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Sulfur related prokaryotes residing in hot spring present good opportunity for exploring
the limitless possibilities of integral ecosystem processes. Metagenomic analysis
further expands the phylogenetic breadth of these extraordinary sulfur (S) metabolizing
microorganisms as well as their complex metabolic networks and syntrophic interactions
in environmental biosystems. Through this study, we explored and expanded the
microbial genetic repertoire with focus on S cycling genes through metagenomic
analysis of S contaminated hot spring, located at the Northern Himalayas. The analysis
revealed rich diversity of microbial consortia with established roles in S cycling such as
Pseudomonas, Thioalkalivibrio, Desulfovibrio, and Desulfobulbaceae (Proteobacteria).
The major gene families inferred to be abundant across microbial mat, sediment, and
water were assigned to Proteobacteria as reflected from the reads per kilobase (RPKs)
categorized into translation and ribosomal structure and biogenesis. An analysis of
sequence similarity showed conserved pattern of both dsrAB genes (n = 178) retrieved
from all metagenomes while other S disproportionation proteins were diverged due to
different structural and chemical substrates. The diversity of S oxidizing bacteria (SOB)
and sulfate reducing bacteria (SRB) with conserved (r)dsrAB suggests for it to be an
important adaptation for microbial fitness at this site. Here, (i) the oxidative and reductive
dsr evolutionary time–scale phylogeny proved that the earliest (but not the first) dsrAB
proteins belong to anaerobic Thiobacillus with other (rdsr) oxidizers, also we confirm
that (ii) SRBs belongs to δ-Proteobacteria occurring independent lateral gene transfer
(LGT) of dsr genes to different and few novel lineages. Further, the structural prediction
of unassigned DsrAB proteins confirmed their relatedness with species of Desulfovibrio
(TM score = 0.86, 0.98, 0.96) and Archaeoglobus fulgidus (TM score = 0.97, 0.98).
We proposed that the genetic repertoire might provide the basis of studying time–scale
evolution and horizontal gene transfer of these genes in biogeochemical S cycling.
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INTRODUCTION

The untapped sulfur (S) compounds oxidizing microorganisms
(SOM) and S compounds reducing microorganisms (SRM)
microbial communities residing in extreme and contaminated
environmental conditions such as hot water, sulfide
contaminated springs offer an intriguing opportunity to
explore the unique microbial diversity with uncovered metabolic
potential (Ghilamicael et al., 2017). The investigations of such
microbiota began with focus on identifying and culturing
novel thermostable biocatalysts with huge biotechnological
applications (Inskeep et al., 2010; Li et al., 2014; Ayangbenro
and Babalola, 2017). However, little progress has been made in
exploring the correlation between microbiome and geochemistry
of hot spring systems particularly that possess mesothermic hot
waters with neutral pH and elemental S and sulfate richness
(Ghosh et al., 2012; Roy et al., 2020). Moreover, the survival
of microbes in these niches is often supported by community
dynamics and interactions. Studies of such ecosystems may
provide insights into the microbial evolution of specific pathways
for microbial biogeochemical cycling of minerals. However, with
about 400 thermal hot water springs located in India, less than
15% have been explored for biogeochemical and taxonomical
classification using genomics and metagenomics approaches
(Cinti et al., 2009; Saxena et al., 2017). Sulfur springs provide
harsh physiochemical conditions to sustain the growth of only
meso- and hyper-thermophilic microbes which includes S
oxidizers and sulfate reducers (Chan et al., 2015; Gonsior et al.,
2018). The survival could also be achieved with “microorganism
adaptation” by several resistance mechanism such as activity of
bioprecipitation, biosorption, extracellular sequestration, and/or
chelation (Haferburg and Kothe, 2007). During these changes,
the exchange of genetic material by means of horizontal gene
transfer (HGT) is prevalent and necessary for the adaptation of
microbes through the acquisition of novel genes.

Khirganga, the mesothermal S spring in Northern Himalayas
discharging waters rich in sulfate, chlorine, sodium, and
magnesium ions has remained uncharted so far (Shirkot and
Verma, 2015; Poddar and Das, 2018). High levels of sulfides
in the environment accounts for the milky appearance of the
hot spring water with white microbial mats predicted to be
formed from sulfide reduction by the S-related prokaryotes (SRP)
enriched at this site (Sharma et al., 2004; Dong et al., 2019).
The microbial S disproportionation one of the oldest (about 3.5
billion years ago; Finster, 2011) biological processes on Earth
producing sulfide, sulfite, and sulfate compounds establishes a
complex network of pathways in the biogeochemical S cycle.
Thus far, it is the very foremost metagenomic investigation
of microbial communities in Khirganga (average atmospheric
temperature 6.9 ± 0.3) focused on exploring the microbial
biogeochemical S cycling with a complex of disproportionation
of elemental S conforming intermediary compounds. The
current study was carried out via microbial mats, sediments,
and hot spring water samples in hot spring to decipher the
stabilized and diversified genes involved in S cycle intermediary
process in anoxygenic, photolithotrophic and chemolithotrophic
S-oxidizing and reducing bacteria (Dahl and Truper, 1994; Hipp

et al., 1997). The work expands the genetic and evolutionary
information for S cycling genes and evaluates the biodiversity
and applications for screening of the novel thermostable enzymes
from microorganisms. Further, understanding these adaptations
vis-à-vis the physiological properties and metabolic processes
in these springs could be monitored as the engineered SRP
consortia could develop into an effective tool in optimizing
degradation of sewage waste in industrial processes (Ayangbenro
et al., 2018). Also, the sulfate reducing bacteria (SRB) implied
to treat various environment contaminants including metals
(Mothe et al., 2016; Zhang et al., 2016), metalloids (Battaglia-
Brunet et al., 2012; Sahinkaya et al., 2015), various non-methane
hydrocarbons (Callaghan et al., 2012), alicyclic hydrocarbons
(Jaekel et al., 2015), nitroaromatic compounds (Boopathy, 2014;
Mulla et al., 2014), and aromatic hydrocarbons (Stasik et al., 2015;
Meckenstock et al., 2016; Kamarisima et al., 2019).

MATERIALS AND METHODS

Sample Collection, Physicochemical
Analysis, and Helium Ion Microscopy
Samples of microbial mat deposits (250 g), sediment (250 g)
and water (5L) were collected from Khirganga hot water spring
(31◦59′34′′ N, 77◦30′35′′ E) in February 2017. Sampling was
performed in two replicates for each habitat from two closely
located primary thermal outlets (31◦99′18′′ N, 77◦50′96′′ E)
and secondary outlets (31◦99′19′′ N, 77◦50′96′′ E). The surface
temperature and pH of each habitat were recorded on site.

First, microbial mats and sediment were digested in pure nitric
acid and water samples were filtrated to 0.1 µm prior to chemical
analysis. All samples were subjected to physicochemical analysis
for major elements. Concentrations of major cations (Na+, K+,
Mg2+, and Ca2+) and anions (SO4

2− and Cl−) were analyzed by
ionic chromatography (Dionex ICS-2000, Sunnyvale, CA) using
the columns CS16A for measuring cations and AS17 for anions.
An elemental analysis of minor and trace elements through
inductively coupled plasma mass spectrometry (ICP-MS) Agilent
ICP-MS 7,900 with ultra-high matrix introduction (UHMI).
The samples of sediments and microbial mats were desiccated
overnight followed by ethanolic dehydration and microstructure
was studied using a scanning electron microscope at the Center
for Chemical Microscopy (ProVIS). Images were captured using
a high efficiency detector.

Metagenomic DNA Extraction,
Sequencing, and Assembly
For the extraction of total DNA from microbial mats, 0.25-g
samples were processed following a method described by Varin
et al. (2010). The total community DNA from 0.25-g sediment
samples and 5 L of filtered water (0.45 µm) were extracted
using PowerMax Soil DNA isolation kit (MoBio Laboratories
Inc., Carlsbad, CA, United States) following the manufacturer’s
instructions. Sequencing was performed at Beijing Genome
Institute (BGI), Hongkong, China using Illumina Hiseq 2,500
platform. Paired end libraries of read length 100 base pairs
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(bp) were generated with insert size of 350 bp. The raw
sequences were quality filtered using SolexaQA (Cox et al.,
2010), and the low-quality sequences below Q20 quality cut-
off and artificially duplicated reads (ARDs) were castoff using
Illumina-Utils (Eren et al., 2013) and duplicate read inferred
sequencing error estimation (DRISEE) (Gomez-Alvarez et al.,
2009), respectively. Further, the assembly was integrated in
IDBA-UD (Peng et al., 2012) with 50-bp insertion length,
minimum k-mer: 31, maximum k-mer: 93 (61 for water) using
seed k-mer size for alignment 30 bp and the minimum size
of contig as 200 bp while allowing minimum multiplicity for
filtering k-mer while building the graph.

Taxonomic and Functional Assignments
Alpha diversity within each sample was estimated as abundance-
weighted average of annotated species from source databases
built in MG-RAST v3.0 (Meyer et al., 2008) and expressed as
Shannon diversity index transformed based on rarefaction curve
using the following formula:

log10 (α− diversity)/ln (10)

Diversity at phylum level was inferred from MG-RAST
(maximum e-value, 1 × 105 and minimum percentage identity
cutoff, 60%). A paired-sample t-test was applied on the phylum
determined in any habitat pair to estimate significant similarities
based on taxonomic mean abundance using SPSS (SPSS Inc.,
version 20.0, IBM). Microbial genera were deciphered based
on clade-specific markers to identify taxonomy up to species
level using MetaPhlAn v2.0 (Truong et al., 2015) and a
heatmap was constructed using Bray–Curtis dissimilarity with
supporting dendrograms for both species and samples. We used
HUMAnN2 (Franzosa et al., 2018) to perform phylum-resolved
functional profiling of the communities that maps contigs onto
the pangenomes of the known species of the community and
quantifies the pathways and UniRef90 gene families database
(Suzek et al., 2015). Later, these UniRef90 families were
regrouped as clusters of orthologous groups (COGs) annotations
based on eggNOG (Huerta-Cepas et al., 2017). Open reading
frames (ORFs) of assembled metagenome were predicted using
Prodigal v2.6.1 (Hyatt et al., 2010) and annotated at hierarchy
levels, namely, subsystems, protein families, and individual
enzymes using Prokka v1.12 (Seemann, 2014). The amino
acid sequences were mapped against Kyoto Encyclopedia of
Genes and Genomes (KEGG) database (Kanehisa et al., 2004)
and top 50 metabolic pathways in all of the six samples
were compared through heatmap constructed using package
pheatmap (Kolde and Kolde, 2015) and ggplot2 (Wickham,
2009) in R (R Development Core Team, 2011). Identification
of S substrates disproportionation genes was performed by
mapping all predicted ORFs on the HMM databases obtained
from TIGRfam v10 (Haft et al., 2012) and Pfam (Finn et al.,
2014) using hmmscan v3.1b2 (Eddy, 2011). An abundance of
each enzyme was plotted as number of copies annotated within
each sample. The sequences with more than 150 amino acids
were queried against the National Center for Biotechnology
Information (NCBI) Microbial proteins from RefSeq nr database

(04 April 2020) using BLASTp (Altschul et al., 1990) to
identify the sequences producing significant alignments for
taxonomic confirmation.

Analysis of Diversity of Sulfate Reduction
Proteins
For sequence similarity networks (SSN), amino acid sequences
of sulfide oxidation and sulfate reduction proteins annotated in
all six samples annotated by KEGG Ids were implied over an
empirical measurement of diversity. For this, an all-vs.-all BLAST
was performed to define the similarities/variations between
sequence pairs of diversifying sulfate reduction proteins. A user
defined threshold was optimized according to the alignment
score and maximum length of BLAST results in diversifying
and stabilized protein sequences. Clustering was performed using
CD-HIT (Li and Godzik, 2006) on the scores of BLASTp pairwise
alignments at a threshold value (e-value of 1e-30). The networks
were visualized in Cytoscape v3.7.1 (Shannon et al., 2003). The
average number of degree and neighbors for a protein sequence
or a node was calculated as:

k =
2k
N

where, K is denoted with number of edges and N is
denoted with total number of nodes. Also, to determine the
divergence/similarity among nodes or protein sequences was
calculated as:

D =
2k

N (N − 1)

The attributes of node degree distribution, average clustering
coefficient, average neighborhood connectivity, and closeness
centrality were studied through power law fits to determine their
correlation with number of neighbors. Sulfur oxidizing bacteria
(SOB) and SRB were identified for the sequences that could be
classified up to genus level to study the distribution of S substrates
oxidation and reduction genes in the different clusters.

Sequence Alignment, Phylogeny and
Structure Prediction of Putative
Unidentified Dsr and Asr Enzymes
To elucidate the phylogeny of key sulfite reductases, the DsrA/B
and AsrA/B protein sequences (more than 150 amino acids) were
individually aligned using MUSCLE v3.8.31 (Edgar, 2004) and
clustered using UPGMB (unweighted pair group method with
arithmetic mean). All the alignments were end trimmed manually
and maximum likelihood (ML) phylogeny was inferred with 500
bootstrap resampling using RAxML v8.0.26 (Stamatakis, 2014).
For this, we used standalone version of RAxML which was called
as follows:

raxmlHPC− PTHREADS − s input −N 500 − n result − f a

−p 12345 − x 12345 −m PROTGAMMAGTR.

The resulting phylogenies were also confirmed using most
complex general time-reversible model (CAT-GTR; Tavaré, 1986)
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with PhyloBayes v1.7b using CIPRES Science Gateway v 3.3
(Lartillot et al., 2009) that incorporates different rates for every
change and different nucleotide frequencies.

For proteins showing similarity with those from uncultured
bacteria, we determined the structures using I-TASSER suite
(Yang and Zhang, 2015). These predicted structures were then
aligned onto their top structural analogs and C-scores, TM-
scores, and RMSD were computed and ligand binding sites
with conserved residues were identified. The TM-score is to
compare two models based on their given residue equivalency
(i.e., based on the residue index in the PDB file). It is usually NOT
applied to compare two proteins of different sequences. The TM-
score predicted from structural alignment of two proteins while
comparing them based on residue equivalency such that a score
of 0.6 and above denote the two proteins to be fairly aligned (Yang
and Zhang, 2015). The TM-align will first find the best equivalent
residues of two proteins based on the structure similarity and
then output a TM-score.

RESULTS

Description of Sampling Site and
Microscopic Analysis of Samples
The Khirganga is a natural hot spring setting that lies in the
Parvati Valley in the Northern hemisphere of the great Himalayas
(31◦59′34′′ N, 77◦30′35′′ E, altitude 2,978 m) at district Kullu,
Himachal Pradesh, India (Figures 1A,B). For this study, samples
from all three habitats, namely, microbial mats, sediments, and
water were collected proximal to the major opening (KgM1,
KgS1, KgW1) and from a distance of 10 m (KgM2, KgS2, KgW2)
as shown in Figure 1C.

Using an electron microscopy, we dissected the microstructure
of the niches and were able to visualize cellular structures on
complex sample matrices. The microbial diversity was visualized
as numerous filamentous structures in microbial mats and
sediments that resembled Cyanobacteria. In addition, rod and
cocci shaped cells of varying sizes were also observed in the
sample matrices that providing a visual insight into the microbial
diversity at this mesothermic site (Figure 1D).

Physicochemical and Elemental Analysis
The in-situ measures of water temperature were from 59◦C
at the outlet to 55◦C at 10 m distance (Table 1). Microbial
mat deposits and sediments had much lower temperature (42–
45◦C) than water. The pH of the hot spring water was 6.7
while sediments and mats were slightly acidic with pH 6.1 and
6.3, respectively. Thus, all three habitats were recorded to be
mesothermic. The physicochemical composition of the hot spring
is dominated by anions of chloride (up to 11,024 ug/g) and
sulfate (up to 10,079 ug/g) while ions of calcium and potassium
were abundant (Table 1 and Supplementary File 1). Importantly,
sulfates (SO4

2−) concentration in microbial mats and sediments
were higher (9,529 ± 313.29 ug/g; 10,079 ± 863.29 ug/g,
respectively) and exceeded the limit of 8,000 ug/g standardized
by Environment Protection Act (EPA, 2001) and also found
to be exceeded the limit of 53 mg/L in surface waters

(79.82 ± 1.85 mg/L) (EPA, 2001; Table 1). The chlorides
(1,456.77 ± 367.27 mg/L), manganese, sodium, and silicon
constituents in the hot spring waters were surpassing the normal
average concentrations of 250, 0.05, 200, and 4 mg/L, respectively
(EPA, 2001) in surface water samples (Supplementary File 1).
Among others, the predominant elements and minerals in water
samples were aluminum, magnesium, copper, zinc, and arsenic.

Metagenomic DNA Sequencing and
Assembly
A large metagenomic dataset was obtained from sequencing
having number of reads sized up to ∼18 Gb for each sample.
We retrieved a total number of reads ranging between 1.1 × 108

to 1.5 × 108 in all samples which were assembled into
180,849-519,194 (more than 200 bp) contigs. After assembly, the
metagenomes sizes varied between 329 and 600 Mbp. A summary
of characteristics of the datasets and assembled metagenomes
is provided in Table 2. The alpha diversity estimated as the
Shannon diversity indices ranged between 2.5 and 3 (Table 2 and
Supplementary File 2).

Microbial Consortia and Proportionality
of S Oxidizing Bacteria and Sulfate
Reducing Bacteria
Bacteria belonging to 15 different phyla dominated the microbial
communities. The average percentage relative abundances of
major phyla in the three habitats shown in parentheses in
the order microbial mat, sediment, and water is as follows:
Proteobacteria (62.1, 50.5, and 58.7%), Bacteroidetes, Firmicutes,
Cyanobacteria, Planctomycetes, and Chloroflexi (Figure 2A).
Species belonging to phylum Proteobacteria are found in varied
temperature ranges which results in their dominance in various
hot springs (Bowen de León et al., 2013; Singh and Subudhi,
2016; Saxena et al., 2017) and disproportionation of S compounds
is mainly carried out by SRM of Proteobacteria (Finster,
2011), Besides, Actinobacteria, Spirochaetes, Verrucomicrobia,
Acidobacteria, Deinococcus-Thermus, Deferribacteres, Chlorobi,
Gemmatimonadetes, and Nitrospirae were also detected in all
three habitats with relative abundances less than 3%. Among the
three habitats, microbial diversity profiles of water and sediments
were more similar compared to those of microbial mats.

The highest genus level diversity was revealed in sediment
(n = 196) followed by water (n = 132) and mat (n = 63). The top-
50 genera in all habitats were plotted (Figure 2B). The microbial
mats were dominated by Pseudomonas (51.8%) followed by
unclassified genera of family Desulfobulbaceae (SRB; 5.2%) and
Flavobacterium (4.3%). Among the abundant genera in the
microbial mats were Thioalkalivibrio (1.3%, SOB), Aeromonas
(1.3 %), Klebsiella (1%), Exiguobacterium, Enterobacter, and
Escherichia (more than 1%) (Figure 2B). On the other hand,
sediment habitats were found to be enriched in Thioalkalivibrio
(SOB; 18.9%), Desulfobulbaceae (SRB; 9.9%), Halothiobacillus
(8.3%), Burkholderia (7.1%), and unclassifed genera of families
Acetobacteraceae (6.1%). The hot spring waters with highest
diversity of bacterial genera were dominated by Thioalkalivibrio
(SOB; 20.5%), Acetobacteracea (9.6%), and Desulfovibrio (SRB;
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FIGURE 1 | (A) Geographical location of Himachal Pradesh, Northern Himalayas. (B) Khirganga hot spring as shown in the maps are located in Parvati valley in Kullu
district of Himachal Pradesh, India. (C) The different habitats from where the samples were collected are shown: microbial mat (green), sediment (yellow), and water
(blue). Samples were collected in replicates from two outlets located 10-m distance apart. (D) The scanning electron micrographs of different habitat samples shown
with arrow demarcating the filamentous (cyanobacteria), cocci-shaped and rod-shaped bacteria (SRB) in pink, yellow, and white, respectively.

5.9%). Other genera with less than 6% abundances in all three
habitats were also detected as shown in Figure 2B.

Metabolic Functions of the Community
and S Disproportionation Genes
The major gene families inferred to be abundant across all three
habitats were assigned to Proteobacteria followed by Chloroflexi,
Firmicutes, Bacteroidetes, and Spirochaetes as reflected from the
reads per kilobase (RPKs) in the metagenomes. These gene
families were then regrouped as COGs and the top functions were
determined to be translation, ribosomal structure and biogenesis
(COG: J), amino acid transport and metabolism (E), general
function prediction (R), energy production and conversion (C),
replication, recombination and repair (L), and carbohydrate
transport and metabolism (G). These functions in microbial
mats were carried out by Proteobacteria (COGs: J, E, C, and
G) and unclassified bacteria (COGs: R and L); in sediments by
unclassified bacteria (COG: J) and Proteobacteria (COGs: E, R,

C, L, and G) and in water by Proteobacteria (COGs: J and C),
Firmicutes, and Chloroflexi (COGs: E, R, G, and L) (Figure 2C
and Supplementary File 3).

The ORFs that were categorized on the basis of KEGG
categories were mapped onto the metabolic functions and the
pathways that could be reconstructed with more than 60%
completeness were used to define the metabolic potential of the
habitats. Based on this criterion, we studied the top-50 functional
pathways of each habitat and identified the core functions
(n = 37 pathways) of the communities that included the common
pathways for metabolism of nucleotides, carbohydrates, and
amino acids (Figure 3A and Supplementary File 4). In addition,
we determined differentially abundant pathways in each habitat:
microbial mats (n = 7), sediments (n = 7), and water (n = 2).
The community functional profiles of sediment and water were
more similar compared to those of microbial mats which may
be due to the stratified layered organization of the mats which
are different in sediment and water. The microbial communities
in mats were optimized for metabolism of methane specifically,
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TABLE 1 | Physicochemical and elemental analysis of the niche samples.

Value for indicated sampling sites

Environmental data Mat Sediment Water

Temperature (◦C) 42.4 ± 0.56 44.55 ± 1.06 57 ± 2.2

pH 6.2 ± 0.14 6.5 ± 0.14 6.7 ± 0

Major ions/metals (µg/g) (µg/g) (mg/L)

Cl− 11024.88 ± 983.17 15547.08 ± 204.96 1456.77 ± 367.27

SO42− 9529.06 ± 313.29 10079 ± 863.29 79.82 ± 1.85

Na+ 976.88 ± 64.83 991.47 ± 7.88 1338.52 ± 167.97

Ca2+ 7529.71 ± 1034.68 5111.4 ± 588.21 30.27 ± 7.32

K+ 3681.66 ± 886.65 7743.91 ± 412.12 41.56 ± 9.03

Al 7205.41 ± 1685.37 22011.1 ± 2312.9 0.05 ± 0

Mg 3528.62 ± 735.04 8204.28 ± 964.02 8.83 ± 0.02

Si 3.22 ± 0.66 5.28 ± 0.42 31.5 ± 1.36

Mn 1149.7 ± 178.85 1219.29 ± 13.93 0.34 ± 0.03

Cu 14.4 ± 2.62 27.23 ± 1.71 <0.01

Zn 27.44 ± 6.36 67.35 ± 0.47 <0.01

As 3.9 ± 0.64 6.87 ± 0.22 <0.01

Ag 5.51 ± 3.7 5.1 ± 0.03 <0.01

Pb 17.74 ± 2.54 11.4 ± 1.27 <0.00

Values for microbial mats and sediments samples are given in (µg/g) and those of water samples are shown in parts per million (ppm).

members of genus Methanospirillum, which were abundant in
mats (Figure 2B). Other metabolic pathways such as lysine
biosynthesis, C5-branched dibasic acid metabolism, thiamine
metabolism, pyrimidine metabolism, vitamin B6 metabolism,
and other glycan degradation were also found to be abundant
in microbial mat.

The S metabolism pathway could be reconstructed within
a range of 76.31–84.21% which was maximum in sediment
and minimum in microbial mat. A total of 75 genes were
responsible for S metabolism present in all the samples with
a mean copy number of 1580 ± 249.2. To gain insights
into S disproportionation potential across all the habitats,
we mapped the TIGRfam and Pfam (Supplementary File
4) ids of the 25 associated genes (mean copy number
of 980 ± 222.1) on to the ORFs and copy numbers of
these genes involved in S oxidation, sulfide oxidation, and
sulfate reduction (as described in Figure 3B) were estimated.
Thiosulfate ions are fused to the carrier complex of S-oxidizing
proteins soxYZ (soxY = 145, soxZ = 71), while L-cysteine
S-thiosulfotransferase (soxX = 76, soxA = 86) and S-sulfosulfanyl-
L-cysteine sulfohydrolase (soxB = 145) mediate the hydrolytic
release of reduced S ions from S-bound soxYZ. Besides,
the dissimilatory sulfite reductase (DsrAB) encoding genes:
dsrA = 95, dsrB = 83 and anaerobic sulfite reductase
subunits asrA = 44, asrB = 30, asrC = 9 reduces sulfite
to sulfide (Supplementary File 4). The other 15 genes for
reduction of sulfate ions included solute binding protein
(cysP = 37), ATP binding protein (cysA = 168), transport
system permease proteins (cysU = 158, cysW = 154), ATP
sulfurylase (sat = 254), transferases (cysC = 348, bifunctional
cysNC = 155, cysN = 75), phosphoadenosine phosphosulfate
reductase (cysH = 314), adenylylsulfate reductase subunit A and

B (aprA = 88, aprB = 104), sulfite reductase flavoprotein alpha-
component (cysJ = 111), sulfite reductase hemoprotein beta-
component (cysI = 180), homocysteine desulfhydrase (mccB = 6),
and cysteine synthase (ATCYSC1 = 4). Figure 3C shows the
comparative abundances of these proteins in the three habitats.
Here, the results revealed that the microbial S disproportionation
occurs largely through the dissimilatory pathway carried out by
DsrAB as compared to assimilatory sulfite reductase (AsrABC)
mediated reduction. In nature, the dissimilatory pathway is
shorter and thus, preferred route of microbial sulfate reduction
(Figure 3B; Kushkevych et al., 2020).

We identified the sequences of S disproportionation
producing significant alignments from the nr database for
taxonomic confirmation and assigned each sequence that could
be classified up to genus level to either SOB or SRB (Figure 4A
and Supplementary File 5). The taxonomy and evolutionary
phylogenetic topologies are discussed in detail in the next section.

Diversification and Evolution of S
Disproportionation Proteins
To gain insights in the differentiation of S disproportionation
genes, we study the diversity and evolution of the key enzymes
of SOB and SRB communities in this environmental biosystem.
Therefore, we employed a two-step strategy of comparing
similarities of all sequences in a pairwise fashion through SSN
analysis and further estimated the measures of the rates of non-
synonymous to synonymous substitutions in their orthologous
proteins between each pair of habitats. SSN effectively resolves
the pairwise similarities of each sequence (node) with every other
sequence of an enzyme or a group of enzymes for a pathway such
that any two nodes are connected by edges only if they share
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sequence homology above a certain cutoff (here e-value of 1e-
30). Thus, SSN provides for an accurate placement of a sequence
among its putative homologs (Talwar et al., 2020).

Here, we examined the diversity among 19 key S substrates
oxidizing and reducing proteins determined from the
communities as shown in Figure 3C, except membrane
permeases (CysPUWA) and genes for cysteine synthesis (MccB,
ATCYSC1). In total, we retrieved 2,413 protein sequences
(mean; M = 254, S = 480, W = 472) denoted by nodes in SSN.
The network was organized into 88 connected components
including 46 isolated nodes with an average clustering coefficient
of 0.84. The connected components were represented by the
homologous and heterologous clusters depending on whether
they were constituted by the same gene or a number of different
genes involved in a pathway, respectively. The number of
connected components formed through SSN analysis of S
metabolic proteins distributed into gene clusters and the
isolated nodes denoted the diverging and highly diverged
sequences, respectively (Figure 4A). Hence, we looked into
these components to study the diversity of each gene that were
distributed as shown in Table 3. The proteins CysNC, CysH,
CysI, and CysJ catalyze important steps and act as cofactors for
the AsrABC which were all found to be diverging with many
isolated nodes and loosely connected components. The enzymes
for S oxidation (Sox) were also found to be diverging as observed
from loosely formed clusters. On the other hand, all sequences
of the key enzyme of dissimilatory pathway, DsrAB, formed
only one connected component, which suggested that they
might be under convergent evolution at this site (Figure 4A).
Further, we compared the distribution of diverged sequences
that could be separated as isolated nodes and found that hot
spring sediments harbored a high diversity of these enzymes
(n = 23) in comparison with microbial mats (n = 12) and water
(n = 11).

The node degree distribution estimated to be decreasing with
increasing protein quantity (correlation = 0.52, r2 = 0.29), average
neighborhood connectivity within the networks interpreted
as function in k was increasing and positively correlated
(correlation = 0.90, r2 = 0.74) (Figure 4B). Furthermore,
closeness centrality curve that measures closeness between nodes
was unable to reach the bench top (correlation = 0.03, r2 = 0.01),
might be due to the maximum number of connected components
and less sequence homology. So, we also analyzed each protein
cluster individually by using network analysis, 178/2,413 nodes
of the network DsrAB protein cluster found to be conserved
showed higher clustering coefficient values (0.94), followed by
AprA (0.93), AprB, CysNC (0.88), and others (Table 3). The
evolutionary selection pressures on these genes were studied
through estimation of dN/dS values calculated for a subset of
conserved gene sequences in all three habitats (Figure 4C). The
number of core genes and the range of dN/dS values identified
for each gene are shown in Table 3. The cysJ and cysI genes
were found to be under moderate selection pressures with dN/dS
values in the range 0.4–0.7 (Figure 4C and Supplementary File
6). The results supported the observation as these enzymes code
for important co-factors for the AsrABC that were found to
be diverging in through SSN analysis. Therefore, the microbial
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FIGURE 2 | Relative abundance of phylum and genera. (A) The stacked bar representation shows the dominating phylum in all three habitats. The dendrograms
show hierarchical clustering between species and samples. (B) The abundant common genera Pseudomonas (20–60%), Desulfobulbaceae_unclasssifed (15–20%),
Burkholderia, Desulfovibrio, and Thioalkalivibrio (1–20%) are shown here relative abundance × logx scale. (C) Taxa based functional profiles demonstrating the major
phylum contributing toward COG subsystems and percentage of proteins annotated within each COG category for the habitat sites. The distribution of the RPKs
were mapped in accordance to the member abundance in the habitats. Dots were colored according to the phylum.

genes for assimilatory reduction pathway are diversifying under
moderate selection pressures.

Divergence, Phylogeny, and Structural
Relationships of Dissimilatory Sulfite
Reductase and Assimilatory Sulfite
Reductase
The enzymes catalyzing the reductive (Dsr) or oxidative (rDsr)
transformation between sulfite and sulfide appear to be related
with respect to their subunit composition and catalytic properties
(Loy et al., 2009). The dsr genes have been characterized from
bacterial as well as archaeal domains (Chang et al., 2001; Grim
et al., 2011; Colman et al., 2020). However, their evolution
in these domains has long remained a subject of discussion.
Our preliminary results showed that both subunits of dsr
genes (dsrA = 79, dsrB = 72) corresponds to about 70 newly
identified organism for both oxidation and reduction processes
(Supplementary File 8). Through RAxML phylogenetic analysis,
it can be confirmed that the dsrAB genes have been introduced in
most of the newly identified members by a multiple independent
LGT (Anantharaman et al., 2018). Importantly, organisms
from Acidobacteria, Candidate division Zixibacteria, Chloroflexi,
and β-Proteobacteria form completely novel lineages other
than known DsrAB clusters identified through RefSeq nr
protein database with accession numbers (National Center for
Biotechnology Information; Supplementary File 5). Hence,
the dsr from sulfate reducers formed a separate cluster, with
sequences from Desulfarculus, Desulfocarbo, Desulfarcinum,
Thermodesulfobacteria, Syntrophobacter, Desulfomonile,

Desulfovibrio, Desulfatirhabdium, and Desulfobacteriaceae
in both DsrA and DsrB phylogenies and additionally,
Dissulfuribacter in DsrB (Supplementary File 8). We proposed
that these organisms with newly identified lineages of dsr
genes involved in sulfite/sulfate oxidation and reduction
likely serves an important control on S cycling on terrestrial
subsurface. The divergence of dsrAB between unrelated taxa
could be driven through combination of speciation, functional
diversification, and LGT. Also, there is equal possibility of
non-functionality of the genes in these taxa (Loy et al., 2008;
Anantharaman et al., 2014).

Through time–scale evolutionary phylogeny of the sequences
of DsrAB and AsrAB identified from the metagenomes, we
determine the most basal and earliest evolved lineages involved
in dsr and rsdr pathways (Figure 5 and Supplementary File 7).
Our results suggested that both the subunits of the oxidative
type reverse-Dsr evolved much earlier than the reductive type
Dsr subunits (Figure 5). We used the phylogenetic analysis
to further assign taxa to the sequences that showed similarity
with yet uncultured bacteria and predicted their structures to
gain insights into the more common phylogenetic ancestor
of the two Dsr subunits. Interestingly, these sequences of the
oxidative type Dsr (rDsr) formed monophyletic clade with a more
recently identified genus, Sulfuritortus in both DsrA and DsrB
phylogenies. Our analysis revealed similar tree topologies with
these unassigned sequences forming clade with Sulfuritortus,
Thiobacillus, and Hydrogenophilales bacterium in both DsrA
(n = 1) and DsrB (n = 3). Although the sequences were similar
to Thiobacillus phylogenetically, prediction of their structures
revealed DsrA to be highly similar to that of Desulfovibrio gigas
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FIGURE 3 | (A) Reconstruction of top 50 pathways annotated using KEGG automatic annotation server. Heatmap matrix representation and clustering was
performed by using “pheatmap” package (Kolde and Kolde, 2015) in R (R Development Core Team, 2011). (B) The sulfate reduction pathway involved a group of
reductases, kinases, and transferases with the product chemical structures generated through chemDraw7 and Inkscape v0.9 (Inkscape Project, 2020). (C) The
gene copy number of both sulfate reduction and sulfide oxidation pathway that were partitioned in different habitats showed here using ggplot2 in R (R Development
Core Team, 2011).

(TM score = 0.75; analog TM = 0.86; C-score = 0.25, 1.6, and
1.58; Figure 6) and structures of DsrB proteins aligned most
closely with Archaeoglobus fulgidus (TM score = 0.94; analog
TM = 0.97; C-score = 1.64; Supplementary File 9). While the
other DsrB subunit (n = 2) formed clades with Thioalkalivibrio
(β-Proteobacteria) also showing similarity to A. fulgidus (TM
score = 0.94; analog TM = 0.98; C-score = 1.64). In the
reductive type Dsr clades, two DsrA sequences from uncultured
bacteria formed clades with Nitrospiraceae and Chloroflexi
bacteria (Figure 5). However, a consistent observation was seen
in the similarity of all these structures of DsrA proteins with
Desulfovibrio vulgaris (TM score = 0.94; analog TM = 0.96;
C-score = 1.58).

DISCUSSION

Hot water is continually discharged from a major outlet at
Khirganga from where it deposits S upon microbial mats over
the sediments along its course (Sharma et al., 2004). Microscopic
analysis showed that cyanobacteria are widely distributed in mats
and sedimentary deposits of thermal springs (van Gemerden,
1993; Podar et al., 2020). The physio-chemical data signified
that the hot spring waters emerges from the confluence of
rivers Parvati and Beas have high concentrations of chlorides

and sulfates that are characteristic of majority of other hot
springs in the Himalayan ranges (Cinti et al., 2009; Sangwan
et al., 2015). The alpha diversity was higher in the water
samples than microbial mat and sediments as has been reported
previously (Ghilamicael et al., 2017; Nagar et al., 2021). Species
richness as rarefaction curves obtained for all samples attained a
plateau indicating optimum metagenomic sequencing data and
sampling of a reasonable number of species for all metagenomes.
The Bray–Curtis index calculated and plotted using non-metric
multidimensional scaling (NMDS) demonstrated a significant
difference in the beta-diversity of all three habitats at phyla level
(PERMANOVA; p < 0.01). Abundance of class γ-Proteobacteria
in microbial mats significantly distinguished latter from the other
two habitats. Similar results have been reported in previous
studies (Selvarajan et al., 2018; Pohlner et al., 2019). Communities
in sediment and water samples may be varied from each other
majorly due to differences in the abundance of δ-Proteobacteria.
The dominance of aerobic and facultative anaerobic bacteria
like Pseudomonas in all three habitats could be possible due
to mesothermic environment and natural subsurface water
hydrodynamics (Nazina et al., 2005). The other taxa that are
often found associated with mat deposits are active biofilm
producers that use adherence to the surface as a strategy to
survive, evolve, and to cope with various abiotic stresses at
such extreme habitats (López et al., 2006; Wright et al., 2013).
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FIGURE 4 | Sequence similarity network analyses. (A) Diversity of sulfate reduction genes of both assimilatory and dissimilatory pathways in microbial mat
(diamond-shaped), sediment (square), and water (spherical) habitats visualized in cytoscape v3.7.1. Highlighted only the classified taxa, where color cyan belong to
SRBs and yellow to SOBs. The network was set at threshold e-value cutoff of 1e-30 and nodes represent sequences connected through edges if the similarity
exceeds the cutoff score. Here, the clusters and isolated nodes were showing the conserved pattern and diversified pattern of the proteins significantly playing an
important role in sulfate reduction. (B) Topological properties of the similarity networks: degree distribution, average clustering coefficient, average neighborhood
connectivity, and closeness centrality are plotted against the number of neighbors. The power law fit curves are shown within each graph. (C) Habitat vs. habitat
dN/dS values of all S cycle genes were estimated and plotted using xy-plot in R (R Development Core Team, 2011).

In contrast, abundance of SOB and SRB in sediment and water
was observed (Agostino and Rosenbaum, 2018). These SOB
and SRB are usually categorized as lithoautotrophs that play
key microbial role in biogeochemical cycling of S in various
habitats. In general, hydrogen sulfide account for the S present
in the underground geothermal waters originating from pyrites
or leaching of other sulfides by deep hypothermal waters (Picard
et al., 2016). Sulfide (S2−) is oxidized to sulfate (SO4

2−) as the
water rises to the surface and under mild oxidizing conditions,

sulfide is only oxidized to sulfate or S dioxide (Picard et al., 2016;
Wu et al., 2021). The results provided pertinent information on
the geochemical composition of the three habitats to be correlated
with the microbial diversity and community functions. More
importantly, high concentrations of sulfate ions in microbial
mats and sedimentary deposits supported the hypothesis of a
key role of the bacterial S cycle in sustaining the microbial
community at the hot water spring. Sulfur oxidizing bacteria
oxidize the reduced S compounds such as hydrogen sulfide
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3 (H2S), elemental S (S0), sulfite (SO2−

3 ), thiosulfate (S2O3
2−), and

various polythionates (SnO6
2− or -SnO6−) into sulfate (SO4

2−).
On the contrary, SO4

2− can serve as an electron acceptor of
SRB under anaerobic conditions, and they reduce the SO4

2−

and other oxidized S compounds (S2O3
2−, SO3

2−, and S0)
into H2S (Agostino and Rosenbaum, 2018). The abundance of
SOB such as Thioalkalivibrio and Burkholderia as well as SRB
such as Desulfobulbaceae unclassified and Desulfovibrio in spring
is not surprising as high levels of sulfate dominate the site
and relative abundance of these bacteria provide evidence of
an active S cycling mediated by microbial communities. The
enriched diversity for Sox and sulfate reduction as well as the
geochemical analysis of sulfide rich habitats compelled us to
mine the regulatory genes involved in the different pathways
of S cycle. In natural system, the S intermediates are reduced
by different bacteria through two different reduction processes,
namely, dissimilatory and assimilatory reactions (Vermeij and
Kertesz, 1999; Zavarzin, 2008; Figure 3B). In dissimilatory
reduction, SRB utilize three enzymes [(ATP sulfurylase (sat),
APS reductase (apr), and sulfite reductase (dsr)] to reduce
sulfate and produce toxic hydrogen sulfide (Agostino and
Rosenbaum, 2018; Kushkevych et al., 2020). On contrary, sulfate
is assimilated into organic compounds under assimilatory process
(Kushkevych et al., 2020).

Based on sequence similarity, majority of the AsrABC
genes (assimilatory) that were taxonomically related to SRB
could be distinguished from the rest of the sequences that
were not identified as either SOB or SRB. Thus, assimilatory
reduction was diverged among the SRB communities while
those for dissimilatory pathway were rather conserved at the
site. Previous reports of sequence comparisons have confirmed
that DsrAB, Dsr, to be highly conserved enzyme that could
serve as marker gene for SRBs (Loy et al., 2009). The DsrAB
and AprAB enzymes were contributed by both SOB and SRB
with syntrophic interaction which suggests for the presence
of reverse dsr (rdsr) mediated oxidation of S substrates in
addition to dissimilatory reduction (Kumar et al., 2017). The
inherent complexity of S-based metabolic network revealed
that there are controlled mutation rates in dsrAB genes in
presence or increased selective pressure of contamination and
extreme conditions. A relatively high diversity of the other
sulfate disproportionation proteins in all three segments unveiled
the high nutritional demands and efficiency of the microbes
toward uptake of a wide range of structurally and chemically
diverse amino acid side chains from environment (Talwar et al.,
2020). The syntropy of SOB and SRB prevailing in anoxic and
anaerobic conditions governs the dissimilatory S metabolism
(oxidation and reduction parallelly) and indirectly promoting
the growth of diverse microbes in this natural ecosystem
(Bhatnagar et al., 2020).

It was noted that mutation rates were low in all subunits
of Dsr proteins which we readily analyzed to trace down
the ancestor among SOBs or SRBs in dissimilatory and
reverse dissimilatory (rdsr) pathways. The result of the time–
scale phylogeny suggested that an increase in substitution
rate in both subunits of DSR might have occurred on
the branch connecting δ-Proteobacteria to all other taxa as
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FIGURE 5 | Divergence estimation over time. Reconstruction of the phylogenic tree of optimized full length DsrAB and AsrABC subunits in three habitats using
PhyloBayes with the CAT-GTR model. The highlighted squares consist of clades with proteins that were remained unclassified through nr database. (A) (i) Among, 78
DsrA nodes that showed here the earliest evolution of the rDsr oxidative proteins occurred in Thiobacillus sp. (ii) 72 nodes of DsrB proteins with similar results. (B) (i)
38 nodes of AsrA and (ii) 21 nodes of AsrB were also compared as a control for branch length shown here.

FIGURE 6 | Structural similarity and analogy of unclassified proteins from PDB (Protein data bank) using i-TASSER. (A) DsrA protein subunits: (i) np252939 and (ii);
(iii) np500880; np481424 showing Tm-align similarity with PDB ids 3or1 and 2v4j (Desulfovibrio gigas and D. vulgaris), respectively; with SF4 (iron S cluster) ligand
binding sites (B) DsrB protein subunits (i) np24977, np24617, np116484 and (ii) np199275, np59533 showing Tm-align similarity with PDB ids 3c7b; with siroheme
ligand binding sites.
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observed from the branch lengths. The different rates of
substitution of the two DSR subunits has this far only been
reported in δ-Proteobacteria lineage (Wagner et al., 1998). The
templates of these dsrAB genes have potential to study the
genotypic and phenotypic traits in SRPs and the dissimilatory S
metabolism processes which will expand the gene-environment
interaction mechanism. Also, prior analysis has proved that the
evolution of dsrAB have been influenced by LGT only among
major taxonomic lineages (Klein et al., 2001; Müller et al.,
2015) but the findings here provide evidence of independent
multiple LGT events distributed throughout the dissimilatory
gene clusters. Currently, the time-scale study of this site
cannot produce evidence of the progenitor lineages, as the
evolutionary history of dissimilatory reduction is complex
and yet ascertain. Although it had provided information
of the earliest lineage where sulfate/sulfite oxidation and
reduction appeared. The genus of SOB currently has few
recognized species and is closely related to the members of
genus Thiobacillus (Kojima et al., 2017). Through structural
homology, we predicted that the genus derives its two subunits
of Dsr from different ancestors. A plausible explanation for
this is observed in the previous reports of high sequence
homology between the Dsr of A. fulgidus and D. vulgaris that
suggest a common origin of archaeal and bacterial DSRs
or their HGT (Karkhoff-Schweizer et al., 1995). In addition
to homology in their sequences, the evolutionary distance
separating the enzymes from A. fulgidus and D. vulgaris was
deciphered. For DsrB subunits, the archaeal and bacterial
sequences were not particularly distant; such that the branches
with structural homology to A. fulgidus were approximately
the same length as branches leading to bacteria such as
Thiobacillus, Thioalkalivibrio, and β-Proteobacteria bacterium
(Larsen et al., 1999).

CONCLUSION

The mesothermic hot spring have been composed of a diverse
group of microbes (Bacteria and Archaea) and genotypes
(dsrAB) that could be screened out as novel thermozymes
that cannot be underestimated. From the results, it could
be concluded that the microbial community functions were
distinguished in microbial mat from water and sediment.
Here, the genomic repertoire suggested the ongoing specific
adaptations to cope up with extreme values of sulfide content
in this ecological setting. The S metabolic pathways are
completed where inorganic S compounds being the main
source for SRB releasing toxicity in the form of sulfides
(S2−). The sulfate reduction profiling in all three habitats
reveals dissimilatory sulfate reduction process (dsrAB) is active
than assimilatory sulfate reduction (asrAB). Later, the genes
involved in S reduction/oxidation were classified and belong
mostly to Proteobacteria with maximum homologous proteins
classified in anoxygenic SOBs. In all S disproportionation
proteins, the sulfite reductase DsrAB proteins showed conserved
behavior with 0/1 isolated nodes that have been signified as
phylogenetic markers for SRBs. The evolutionary phylogenetic

analysis showed that the oxidative rDsr were the earliest than
the reductive Dsr which may predict that the condition with
more sulfides oxidized in more sulfates, directing SRB to
perform dissimilatory reduction later. Phylogenetic clades of
DsrAB proteins showed unanimous distribution of taxa except
the δ-Proteobacteria which could be the reason for occurring
LGT to other phyla. On the basis of structural alignments, the
lineages with unclassified clades have shown different analogy
in both Dsr subunits where DsrB derived from Archaea and
DsrA are δ-Proteobacteria in origin at this mesothermic niche.
The stabilization and evolutionary time–scale phylogeny of
DsrAB revealing a positive syntrophic relationship between SOB
and SRB. These thermophilic microbial inhabitants are very
crucial in expanding the metal toxification, ion exchange, and
biogeochemical cycling of the elements.
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