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In theories with universal extra dimensions (UED), the �1 particle, first excited state of the hypercharge

gauge boson, provides an excellent dark matter (DM) candidate. Here, we use a modified version of the

SUPERBAYES code to perform a Bayesian analysis of the minimal UED scenario, in order to assess its

detectability at accelerators and with DM experiments. We derive, in particular, the most probable range

of mass and scattering cross sections off nucleons, keeping into account cosmological and electroweak

precision constraints. The consequences for the detectability of the �1 with direct and indirect experiments

are dramatic. The spin-independent cross section probability distribution peaks at �10�11 pb, i.e. below

the sensitivity of ton-scale experiments. The spin-dependent cross section drives the predicted neutrino

flux from the center of the Sun below the reach of present and upcoming experiments. The only strategy

that remains open appears to be direct detection with ton-scale experiments sensitive to spin-dependent

cross sections. On the other hand, the LHC with 1 fb�1 of data should be able to probe the current best-fit

UED parameters.

DOI: 10.1103/PhysRevD.83.036008 PACS numbers: 12.60.�i, 11.10.Kk

I. INTRODUCTION

Dark matter (DM) studies are often carried out in
the framework of supersymmetric (SUSY) theories, but
there are many alternative extensions of the standard
model of particle physics that lead to viable DM candi-
dates. Among them, models with universal extra dimen-
sions (UED), in which all standard model (SM) particles
can propagate in the bulk of one or more compactified
flat extra dimensions [1], have received considerable
attention, and they have been studied in relation to
collider phenomenology, indirect low-energy constraints,
cosmology, and dark matter (see Refs. [2,3] for recent
reviews). In the simplest and most popular version, there
is a single extra dimension compactified on an interval,
S1=Z2. Each SM particle has a whole tower of Kaluza-
Klein (KK) modes, labeled by an integer n, called KK
number, which is nothing but the number of quantum units
of momentum which the SM particle carries along the
extra dimension.

One of the peculiar features of UED theories is the
conservation of the KK number at tree level, which is a
simple consequence of momentum conservation along the
extra dimension. This implies that the lightest KK-parity
odd particle (LKP) is stable over cosmological time scales,
and being cold and neutral, it provides a suitable weakly
interacting massive particle (WIMP) candidate [4–8].

In this paper, we shall concentrate on the minimal
universal extra dimensions (MUED) discussed in
Ref. [9], where there are only two parameters in addition
to the Higgs mass (mh), namely, the size of extra dimension

(R) and the cutoff scale of the theory, � (see Refs. [10–17]
for the case of two universal extra dimensions). Often �R
is used instead of the cutoff scale itself, and we follow the
same convention.
The LKP in MUED turns out to be the level-1 KK

partner (�1) of the SM photon, which must therefore be
stable by virtue of the conservation of KK-parity. In the
limit where R�1 > v, where v is the vacuum expectation
value of the Higgs, the Weinberg angle for KK gauge
boson is negligible, and the KK gauge bosons are in fact
almost weak eigenstate. Therefore, the KK photon is al-
most the hypercharge KK gauge boson (�n � Bn) and the
KK Z is almost the neutral weak eigenstate of SUð2ÞW
(Zn � W3

n).
While we do not know much about the DM particle,

there are many direct, indirect and accelerator searches
current undergoing, with the aim of identifying them
[18–20]. KK DM provides a valid alternative to the widely
discussed supersymmetric DM [21], and it is often adopted
as a case study scenario when trying to assess the capability
of experimental strategies to discriminate among various
DM candidates (e.g., [22]).
In this paper, we perform a Bayesian analysis of the

MUED scenario, in order to assess its detectability at
accelerators and with DM experiments. We derive, in
particular, the most probable range of mass and scattering
cross sections off nucleons, keeping into account cosmo-
logical and electroweak precision constraints. As we shall
see, this has dramatic implications for the detectability of
KK DM.
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The paper is organized as follows: in Sec. II, we discuss
the theoretical framework of the MUED scenario. In
Sec. III, we provide some details on our statistical tools,
including a discussion of the priors adopted in the Bayesian
analysis of the MUED parameter space. In Sec. IV, we
present the results, and in Sec. V we discuss their conse-
quences and conclude.

II. THEORETICAL FRAMEWORK

In the MUED, the vanishing boundary conditions are
assumed for all KK particles at the cutoff scale (i.e., all KK
particles at level-n are degenerate (mn ¼ n=R) at the cutoff
scale), and therefore the mass spectrum at electroweak
(EW) scale (R�1) is completely determined by renor-
malization group (RG) evolution between R�1 and � [4]
(there is also a contribution from EW symmetry breaking,
which is small except for top quark). Since the estimated
cutoff scale is not too far away from R�1, the resulting
mass spectrum is somewhat degenerate due to short RG
running. As expected from RG running, the masses of the
KK particles depend on how strongly they interact, there-
fore strongly interacting KK particles get larger corrections
than weakly interacting particles. In MUED, the KK gluon
is the heaviest particle, followed by KK quarks, KK Z/W
and KK leptons.

Because of KK-parity, contributions to electroweak ob-
servables do not appear at tree-level and this allows KK
particles to be light enough so that they can be produced
at current collider experiments. This has been studied in
Refs. [1,23] and revisited more recently in Ref. [24], in-
cluding subleading contributions as well as two loop cor-
rections to the SM � parameter. A lower bound on R�1

from those oblique corrections is �600 GeV at 90% C.L.
with a Higgs mass of 115 GeV, which is the LEP limit.
However, this constraint is significantly relaxed with in-
creasing Higgs mass, allowing for a compactification scale
as low as 300 GeV (other indirect low-energy constraints
are comparable or weaker. See [2,3] and references
therein.).

In the rest of this section, we briefly review the calcu-
lation of the relic density. Since KK particles in MUED
are somewhat degenerate, it is important to include coan-
nihilation effects. The generalization of the relic density
calculation including coannihilations is straightforward
[5,25]. Assume that the particles �i are labeled according
to their masses, so that mi < mj when i < j. The number

densities ni of the various species �i obey a set of
Boltzmann equations. It can be shown that under reason-
able assumptions [25], the ultimate relic density n� of the

lightest species �1 (after all heavier particles �i have
decayed into it) obeys the following simple Boltzmann
equation

dn�
dt

¼ �3Hn� � h�effviðn2� � n2eqÞ; (1)

where H is the Hubble parameter, v is the relative velocity
between the two incoming particles, neq is the equilibrium

number density and

�effðxÞ ¼
XN
ij

�ij

gigj

g2eff
ð1þ �iÞ3=2ð1þ �jÞ3=2

� expð�xð�i þ �jÞÞ; (2)

geffðxÞ ¼
XN
i¼1

gið1þ �iÞ3=2 expð�x�iÞ; (3)

�i ¼ mi �m1

m1

; x ¼ m1

T
: (4)

Here, �ij � �ð�i�j ! SMÞ are the various pair annihila-

tion cross sections into final states with SM particles, gi is
the number of internal degrees of freedom of particle �i

and n� � P
N
i¼1 ni is the density of �1 we want to calculate.

By solving the Boltzmann equation analytically with
appropriate approximations [5,25], the abundance of the
lightest species �1 is given by

��h
2 � 1:04� 109 GeV�1

MPl

xFffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðxFÞ

p 1

Ia þ 3Ib=xF
; (5)

where the Planck mass scale is MPl ¼ 1:22� 1019 GeV
and g� is the total number of effectively massless degrees
of freedom at temperature T:

g�ðTÞ ¼
X

i¼bosons

gi þ 7

8

X
i¼fermions

gi: (6)

The functions Ia and Ib are defined as

Ia ¼ xF
Z 1

xF

aeffðxÞx�2dx; (7)

Ib ¼ 2x2F

Z 1

xF

beffðxÞx�3dx: (8)

The freeze-out temperature, xF, is found iteratively from

xF ¼ ln

�
cðcþ 2Þ

ffiffiffiffiffiffi
45

8

s
geffðxFÞ
2�3

m1MPlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðxFÞxF

p

�
�
aeffðxFÞ þ 6

beffðxFÞ
xF

��
; (9)

where the constant c is determined empirically by compar-
ing to numerical solutions of the Boltzmann equation, and
here we take c ¼ 1

2 as usual. aeff and beff are the first two

terms in the velocity expansion of �eff

�effðxÞv ¼ aeffðxÞ þ beffðxÞv2 þOðv4Þ: (10)

Comparing Eqs. (2) and (10), one gets
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aeffðxÞ ¼
XN
ij

aij
gigj

g2eff
ð1þ �iÞ3=2ð1þ�jÞ3=2

� expð�xð�i þ �jÞÞ; (11)

beffðxÞ ¼
XN
ij

bij
gigj

g2eff
ð1þ �iÞ3=2ð1þ�jÞ3=2

� expð�xð�i þ �jÞÞ; (12)

where aij and bij are obtained from �ijv ¼ aij þ bijv
2 þ

Oðv4Þ and v is the relative velocity between the two
annihilating particles in the initial state. Considering rela-
tivistic corrections to the above treatment results in an
additional subleading term which can be accounted for
by the simple replacement,

b ! b� 1

4
a (13)

in the above formulas. For our calculation of the relic
density, we use the cross sections given in
Refs. [5,26,27]. For resonance effect, which we do not
include, see Refs. [28–30]. In the MUED, coannihilation
with SUð2ÞW-singlet KK leptons (e1) is important since it

is the next-to-lightest KK particle, and
me1

�m�1

me1

� 0:01.

III. STATISTICAL ANALYSIS

The free parameters of the model are the SM Higgs
mass, mh, the inverse radius of the UED, R�1, and the
cutoff scale �. For numerical reasons, we work with the
following MUED parameters:

� ¼ fmh; R
�1;�Rg: (14)

In particular, we adopt as a free parameter the number
of KK levels �R rather than � itself. In our scan, �R is
considered as a real-valued variable, but we the round it to
the nearest integer value when computing the observable
quantities. We also include in our scan as nuisance parame-
ters the relevant SM parameter set

� ¼ fMt;mbðmbÞMS; �emðMZÞMS; �sðMZÞMSg; (15)

where Mt is the pole top quark mass, while the other three
parameters (the bottom mass, the electromagnetic and the

strong coupling constants) are all evaluated in the MS
scheme at the indicated scales.

We denote by � ¼ f�;�g the vector of parameters
entering the analysis, and by d the available data (described
below). Bayes’ theorem reads

Pð�jdÞ ¼ Pðdj�ÞPð�Þ
PðdÞ ; (16)

where Pð�jdÞ is the posterior distribution on the para-
meters (after the observations have been taken into ac-
count), Pðdj�Þ ¼ Lð�Þ is the likelihood function (when

considered as a function of� for fixed data d) and Pð�Þ is
the prior distribution, which encompasses our state of
knowledge about the value of the parameters before we
have seen the data. Finally, the quantity in the denominator
of Eq. (16) is the Bayesian evidence (or model likelihood),
a normalizing constant which does not depend on � and
which can be neglected when one is interested in parameter
inference. Together with the model, we must specify the
priors for the parameters, which enter Bayes’ theorem,
Eq. (16). As in any good Bayesian analysis, it is important
to asses the relevance of prior choices, we perform our scan
using two different priors:
(i) Flat prior: a uniform prior over the ranges 10 GeV �

mh � 3 TeV, 280 GeV � R�1 � 3 TeV and 1 �
�R � 100.

(ii) Log prior: a uniform prior over the ranges 1 �
logðmh=GeVÞ � 3:5, 2:4 � logðR�1=GeVÞ � 3:5
and 1 � �R � 100.

The lower bound on R�1 comes from considering cur-
rent collider limits from trilepton search at the Tevatron,
giving R�1 > 280 GeV at 95% C.L. with 100 pb�1 of data
[31] (while this limit corresponds to a value of�R ¼ 20, it
does not depend strongly on �R). Notice that we keep a
uniform prior over �R for both choices of priors of the
other two variables. We take a flat prior over the SM
nuisance parameters, whose value is however directly con-
strained by the likelihood—hence the choice of prior for
those variables is unproblematic and it does not affect
our results.
The distribution of probability implied by our choice of

priors for the MUED parameters and for some observables
is shown in Fig. 1 in one dimension, and in two-
dimensional marginal distributions in Fig. 2. We observe
the expected uniform distribution in R�1 and �R for the
flat prior choice in the left panels of Fig. 1, while the
distribution on mh is flat up to �250 GeV and then it falls
off sharply. This is a consequence of the fact that the
radiative corrections to the KK Higgs are negative and
proportional to the mass (mh) of the SM Higgs [4].
The LEP limit on the Higgs mass is around 115 GeV,
therefore leaving an allowed mass range 115–250 GeV.
Therefore, for a given value of R�1, there is a value of the
SM Higgs mass for which the charged KK Higgs becomes
lighter than the KK photon [32], and it takes over the role
of the KK photon as a DM candidate. As clearly charged
DM is not allowed from cosmology, we discard points in
which this happens. This sets an upper limit to the mass
of the SM Higgs (mh & 400 GeV, but with a very low
probability above �250 GeV) [32], as observed in Fig. 1.
In the right-hand side panels of Fig. 1, we can observe the
impact of the log prior which disfavors large values of mh

and R�1.
The distribution of the relic abundance under both priors

shows that very small values are not realized, i.e. the prior
density goes to 0 for �DMh

2 & 0:05. This is explained by
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FIG. 2 (color online). Equal-weight samples from the prior for flat priors (top panels) and log priors (bottom panel). Density of
points reflects prior probability density.

FIG. 1 (color online). Prior distributions for the input variables and some observables for flat priors on ðmh; R
�1Þ (left panel) and log

priors (right panel), which are uniform in ðlogðmhÞ; logðR�1ÞÞ.
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Fig. 2, where it is shown how the relic abundance is tightly
correlated with R�1, which controls the level of degener-
acy between the masses in the KK spectrum. At lower
values of R�1, the spectrum becomes more and more
degenerate, hence annihilation is more efficient and the
relic abundance is reduced. However, since our prior in-
cludes a lower limit R�1 > 280 GeV due to the Tevatron
constraints, as explained above, this leads to a lower limit
in the distribution of �DMh

2 from the prior. While particle
physics alone does not provide an upper bound on R�1, the
thermal relic density of LKPs grows with R�1 and LKPs
would overclose our Universe for R�1 > 1:5 TeV [5].
Finally, the prior distribution of both the spin-dependent
and the spin-independent cross sections is relatively flat
and spans several orders of magnitude. This range is to be
compared with the much tighter range in the posterior (see
Fig. 3, below), which means that the posterior distribution
for those quantities (to be discussed in detail below) is
dominated by the likelihood.

The likelihood function is constructed as follows. For
each of the SM parameters, we assume a Gaussian like-
lihood with mean and standard deviation as given in
Table I. To constrain the MUED parameters, we use data
from electroweak precision observables (EWPO) which
can be interpreted as constraints on the parameters given
by the set [36]

� ¼ f�1; �2; �3g: (17)

The maximum likelihood (ML) value of � obtained from
LEP1 experiment data is [37] �ML ¼ f5� 10�3;�8�
10�3; 4:8� 10�3g. The likelihood function from EWPO
is then modeled as a multidimensional Gaussian centered
at the observed maximum likelihood values,

� 2 lnLEWPO ¼ �2
EWPO ¼ ð�� �MLÞtC�1ð�MLÞ; (18)

where the covariance matrix C is given in Table II.

FIG. 3 (color online). Global constraints on the MUED parameters for two different choices of priors, assuming the LKP is the sole
constituent of DM. The red cross gives the best-fit, the vertical line the posterior mean. The horizontal blue/green bands (dark/light in
the lower band) give the 68%, 95% marginalized Bayesian posterior intervals; the red/green bands (dark/light in the upper band)
represent the 68%, 95% confidence intervals from the profile likelihood. There is only a very mild dependence in the constraints on the
prior used or the choice of statistics.

TABLE I. Experimental mean 	 and standard deviation �
adopted for the likelihood function for SM (nuisance) parame-
ters, assumed to be described by a Gaussian distribution.

SM (nuisance) Mean value Standard deviation Ref.

parameter 	 �

Mt 173.1 GeV 1.3 GeV [33]

mbðmbÞMS 4.20 GeV 0.07 GeV [34]

�sðMZÞMS 0.1176 0.002 [34]

1=�emðMZÞMS 127.955 0.03 [35]

TABLE II. EWPO covariance matrix employed in the analysis
[38].

�1 �2 �3

�1 5:78� 106 �1:71� 106 �4:65� 106

�2 1:39� 106 8:93� 105

�3 5:01� 106
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We also include constraints from the WMAP 5-years
measurement of the cosmological DM relic density [39],
which give for�DMh

2 a mean value 	WMAP ¼ 0:1099 and
a standard deviation �WMAP ¼ 0:0062 (notice that using
the updated WMAP 7-years values would not change our
result considerably). When assuming that the LKP makes
up the whole of the DM, we impose a Gaussian likelihood
with the above mean and standard deviation, to which we
add a 10% theoretical error in quadrature. We shall be
interested in relaxing the requirement that all of the DM
is made of LKPs, and in this case we use the WMAP
measurement only as an upper bound. We show in the
Appendix that in this case the correct effective likelihood
is given by the expression

LWMAPð�KKh
2Þ ¼ L0

Z 1

�KKh
2=�WMAP

e�ð1=2Þðx�r?Þx�1dx;

(19)

where L0 is an irrelevant normalization constant, r? �
	WMAP=�WMAP and �KKh

2 is the predicted relic density
of the LKP as a function of the MUED and SM parameters
being considered. Notice that this is slightly different from
what is usually adopted in the literature, namely, either a
sharp upper bound say 2� above the WMAP mean, or a

one-sided Gaussian which starts to drop at the WMAP
mean and is flat below (see Fig. 11).
The total log-likelihood is thus given by the sum of the

log-likelihoods defined above, i.e.

� 2 lnLtot ¼ �2
tot ¼ �2

EWPO þ �2
SM þ �2

WMAP: (20)

The posterior distribution Pð�jdÞ is determined numeri-
cally by drawing samples from it. Markov Chain Monte
Carlo (MCMC) techniques can be used to this aim, but in
this paper we employ the MULTINEST code, which imple-
ments the nested sampling algorithm. (For a detailed de-
scription of the algorithm, see [40–42].) To perform our
statistical analysis, we use a modified version of the
SUPERBAYES code [42,43]1 which includes the MULTINEST

algorithm. Compared to standard MCMC methods,
MULTINEST provides a higher efficiency, guarantees a better

exploration of degeneracies and multimodal posteriors and
computes the Bayesian evidence as well (which is difficult
to extract from MCMC methods). In our MULTINEST scans,
we use 20 000 live points and a tolerance factor 0.5. We
collect a total of about 220 000 samples from the posterior,
which guarantees an adequate exploration of the parameter
space.

TABLE III. Posterior mean and best-fit values for the input MUED parameters and some
relevant observables, both for the case where the LKP is the sole constituent of DM (top section)
and where it is allowed to be a subdominant component (bottom section). We also give the 68%
and 95% Bayesian equal-tails credibility intervals. While these figures are for the flat prior
choice, the log prior choice gives very similar results and is therefore not shown.

Parameter Mean Best fit 68% range 95% range

LKP: the sole constituent of DM

mh (GeV) 198.4 215 [173:222:3] [135:3:233:8]

R�1 (GeV) 640.9 641.6 [574:1:707:5] [536:5:843:5]

�R 55 38 [23:86] [12:98]

m� (GeV) 641 642 [574:7:707:8] [537:3:843:4]

�KKh
2 0.115 0.111 [0:1:0:128] [0:091:0:145]

logð�SI
p ðpbÞÞ �11:1 �11:2 [� 11:4:� 10:8] [� 11:7:� 10:5

logð�SD
p ðpbÞÞ �5:7 �5:7 [� 6:� 5:5] [� 6:3:� 5:2]

LKP: subdominant constituent of DM

mh (GeV) 224 226.7 [202:4:245:4] [163:6:265:4]

R�1 (GeV) 602.9 607.4 [528:9:677:2] [477:1:795:5]

�R 55 66 [25:86] [12:98]

m� (GeV) 603.5 607.9 [529:7:677:5] [478:795:4]

�KKh
2 0.08 0.08 [0:057:0:108] [0:035:0:127]

logð�SI
p 
ðpbÞÞ �11:3 �11:4 {�11:6:� 11] [� 11:8:� 10:6]

logð�SD
p 
ðpbÞÞ �5:8 �5:9 [� 6:1:� 5:5] [� 6:3:� 5:2]

1See www.superbayes.org.
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IV. RESULTS

A. MUED parameter constraints

Our results are summarized in Table III. We begin dis-
cussion by showing in Fig. 3 the constraints on the MUED
parameters and on some of the observable quantities. We
plot the posterior distribution (blue, dashed), obtained by
marginalizing over the posterior in the dimensions not
shown, and the profile likelihood (red, solid), which max-
imizes the likelihood function over the variables not
shown. The left panel is for the flat prior choice, while
the right panel is for the log prior choice. It is clear that
there is very little prior dependency and that the input
parameters are well constrained by the data. Therefore,
from now on we will only show results from the flat prior
choice. The profile likelihood is also in good agreement
with the posterior, which signals that one expects little
prior dependency. Hence, our results can be deemed to
be robust with respect to changes in the choice of priors
and statistical approach.

The posterior distribution for R�1 peaks near the best-fit
value R�1 ¼ 641:6 GeV. The current Tevatron limit on
R�1, as we have seen, is 280 GeV but by the end of 2011,

Tevatron is expected to have 100 times more data, pushing
up the limit closer to our best fit. By that time, the LHC
should have collected 1 fb�1 of data, and it should therefore
be able to discoverMUEDor at least rule out the best fit (see
the reach of the LHC in the right panels of Fig. 4). As for the
mass of the Higgs, the posterior peaks near the best-fit value
mh ¼ 215 GeV, for which the Higgs dominantly decays
into WþW� and ZZ. This mass range of the Higgs is
challenging for the 7 TeV LHC with 1 fb�1.
We do not find any constraints on the value of �R (see

also Fig. 4). This can be understood as follows. In general, a
change in �R modifies the mass spectrum, but the depen-
dence is only logarithmic and it affects masses of strongly
interacting particles only at the order of�10% or less. For
electroweak particles, the dependence is almost flat in
variation of�R. For instance, the KK lepton mass changes
by 2% or so from�R ¼ 10 to�R ¼ 40 and the KK photon
is barely affected. In the computation of the relic density, the
dominant contribution arises from self annihilation of the
KK photon and coannihilation with SUð2ÞW-single KK
leptons, while coannihilation with the KK quark is only
subdominant (one reason is the coupling strength (hyper-
charge) and the other reason is the heaviness of the KK
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FIG. 4 (color online). 2D global constraints on the MUED parameters for the case where the LKP is the sole constituent of DM. The
20 top row shows 68% (yellow, light) and 95% (blue, dark) regions from the posterior pdf (assuming flat priors), while the bottom row
gives confidence regions from the profile likelihood, with 68% confidence level region in yellow (light) and 95% in red (dark). We
notice that the two statistics agree very well. The encircled cross gives the location of the best fit, the filled black dot of the posterior
mean. In the mh vs R

�1 plane we plot in magenta/green the 68% (inner contours) and 95% (outer contour) regions for the case where
�R is fixed to 20 and 80, respectively. In the �R vs R�1 figure we show the LHC reach with 7 TeVand 1 fb�1 of integrated luminosity
in the trilepton channel.
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particles). Therefore, the effect of a variation in �R is
expected to be small in the relic density calculation.
Similarly, the DD and ID are expected to be rather insensi-
tive to variation in �R. Therefore, as far as the constraints
considered here are concerned, only the values of R�1 and
mh are important. However the collider phenomenology
may be affected by the value of �R, and this will require
a further, dedicated investigation. We notice that our results
(and error bars on the parameters) fully account for the lack
of constraints on the value of �R.

Figure 4 shows 2D correlation plots for the MUED
parameters, both for the Bayesian posterior (top row, for
the flat prior choice) and the profile likelihood (bottom
row). Contour delimit regions of 68% and 95% probability.
We see also in this figure the relatively good constraints on
R�1 and mh, and the lack of constraints on �R. We stress
once more the reassuring agreement between the posterior
and the profile likelihood, which implies little dependence
of the priors. In Fig. 5 we plot the ensuing favored regions
for some of the observables.

In Fig. 6, we show the mass spectrum of the first KK
level for the best fit of the flat prior scan (the log prior
case is very similar), under the assumption that the LKP
makes up the whole of the DM. The KK bosons (gauge (in
green) and Higgs bosons (in magenta)) are shown in the
left column, while the first two generations of quarks (in
blue) and leptons (in red) are shown in the middle and

the third generation in the right column. KK particles
denoted by lower (upper) case are singlets (doublets) under
SUð2ÞW . The mass spectrum and decay patterns from our
best fit agree well with those shown in literature [4,9,32],
but here the corresponding scales are R�1 ¼ 642 GeV and
mh ¼ 215 GeV.
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FIG. 5 (color online). 2D correlations among some relevant observables and MUED parameters, for the scenario where the �1

particle is the sole constituent of the DM, with color coding as in Fig. 4. We show the Bayesian posterior (top row) and the profile
likelihood (bottom row). In the central and right-hand panels we display the reach of future direct detection experiments.

FIG. 6 (color online). Best-fit mass spectrum of the first KK
level from our global, assuming the LKP is the sole constituent
of DM.
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A natural question to ask is whether EWPO or relic
density constraints influence more significantly the poste-
rior. To understand this, we have performed two additional
analyses, keeping EWPO constraints and discarding the
relic density bound in the first case, and vice versa in the
second. As expected, removing the bound on EWPO opens
up the parameter space at small values of R�1, which
results in a fairly flat pdf across the whole range of allowed
Higgs mass values, and in pronounced volume effects on
R�1, for which the posterior distribution disagrees with
the profile likelihood. Removing the constraint on the relic
density completely (as opposed to setting an upper bound
on this quantity, as discussed below), and keeping only
EWPO constraints, allows larger values of R�1, which
has the effect of pushing down the predictions for direct
detection cross sections.

To relax the strong assumption that the �1 particle
makes up the whole of the relic DM, we adopt the upper
limit on the relic abundance, represented by the likelihood
in Eq. (19). This modifies the posterior in the �� vs m�

plane in an obvious fashion, since we are allowing the case
�� <�DM. The resulting constraints and corresponding

favored regions for the observables are shown in Figs. 7
and 8. In both those figures the EWPO constraints have
been applied. There are small quantitative differences with
respect to the case where the �1 makes all of the DM, and
the implications for the reach of the LHC and the mass of
the Higgs are qualitatively unchanged.
In terms of the best-fit �2, we find that the relic density

constraints contributes about 0.01 units to the total �2

for the best-fit point, which means that the WMAP value
can be reproduced very well by the model (both when
it is taken as a Gaussian constraint and as an upper
bound). The EWPO constraints contribute a �2 � 1:6 at
the best-fit point. So our best-fit �2 is approximately 1.6,
for 1 nominal degree of freedom (4 data points for 3 free
parameters; we count 4 data points as the EWPO covari-
ance matrix has 3 independent eigenvalues, plus the relic
density constraint). However, as we have mentioned above,
the parameter �R is effectively unconstrained by the data,
so it is not clear whether it should count in the computation
of the number of degrees of freedom. In summary, our best-
fit �2 ¼ 1:6 is statistically acceptable both when counting
1 degree of freedom in the fit, or (even more so) when

FIG. 7 (color online). Global constraints on the MUED parameters for the flat prior, dropping the assumption that the �1 particle is
the sole constituent of DM. The results with the log prior are very similar and are therefore not shown.
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discounting �R and therefore assuming 2 degrees of
freedom.

B. Prospects for MUED discovery

We now move on to discuss the implications of our
results for prospects of various experimental approaches
to discover MUED.

The rate of events in a direct detection experiment
is obviously proportional to the product of the spin-
independent cross section, �SI

p , times the local density of

the LKP, ��. This quantity can be smaller than �DM, in the

case where the LKP is not the only constituent of DM.
In order to assess the prospects of detection, we therefore
multiply �SI

p by 
, i.e. the ratio between the local KK

density and the local DM density, which, following
Ref. [44], we assume to be equal to the ratio of the cosmic
abundances of the two species, 
 � ��=�DM ¼ ��=�DM.

For �DM, we adopt the central value of the WMAP deter-
mination, while for �DM we adopt, following Ref. [45],
the value �� ¼ 0:385 GeV cm�3 (see also [46–49]). We

note that the actual DM local density is probably larger,
due to the larger density of DM in the stellar disk [49], but
we do not take this into account in order to be conservative.
As one can see from Figs. 5 and 9, the 2-� contours of the
posterior lie below the sensitivity even of future experi-
ments such as Xenon1T [50]. An experiment attempting
to probe KK DM in MUED should therefore be much

bigger. The fact that the posterior is concentrated over 1
order of magnitude in �SI

p , and that it lies right below the

sensitivity of 1-ton experiments, suggests that an eventual
generation of 10-ton experiments, would be able to probe
most of the favored parameter space.
The 1D posterior of �SD

p , which is the key-quantity for

indirect DM searches with neutrino telescopes, shown in
Figs. 3 and 7, allows us to make a robust prediction on the
prospects for detecting KK DM with the IceCube tele-
scope, currently under construction at the South Pole,
and already taking data. In fact, recent analyses of the
sensitivity of IceCube to DM particles (see e.g., [51])
estimate the minimum cross section that can be probed
by this experiment to be � 5� 10�5 pb or larger, in the
relevant range of masses and after 5 years of data taking.
However, the posterior pdf for �SD

p peaks 1 order of mag-

nitude below this value, and it rapidly decreases for larger
masses. Therefore we conclue that MUED searches at
IceCube are unlikely to be successful.
Turning now to the prospects at colliders, by the end of

Run II, Tevatron is expected to deliver more than 10 fb�1

of data and will greatly improve the current bound
(280 GeV at 95% C.L.), making it closer to our best-fit
point. From the LHC side, the reach for level 1 KK
particles in MUED has been calculated in [9], where the
gold-plated 4‘ET signature is considered. The 4 leptons are
obtained from the decay of KK Z, which is produced by the
decay of KK quarks. This is quite similar to the production
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FIG. 8 (color online). As in Fig. 4, but dropping the assumption that the �1 particle is the sole constituent of DM, and imposing only
an upper bound instead.
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of the second lightest neutralino in supersymmetry. In
MUED, however, the branching fraction of KK Z into 2
leptons is large (1=6 for each generation) and the produc-
tion cross sections of KK gluon and KK quarks are 5–10
times larger than those in SUSY [52,53]. The 14 TeV LHC
can probe MUED up to R�1 � 1:5 TeV (1 TeV) with
100 fb�1 (1 fb�1). A compactification scale of R�1 �
600 GeV (close to our best-fit point) could be discovered
or ruled out by the 14 TeV Run with 100 pb�1 [9]. The
prospect for discovery of level 2 KK particles is discussed
in [52,54] in terms of dilepton resonance. The reach is
worse than the level 1 case due to the heaviness of level 2
particles. Very recently, the reach at 7 TeV LHC has been
studied in [55]. It turns out that the opposite sign dilepton
channel is the most promising discovery mode with 1 fb�1

of data. It is shown that MUED can be discovered if R�1

is less than 700 GeV, so this kind of search would be able
to probe our 1� region for R�1.

C. Distinguishing the MUED scenario from the
CMSSM with direct detection

We now turn to the question of how to distinguish a
MUED scenario from a supersymmetric one, for which we
will take the paradigmatic case of the constrained minimal
supersymmetric standard model (CMSSM) for simplicity.
We briefly summarize in the following the approach taken
here to constraining the parameters of the CMSSM (for
details, see Ref. [56]).

Apart from the scalar mass m0, the gaugino mass m1=2

and the trilinear coupling A0 assumed to be universal at
MGUT, the CMSSM can be parameterized in terms of the
bilinear scalar coupling B, the usual Higgs mass term in
the superpotential and the SM-like parameters s. The latter
include the SUð3Þ � SUð2Þ �Uð1ÞY gauge couplings, g3,
g, g0, and the Yukawa couplings, which in turn determine
the fermion masses and mixing angles.
In Ref. [56], it was shown that considering Mexp

Z as
experimental data in the likelihood one can integrate out
	 via marginalization. This procedure automatically ac-
counts for the fine-tuning in the sense that the posterior
distribution is penalized in regions of the parameter space
with large fine-tuning. Similarly, the Yukawa couplings
are easily integrated out when they are profitably traded
by the physical fermion masses. Besides, it is highly ad-
vantageous to trade the initial B-parameter by the derived
tan�parameter which is defined as the relative value of the
two expectation values of the two Higgses.
The resulting posterior in function of the usual variables

fm0; m1=2; A0; tan�Þg introduces a global Jacobian factor in
the posterior distribution which carries the penalization
of fine-tuned regions. Let us stress that the Jacobian is
not ‘‘subjective’’ at all. Thus,

Pðgi; mf;m0; m1=2; A0; tan�jdÞ
¼ Jj	¼	Z

Pðgi; yf; m0; m1=2; A0; B;	 ¼ 	ZÞ; (21)
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FIG. 9 (color online). As in Fig. 5, but dropping the assumption that the �1 particle is the sole constituent of DM, and imposing only
an upper bound instead.

GLOBAL FITS OF THE MINIMAL UNIVERSAL EXTRA . . . PHYSICAL REVIEW D 83, 036008 (2011)

036008-11



where J is the Jacobian of the transformation f	; yf; Bg !
fMZ;mf; tan�g (see Ref. [56] for an explicit expression for
J), 	Z is the value of 	 that reproduces the experimental
value ofMZ for the given values of fs;m0; m1=2; A0; Bg and
Pðs;m;M; A; B;	Þ is the prior in the initial parameters.
(For a detailed discussion on the chosen priors, see
Ref. [57].)

One of the main consequences of this approach is that
the results exhibit a remarkable robustness under changes
of the priors (see Ref. [57]), showing an absence of depen-
dences on the initial chosen ranges for the CMSSM pa-
rameters. Moreover, the results are compatible with
likelihood based analyses [58].

Figure 10 compares the favored regions for the spin-
dependent and spin-independent scattering cross section
for theMUED and the CMSSM (see also Ref. [59], where a
similar analysis is performed). The experimental data used
in constraining the latter are given in Table 2 of [57].
Regions in light green/light grey (dark green/dark grey)
are within the reach of the LHC with 7 TeV and 1 fb�1

(with 14 TeV and 100 fb�1, respectively) for both models,
while red/black regions are outside the reach of the LHC.
Thus, we can see that with 14 TeVand 100 fb�1 the LHC is
going to probe the whole of the favored region for the
MUED scenario. Also shown in Fig. 10 are the sensitivities
of various existing and upcoming direct detection experi-
ments. One sees from this plot that the detection of DM off
spin-independent targets would point towards SUSY,
rather than KK, DM, which is consistent with the findings
of Ref. [22]. The detection of KK DM in fact appears very
problematic in astroparticle experiments. As we have seen
in the previous section, the spin-dependent couplings are
such that the neutrino flux from DM annihilations in the

Sun fall below the sensitivity of IceCube, even after 5 years
of data taking.
The only viable search strategy appears to be the detec-

tion in an experiment sensitive to spin-dependent cross
section with a large exposure. The COUPP collaboration,
for instance, has been operating an ultraclean, room-
temperature bubble chamber containing 1.5 kilograms of
superheated CF3I, that produced interesting limits on the
spin-dependent coupling [60]. The plans for the future
include the operation of a 60 kg chamber at Snolab, that
could allow a substantial improvement in sensitivity. In
Fig. 10, we show for reference the reach of the 60 kg
version of COUPP, as well as the case of a 1 ton chamber.
If existing techniques for spin-dependent detection turn out
to be scalable to such large volumes, and if one is not
limited by some form of background, then KK DM could
be within their reach.

V. DISCUSSION AND CONCLUSIONS

We have discussed the prospects for detecting KKDM at
accelerators and with DM experiments with a Bayesian
analysis of the minimal UED scenario. We have derived, in
particular, the most probable range of mass and scattering
cross sections off nucleons, keeping into account cosmo-
logical and electroweak precision constraints. The value of
the three free parameters of the model at our best-fit point
are R�1 ¼ 641:6 GeV, �R ¼ 38 and mh ¼ 215 GeV if
the KK DM explains all of the DM in the Universe and
R�1 ¼ 607:4 GeV, �R ¼ 66 and mh ¼ 226:7 GeV if KK
DM is assumed to be a subdominant constituent. As we
have seen, the current Tevatron limit on R�1 is�280 GeV,
but by the end of 2011, Tevatron is expected to have 100
times more data, pushing up the limit closer to our best fit.
By that time, the LHC should have collected 1 fb�1 of
data, and it should therefore be able to discover MUED or
at least rule out the best fit. For the two DM scenarios, our
best-fit points for the Higgs mass are �215–227 GeV, for
which the Higgs dominantly decays into WþW� and ZZ.
This mass range of the Higgs is challenging for the 7 TeV
LHC with 1 fb�1.
Our analysis has dramatic consequences for the detect-

ability of the MUED scenario with astrophysical DM ex-
periments. Figures 5 and 9 clearly show that the 2-sigma
contours in the �SI

p vs mass plane fall below 10�10 pb, i.e.

even beyond the reach of future ton-scale experiments.
This implies that if new particles are actually found with
direct detection experiments, they are unlikely to be asso-
ciated with KK DM. Direct detection is however not
hopeless, provided that current experiments with spin-
dependent targets rapidly improve their sensitivity. We
have seen that experiments such as COUPP might probe
the relevant portion of the parameter space if they can go
beyond the upcoming scale of 60 kg. The analysis pre-
sented here therefore provides an additional motivation
to build such detectors, in case the MUED scenario is
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FIG. 10 (color online). favored regions for the spin-
independent and spin-dependent scattering cross section for
the MUED scenario (bottom left cloud) and for the CMSSM.
Points are equally-weighted posterior samples for each model,
accounting for all relevant present-day constraints. Dark green/
dark grey (light green/light grey) regions are within the reach of
the LHC with 7 TeV and 1 fb�1 (with 14 TeV and 100 fb�1)
integrated luminosity [67,68], while red/black points are outside
the reach of the LHC. Closed black contours delimit the 95%
region for each model. Dashed lines give the approximate reach
of future direct detection probes.
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discovered at accelerators, in which case one could per-
form a combined analysis of accelerator and direct detec-
tion data, following the approach suggested in Ref. [44].

Indirect detection prospects are not very promising, with
the most probable flux from of neutrinos from KK DM
annihilations at the center of the Sun below the sensitivity
of IceCube, even after 5 years of observation. We have not
discussed explicitly the possibility of detecting gamma
rays, antimatter or synchrotron emission from KK DM
annihilations in the halo, because the prospects for detec-
tion depend strongly on the assumptions made on astro-
physical parameters, and when conservative choices are
made for these parameters, the predicted fluxes are below
the astrophysical backgrounds. This is easy to understand,
since the annihilation fluxes typically scale like ��
�v=m2

�, and the annihilation cross section is �v�m�2
� ,

it follows that ��m�4
� . Therefore, given that the most

probable range of mass is centered around the relatively
large value of 600 GeV, all annihilation fluxes are quite
suppressed [19,61].

Although we discussed a minimal version of the UED
scenario, various extensions beyond MUED have been
suggested and their rich phenomenology of Kaluza-Klein
dark matter has been investigated in Refs. [8,13,32,62–65].
An analysis of these nonminimal scenarios will be the
subject of a dedicated forthcoming paper.
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APPENDIX: DERIVATION OF THE RELIC
DENSITY UPPER BOUND LIKELIHOOD

In this appendix, we derive the likelihood given in
Eq. (19). There exist in the literature various expressions
for the likelihood function in the case where the WMAP
result is taken to be only an upper bound to the DM density.
Often, the likelihood is taken to be flat up to an arbitrary
cutoff value (e.g., the 95% upper range of the WMAP
likelihood) and zero above it. Ref. [66] advocated using a

likelihood function which is flat below the WMAP central
value, and falls off as a half-Gaussian above it. Here
we derive the correct expression, which is functionally
slightly different from what has been previously used.
We define the following shortcut notation: !KK �

�KKh
2 is the relic density of KK particles, while !DM �

�DMh
2 is the relic density of all dark matter, which might

comprise a secondary component beside the LKP, i.e.
!KK � !DM. The WMAP measured mean value is given
by 	WMAP, and its uncertainty is �WMAP. We thus want to
determine the effective likelihood

LWMAPð!KKÞ � pð	WMAPj!KKÞ
¼

Z
pð	WMAPj!DMÞpð!DMj!KKÞd!DM;

(A1)

where pð	WMAPj!DMÞ is a Gaussian in !DM with
mean 	WMAP and standard deviation �WMAP, i.e. !DM �
N ð	WMAP; �

2
WMAPÞ. In order to determine pð!DMj!KKÞ,

we use Bayes Theorem to obtain

pð!DMj!KKÞ ¼ pð!KKj!DMÞpð!DMÞ
pð!KKÞ : (A2)

On the rhs of Eq. (A2) the first term is the conditional
probability for the LKP relic density given a specified total
DM density. Since we are considering the case !KK �
!DM and nothing else is known about the relative densities
between the LKP and a secondary dark matter component,
we set

pð!KKj!DMÞ ¼
�
!�1

DM if !KK � !DM;
0 otherwise:

(A3)
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FIG. 11 (color online). Comparison between the WMAP like-
lihood when the LKP is the sole constituent of dark matter
(green, Gaussian shape) and when the LKP is a subdominant
component (red, upper bound). Both likelihoods are normalized
to their peak value.
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To specify the priors pð!DMÞ, pð!KKÞ in Eq. (A2), we
appeal to the principle of indifference. Lacking any other
information about the relative densities of the LKP particle
and the total DM density, we should take the two priors to
be equal for both components. The ratio therefore must be
1 everywhere except in the unphysical region of negative
energy density, where we set it to 0 to enforce positivity of
the energy densities. Thus we have

pð!DMÞ
pð!KKÞ

¼
�
1 if 0 � !KK; !DM � �;
0 otherwise;

(A4)

where � is some large cutoff value whose precise value
is irrelevant for the end result, as it will be shown below.
Using Eqs. (A2)–(A4) into Eq. (A1) we obtain, taking the
limit � ! 1,

LWMAPð!KKÞ ¼ lim
�!1

1ffiffiffiffiffiffiffi
2�

p
�WMAP

Z �

0
exp

�
� 1

2

ð!DM �	WMAPÞ2
�2

WMAP

�
!�1

DM�ð!KK �!DMÞd!DM; (A5)

¼ 1ffiffiffiffiffiffiffi
2�

p
�2

WMAP

Z 1

!KK=�WMAP

exp

�
� 1

2
ðx� r?Þ2

�
x�1dx; (A6)

which is Eq. (19) (notice that although this expression is
not normalized this is immaterial as we only need the
likelihood up to an overall normalization constant). This
effective likelihood is plotted in Fig. 11, where it is com-
pared to the Gaussian likelihood for the case when the DM
is made entirely of LKP. The effective likelihood is flat for

!KK 	 	WMAP, then falls off exponentially for !KK 

	WMAP, as one would expect. Notice that the likelihood
at !KK ¼ 	WMAP is precisely half is asymptotic value for
!KK 	 	WMAP, which reflects the fact that for the WMAP
central value we are agnostic as to which fraction of DM is
made of KK particles.
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