mmax) measured in the
data is not as badly described by Poisson theoretical results as it
would have seemed from the value of γ alone: we are closing in
on the so-called ‘scale of homogeneity’ above which the matter
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Figure 2. Distribution of largest cluster masses mmax. The y-axis is probability density per log mass. Points are measurements from the simulation with Poisson
error bars for each mass bin. The solid blue line is the theoretical result using the best-fitting mass function (p = −0.19, a = 0.777) and full halo clustering.
Green dashes have instead the original Sheth–Tormen parameters (p = 0.3, a = 0.707). Not surprisingly, they do not agree as well with the measurement
as the solid blue line; red dots have the best-fitting values but assume haloes are Poisson distributed. The orange dot–dashed line is the GEV distribution,
with parameters calculated as explained in Section 2.4 and assuming Poisson statistics. All calculations use spherical patches, with radius L = 100, 50, 20,
8 h−1 Mpc, respectively.

distribution is essentially unclustered. Reducing the patch size to
50 h−1 Mpc (Fig. 2b) causes the full clustering and Poisson curves
to diverge. As expected, only the calculations incorporating clus-
tering remain a good match to the simulation on these smaller
scales.

Decreasing L further (Figs 2c and 2d) causes even the cal-
culations including clustering to diverge from the data as our
approximations – in particular the expression for the function σ (y)
in Section 2.1 and the condition (14) – fail outside the large-L limit.
For instance, we find R(1013 M
) = 3 Mpc h−1 and R(1014 M
) =
6.4 Mpc h−1 which is a significant fraction of the respective patch
sizes of 8 and 20 Mpc h−1. Despite these limitations, the descrip-
tion of the data is still significantly better than that of the Poisson
calculation and remains impressive at the high-mass end. This is
excellent news as it is this high-mass tail of the distribution which
is of interest for assessing the significance of rare events such as
surprisingly massive clusters observed in X-ray or redshift surveys.
Indeed the lower-mass tail of the distribution for which the predic-

tion fails most significantly lies at masses below ∼1013 M
, which
corresponds to haloes containing one to a few galaxies rather than
tens or hundreds, and therefore are of limited interest in the search
for the most massive cluster.

Moreover, note that the position of the peak of the probability
distribution function – i.e., the most likely value of log10 mmax –
is fairly accurately predicted by the theory even when the shape of
the curve begins to diverge from that of the data. Fig. 3 shows this
most likely value, log10 m̂max, as a function of L for both theoretical
estimates and the simulation data (central line and points in the
figure). We also show in this figure the 95 per cent confidence region
on log10mmax (upper and lower lines and bars). This too is well fitted
by the theory, particularly for the upper limit, and we emphasize
that this is a crucial test of the theory’s ability to give significance
values for observations of specific overly massive clusters.

In addition to the four values of L shown in Figs 2 and 3 has a
final simulation point at L = 500 h−1 Mpc. Here the 95 per cent con-
fidence region is poorly fit, because the patch is too large compared
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Figure 3. The most likely value of log10 mmax (middle line and points) and
the 95 per cent confidence limits (upper and lower line and bars). Dashed
red and solid blue lines are analytic results for the Poisson limit and full
clustering calculations, respectively, and points are simulation values for L
corresponding to the four panels of Fig. 2 plus L = 500 h−1 Mpc.

to the simulation box to get good statistics. However, the measured
value of log10 mmax is still in good agreement with the theory.

3.2.1 Senstivity to the mass function

Worthy of note is the close similarity of the curves for the two
sets of parameters in the Sheth–Tormen mass function (solid blue
and dashed green lines in Fig. 3). Although the mass functions
themselves differ by a relatively large amount compared to the best-
fitting function’s agreement with the simulation points (Fig. 1, lower
panel), this translates to only a modest change in the distribution
of mmax. Similar calculations performed with the mass functions of
Tinker et al. (2008) and Jenkins et al. (2001) lead us to conclude
that the extreme value distribution is fairly robust to the choice of
any reasonable analytic fit to the mass function.

3.2.2 Redshift variation

While the above calculations use patch sizes L small enough that the
redshift evolution within the patch is negligible, it is also interesting
to calculate mmax for a larger region with significant �z. As noted
in Section 2.1, redshift variation can be taken into account by a
weighted spatial average provided the Poisson approximation holds,
which is the case for such large patches. In particular, averaging the
number density of haloes over the range z = 0 to ∞ gives a value for
the expected largest mass cluster in the entire observable universe.

We performed this calculation assuming Poisson statistics, and
found mmax = 4.6 ± 1.2

0.6 × 1015 M
 at the 1 − σ confidence level.
We note that this is in fair agreement with the similar calculation
performed by Holz & Perlmutter (2010), who obtained mmax = 3.8
± 0.6

0.5 × 1015 using a WMAP7 cosmology and the mass function of
Tinker et al. (2008).

4 C ONCLU SION AND DISCUSSION

We have presented an analytic prediction of the the probability dis-
tribution of mmax, the most massive dark matter halo/galaxy cluster
in a specified region of the universe, making use of the counts-
in-cells formalism. Our calculation, valid for Gaussian initial con-
ditions, is numerically consistent with that proposed by Holz &

Perlmutter (2010) when performed assuming such massive haloes
are Poisson distributed spatially. However, the work presented in
this paper improves on the calculation performed by these authors
in two aspects. (i) Our results are given in a fully explicit analytic
form and (ii) they include the contribution of clustering of haloes.

We also compared our analytic predictions to measurements from
a large (2000 h−1 Mpc on a side) and well resolved (particle mass
7.7 h−1 × 109 M
) cosmological N-body simulation at zero red-
shift. We achieve remarkable agreement with the simulation in the
area of parameter space in which our formalism is expected to be
valid, namely patch radii above a few tens of h−1 Mpc. More sur-
prisingly, even outside this range of scales the high-mass tail of the
distribution is well fit by our ‘fully clustered’ theoretical estimate,
as is the most likely value of log10 mmax.

This unexpected success over a wide range of scales warrants the
application of the formalism to quantify the statistical significance
of individual clusters observed in surveys. By applying our method
to a patch of shape, size and redshift equivalent to a real survey
we can obtain the Gumbel distribution and hence a likelihood for
the observed value of mmax. Moreover, we are quite confident that
our method can be extended to non-standard cosmologies such as
those including initial non-Gaussianities. It could therefore pro-
vide a measure of the evidence for such cosmologies from existing
surveys of the most massive clusters as advocated in Cayón et al.
(2010). We plan to tackle this exciting prospect in the very near
future.

In addition to the full likelihood curve of mmax we are able,
via the analytic GEV formalism, to produce a summary of the
distribution in the form of the three parameters a, b and γ . The
latter in particular has been proposed previously as a statistic for
use in model comparison (e.g. Mikelsons et al. 2009). Although the
work described in this paper uses a single cosmology and power
spectrum and produces a roughly constant value of γ , the results
of Colombi et al. (2011) suggest that γ should be quite sensitive to
the shape of the power spectrum. If the effect on γ of the clustering
can be fully quantified, we therefore expect to be able to use it as a
statistic for direct comparison of models with observation. Likewise
a, which is closely related to the peak m0 of the distribution, may
prove a useful statistic since we have demonstrated that it is well
predicted by our theory.
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