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ABSTRACT
We studied superclusters of galaxies in a volume-limited sample extracted from the Sloan
Digital Sky Survey Data Release 7 and from mock catalogues based on a semi-analytical
model of galaxy evolution in the Millennium Simulation. A density field method was applied
to a sample of galaxies brighter than Mr = −21+5 log h100 to identify superclusters, taking
into account selection and boundary effects. In order to evaluate the influence of the threshold
density, we have chosen two thresholds: the first maximizes the number of objects (D1)
and the second constrains the maximum supercluster size to ∼120 h−1 Mpc (D2). We have
performed a morphological analysis, using Minkowski Functionals, based on a parameter,
which increases monotonically from filaments to pancakes. An anticorrelation was found
between supercluster richness (and total luminosity or size) and the morphological parameter,
indicating that filamentary structures tend to be richer, larger and more luminous than pancakes
in both observed and mock catalogues. We have also used the mock samples to compare
supercluster morphologies identified in position and velocity spaces, concluding that our
morphological classification is not biased by the peculiar velocities. Monte Carlo simulations
designed to investigate the reliability of our results with respect to random fluctuations show
that these results are robust. Our analysis indicates that filaments and pancakes present different
luminosity and size distributions.

Key words: cosmology: large-scale structure of Universe – galaxies: clusters: general –
methods: data analysis.

1 IN T RO D U C T I O N

It is well known that galaxies are not randomly distributed in the
Universe, with high-density regions being observed as large-scale
structures and low-density regions as voids. Under the current �

cold dark matter (�CDM) cosmological paradigm, the evolution of
these structures started in the early Universe from primordial density
fluctuations just after inflation, leading to the observed cosmic web.
At very large scales, of tens of Mpc, clusters, groups and even
pairs or isolated galaxies are disposed in very large associations,
sometimes of filamentary or planar structure. These associations are
the largest non-virialized structures in the Universe: superclusters
of galaxies. Their dynamical future is still uncertain, but in a dark
energy dominated Universe most of them may evolve to island
universes, single, isolated and highly concentrated mass clumps
(Araya-Melo et al. 2009).

�E-mail: mvcduarte@astro.iag.usp.br
†This file has been amended to highlight the proper use of LATEX 2E code
with the class file.

The study of very large scale structures started with de
Vaucouleurs (1953), who identified a high-density region in the
galaxy distribution on the sky, nowadays known as the local super-
cluster. Abell (1958) also helped to unveil large scales through his
catalogue of clusters of galaxies identified in the Palomar Obser-
vatory photographic plates; he defined superclusters as clusters of
galaxies. Larger surveys were carried out and, as a consequence,
the distribution of galaxies in the local Universe could be studied
in detail. The Harvard Center for Astrophysics survey measured
the redshift of a sample of galaxies brighter than 14.5 (Huchra
et al. 1983), showing the filamentary distribution of galaxies, with
galaxy clusters at the connection of the filaments. These redshifts
allowed to constrain the cosmological model. Indeed, Efstathiou,
Sutherland & Maddox (1990) showed, from the analysis of large-
scale galaxy clustering in the IRAS survey, that a cosmological con-
stant was required to explain the galaxy distribution in the frame-
work of the CDM model.

The data derived from redshift surveys later allowed to study
the properties of individual superclusters, like Pisces-Cetus (Tully
1988) and Shapley (Proust et al. 2006), as well as those of the
whole population of superclusters, revealing that they tend to have
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an elongated morphology and extensions up to ∼100 h−1 Mpc
(Bahcall & Soneira 1984). Recent works reveal extensions up to
110–130 h−1 Mpc (Pandey et al. 2010). The study of superclusters
highly benefited from the 2dF Galaxy Redshift Survey (2dFGRS)
(Colless, Dalton & Maddox 2001) and the Sloan Digital Sky Survey
(SDSS) (Abazajian et al. 2009).

Indeed, more complete studies of large-scale structures were pos-
sible using these large-redshift surveys. Jaan Einasto’s group used
the 2dFGRS data to generate a catalogue of superclusters (Einasto
et al. 2007a, hereinafter E07a). They also compared observed super-
clusters to simulated ones (Einasto et al. 2007b, hereinafter E07b)
and studied the spectral properties of galaxies within superclusters
(Einasto et al. 2007c). Their main results indicate that the overall
properties of simulated and observed superclusters present good
agreement with each other, but their luminosity and multiplicity
(number of galaxies) distributions seem to be different. Addition-
ally, they found that galaxy morphology in superclusters depends
on their richness, with rich superclusters presenting an early-type
fraction slightly higher than poor superclusters. In another series
of papers (Einasto et al. 2007d,e), these authors have studied the
richest superclusters identified in the observations. Comparing the
clumpiness of simulated and observed superclusters, they conclude
that the clumpiness of galaxies in simulations is different from
that observed (Einasto et al. 2007d) and that the global and local
environments are quite important for galaxy morphology and star
formation activity (Einasto et al. 2007e).

Since superclusters are non-virialized structures, they present
a variety of morphologies (West 1989; Plionis, Valdarnini &
Jing 1992). Several studies have used shape statistics (Sahni,
Sathyaprakash & Shandarin 1998) and Minkowski Functionals
(MFs) (Mecke, Buchert & Wagner 1994) to determine topologi-
cal and geometrical properties useful for morphological analysis.
The SDSS and PSCz (Saunders et al. 2000) superclusters seem to
have a prevalence of filamentary structures (Basilakos 2003), as well
as a concordance with the �CDM model of large-scale structure
formation (Basilakos et al. 2001, hereinafter B01). A comparison of
observed and simulated superclusters showed that simulated super-
clusters are very similar to those observed, but the number density
of very luminous superclusters seems to be higher in observations
than in simulations (Einasto et al. 2006, hereinafter E06).

Morphological studies suggest that galaxies are found in two
distinct classes of structures at very large scales: filaments and
pancakes. Using the shapefinder technique (Sahni et al. 1998), B01
applied this approach to distinguish between these two classes using
the so-called shape-spectrum. Further works used filament features
to constrain the galaxy clustering, since the bias parameter is also
sensitive to filamentarity (Bharadwaj & Pandey 2004). Using galaxy
luminosities and colours, Pandey & Bharadwaj (2006) found a de-
pendence between galaxy properties and filamentarity, proposing
a scenario where elliptical galaxies are predominantly in dense re-
gions, while spiral galaxies are distributed along filaments. A strong
spatial alignment between clusters and host superclusters in large
filaments was found in N-body simulations (Basilakos et al. 2006;
Lee & Edvard 2007).

Here we present a study of supercluster morphologies through
the study of the galaxy distribution in volume-limited samples ex-
tracted from the SDSS Data Release 7 (SDSS-DR7; Abazajian et al.
2009). We use a kernel-based density field method to identify the
superclusters and MFs to quantify their shape.

This paper is organized as follows. Section 2 presents the data
used here as well as our method to deal with selection effects.
In Section 3, we describe the kernel-based density field method

used to identify superclusters as well as the criteria to classify en-
hanced regions as superclusters, taking into account the selection
and boundary effects. In Section 4, the morphological classifica-
tion is described and in Section 5, we discuss the morphology of
observed and simulated superclusters. Finally, in Section 6, we
summarize the main conclusions of this paper. In Appendix A, we
discuss the sensitivity of our supercluster identification and mor-
phological analysis to the adopted kernel.

When necessary, distances were calculated assuming the follow-
ing cosmology: �m = 0.3, �� = 0.7 and Hubble parameter H0 =
100 h−1

100 km s−1 Mpc−1.

2 DATA

The analysis presented in this paper is based on a volume-limited
galaxy sample extracted from the SDSS-DR7 (Abazajian et al.
2009). We have considered galaxies with measured radial velocities
and with absolute magnitudes in the r band brighter than −21 +
5 log h in the redshift range 0.04 ≤ z ≤ 0.155. Absolute magnitudes
were calculated with k-corrections obtained with the code KCORRECT

v4.1.4 and with a specific SDSS package provided by Blanton &
Roweis (2007). Since superclusters may extend over several degrees
on the sky, we have considered only galaxies within stripes 10–37
to assure a large continuous area on the sky. The total number of
galaxies selected is 120 013.

In Section 5, we will compare some of our results with nu-
merical simulations. For this we have used simulated light-cones
produced by Croton et al. (2006), based on a semi-analytic galaxy
evolution model applied to the output of the Millennium Simula-
tion (Springel et al. 2005). We have selected the four light-cones
with parameters suited for the SDSS: SDSS_SAcone_012_000,
SDSS_SAcone_012_100, SDSS_SAcone_120_000 and SDSS_
SAcone_201_000. Each covers an area of 60×30 deg2 and the sim-
ulated galaxies were selected following the same criteria as adopted
in the selection of our volume-limited sample of SDSS galaxies.
The number of simulated galaxies selected in the four light-cones
is 99 850.

3 THE DENSI TY FI ELD METHOD

Superclusters are sometimes defined as large-scale overdensity re-
gions in the galaxy distribution (de Vaucouleurs 1953). Adopting
this definition, the density field method represents a convenient
way to identify these structures (e.g. B01; E07a). In this section, we
describe how we define the density field of a sample of galaxies.

3.1 The density field

First, using the equatorial coordinates (α, δ) and the redshift z of
each galaxy, we calculated its Cartesian coordinates as

x = dc cos(δ) cos(α)

y = dc cos(δ) sin(α)

z = dc sin(δ) (1)

where dc(z) is the comoving distance of the galaxy.
The luminosity density of the galaxy distribution, D(r), is calcu-

lated through the kernel approach. At a certain point r in space, it
is given by

D(r) =
∑

i

K(|r − r i |, σ )LiWi(r i), (2)
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Figure 1. Number of superclusters as a function of the threshold density
(in units of the mean density).

where K(r, σ ) is the kernel used to smooth the galaxy distribution,
Li is the luminosity of the ith galaxy (at position r i) and Wi(r i) is a
weight, which takes into account selection effects (discussed in the
next section).

We adopt here Epanechnikov’s kernel, which minimizes the
asymptotic mean integrated squared error (e.g. Silvermann 1986)
and is defined as

K(r, σ ) =
{

3
4 [1 − (r/σ )2] r ≤ σ

0 r > σ
. (3)

Here σ is the smoothing parameter. We have adopted σ =
8 h−1 Mpc. The reason is that the number density of galaxies in
our sample (see the next section) is n̄ = 2.1 × 10−3(h−1 Mpc)−3,
corresponding to a mean distance between galaxies of ∼8 h−1 Mpc.
As shown later, this choice leads to a density field relatively in-
sensitive to peculiar velocities. The density field is sampled in a
three-dimensional grid with cells of side lcell = 4 h−1 Mpc.

To identify structures in the density field, it is necessary to de-
fine a density threshold to separate high-density regions (e.g. su-
perclusters) from low-density regions (e.g. voids). In this way,
we have rejected all grid points below the threshold. Afterwards,
a friends-of-friends algorithm was used to connect nearby high-
density grid points, assigning them to single objects. The linking-
length used is equal to the diagonal of the cell grid, that is,
lfof = √

3lcell � 7 h−1 Mpc. Only objects with more than 10
galaxies and volume larger than two grid cells, Vmin = 2(lcell)3

= 128(h−1 Mpc)3, will be considered in the analysis (E07a).
Note that about 0.3 per cent of the DR7 imaging footprint area

is marked as holes. In these regions, we have used bilinear interpo-
lation to obtain the density field, considering only grid points, at a
given redshift, more distant that 8 h−1Mpc from the hole borders.
Since the area occupied by the holes is small, and most of the holes
are in low-density regions, it can be verified that this procedure has
a negligible impact on our results.

There is no natural value for the threshold density. In Fig. 1, we
present the number of structures (hereinafter called superclusters)
as a function of the threshold in units of mean density (D̄), com-
puted with the selection function discussed in Section 3.2. For low
threshold density values, percolation links distinct structures and
consequently the number of superclusters is low. At high threshold
values, only high-density objects are identified, also resulting in a
low number of structures. In this work, we have adopted two dis-
tinct values for the threshold density. The first one, Dthresh = 3 × D̄

(hereinafter D1), is the value, which maximizes the number of su-
perclusters. The second one, Dthresh = 6 × D̄ (hereinafter D2), was
chosen such that the largest superclusters present an extension of
∼120 h−1 Mpc, as adopted by E07a. This length consists of the di-
agonal of the box, which contains all galaxies of the supercluster,
that is, l = √

�x2 + �y2 + �z2.
Two important features of superclusters can be defined here: their

richness and total luminosity. The richness can be written as

R =
Ngal∑

i

Wi, (4)

where Ngal represents the number of galaxies of the supercluster
and Wi is the selection effect correction of the ith galaxy. The total
supercluster luminosity – actually the expected luminosity above
the magnitude limit – is defined as

Ltot =
Ngal∑

i

LiWi, (5)

where Li represents the luminosity of the ith galaxy.
It is worth mentioning that our results are not too sensitive to

the choice of the smoothing kernel. We present in Appendix A
a summary of results obtained with a truncated Gaussian kernel,
showing that our estimates of supercluster parameters are indeed
very robust.

3.2 A model for the selection function

The selection function aims at correcting for galaxies brighter than
our magnitude limit that, for a reason or another, were not included
in the sample.

Indeed, our magnitude-limited sample is affected by incomplete-
ness due to fibre collisions in the spectroscopic survey. Conse-
quently, although the nominal magnitude limit of the SDSS Main
Galaxy Sample (MGS) is mr = 17.77, not all galaxies brighter than
this limit were observed. There is a minimum distance between fibre
allocations by the SDSS spectrographs of about 55 arcsec (Strauss
et al. 2002) and some galaxies within the MGS photometric limits
do not have spectroscopy, because they are closer than 55 arcsec to
a galaxy to which a fibre was allocated. This spectroscopic incom-
pleteness depends on the apparent magnitude, since fainter galaxies
are more affected. This is shown in Fig. 2, which presents the frac-
tion of galaxies with spectroscopy as a function of the apparent
magnitude mr.

The spectroscopic incompleteness leads to a radial selection ef-
fect, since galaxies with higher apparent magnitude tend to be at
higher redshifts. Since in this case the shot-noise increases with
distance, the coupling between this radial effect and a constant
smoothing parameter introduces an additional distortion in the
density field (Gaztanaga & Yokoyama 1993; Seljak, Hamaus &
Desjacques 2009). This bias leads to an overestimation of the den-
sity with increasing redshift (B01).

To deal with these effects, we have adopted a simple model for the
selection function, with two components. The first one depends on
the apparent magnitude [S1(mr)] and the second one on the redshift
or comoving distance [S2(dc)]. The selection function is thus defined
as

S(mr, dc) = S1(mr )S2(dc) (6)

and is related to the weight W as

W = S(mr, dc)
−1.
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Figure 2. Fraction of galaxies with observed spectra as a function of ap-
parent r-band magnitude in the range 13.0 < mr < 17.77. The red line
represents the fourth-order polynomial fitted to the observed trend.

Figure 3. The blue continuous line shows the mean density in equal volume
regions as a function of the comoving distance when only the magnitude
selection effect is taken into account. The slight dependence of the density
with distance shows evidence for a radial bias. The blue dot–slashed–dotted
line is the linear fit adopted to model this radial bias and the red dashed
line represents the mean density after correcting the density field by the
magnitude and radial selection effects.

The apparent magnitude component can be defined as S1(mr) =
nspec/ntot and we model the trend seen in Fig. 2 with a fourth-order
polynomial:

S1(mr ) = 0.588 605 − 1.941 834mr + 0.419 142m2
r

− 0.029 956m3
r + 0.000 724m4

r . (7)

To estimate the radial component of the selection function, we,
initially, calculated the mean of the density field grid points in
10 regions with the same volume, taking into account only the ap-
parent magnitude incompleteness [i.e. assuming S2(dc) = 1]. As
shown in Fig. 3, the mean density of each region increases with
redshift, reflecting the bias mentioned above. However, a compari-
son with fig. 3 of B01 indicates that the effect here is significantly
less severe in our volume-limited sample than in magnitude-limited
samples. To correct for this effect, we model the dependence of the
mean density with the comoving distance as S2(dc) = adc + b with
a = 0.0025 and b = 0.1565 for distances in Mpc. Taking S2(dc)

Figure 4. Region occupied by our sample on the sky (in black). Green dots
represent the boundary of the region.

into account, the radial trend in the mean value of the density field
disappears, as shown in Fig. 3.

3.3 Boundary effects

Due to the large sizes of superclusters and the limited volume of
our galaxy sample, care should be taken to avoid boundary effects
that can affect the analysis described in the following sections.

With this aim, we considered only structures where all galaxies
have comoving transversal distances from any volume boundary
border larger than σ = 8 h−1 Mpc. Fig. 4 shows the region occu-
pied by our initial sample (in black) as well as its boundary points
(in green). Superclusters in the region with 240◦ < α < 253◦ and
−2◦ < δ < +2◦ were excluded from our sample to avoid boundary
effects. Excluding superclusters at the boundary, our final super-
cluster sample has 880 structures above the threshold D1 and 409
structures above the threshold D2. Their main properties are shown
in Table 1.

4 MO R P H O L O G I C A L D E S C R I P T I O N
OF SUPERCLUSTERS

Since superclusters of galaxies are not virialized structures, they
present a large variety of shapes. In this section, we present the
shapefinder method, which we adopted to describe the morphology
of these structures. First, we discuss the ellipsoidal model to describe
the structures and then we use MFs to obtain a morphological
parameter.

4.1 The ellipsoidal model

A simple description of the three-dimensional morphology of a body
can be obtained through its best-fitting triaxial ellipsoid. This model
has eight free parameters: three for the centroid of the structure, two
for its orientation and three for the semi-axes a1, a2 and a3.

The parameters of the ellipsoid can be inferred from the iner-
tia tensor, that is, the matrix of second-order moments of particle
positions:

Iij =
∑

k

LkWkx
k
i x

k
j , (8)

where xk
i represents the ith coordinate of the kth galaxy with respect

to the object centroid. The matrix Iij can be diagonalized and the
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Table 1. Statistics for observed and simulated superclusters for the two threshold densities. The table shows the number of superclusters
classified as filaments (Nf ), pancakes (Np), the mean number density (n̄SC) of superclusters and median values for total luminosity,
richness and K1/K2. For simulated superclusters, we also present our results in the position space.

Threshold Sample Nf Np n̄SC(10−5 h3 Mpc−3) log(Ltot/L�) log(R) K1/K2

D1 SDSS-DR7 436 444 1.55 11.82 1.39 1.00
(velocity space) 012.000 74 83 1.02 12.01 1.58 1.02

012.100 70 75 0.94 12.02 1.60 1.01
120.000 86 86 1.11 11.99 1.55 1.00
201.000 76 81 1.02 12.01 1.60 1.04

D2 SDSS-DR7 204 212 0.74 12.07 1.64 1.01
(velocity space) 012.000 31 27 0.37 12.29 1.85 0.92

012.100 29 29 0.37 12.37 1.90 1.00
120.000 45 23 0.44 12.28 1.83 0.88
201.000 29 28 0.37 12.30 1.86 0.99

D1 012.000 98 90 1.22 11.97 1.55 0.97
(position space) 012.100 85 85 1.10 12.03 1.60 1.01

120.000 82 109 1.24 12.00 1.57 1.08
201.000 84 89 1.06 11.96 1.55 0.99

D2 012.000 31 27 0.38 12.24 1.78 1.07
(position space) 012.100 29 29 0.37 12.33 1.89 1.03

120.000 34 27 0.40 12.24 1.78 0.97
201.000 29 32 0.39 12.21 1.77 1.00

diagonal elements are proportional to the best-fitting ellipsoid semi-
axes (e.g. Plionis, Barrow & Frenk 1991; Jang-Condell & Hernquist
2001; Kolokotronis, Basilakos & Plionis 2002):

I1 =
∑

i LiWi

5

(
a2

2 + a2
3

)
,

I2 =
∑

i LiWi

5

(
a2

1 + a2
3

)
,

I3 =
∑

i LiWi

5

(
a2

1 + a2
2

)
.

(9)

Solving the system of equations above, the three semi-axes are
determined, with the assumption that a1 ≥ a2 ≥ a3.

4.2 Minkowski Functionals

MFs represent an important tool to describe structures and objects,
since they characterize their geometry. We follow here the formal-
ism of Sahni et al. (1998), which uses ellipsoidal models for the
morphological description of the objects.

Having as input parameters the semi-axes a1, a2 and a3 obtained
in the previous section, we can determine, for an object or isodensity
contour, four parameters: the volume (V), the surface (S), the in-
tegrated mean curvature (C) and the integrated Gaussian curvature
(G), also called genus.

The parametric equation for an ellipsoid with semi-axes a1, a2

and a3 can be written as

r(θ, φ) = a1(sin θ cos φ)î + a2(sin θ sin φ) ĵ + a3(cos θ )k̂. (10)

We now define

E = rθ · rθ ,

F = rθ · rφ,

G = rφ · rφ,

L = rθθ · n,

M = rθφ · n,

N = rφφ · n,

where

rφ = ∂r/∂φ,

rθ = ∂r/∂θ,

rφφ = ∂2r/∂φ2,

rθθ = ∂2r/∂θ 2,

rθφ = ∂2r/∂θ∂φ.

The vector n represents the unit vector perpendicular to the surface
and is defined as

n = rθ × rφ/| rθ × rφ |.
The four geometrical quantities can then be written as

S =
∫ ∫ √

EG − F 2 dθdφ, (11)

C =
∫ ∫

k1 + k2

2
dS, (12)

G = −1

4π

∫ ∫
k1k2 dS, (13)

V = 4

3
πa1a2a3. (14)

The principal curvatures of the ellipsoid are k1 and k2, and the
sum and product of these quantities are, respectively,

k1 + k2 = EN + GL − 2FM

EG − F 2
, (15)
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Figure 5. The histogram shows the distribution of K1/K2 for SDSS super-
clusters considering D1 (solid line) and D2 (dotted line). Both distributions
present a median value around unity.

and

k1k2 = LN − M2

EG − F 2
. (16)

Three parameters are introduced, H1, H2 and H3, which have di-
mensions of length: H1 = 3V/S, H2 = S/C and H3 = C/4π. Com-
binations of these parameters provide two important shapefinders,
K1 (planarity) and K2 (filamentarity), which can, respectively, be
expressed as

K1 = H2 − H1

H2 + H1
(17)

and

K2 = H3 − H2

H3 + H2
. (18)

The vector K = (K1, K2) has an amplitude and direction, which
determine the shape of a certain three-dimensional surface. An
ideal pancake-like object presents one dimension, which is much
smaller than the others, so H1 
 H2 � H3 and consequently
K � (1, 0). For an ideal filament, H1 � H2 � H3 and so K �
(0, 1). Considering surfaces like ribbons, the shapefinders have three
distinct dimensions, that is, H1 
 H2 
 H3 and K � (α, α) with
α < 1. It is worth mentioning that, for a sphere, H1 = H2 = H3 and
hence K = (0, 0).

This formalism can be used to classify objects with different
shapes, so we consider the following two morphologies:

(i) Objects with K1/K2 >1 are classified as pancakes.
(ii) Objects with 0 ≤ K1/K2 ≤ 1 are classified as filaments.

The range of K1/K2 for ribbons is somewhat arbitrary (K1/K2 �
1), so we decided to exclude this morphology from our classifi-
cation. The shape statistics K1/K2, through the so-called ‘shape
spectrum’, was first applied to astronomy by B01.

Fig. 5 shows the distribution of the morphological parameter
K1/K2. Table 1 presents some statistical properties of the superclus-
ter morphologies, considering the two threshold densities discussed
in Section 3.1.

5 R ESULTS AND DISCUSSION

In this section, we investigate how overall properties of superclus-
ters, like their richness and total luminosity, correlate with their

Figure 6. Richness (top panel) and total luminosity (bottom panel) of SDSS
superclusters as a function of the morphological parameter K1/K2 for the
density threshold D1. The median and quartiles of the distribution are shown.

morphological properties. We also repeat the analysis for structures
extracted from numerical simulations, with the main objective of
comparing the supercluster properties in the position and velocity
spaces.

5.1 SDSS superclusters

Fig. 5 and Table 1 indicate that we have essentially the same number
of objects classified as filaments or pancakes in our sample, for the
two density thresholds discussed here. We found 436 filaments
and 444 pancakes for the threshold D1 and 204 filaments and 212
pancakes for the threshold D2. Hence, our result does not confirm
previous works (e.g. B01), where a prevalence of objects classified
as filaments was found.

In order to investigate relations between morphology and prop-
erties of superclusters, the Spearman rank-order correlation coef-
ficient, rs, was used to measure possible correlations (Press et al.
2007). We have also computed the two-sided significance level of
the null hypothesis of absence of correlation (or anticorrelation),
P(H0); a small value of P(H0) is indicative of strong correlation (or
anticorrelation).

Fig. 6 shows the richness and total luminosity of SDSS superclus-
ters as a function of the morphological parameter K1/K2, consider-
ing the threshold D1. The lines represent the median and quartiles
for each bin of K1/K2. Despite the large scatter, there is a signif-
icant trend between richness (and consequently total luminosity)
and the morphological parameter K1/K2. In both cases, we found
rs � −0.25 and P(H0) < 10−4, showing that filamentary structures
tend to be richer and more luminous than pancakes. A similar be-
haviour is found for the threshold D2, with a correlation coefficient
rs � −0.25 and P(H0) < 10−4 for both richness and total lumi-
nosity. These results indicate that the trends of richness and total
luminosity with the morphological parameter are not strong but are
statistically significant.

We have also compared the luminosity distributions of filaments
and pancakes through the Kolmogorov–Smirnov (K–S) test (Fig. 7).
We conclude that their distributions are statistically distinct, present-
ing a K–S probability lower than 10−3 that the cumulative luminos-
ity distributions of filaments and pancakes are drawn from the same
distribution. A similar result is achieved using the threshold D2,
in this case with a probability <10−3. Indeed, Fig. 7 suggests that
the luminosity distribution of filaments is significantly broader than
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Figure 7. Observed luminosity distribution of filaments (continuous red
histogram) and pancakes (dotted blue histogram), for the density threshold
D1.

Figure 8. Distribution of the semimajor axis resulting from the ellipsoidal
fitting to the structures. Left-hand panel: filaments; right-hand panel: pan-
cakes. Dotted lines correspond to the distributions obtained from the super-
clusters extracted from the numerical simulations described in Section 5.2.
Results for the density threshold D1.

that of pancakes, resulting in a higher number of filaments at high
luminosities, in agreement with Fig. 6. A similar trend for super-
clusters classified as filaments to be richer and consequently more
luminous had already been reported by E07b.

Considering now only the brightest structures, those with
log(L/L�) > 12.5, we may note the prevalence of filaments over
pancakes: 60.4 and 39.6 per cent, respectively, for the threshold D1,
and 62.5 and 37.5 per cent, respectively, for the threshold D2.

Fig. 8 shows the distribution of the semimajor axis resulting
from the ellipsoidal fitting to the structures. Filaments and pancakes
have different sizes, as demonstrated also by Fig. 9, with filaments
comprising most of the largest superclusters.

5.2 Analysis of simulated superclusters

We have repeated the above analysis for the four mock SDSS cat-
alogues described in Section 2, applying the same procedures as
described in Sections 3 and 4.

Table 1 shows the number of superclusters identified in the sim-
ulations, classified as filaments or pancakes, as well as the mean
number density and median values of richness, total luminosity and
K1/K2 for each sample of superclusters and threshold densities.
Comparing the median values of total luminosity and richness from
both threshold densities, slightly higher values are found in the

Figure 9. Semimajor axis resulting from the ellipsoidal fitting to the struc-
tures as a function of the morphological parameter K1/K2 for the density
threshold D1. The median and quartiles of the distribution are shown. Top
panel: SDSS sample. Bottom panel: superclusters extracted from the nu-
merical simulations described in Section 5.2.

Figure 10. Richness (top panel) and total luminosity (bottom panel) of
superclusters extracted from numerical simulations as a function of the
morphological parameter K1/K2 for the density threshold D1. The median
and quartiles of the distribution are shown.

threshold D2, because only richer and more luminous superclusters
are identified using this threshold, increasing the median values.

The same behaviour of observed richness and total luminosity
with the morphological parameter K1/K2 is present in the simula-
tions. Fig. 10 shows the relation between richness, total luminosity
and K1/K2 for the superclusters extracted from the simulations with
the density threshold D1. The value of the Spearman coefficient is
rs = −0.25 and P(H0) < 10−4 considering the threshold D1, and
rs = −0.25 and P(H0) < 10−4 for the threshold D2. This anticor-
relation between richness, total luminosity and K1/K2 in the mock
catalogues is very similar to that obtained for observed superclus-
ters (Fig. 6), indicating a good agreement between simulations and
observations.

Peculiar velocities may have an important influence on super-
cluster identification. The observed redshift of extragalactic objects
has a component produced by the Hubble flow plus a peculiar ve-
locity component due to gravitational interactions. Consequently,
there is a difference between measured distances in velocity and po-
sition spaces, which produces some features in the velocity space,
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Figure 11. Comparison between the values of the morphological parameter
of simulated superclusters identified in the velocity and position spaces. Each
panel corresponds to different limits in the fraction of galaxies in common
(f g) in structures identified in the velocity and position spaces.

such as the fingers-of-god and the Kaiser effect (e.g. Jackson 1972;
Bahcall, Soneira & Burgett 1986; Kaiser 1987). In order to study
the influence of peculiar velocities on supercluster identification
and morphology, we identified superclusters in the mock samples
of Croton et al. (2006) using two sets of redshifts available in
the simulations: the first one including peculiar velocities (velocity
space) and the second without them (position space). The influence
of peculiar velocities on the identification and morphological classi-
fication of superclusters can be studied by comparing the properties
of simulated superclusters in both spaces. Table 1 also presents the
main features of simulated supercluster samples identified in ve-
locity and position spaces. Qualitatively, results are similar for the
density thresholds D1 and D2.

Due to peculiar velocities, galaxies associated to a structure in
position space may or may not be associated to the same structure
identified in velocity space. In order to compare the morphologies
of superclusters identified in both spaces, superclusters from posi-
tion space were associated to ones from velocity space, according to
the percentage of galaxies (f g) in common (30, 60 and 90 per cent).
Fig. 11 shows K1/K2veloc versus K1/K2pos for different percentages
of galaxies in common. In all cases, there is a significant correla-
tion between the morphological parameter measured in both spaces,
despite the large scatter, which increases as f g increases. Interest-
ingly, there is no significant bias in the morphological parameter
measured in velocity space compared with the values measured
in position space. This is actually due to the high values of the
smoothing parameter adopted here (see Section 3).

As another test of how morphology is distorted in redshift space,
we have considered galaxies in superclusters identified in redshift
space and compared the morphology they trace in both velocity and
position spaces. Fig. 12 shows the distribution of K1/K2 in velocity
and position-spaces in this case. The median values of K1/K2 are
similar (K1/K2veloc = 1.01 and K1/K2pos = 1.04) in both spaces.
A K–S test indicates that the two distributions are consistent with
each other. Hence, this test also suggests that peculiar velocities are
not important for our morphology measurements.

We now consider the luminosity distribution of superclusters
identified in the velocity and position spaces in the mock cata-
logues. Fig. 13 shows this distribution for filaments and pancakes
for the density threshold D1. For each morphological class, the dis-
tributions in both spaces are quite similar, as confirmed by the K–S
test. It is worth mentioning that these distributions in velocity space
resemble very much the observed distributions (Fig. 10). This is
confirmed by a K–S test comparison of the filament and pancake
distributions with K–S probability equal to 0.85 and 0.42, respec-
tively, for the null hypothesis that the data were drawn from the

Figure 12. Distribution of the morphological parameter of superclusters
identified in velocity (black) and position (green) spaces. The median values
of K1/K2 (top left-hand panel) are similar and the K–S test shows that the
distributions are consistent with each other.

Figure 13. Luminosity distributions of filaments and pancakes identified
in the mock catalogues, in velocity and position spaces, for the threshold
D1.

same distribution. Both probabilities show that the distributions are
not statistically distinct.

The trend of the semimajor axis (a1) of the ellipsoidal fitting
of observed and simulated superclusters with the morphological
parameter shown in Fig. 9 provides an indication that the largest
structures tend to be filamentary. The trend is very similar for the
observed and simulated structures.

Our results indicate that simulated and observed superclusters
present similar properties. This is also the case for the luminosity
distributions of observed and simulated superclusters, as can be
seen in Figs 7 and 13. However, E06 have found an absence of very
luminous superclusters in simulations compared with observations.
Indeed, a comparison between the observed and mock samples
shows that objects brighter than log(L/L�) > 12.5 are at least
twice more frequent in the observations than in the mock samples.

Additionally, by comparing the luminosity distribution of super-
clusters classified as filaments and pancakes, we have noted that
these classes have very different luminosity distributions. Since fil-
aments tend to be richer and more luminous than pancakes, it is
fair to suggest that these two morphological classes represent dif-
ferent evolutive dynamical stages of the large-scale structure, with
pancakes possibly evolving to filaments.
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Figure 14. Distribution of the probability of identifying real superclusters
for the density threshold D1. The median value (red dotted line) is around
85 per cent.

5.3 Statistical reliability of supercluster identification

Our method of supercluster identification is strongly dependent on
the threshold density and on the smoothing parameter. Thus, it is
necessary to verify its robustness by checking what fraction of our
detections are expected to be real or just statistical noise.

To investigate the expected number of random clumps, we follow
the approach proposed by Basilakos (2003). We ran a large num-
ber (200) of Monte Carlo simulations where we randomized the
equatorial coordinates of the galaxies, keeping their comoving dis-
tances and the sample boundaries in order to preserve the selection
function. Since this randomization destroys the SDSS clustering,
the structures identified in each simulation will be due to statisti-
cal noise. The probability of identifying real superclusters in our
sample through this procedure is then

P = 1 − Nrand

NSDSS
, (19)

where Nrand is the number of structures identified in the random-
ized samples and NSDSS is the number of structures identified in our
original SDSS sample. A probability close to 1 means that the num-
ber of spurious objects produced by our supercluster identification
method is small.

This analysis was performed for the same threshold densities as
in Section 3.1. Fig. 14 shows the resulting probability distribution
obtained with the threshold D1, presenting a median probability P
of around 85 per cent. For the threshold D2, the median probability
is higher than 99.8 per cent. Fig. 15 compares the luminosity dis-
tribution of our D1 SDSS superclusters with that obtained from the
simulations. The result clearly indicates that most random struc-
tures have luminosities significantly lower than those of the SDSS
superclusters. This result is also noted by comparing the median
values of the SDSS and random luminosity distributions.

The same morphological analysis as described in Section 4 was
applied to the structures identified in the Monte Carlo simulations.
No trends were found between the total luminosity or richness
and the morphological parameter K1/K2, indicating that the results
displayed in Fig. 6 are indeed real and not produced by random
fluctuations or by the selection function of the sample.

Another test of robustness of the main trends identified in this
work can be done by considering only structures with total lumi-
nosities larger than 1012 L�, since our Monte Carlo simulations

Figure 15. Luminosity distributions of SDSS superclusters (continuous
line) and random superclusters (dotted line) for the density threshold D1. The
median of logarithmic values (top left-hand panel) shows that random super-
clusters present significantly lower luminosities than SDSS superclusters.

indicate that the expected number of spurious structures in this case
is only ∼3.7 per cent. All our previous results are confirmed.

6 SU M M A RY A N D C O N C L U S I O N S

We have selected a volume-limited sample of galaxies from the
SDSS in order to identify galaxy superclusters, determine their
morphologies and investigate some of their features. Our SDSS
sample contains galaxies with Mr <−21 in the redshift range 0.04 <

z < 0.155 and covers stripes 10–37. We have also analysed simulated
light-cones based on a semianalytic galaxy evolution model applied
to the output of the Millenium Simulation (Croton et al. 2006) to
confront theory and observations and to examine the role of some
systematic effects.

Superclusters were identified by the density field method with an
Epanechnikov kernel, taking into account selection and boundary
effects. By comparing the results obtained with this kernel with
those obtained with a truncated Gaussian kernel, we show that the
results are not strongly dependent on the kernel choice. The kernel
smoothing parameter and the dimension of the density field cell
were chosen as σ = 8 h−1 Mpc and lcell = 4 h−1 Mpc, respectively.
Two threshold densities were chosen to evaluate their influence on
supercluster identification and morphology. The first maximizes the
number of structures (D1) and the second is chosen by limiting the
size of the largest superclusters to ∼120 h−1 Mpc (D2). We found
that, at least qualitatively, our results do not depend on the density
threshold used. Each supercluster is characterized by its richness
and total luminosity, as well as by a morphological parameter deter-
mined through MFs, which allows their classification as filaments
or pancakes.

Following E07b, we have found significant correlations of the
morphological parameter K1/K2 with richness and total luminosity
in both the observed and the mock supercluster catalogues, indicat-
ing that filaments tend to be richer and consequently more luminous
than pancakes.

To evaluate the influence of peculiar velocities on supercluster
morphology, we have used mock catalogues to examine structures
identified in the velocity and position spaces. We conclude that
peculiar velocities do not play a significant role in our results,
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probably due to the large kernel smoothing length adopted in this
work.

We have found a trend between supercluster total luminosity
(or richness) and morphology, with filaments being in the mean
more luminous than pancakes. A similar behaviour was found by
analysing mock catalogues. The analysis of Monte Carlo simula-
tions of randomized galaxy distributions indicates that these trends
are real and are not produced by random fluctuations or selection
effects.

Finally, we compared the luminosity and size distributions of
filaments and pancakes. We have found that they are significantly
different, with filaments presenting a broader distribution of sizes
and luminosities. Again, similar results were obtained by the anal-
ysis of the mock catalogues, showing that filaments and pancakes
represent distinct morphological classes of superclusters in the Uni-
verse. Also, since filaments tend to be richer, more luminous and
larger than pancakes, it is plausible to think that pancakes evolve
towards filaments.
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A P P E N D I X A : TH E I N F L U E N C E O F T H E
SMOOTHI NG K ERNEL O N SUPERCLUST ER
PROPERTIES

The kernel in equation (2) plays a fundamental role in the density
field calculation and therefore it is important to verify how sensitive
our results are to the kernel choice. We address this point by compar-
ing supercluster properties obtained with the Epanechnikov kernel
with their properties obtained with a truncated Gaussian kernel,
defined as

K(r, σ ) = 1

2π
e−r2/2σ 2

, (A1)

with a cut-off at 3σ .
For this exercise, the density field was calculated as described

in Section 3.1, but with a smoothing parameter σ = 2.4 h−1Mpc
for the truncated Gaussian model. This value leads to 1038 su-
perclusters for the threshold D1 with luminosities similar to those
discussed in Section 5.1, as shown in Fig. A1. A similar result is
obtained by comparing the richness of superclusters obtained with
the two kernels.

In order to compare the structures obtained with these kernels,
we have matched the two supercluster catalogues by assuming that

Figure A1. Comparion between the total luminosity of superclusters iden-
tified using the Gaussian [log(L/L�)G] and Epanechnikov [log(L/L�)E)
kernels with parameters described in the text.
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Figure A2. Distribution of the morphological parameter K1/K2 for su-
perclusters identified using the Epanechnikov (dotted line) and Gaussian
(continuous line) kernels. At the top right-hand panel, we show the median
values of each distribution.

the distance between the object centre-of-mass in both catalogues
is lower than 8 h−1 Mpc. In this way, we have identified 368 objects
in common.

In Fig. A2, we compare the distributions of the morphological
parameter K1/K2 obtained with the two kernels. The distributions
have similar medians and the K–S test did not distinguish them. The
same trends present in Fig. 6 were found using the Gaussian kernel,
with a correlation coefficient rs � −0.18 and P(H0) < 10−3 for
both luminosity and richness. Similar results are obtained with the
threshold D2. We conclude that the trends described in the text are
actually robust with respect to the kernel choice, as far as sensible
kernels are used.
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