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ABSTRACT 30 

Curation of archaeological materials often leads to carrying out multi-analytical methodologies that 31 

combine non-invasive and invasive elemental analyses. Such materials are often analysed with different 32 

techniques. It results in the production of complementary but apparently non-compatible compositional 33 

datasets that cannot be easily compared. In the present paper, we propose to compare results acquired 34 

on geological ferruginous colouring matters from Namibia with analytical techniques (X-Ray 35 

Fluorescence spectrometry (XRF), Proton-Induced-X-ray Emission spectrometry (PIXE), Inductively 36 

Coupled Plasma coupled to Optical Emission spectrometry (ICP-OES) and Inductively Coupled Plasma 37 

coupled to Mass Spectrometry (ICP-MS)). We aim to provide a unified elemental dataset about these 38 

ferruginous colouring matters, usually referred to as “ochre” in archaeology. Analysed geological 39 

samples come from three distinct tectonostratigraphic zones of Namibia surveyed in the frame of rock 40 

art research. When compared directly, three of the four datasets obtained from these measurements 41 

appear as non-compatible because of the inter-equipment variability. However, through a simple 42 

standardization procedure, we demonstrate that it is possible to unify these datasets. This procedure 43 

minimizes the inter-equipment variability, making the inter-zones of provenance predominant and 44 

allowing distinctions of the samples according to their sole origin. Beyond shedding new light on the 45 

possibility to compare different elemental analytical techniques, this procedure paves the way for robust 46 

statistical provenance studies of ferruginous colouring matter.  47 
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1.INTRODUCTION 55 

Ferruginous colouring matters correspond to a wide variety of rocks rich in iron-oxides which can 56 

transmit their colour to another material. Most archaeologists refer to them under the “ochre” catch-57 

them-all term (Onoratini, 1985; Dayet, 2012; Chalmin et al., 2021; Salomon et al., 2021; Popelka-Filcoff 58 

and Zipkin, 2022).These colouring matters occur in different archaeological contexts such as mine and 59 

open-air site, rock shelter or cave.  Within these contexts, they are present in various forms: as small 60 

boulders and fragments in the archaeological assemblage, as residues over tools or beads or as pigments 61 

used for rock art. These remains record numerous information concerning past communities cognition, 62 

behaviours, techniques and mobility (d’Errico, 2003 ; Salomon et al., 2012 ; Hodgskiss, 2014; Mathis 63 

et al., 2014 ; Lebon et al., 2019 ; Dayet, 2021; Domingo and Chieli, 2021; Huntley, 2021; Popelka-64 

Filcoff and Zipkin, 2022)-. The observation and characterization of these materials allow the description 65 

of the succession of mental steps and technical gestures aimed at exploiting, processing, and using these 66 

materials. This succession of steps is referred to as “chaîne opératoire” (Perles, 1987: 23). Here, it 67 

becomes possible to investigate the methods of preparation of these resources (Wadley, 2005a, 68 

Hodgskiss, 2010), the choice made by the populations in the type of colouring matter they 69 

exploited(Mathis et al., 2014), their different use of these raw materials (Wadley, 2005a,b, Rifkin, 2015 70 

; Rifkin et al., 2015) , as well as the mobility of these past communities (Mauran et al., 2021a ; Huntlet, 71 

2021 ; Velliky et al., 2021).   72 

During the last two decades, advances in analytical instrumentation have led to an increase in the number 73 

of studies about archaeological ferruginous colouring matters. These advances implied the use of 74 

different elemental analytical techniques to characterize the materials and determine the provenance of 75 

the archaeological ferruginous colouring matters: X-Ray Fluorescence spectrometry (XRF) (Jercher et 76 

al., 1998 ; Lebon et al., 2019) , particle-induced X-ray emission (PIXE) (Erlandsen et al. 1999; 77 

Bernatchez et al. 2008 ; Nel et al., 2010 ; Beck et al., 2011. 2012 ; Salomon et al., 2012 ; Mathis et al., 78 

2014 ; Lebon et al., 2014)   , instrumental neutron activation analysis (NAA) (Kiehn et al., 2007 ; 79 

Popelka-Filcoff et al., 2007, 2008 ; Eiselt et al., 2011 ; MacDonald et al., 2013, 2018 ;  Velliky et al., 80 

2021)  , inductive coupled plasma – optical emission spectrometry and mass spectrometry (ICP-OES 81 

and ICP-MS) coupled or not to laser ablation (Green an Watling, 2007 ; Iriarte et al., 2009 ;  Dayet et 82 

al., 2013 ; Scadding et al., 2015 ; Moyo et al., 2016 ; Zipkin et al., 2017, 2020 ; Eiselt et al., 2019 ; 83 

Pierce et al., 2020 ; Mauran et al., 2021a) . An extensive review of these studies has been recently 84 

published by Dayet (2021) .  85 

The aforementioned techniques present different advantages and disadvantages regarding their 86 

analytical specificities: destructiveness, analytical costs, range of measured elements at once, 87 

repeatability and accessibility (Fig. 1). There is a clear demand for instruments with high repeatability 88 

and accuracy but also economical, widely accessible and of minimal invasiveness for preserving these 89 



 

 

unique archaeological artefacts. Not all these requirements can be met altogether, often leading 90 

researchers to downscale their studies and repeat analyses of the same sample with different analytical 91 

techniques. The selection of one of these techniques is material, context, and problem dependant 92 

(Salomon et al., 2016 ; Zipkin et al., 2020 ; Dayet, 2021) . The development of multi-technical 93 

approaches, combining non-invasive and invasive analyses allow accessing all different aspect of past 94 

exploitations of ferruginous colouring matter (Dayet , 2012 ; Chalmin and Huntley, 2018 ; Mauran, 2019 95 

; Domingo and Chieli, 2021). 96 

When one tries to study the whole “chaîne opératoire” of these ferruginous resources, the absolute 97 

necessity of their preservation leads to carrying out multi-analytical methodologies that combine non-98 

invasive and invasive analyses. On one side,  using ICP-OES/ICP-MS on geological samples would 99 

provide an accurate fingerprint of the potential sources, but result in destroying the samples, which can’t 100 

be done for most of archaeological assemblages  On the other side, using non-destructive but less 101 

sensitive analyses such as air-extracted microbeam PIXE and pXRF for highly valued archaeological 102 

samples and residues would allow their preservation while providing limited information about their 103 

potential provenance (Fig. 1) (Mauran, 2019) . 104 

 105 

Fig. 1. Ideal analytical strategy to investigate the geochemical composition of ferruginous colouring 106 

matter. (double columns, colour) 107 



 

 

The use of these techniques with different sensitivity and precision produces complementary but non-108 

compatible compositional datasets. However, between-laboratory variations can limit comparisons of 109 

datasets acquired from distinct instruments or even on different days (Yellin et al., 1978 ; Popelka-110 

Filcoff et al., 2012 ; Salomon et al., 2016) Fundamental differences in experimental conditions between 111 

distinct techniques raise more difficulties (Hein et al., 2002 ; Tsolakidou et al., 2002 ; Glascock et al., 112 

2004) . So far, this has prevented researchers to reuse and share compositional data of ferruginous 113 

colouring matter acquired with different techniques or at distinct laboratories thus restricting studies to 114 

answer punctual questions (Salomon et al., 2016 ; Chanteraud et al., 2021). Previous works attempted 115 

to compare data acquired on ferruginous colouring matter samples with different techniques (SEM-EDS, 116 

PIXE, ICP-OES) (Dayet, 2012, 2021).  Dayet mainly investigated the accuracy of these techniques and 117 

highlighted the influence of patina on geochemical data. Works performed by Salomon and colleagues 118 

(2016)  shed light on the importance of using standards to compare data. Popelka-Filcoff and colleagues 119 

(2012), compared NAA measures acquired at two different facilities. They concluded to the equivalence 120 

of the datasets but the impossibility to combine them directly. Research aiming to compare data acquired 121 

by different analytical methods have been carried out on other materials such as ceramics, glaze, and 122 

obsidians (Hein et al., 2002 ; Grave et al., 2005 ; Speakman et al., 2011 ; Mitchell et al., 2012 ; 123 

Kasztovszky et al., 2018). However, all these works only compared the techniques and their efficiency 124 

to discriminate the provenance origins of different raw material. Inter-equipment calibrations remain 125 

scarce, one of the most successful projects is the CHARM project. During this project, Heginbotham 126 

and colleagues (2015)  have developed XRF inter-laboratory standardization for copper alloys 127 

characterization. Maximum Fe2O3 content in these alloys is of 1.4 ± 0.9 % (32X SN5A) (Heginbotham 128 

et al., 2015 ; Steenstra et al., 2021). Ferruginous colouring materials usually have a Fe2O3 content 129 

comprised between 10 to 90 %. This difference of composition prevents the direct use of this inter-130 

laboratory calibration for colouring materials characterization. Elemental analyses provide large datasets 131 

usually containing more than ten elemental concentrations (variables) and often a higher number of 132 

samples (observations). Questions answered with these elemental analyses usually consist in 1) 133 

discriminating groups of artefacts according to their elemental composition (categorisation), 2) 134 

comparing the artefacts elemental composition with modern raw material elemental composition 135 

(sourcing). Answering these questions involves investigating the structure of the elemental datasets. To 136 

do so, researchers often use exploratory multivariate analyses. Among the most often used multivariate 137 

analyses are principal component analysis (PCA) and linear discriminant analysis (LDA). Both analyses 138 

are presented in detail for ochre studies by Zipkin and colleagues (2017), and iron slags by Leroy (2010)  139 

or more generally by Baxter (1994) . 140 

Principal component analysis (PCA) is most of the time used as an unsupervised method.... PCA allows 141 

reduction of the number of variables and mainly maximises the variability over the whole dataset. Linear 142 

discriminant analysis (LDA) is a supervised method that also allows reducing the number of variables 143 



 

 

but maximises the ratio of between-class variance to within-class variance. In this sense, LDA is more 144 

susceptible to discriminate groups than PCA, due to the inherent structure provided to perform the 145 

analysis. In this sense, PCA allows the investigation of the structure of the datasets while LDA allows 146 

better discrimination of distinct groups.   147 

PCA, the most common method used in colouring matter provenance, is a scale dependant analysis. 148 

Therefore, variables with the highest intensity weigh more than others in the statistical analysis. When 149 

investigating datasets with concentrations expressed in different units such as percentages and parts per 150 

million, data treatments are a necessity to ensure an equal weight to all the variables. This is why data 151 

are usually transformed. Numerous transformations exist to tackle this issue. Data standardization to 152 

zero mean and unit variance or log-ratio transformations are however the most common, sometimes 153 

used together (Baxter, 1995) .  154 

The use and advantages of standardization and log-transformation have been debated elsewhere 155 

(MacDonald et al., 2013, 2018 ; Zipkin et al., 2017, 2020 ; Mauran et al., 2021a)  . The most common 156 

method for colouring matter provenance studies relies on the Fe- normalization methodology (e.g. David 157 

et al., 1993 ; Smith et al., 1998 ; Popelka-Filcoff et al., 2007). After a statistical correlation test such as 158 

Pearson’s is performed, only elements correlated with Fe are used in subsequent analyses. 159 

Considerations about elements correlation are further discussed in the literature (e.g. Popelka-Filcoff et 160 

al., 2007; Beck et al., 2011; Mathis et al., 2014; Lebon et al., 2018; MacDonald et al. 2011; Dayet et al., 161 

2016; Dayet, 2021). These elements are then normalized to the iron content. These ratios are then log-162 

transformed. But recent studies have highlighted some of the limits of this method (Dayet et al., 2016 ; 163 

MacDonald et al., 2018, Pierce et al., 2020) Other transformations such as direct logarithm or centred-164 

log-ratio transformations have been successfully developed (Zipkin et al., 2017 ; Pierce et al., 2020; 165 

Mauran et al., 2021a) . The centred-log-ratio transformation is a more general transformation than the 166 

Fe-log-ratio one, for which elemental concentrations are normalized to the geometrical mean of the 167 

concentrations of all elements considered. According to Aitchison (1982), this transformation is more 168 

robust than the Fe-log-ratio transformation to sub-composition (a subset composition) use.  169 

Since 2015, we investigate the use of ferruginous colouring matters at the Later Stone Age site of 170 

Leopard Cave (Erongo, Namibia) (Mauran et al., 2020, 2021a,b). A large part of the colouring matters 171 

recovered at the site are massive haematites. We already proved the possibility to provenance Namibian 172 

ferruginous colouring matter with invasive ICP-OES/ICP-MS technique (Mauran et l., 2021a) . But such 173 

a procedure is only possible for geological and few unmodified archaeological blocks leaving aside most 174 

of the archaeological artefacts. Therefore, most of the “chaîne opératoire” remains difficult to 175 

investigate.  As we aim to study the whole “chaîne opératoire” of ferruginous colouring matter 176 



 

 

processing, we investigated the possibility to compare compositional data acquired with different 177 

analytical techniques. We hope to combine their advantages as presented in figure 1.  178 

In this paper, we apply multivariate analysis on datasets obtained on colouring materials from central 179 

Namibia by X-Ray Fluorescence spectrometry (XRF), Proton-Induced-X-ray Emission spectrometry 180 

(PIXE), Inductively Coupled Plasma coupled to Optical Emission spectrometry (ICP-OES) and 181 

Inductively Coupled Plasma coupled to Mass Spectrometry (ICP-MS). We aim to unify these different 182 

compositional datasets of ferruginous colouring matters to provide the possibility to study the whole 183 

“chaînes opératoires” and have a better understanding of past populations behaviours and mobility. Our 184 

results are relevant beyond the scope of ferruginous colouring materials as they can provide a way to go 185 

for multimodal inter laboratory comparisons of artefacts of high cultural heritage importance, which 186 

cannot be analysed destructively. 187 

2.MATERIAL AND METHODS 188 

2.a. Material 189 

Ferruginous colouring matters analysed in this study are geological samples. We collected them at seven 190 

outcrops in three distinct tectonostratigraphic zones around Leopard Cave in north-central Namibia 191 

(Mauran et al., 2021a, b). These three zones are the North Zone (NZ), the igneous Kalkfeld Complex 192 

(Kalkfeld), and the Central Zone (CZ) (Fig. 2). They respectively correspond to what we previously 193 

considered as regional provenance, sub-local provenance and local provenance areas (Mauran et al., 194 

2021a). Our initial archaeological question focused on the existence of raw material circulation between 195 

different Namibian rock art massif. Each of the massif falls into different tectonostratigraphic zone 196 

(Mauran et al., 2021a). This is why, we grouped different localities into groups corresponding to the 197 

tectonostratigraphic zones. All samples were collected in 2017 and exported in agreement with permit 198 

ES 31957 granted to G.M. Table 1 sums up the origin and the analyses performed on each sample. 52 199 

samples were analysed by XRF, 23 by PIXE and 55 by both ICP-OES and ICP-MS by a same operator 200 

with the help of specialists of each analytical method. Samples from Kalkeld zone correspond to igneous 201 

hematite-magnetite ore and ferruginous breccia form from their alteration. Samples from the North Zone 202 

correspond to hematite -goethite nodules of volcanic and igneous origin and hematite sandstone 203 

resulting from their alteration. Samples from the Central Zone are ferruginous hematite-goethite nodules 204 

come from lens of possible igneous origin.  205 

Standards BXN (bauxite), DRN (diorite), IFG (iron formation) from SARM Laboratory (CRPG Nancy) 206 

and 11 samples were analysed with all four methods: ICP-OES, ICP-MS, PIXe and pXRF (Table 2). 207 

Among these 11 samples, four came from Kalkfeld complex, 4 from Central Zone and 3 from North 208 

Zone.  209 



 

 

 210 

 211 

Figure 2. Geological context (left) and selected examples (right) of the Namibian geological samples 212 

analysed in the study. (double column, colour) 213 

 214 

 215 

Outcrop Zone Number of 

samples analysed 

by ICP 

Number of 

samples analysed 

by PIXE 

Number of 

samples analysed 

by pXRF  

G2017K01 Kalkfeld Complex 3 2 5 

G2017K02 Kalkfeld Complex 6 2 5 

Total Kalkfeld Complex 9 4 10 

G2017E02 Central Zone 10 3 5 

G2017E08 Central Zone 7 4 7 

G2017E09 Central Zone 5 0 5 

G2017E11 Central Zone 7 4 6 

Total Central Zone 29 8 23 

G2017A04 North Zone 5 2 5 

G2017A05 North Zone 5 2 7 

G2017A06 North Zone 8 4 7 

Total North Zone 18 8 19 

Total 56 23 52 



 

 

Table 1. List of outcrops from which samples were analysed in this study with mention of their 216 

tectonostratigraphic zone of origin. 217 

2.b. XRF analysis 218 

X-ray fluorescence spectrometry (XRF) analyses were carried out at the Musée de l’Homme, MNHN, 219 

Paris, France using an Elio portable X-Ray fluorescence spectrometer developed by XGLAB (Bruker). 220 

This system is composed of an X-ray source based on an Rh anode. The anode operates at a voltage 221 

between 10 and 40 kV and a current up to 200 μA for maximal power of 4 W. Detection is ensured by a 222 

Silicon Drift Detector with an active area of 25 mm2. The emitted beam source is collimated to a spot 223 

diameter of 1.2 mm on the sample at a working distance of 1.4 cm. Analyses were performed at 40 kV 224 

and 100 μA, with an accumulation time of 300 s. Spectra were treated using PyMca software to calculate 225 

elemental concentrations from fundamental parameters (Solé et al., 2007). Usually, this fundamental 226 

parameters approach does not require a standard calibration. To validate our approach, we measured 227 

three standards: BXN, DRN and IFG. All these samples were prepared as pressed powders. As pXRF 228 

has relatively high LOD for minor and trace elements for ferruginous materials, LOD were estimated 229 

and values below LOD were subjected to zero-substitution (see Data treatment). For pXRF analyses, 230 

samples were analysed as is. Most samples presented “fresh” break with no patina. Samples weight 231 

between 3 to 80g. Raw pXRF results are presented in Electronic Supplementary Information (ESI) 1. 232 

2.c. PIXE analysis 233 

Proton-induced X-ray Emission spectrometry analyses have been carried out with the external proton 234 

beam of NEW-AGLAE (C2RMF, Louvres Museum, Paris, France) (Pichon et al., 2015 ; Lebon et al., 235 

2018) . Before analysis, samples were sawed to obtain a plan of analyses inside each sample with 236 

minimal influence of the outside patina or any surface contamination. The cut samples were then 237 

analysed with no further preparation. Measurements were performed using 3 MeV protons beam with a 238 

diameter of around 40 µm on samples. Large areas (at least 2 x 2 mm) were scanned thanks to 239 

horizontal/vertical mechanical movements to average samples composition. Time acquisition, around 3 240 

min, was adjusted according to a dose rate detector to obtain an identical dose on each sample.  241 

Low and high energy X-Ray emissions were recorded using Peltier-cooled SDD detectors (50 mm2). 242 

One detector was devoted to low energies (Mg to Fe) and three to high energies (Fe and above). Two 243 

high energy detectors were covered by a 20 μm thick chromium and a 50 μm thick aluminium filter. 244 

The third high energy detector was covered by a 150 µm thick aluminium filter. These filters reduce 245 

pileup effects and the X-rays induced by the Cr filter (Swann et al., 1990 ; Beck et al., 2012)  . Fe 246 

quantification was used as a pivot between the low and high energies (Beck et al., 2011). The selected 247 

experimental conditions are similar to previous PIXE ferruginous colouring matters analyses carried out 248 

at AGLAE (Beck et al., 2011, 2012 ; Lebon et al., 2018). In such conditions, the detection limits are 249 



 

 

between 10 and more than 100 ppm according to the element. Spectra treatment and elemental 250 

quantification were performed using TRAUPIXE and GUPIX software (Pichon et al., 2010). The 251 

GUPIX software relies on the use of a configuration file that allows spectrum modelling considering the 252 

specificities of each experiment. The configuration file used was optimised by measurement performed 253 

on the DRN (diorite, 70% aluminosilicate) standard, used to compare PIXE day to day quantifications.  254 

All three standards BXN, DRN and IFG were prepared as pressed powders. Raw PIXE results are 255 

presented in ESI 2. 256 

2.d. ICP-OES and ICP-MS analysis 257 

Elemental characterization of each sample was performed using both solutions Inductively Coupled 258 

Plasma Optical Emission Spectroscopy (ICP-OES) and Inductively Coupled Plasma Mass Spectrometry 259 

(ICP-MS) at the ALIPP6 Platform (Sorbonne Université, ISTeP). 100 mg of homogenized powder (50 260 

mg for ICP-OES and 50 mg for ICP-MS) were digested in acidic solutions and then analyzed according 261 

to the protocol of the ALIPP6 and published by Mauran and colleagues (Mauran et al., 2021a). In 262 

addition to standards BXN, DRN, IFG, ICP-OES and ICP-MS were calibrated thanks to the following 263 

reference materials: FeR-1 (Iron formation), FeR-2 (Iron formation), FeR-3 (Iron formation), FeR-4 264 

(Iron formation), ATHO-G (rhyolitic glass), BHVO-2 (basalt), BCR-1 (basalt), BIR-1 (basalt), GSN, 265 

and RGM-1(rhyolite) (ESI 3). All these standards were prepared according to the same protocol than 266 

the samples. Raw ICP-OES and ICP-MS results are presented in ESI 4 and on the online open access 267 

repository (Mauran et al., 2021b – http://doi.org/10.5281/zenodo.3908304). 268 

ICP-OES analyses were carried out on a 5100 SVDV Agilent ICP-OES and allowed us to quantify the 269 

following 21 chemical elements: Si, Al, Mg, Na, K, Ti, Fe, Mn, Ca, P, Sr, Ba, Sc, V, Cr, Zr, S, W, Cu, 270 

Zn, Co. For each of these elements, between two and four wavelengths were measured over an exposure 271 

time of 3 times 20 s.  272 

ICP-MS analyses were carried out on a 8800 Agilent ICP-MS/MS and allowed us to quantify the 273 

following 37 chemical elements: 7Li, 45Sc, 51V – 53V, 52Cr, 59Co, 60Ni, 63Cu, 66Zn, 71Ga, 75As, 85Rb, 88Sr, 274 

89Y, 90Zr, 93Nb, 95Mo, 133Cs, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 275 

166Er, 169Tm, 172Yb, 175Lu, 178Hf, 181Ta, 206Pb – 207Pb – 208Pb, 232Th, 238U .  276 

Our comparison of elements concentration quantified by ICP-OES and ICP-MS (V, Cr, Co, Cu, Zn, Sr, 277 

Zr, Ba, Sc) demonstrated that the two techniques are complementary (Mauran et al., 2021a). The ICP-278 

OES analyses allow the quantification of major, minor and few trace elements, while ICP-MS ones 279 

provide quantification of a large range of trace elements. To avoid elements redundancy between the 280 

ICP-OES and ICP-MS measures, we arbitrary decided to use for subsequent analyses the ICP-MS values 281 

for these elements (Mauran et al., 2021a). 282 



 

 

2.e. Data treatment 283 

   284 

Zero Value substitution. Common data treatment for ferruginous colouring matters data statistical 285 

analyses rely on the use of logarithm (e.g. David et al., 1993 ; Popelka-Filcoff et al., 2007, 2008). One 286 

issue of the use of logarithm is the existence of zero values. Zero values could correspond to a real 287 

absence, called “essential” zero, or to the presence of an element in smaller quantities than the limit of 288 

detection (LOD), called “rounded” zero.  Because these “rounded” zero are different than the “essential” 289 

zero it seems reasonable to replace them. In compositional studies, several approaches exist to replace 290 

these zero values. Two large families of substation procedure exist: Simple substitutions or advanced 291 

substations procedures. Simple substitutions rely on replacing the rounded zero for a constant positive 292 

value smaller than the limit of detection of the analytical technique used to perform the measurement 293 

(Palarea-Albaladejo et al. 2014). As such simple approach risks biasing the datasets more advanced 294 

substitution have been developed (Aitchison, 1986 ; Baxter, 1994 ; Martín-Fernández et al. 2003 ; 295 

Palarea-Albaladejo and Martin-Fernandez 2013). These advanced methods attempt to preserve the ratio 296 

relationship among the variables (or in our case element) thanks to closure procedure. However, closing 297 

the data to 100 % can induce false elemental correlation and that only the ratio between the elements is 298 

of interest for compositional data analyses (Aitchison, 1982).  In ochre studies, rounded zero substitution 299 

has been discussed by Zipkin et al., (2020)  300 

As we decided to avoid closure procedures for the reasons mentioned above, in the current study, we 301 

decided to perform a “simple substitution”.  Before applying logarithm transformation, concentrations 302 

below the limits of detection of the considered technique were substituted by a value of 10% of the 303 

minimal value.  304 

Standardization procedures. To unify the obtained datasets, two different standardization procedures 305 

were tested in the present study. The two procedures only differ in the way we performed the merger 306 

and standardization of the dataset obtained from the different analytical technique. Both standardization 307 

procedures relied on the following formula: 308 

��� =
�����̅

�


��
    (1) 309 

where xij is the standardized concentration of an element I for a sample j, Cij the concentration of an 310 

element i for a sample j, ��̅ the mean concentration of element i in all samples, and σCi the standard 311 

deviation of element i concentration.  312 



 

 

The first procedure referred to post merged standardization consisted in applying formula (1) on the 313 

merged datasets without any consideration of the analytical techniques providing the measure. The 314 

dataset obtained from this first procedure is called the post merged dataset (ESI 5).  315 

The second standardization procedure consisted in applying formula (1) on each dataset separately 316 

before merging the datasets. We refer to the connected transformed dataset as the pre merged dataset 317 

(ESI 6).  318 

Statistical analyses. All statistical analyses were performed with the R software version 3.6.2 and the 319 

“ggplot2”, “ade4”, “MASS”, “corrplot”, “MVN” packages (Chessel et al., 2004 ; Wickham, 2011; 320 

Ripley et al., 2013 ; Korkmaz et al., 2014 ; Wei et al., 2017) . Used scripts are provided in supplementary 321 

data (ESI 7).  322 

 We tested the multivariate normality of our raw data with the Mardia’s multivariate skewness and 323 

kurtosis test, Royston’s multivariate Shapiro–Wilk test and the Henzee Zirkler empirical characteristic 324 

function test using the MVN statistical package for the R programming environment (Korkmaz et al., 325 

2014 ; Cain et al., 2017) . All three MVN tests found that our data sets are non-multivariate normal. As 326 

LDA has been considered as robust to violations of data set multivariate normality, we pursued our 327 

analysis (Blanca et al., 2013 ;  Enserro  et al., 2019). The use of logarithm scaling decreases the existing 328 

bias due to the difference of scale of concentration between the distinct elements under consideration 329 

(Baxter, 1994 ; MacDonald et al., 2018). For ochre sourcing studies as ours, such a transformation is 330 

essential, given the difference of magnitude between the major, minor and trace elements. Moreover, 331 

the log transformation allows the reduction of the multivariate non-normality of the measures 332 

distribution and increases the robustness of the statistical performance (Buxeda i Garrigós, 2018) . 333 

After these treatments we used Principal Components Analysis (PCA) and Linear Discriminant Analysis 334 

(LDA). To evaluate the performance of LDA on the different datasets considered, we performed cross-335 

validations tests. The cross-validation tests were based on calculation of the confusion matrix using the 336 

confusion function published by Maindonald and Braun (2006) . It is calculated from predictions of 337 

class membership that are derived from leave-one-out cross-validation and comparison of the actual 338 

given and predicted group assignments. 339 

3.RESULTS 340 

3.a. Standards and techniques performances 341 

Major elements. Raw concentrations measured on the DRN, BXN and IFG standards are presented in 342 

Table 2.  343 
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Certified 0.1 0.1 54.2 ± 1.2 7.4 ± 0.5 0.2 ± 0.1 <0.1* 2.4± 0.2 23.2 ± 0.8 

ICP (OES) <0.1* 0.1 * 61.7 ± 0.2 8.2 ± 0.1 0.3 ± 0.1 <0.1 2.6* 26.8 ± 0.1 

PIXE <LOD 0.3 ±  0.1 60.8 ± 1.1 9.6 ± 0.3 0.3 ± 0.2 <0.1* 2.7 ± 0.1 25.5 ± 0.6 

pXRF NM NM 47.9 ± 1.6 7.1 ± 0.1 0.2 * <0.1* 2.4 ± 0.1 24.3 ± 1.0 

D
R

N
 

Certified 3 4.4 17.5 ± 0.6 52.9 ± 0.7 7.1 ± 0.2 1.7 ± 0.1 1.1 ± 0.1 9.7 ± 0.3 

ICP (OES) 3* 4.4* 17.8 ± 0.1 54.1 ± 0.3 7.1* 1.7 ± 0.2 1.1 * 9.7* 

PIXE 3 ± 0.1 4.2 ± 0.2 17.7 ± 0.3 52.9 ± 0.8 6.9 ± 0.2 1.7** 1.1 ± 0.1 10.0 ± 0.5 

pXRF NM NM 21.2 ± 9.8 56.9 ± 15.0 7.0 ± 1.1 1.9 ± 0.3 1.0 ± 0.1 11.8 ± 1.4 

IF
G

 

Certified <0.1** 1.8 ± 0.2  0.2 ± 0.1 41.2 ± 0.7 1.6 ±0.2 <0.1* <0.1* 55.9 ± 0.1 

ICP (OES) <0.1** 1,8** 0.2* 40.4 ± 0.2 1.4* <0.1* <0.1* 55.7 ± 0.1  

PIXE 0.4 ± 0.2 2.2 ± 0.2 0.3* 39.0 ± 0.7 1.5 ± 0.1 <0.1* <0.1* 55.0 ± 0.7  

pXRF NM NM 3.2 ± 0.5 43.7 ± 8.6   1.9 ± 0.1 <0.1* <0.1* 53.8 ± 3.2 

 Table 2. Certified and mean measured concentrations of major and minor elements for the DRN,BXN and IFG standards (% wtO). (NM: non measured, LOD: 345 

Limit of Detection, * standard deviation not provided by reference material certificate, ** standard deviation < 0,1 %).346 



 

 

For ICP-OES, most standard deviations are low, often below 0,01 % (Table 2), thanks to the good 347 

repeatability of the technique. Most ICP-OES measures fall within the incertitude range of the certified 348 

values. Discrepancies are observed for major elements (Al2O3, SiO2, Fe2O3) for standard BXN, a 349 

standard with a loss of ignition of 11.5 %. LOI for DRN and IFG are 2.2  and -1.1% respectively. Thus, 350 

the discrepancies could be related to the high LOI of the BXN.  351 

PIXE concentrations present similar accuracy and discrepancies that seems related to the LOI (Table 2). 352 

Configuration parameters used for concentration computation using GUPIX software were tested on 353 

samples with low LOI, including DRN. Measurements of a sample with a higher LOI as BXN do not 354 

appear accurate  (Table 2). 355 

pXRF results are close to the certified values and fall within their incertitude range. They present higher 356 

discrepancies with the certified concentrations than PIXE and ICP-OES ones (Table 2). Major 357 

discrepancies exist for all three standards for Al2O3 content. This is imputable to the low weight of the 358 

element and the existence of some overlapping with L and M bands of heavier elements. Though the 359 

measures acquired the three techniques are of the same estimate, possibly allowing their comparison. 360 

Trace elements.  361 

Most trace elements (As, Ba, Cu, Cr, Ga, Mn, Ni, Pb, Rb, Sr, V, W, Y, Zn) confirm the previous results: 362 

good accuracy and repeatability of PIXE and ICP-OES and lower accuracy and repeatability for pXRF 363 

(Table 3). Most measures fall within the range of uncertainty of the certified values. LOD of PIXE and 364 

pXRF non-destructive are higher than the ones of ICP-MS and ICP-OES for most elements (Table 3). 365 

The high LOD of PIXE for Cr is due to the use of a Cr filter. Sulphur concentrations appeared highly 366 

inaccurate and unprecise for all the techniques used in our study. Therefore, we did not consider this 367 

element in our following analyses.  368 

Contrary to Chanteraud et al. (2021), who did not calibrate their pXRF, unifying the data sets seems 369 

possible. Therefore, we decided to investigate the possibility to unify these different measures despite 370 

the existing discrepancies. 371 
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Certified 115 ± 9 30 ± 7 18 * 280 ± 75 67 ± 19 387 ± 

155 

180 ± 37 135 ± 77   3 ± 11 110 ± 19 350 ± 77 9 * 114 ± 40 80 ± 39 590 ± 86 NM 

ICP-MS 115 ± 7 24 ± 3 19 ± 1 270 ± 1 67 ± 5 NM 175 ±10 153 ± 28 4 ± 1 110 ± 4 343 ± 2 NM 94 ± 2 77 ± 4 298 ± 3 NM 

ICP-OES NM 41 ± 5 10 ± 2 268 ± 5 NM 509 ± 5 NM NM NM 109 ** 355 ± 3 <LOD NM 86 ± 5 329 ± 13 372 ± 

249 

PIXE 130 ± 8 <LOD 14 ± 3 <LOD 70 ± 5 384 ± 31 204 ± 18 163 ± 13 2 ± 4 124 ± 6 462 ± 79 <LOD 112 ± 5 87 ± 8 567 ± 96 1414 ± 

1787 

pXRF 174 ± 71 <LOD <LOD 328 ± 18 46 ± 2 522 ± 

122 

218± 14 146 ± 14 6 ± 5 72 ± 7 348 ± 21 <LOD 61 ± 3 55 ± 3 580 ± 30 NM 

D
R

N
 

Certified 3 ± 1 385 50 ± 7 40 ± 11 22 ± 5 1704 ± 

155 

15 ± 11 55± 7 73 ± 8 400 ± 50 220* 130 * 26 ± 7 145 ± 17 125 ± 25 350 

ICP-MS 3 ** 368 ± 33 45 ± 3 34 ± 1 22 ± 1 NM 16 ± 1 53 ± 9 70 ± 3 386 ± 5 205 ± 2 NM 26 ± 1 134 ± 2 26 ± 1 NM 

ICP-OES NM 375 ± 6 45 ± 1 36 ± 2 NM 1685 ± 

52 

NM NM NM 393 ± 3 208 ± 2 114 ± 7 NM 140 ± 4 24 ± 1 1048 ± 

623 

PIXE 4 ± 3 300 ± 

188 

54 ± 7 <LOD 22 ± 3 1787 ± 

103 

<LOD 61 ± 9 72 ± 4 399 ± 19 219 ± 44 136 ± 8 23 ± 4 155 ± 9 99 ± 50 7044 ± 

1420 

pXRF <LOD 337 ± 

180 

46 ± 6 <LOD 24 ± 2 2235 ± 

259 

<LOD 37 ± 7 73 ± 6 427 ± 40 180 ± 34 129 ± 8 18 ± 1 156 ± 6 186 ± 16 NM 

IF
G

 

Certified 2 ± 1 2* 10 ± 3 9 ± 3 1* 325 ± 

108 

23 ± 16 4* 1* 3* 2* 220 ± 

60***  

9* 20 ± 7 1* 700* 

ICP-MS 1** <1** 13 ± 1 9** <1** NM 26 ± 1 4 ± 1 1** <1** 4** NM 8** 20 ± 5 4** NM 

ICP-OES NM 11 ± 7  3 ± 2 11 ± 3 NM 318 ± 30 NM NM NM 3 ± 4 7 ± 5 44 ± 18 NM 45 ± 2 8 ± 1 1612 ± 

925 

PIXE 6 ± 1 <LOD 10 ± 3 <LOD <LOD 323 ± 40  <LOD 1 ± 2 <LOD <LOD <LOD <LOD 8 ± 5 26 ± 2 2 ± 2 230 ±  

326  

pXRF <LOD <LOD <LOD <LOD <LOD 471 ± 

217 

27 ± 14 <LOD <LOD <LOD <LOD 75 ± 42 <LOD 26 ± 12 <LOD NM 

Table 3. Certified and mean measured concentrations of trace elements for the DRN and BXN standards in ppm. (NM: non measured, LOD: Limit of 372 

Detection, *standard deviation not provided by standard certificate , ** standard deviation < 1 ppm, *** existing discrepancies between literature and standard 373 

certificate). 374 



 

 

3.b. ICP-OES and ICP-MS results 375 

We already demonstrated the possibility to differentiate ferruginous colouring matter from five different 376 

tectonostratigraphic zones thanks to ICP-OES/ICP-MS and multivariate statistics (Mauran et al., 2021a). 377 

Among the five zones discriminated in our previous study, are the three zones studied in the present 378 

study.  379 

For the present study, 55 samples were analysed both by ICP-OES and ICP-MS (Table 1). Raw 380 

elemental concentration data are provided in ESI 4. We first aimed to confirm the possibility to 381 

differentiate the three zones thanks to ICP-OES and ICP-MS data. Therefore, ICP-OES/ICP-MS 382 

centred-log-ratio transformed data were submitted to principal component analysis and linear 383 

discriminant analysis for the following elements: Al, Ca, Fe, K, Mn, P, Si, Ti, Cr, Ni, Zn, W, Cu, Y, As, 384 

Sr, Zr, Mo, Ga, Pb. 385 

Biplots of the first two principal components are plotted in Fig. 3 and component loadings are given in 386 

ESI 8. For PCA (Fig 3.A), the first two components account for 44,8 % of the total variation, and are 387 

mostly driven by Cu, Ni, Cr, As, Zr, Pb, Ti, Sr, Mn, Fe, P. The different samples from the three distinct 388 

zones are grouped according to their provenance. They form three distinct clusters with no overlap 389 

between their 80% significance level ellipses (fill) and minor overlaps between their 95% significance 390 

ellipses (dash). It confirms the possibility to distinguish the provenance of the samples from their 391 

geochemical signature.  392 

Discrimination performed by LDA (Fig 3.B), for which the first axis accounts for 54.2 % and the second 393 

for 45.8 %, is mostly driven by As, Cr (axis 1), K and Mn (axis 2) (ESI 8). Samples from the three 394 

distinct zones are grouped according to their provenance forming three distinct groups with no overlap 395 

between their 95% significance ellipses, making it a good model for sourcing ferruginous colouring 396 

matters. LDA cross-validation provided a score of 87.3 % of correct attribution, confirming the 397 

effectiveness of the model to discriminate the distinct zones.  398 



 

 

 399 

Fig. 3. Principal component analyses (left) and linear discriminant analysis (right). A-B: ICP data; C-D: 400 

PIXE data;  ; E-F: pXRF data;. 80% significance level ellipses (fill) and minor overlaps between their 401 

95% significance ellipses (dash). (double column, colour) 402 

 403 

3.c. PIXE results 404 

In total, 23 samples were analysed by PIXE (Table 1). Raw elemental concentration data are provided 405 

in ESI 2. PIXE centred-log-ratio transformed data were submitted to principal component analysis and 406 

linear discriminant analysis for the same elements that those used for ICP data treatment. 407 



 

 

Biplots of the first two components are presented in Fig 3.C and component loadings are given in ESI 408 

7. For PCA (Fig. 3.C), the first two components account for 38 % of the total variation, mostly driven 409 

by Cr, As, Zr, Sr, Al, Mn, Zn, Ga. Though samples from the three distinct zones are grouped according 410 

to their provenance forming three identifiable poles, there are minor overlaps between the 80 % 411 

significance level ellipses and rather large overlaps between the 95% ellipses.  412 

Discrimination performed by LDA (Fig. 3.D), for which the first axes accounts for 74 % and the second 413 

for 26 %, is mostly driven by Zn for both axes (ESI 9). Samples from the three distinct zones are grouped 414 

according to their provenance forming three distinct groups with no overlap between their 95% 415 

significance ellipses, making it a good model for sourcing ferruginous colouring matters. LDA cross-416 

validation for the PIXE datasets provided a score of 84.8% of correct attribution. Though smaller than 417 

the ones obtained for ICP, the two cross-validation scores remain of same magnitude.  418 

3.d. pXRF results 419 

In total, 52 samples were analysed by pXRF (Table 1). Raw elemental concentration data are provided 420 

in ESI 1. We first aimed to confirm the possibility to differentiate the three zones thanks to pXRF data. 421 

Therefore, pXRF centred-log-ratio transformed data were submitted to principal component analysis 422 

(PCA) and linear discriminant analysis (LDA) with the same elements as for the two precedent 423 

analytical techniques.  424 

Biplots of the first two components are presented in Fig 3. E and component loadings are given in ESI 425 

10. The two first PCA components account for 41 % of the total variation of the data, mostly driven by 426 

Fe, Cu, Pb, K, Sr. Though the Kalkfeld samples stand out from CZ and NZ on the PCA biplots, there 427 

are major overlaps between the 80 % significance level ellipses. The PCA performed on the “pXRF 428 

centred-log-ratio” data (pXRF clr) fails to differentiate the three zones studied here.  429 

Discrimination performed by linear discriminant analysis (LDA) (Fig. 3. F), for which the first axes 430 

accounts for 54.5% and the second for 45.5%, is mostly driven by Al, Zn, Cu for both axes (ESI 10). 431 

Samples from the three distinct zones are grouped according to their provenance forming three distinct 432 

groups with no overlap between their 80% significance level ellipses (fill) and minor overlaps between 433 

their 95% significance ellipses (dash). LDA cross-validation for the pXRF datasets provided a score of 434 

70% of correct attribution. Smaller than the two previous cross-validation scores, the cross-validation 435 

score also confirmed the lesser efficiency of the LDA with the pXRF data to discriminate the distinct 436 

zones. 437 

3.d. Comparison of the datasets: Inter-equipment versus inter-zone variability 438 

We thence investigated the possibility to compare these datasets, evaluate the inter-equipment and inter-439 

zone variability. We first used our centred-log-ratio transformed dataset (clr) and submitted it to 440 



 

 

principal components and linear discriminant analyses. Linear discriminant analyses factor consisted in 441 

the analytical technique used to measure the samples and the area of provenance of the samples (Fig. 4). 442 

PCA and LDA biplots are presented in Fig. 4 and variable loadings in ESI 11 and 12. 443 

 444 

Fig. 4. Principal component analysis (A) and linear discriminant analysis (B-D) of the post merged 445 

standardized datasets from ICP, PIXE and pXRF. 80% significance level ellipses (fill) and minor 446 

overlaps between their 95% significance ellipses (dash). (double column, colour) 447 



 

 

 448 

Biplot of the first two components of the PCA accounts for 37.1 % of the total variation of the data 449 

(Fig.4.A). While the first component (23.1 %) mainly explains inter-equipment variability thanks to Ca, 450 

Cr, Fe, Mn and W, the second component (14.0 %) tends to explain some inter-zone variability thanks 451 

to Ti, Sr, Cu, Ni (ESI 11). From this biplot, it is clear that within the post merged standardized dataset, 452 

the inter-equipment variability is higher than the inter-zone variability.  453 

Biplots of the first four axes of the LDA help to go further into the analysis of the inter-equipment and 454 

inter-zone variabilities (Fig 4.B-D). Two different trends appear on the LD1-LD2 biplot, one driven by 455 

LD1 takes the inter-equipment variability, while the other one driven by LD2 takes the inter-zone 456 

variability (Fig 4.B). On the LD1-LD4 biplot, two major poles tend to form according to the analysis 457 

used to acquire the data pXRF on one side and PIXE and ICP on another (Fig. 4.C), while on the LD2-458 

LD3, the three poles correspond to the three zones of provenances of the samples (Fig. 4.D). While LD1 459 

(59.7 %) and LD 4 (9.4 %) explains the inter-equipment variability, LD2 (15.1 %) and LD3 (9.7 %) 460 

explains the inter-zone variability. The cross-validation performed thanks to the two first axes of the 461 

LDA reached a score of 64.5%. In this case, 69.1 % of the dataset variation accounts for the inter-462 

equipment variability. In such conditions, centred-log-transformed normalisation is not suitable to 463 

compare the data acquired by the different techniques.  464 

As we wanted to understand which elements were driving the two different sources of variability of the 465 

datasets, we analysed both the variance of the elements according to the analytical techniques used to 466 

measure them and the mean values of each group defined as the combination of the zone of provenances 467 

of the samples and the techniques used to analyse it. Results of these considerations are presented in 468 

Fig. 5.  469 

It appeared that the different analytical techniques presented different variances for each element. 470 

Indeed, while iron and potassium displayed similar variance values around 0.5 for the three techniques, 471 

the variances for P, Si, Ti, Ni, W and Cu present significant differences, ranging between 0.1 and 3.0 472 

(Fig. 5.A). 473 

Bar plot of the mean values of each of the nine groups defined (three zones and three analytical 474 

techniques) permitted to confirm the two trends spotted on the LDA loadings, confirming Al, Ca, Fe, K, 475 

Cr and W to be highly impacted by inter-equipment variability, while Si, Ni, Zn, Cu and Sr appeared to 476 

discriminate more the zone of provenances of the samples (Fig. 5.B, ESI 12).  477 

Though the inter-equipment variability of the post merged standardized dataset is too important to be 478 

used to compare the samples analysed by the different analytical techniques, a part of the variance 479 

appears to be driven by the geochemical properties of the provenance zones of the colouring matters.  480 



 

 

 481 

Fig. 5. A: Elemental concentration variance for each technique (ICP, PIXE and pXRF); B: Elemental 482 

variance for each technique and provenance zone on the post merged standardized dataset. (double 483 

column, colour) 484 

3.e. Unification of the datasets 485 

As demonstrated in the previous section, inter-equipment variability can be unneglectable and can 486 

induce a wide range of variance values for the same element. We standardize here each dataset separately 487 

before merging them. This procedure is a standardization that rescales the data sets to ensure the mean 488 

is 0 and the standard deviation 1. Corresponding PCA and LDA biplots are presented in Figure 6 and 489 

variable loadings in ESI 11 and 12. 490 



 

 

 491 

Fig. 6. Principal component analysis (A) and linear discriminant analysis (B) of the pre merged 492 

standardized datasets established by ICP, PIXE and pXRF. 80% significance level ellipses (fill) and 493 

minor overlaps between their 95% significance ellipses (dash). (double column, colour) 494 

 495 

Biplot of the first two components of the PCA accounts for 33.2 % of the total variation of the data. 496 

Though there are major overlaps between the 80% significance level ellipses, three poles appear on the 497 

PC1-PC2 biplot. These three poles correspond to the zones of provenance of the samples. While the first 498 

component (17.6 %) mainly differentiates the Kalkfeld zone from the two others thanks to Cr, Ca, Mn, 499 

Sr, As, Zn, the second component (15.6 %) tends to differentiate the NZ and CZ zones thanks to Fe, Ti, 500 

Zr, Si, Cu (ESI 11). These biplots demonstrate that inter-equipment variability can be minimized by 501 

applying a standardization procedure of each dataset acquired with each technique before merging them. 502 

As for the LDA, the LD1-LD2 axes account for 75.9 % of the total variation of the data. Although we 503 

tried to distinguish nine groups, and despite a slight overlap of the 80% significant level ellipses for 504 

Kalkfeld pXRF and NZ data, three poles can be distinguished according to the zone of provenances of 505 

the samples (Fig. 6). The cross-validation performed on the two first axes of the LDA reached a score 506 

of 75.2%, even reaching 82.5% when all axes are considered. Thus, the standardization considerably 507 

increased the discrimination of the zones, reaching the same cross-validation score magnitude than what 508 

had been obtained for ICP or PIXE alone. It allows a comparison of the data acquired with the different 509 

analytical techniques.  510 

Bar plot of the variance values of each of the nine groups defined (three zones and three analytical 511 

techniques) permitted to confirm that the standardization procedure permitted to minimize the inter-512 



 

 

equipment variability (Fig. 7). After the standardization procedure, none of the elements highlighted an 513 

inter-equipment variability, while eight elements differentiated the groups according to the provenance 514 

zones of the samples. Elements such as Ca and Fe, which were highly impacted by the inter-equipment 515 

variability, even contributed to differentiate the zone of provenances of the samples. 516 

 517 

Fig. 7. Elemental variance for each technique and provenance zone on the pre merged standardized 518 

dataset. (double column, colour) 519 

4.DISCUSSION 520 

Measures performed on standards (diorite DRN, bauxite BXN and iron formation IFG) confirmed ICP-521 

MS is the most accurate and repeatable analytical technique (Table 3), followed by ICP-OES and PIXE. 522 

pXRF measured data present some discrepancies with the certified values, as already stated in the 523 

literature (Hein et al., 2002). Although the discrepancies observed for the two standards are weak, it 524 

appeared that data acquired with these techniques were not directly comparable. This is not surprising 525 

as inter-laboratories and sometimes day to day measure on a same equipment are not directly combinable 526 

(Yellin et al., 1978 ; Popelka-Filcoff et al., 2012 ; Salomon et al., 2016)..  527 

Published comparisons of data acquired by sundry techniques usually compare the performances of each 528 

analytical techniques to differentiate for example ceramic workshops (Hein et al., 2002 ; Grave et al., 529 

2005 ; Speakman et al., 2011 ; Mitchell et al., 2012) or mineral outcrops (Kasztovszky et al., 2018). 530 

They all tend to prove the consistency between the cluster performed thanks to NAA, ICP-OES/ICP-531 

MS, PIXE and pXRF analytical methods. Here we demonstrate this consistency to be also true for 532 

Namibian ferruginous colouring matters. We go further by comparing the datasets, allowing us to 533 

determine the importance of the elemental inter-equipment and inter-zones variabilities.  534 

Application of the centred-log-ratio transformed data and multivariate statistics revealed that ICP-535 

OES/ICP-MS and PIXE analyses could differentiate the Namibian samples according to their zone of 536 



 

 

origin (Fig. 2). Using pXRF measurements, three distinct poles corresponding to the three zones of 537 

origin of the samples considered in our study can be observed, slightly overlapping each other. Though 538 

quick to acquire, pXRF analyses require time and efforts to quantify the elemental composition of 539 

ferruginous colouring matters (Speakman et al., 2013). Having the possibility to compare them with 540 

other techniques compensates in some views the time and efforts invested to process them.  541 

In a recent paper, Chanteraud and colleagues (2021) investigated the capacities of pXRF to study the 542 

“chaîne opératoire” of ferruginous colouring matters. They compared pXRF data to PIXE and ICP data 543 

as well and conclude that it is currently not possible to directly use pXRF data to accurately quantify the 544 

elemental content of colouring matters or to discriminate different raw materials. Our study confirms 545 

the difficulty to compare the concentration calculated with pXRF with the results obtained with PIXE 546 

or ICP-MS. The comparison of raw closed and merged data show that the analytical inter-equipment 547 

variability accounts for most of the total variability of the data (Fig. 3). Compositional differences 548 

related to geological discriminations can exist. They are partially masked by the preponderant inter-549 

equipment variability. This inter-equipment variability is mainly due to the difference of measurement 550 

principles between the distinct techniques used, leading to analyse different volumes, to make some 551 

elements difficult to measure. 552 

This does not mean that some of our data are invalid as explained by Bernard (2017). Scales between 553 

the measures might be different and therefore need to be corrected, so they can be considered valid and 554 

compatible with other data. As we noticed differences between the determined variances of the elements 555 

according to the analytical techniques (Fig. 5), we standardized our data according to the analytical 556 

technique used so that all elements present a variance equal to one. This standardization was performed 557 

separately for each dataset collected through distinct analytical techniques. Doing so minimized the 558 

inter-equipment variability and allowed a comparison between the data acquired by pXRF, PIXE and 559 

ICP-OES/ICP-MS (Fig. 6). Two facts must be noticed: 1) we did not reduce our number of variables, 560 

consequently favouring better discrimination of the groups, not only according to the provenance of the 561 

samples but also the techniques used to perform the measures; 2) we used centred log-ratio transformed 562 

data so that the study is robust to the fact we analysed sub-compositions of our samples (Aitchison, 1982 563 

; Baxter et al., 2005). As our study is robust to sub-composition statistical analyses, a similar conclusion 564 

could be obtained with the Fe log-ratio transformation usually used in ferruginous colouring matter 565 

sourcing studies (David et al., 1993 ; Popelka-Filcoff et al., 2007, 2008).  566 

Such a geochemical discrimination study is largely favoured by the geological context of Central 567 

Namibia, characterized by different tectonostratigraphic regions. Here, we analysed materials coming 568 

from three of the central Namibian tectonostratigraphic regions: Central Zone where lies numerous rock 569 

art sites such as Leopard Cave, Kalkfeld complex located 100 km north to Leopard Cave, and North 570 

Zone located at more than 100 km north-west from Leopard Cave (Figure 1). Our previous study has 571 



 

 

proved, some of the collected but unmodified colouring matters recovered at Leopard Cave come from 572 

the Central Zone and the North Zones (Mauran et al., 2021a) . Thanks to the present standardization 573 

procedure, integration of other tectonostratigraphic zones could be implemented in the future. Using the 574 

standardization procedure on Leopard Cave materials, rich of numerous massive haematite (Mauran et 575 

al., 2020) , would allow us to understand better if past populations who occupied the site preferred to 576 

use specific massive haematite and if different haematite were used for different purposes, thus 577 

providing a better understanding of past populations behaviours. It would be interesting to investigate 578 

the possibility to perform such a comparison at a lower geographical level within the different 579 

tectonostratigraphic zones to differentiate the sundry outcrops. The present unification is already of great 580 

help since it allows us to investigate the possible existence of large procurement networks of raw 581 

colouring matters in Namibia. Investigating if such unification could be performed in a different 582 

geological context would be of higher interest, it could help us to ensure the standardization procedure 583 

is robust.  584 

It is worth mentioning that our standardization procedure should be only deployed in other contexts and 585 

on other materials after ensuring that standards and references analysed through the different analytical 586 

techniques considered are comparable. The standardization procedure is then a way to include modified 587 

and unmodified ferruginous colouring matters in provenance studies, which allows a better 588 

understanding of past populations behaviours towards the exploitation of these raw materials.      589 

This comparison of the datasets acquired by distinct analytical techniques opens the possibility to 590 

establish a geochemical provenance model of Namibian ferruginous colouring matters from different 591 

analytical techniques. Large assemblages of archaeological materials are usually screened by the non-592 

invasive and easily accessible pXRF technique. Our standardization procedure allows the integration of 593 

these pXRF data to provenance study and validates the coherence of performing such pre-screening 594 

analyses for ferruginous colouring matters as sometimes performed for iron slags (Vega et al., 2019) . 595 

pXRF data were acquired with an equipment calibrated thanks to 21 standards, most of which did not 596 

match the composition of the geological samples. With the use of standards matching better the 597 

composition of the considered samples, the pXRF accuracy should be improved, 598 

Using the pXRF technique on both geological and archaeological collections would provide some first 599 

data to better understand the samples. In specific context such the one studied by Lebon and colleagues 600 

(2019), pXRF can reveal specific geochemical patterns. These patterns could be further investigated and 601 

confirmed on a smaller batch of samples, wisely selected from petrographic observations and pXRF 602 

analyses, through invasive techniques such as ICP-OES/ICP-MS or NAA. Thence, it is possible to 603 

compare these precise geochemical signatures with data acquired on archaeological samples, chosen 604 

thanks to reasoned sampling strategy using pXRF pre-screening results, with both non-invasive 605 

analytical techniques such as PIXE for the samples presenting anthropic modifications and invasive 606 



 

 

techniques for some unmodified archaeological pieces. Thus, the pXRF could help researchers to 607 

perform their sampling procedure for the time or fund costly analyses such as ICP-OES/ICP-MS or 608 

NAA. Naturally, these techniques should then be combined with other analytical methods such as 609 

petrography or X-ray diffractometry. Such multimodal approaches are the way to go to understand as 610 

much as possible the “chaîne opératoire” of ferruginous colouring materials exploitation (Dayet, 2021 611 

; Domingo and Chieri, 2021).  612 

Furthermore, our standardization procedure could offer a way to compare data derived from different 613 

non-invasive and invasive analytical techniques on the same colouring matter fragments. Doing so, it 614 

would permit to take the best of each technique. Indeed, it would then be possible to take advantage of 615 

the accessibility, rapidity, portability and non-invasiveness of the pXRF, or of the accuracy, spatial 616 

resolution and non-invasiveness of the PIXE together with the accessibility, micro-destructive, high-617 

precision and rapidity of the ICP-OES and ICP-MS. Thanks to this data unification, it would thence 618 

possible to have a better understanding of large ferruginous colouring matter assemblages, the first step 619 

toward a better understanding of the “chaîne opératoire” link to these materials. It would thence here 620 

possible to have an accurate knowledge of the chemical fingerprint of the potential sources and compare 621 

it to some non-destructive PIXE analyses carried out on archaeological pieces. 622 

Future studies should focus on ferruginous residue analyses thanks to PIXE and LA-ICP-MS/MS (or 623 

NAA) and the way to compare them with ferruginous colouring samples to offer a way to study the 624 

whole “chaîne opératoire” linked to ferruginous colouring matter as presented in Fig. 1. These 625 

developments should be carried out together with petrological and SEM observations to offer robust 626 

ways to study ferruginous colouring matters (Dayet et al., 2013 ; Salomon et al., 2016) . Used together 627 

with these developments, our standardization procedure offers a way to set up a robust “grain per grain” 628 

microscopic methodology. This methodology could tackle the intrinsic heterogeneity of ferruginous 629 

colouring matter, through the multiplication of the analyses on the same sample as mentioned for LA-630 

ICP-MS by Scadding and colleagues (2015).  631 

Finally, such a standardization allows comparison of compositional datasets acquired by distinct users, 632 

increasing the interoperability of the datasets, a key idea of the FAIR concept (Findable, Accessible, 633 

Interoperable, Reusable) for better practices in science. With our standardization procedure, it is possible 634 

to minimize the inter-equipment variability, including the inter-operators one, and compare datasets 635 

from different origins. Therefore, our standardization offers a new way to increase the interoperability 636 

and reusability of the datasets acquired at different laboratories or by different teams, which has been a 637 

preoccupation for archaeometry laboratory in the last two decades (Glascock et al., 2004). Naturally, to 638 

do so it is of utmost importance to use the same standards between the datasets to be compared, as 639 

already mentioned by Salomon and colleagues (2016). Comparison of the standards will confirm that 640 

on similar samples the data acquired on distinct equipment are coherent and comparable.  641 



 

 

5.CONCLUSIONS 642 

In this article, we first investigated the issue of data standardization to compare elemental analyses 643 

acquired by distinct analytical techniques. Second, we tested the efficiency of each technique to 644 

discriminate the source of ferruginous colouring matter sampled in three different geological zones when 645 

coupled to multivariate statistical analyses. Third, we evidenced how the datasets can be incompatible 646 

though they are precise and accurate. Fourth, we demonstrated the possibility to merge the multivariate 647 

analyses through a basic data transformation. Five, we discussed the archaeological implication and 648 

limitation of our methodology.  649 

The results of the study indicated that using the presented standardization of the measured elemental 650 

concentrations could be used to obtain a unified dataset in which inter-equipment variability is 651 

negligible. In doing so, it allowed the use of multivariate analyses to differentiate Namibian ferruginous 652 

colouring matter provenance.  653 

Moreover, it opens the way for building a multi-analytical provenance model. Such a multi-analytical 654 

provenance model would gather more analyses than the ones usually performed and relying on a unique 655 

invasive technique (Kiehn et al., 2007 ; Popelka-Filcoff et al., 2007, 2008 ; Dayet et al., 2013 ; Eiselt et 656 

al., 2011 ;  MacDonald  et al., 2013, 2018 ; Pierce et al., 2020 ; Dayet, 2021). Overcoming this number 657 

limitation is crucial to perform more robust provenance studies for ferruginous colouring matter on the 658 

model of what has been done for iron slags in metallurgy (Leroy, 2010 ; Leroy et al., 2012). Such studies 659 

do not only rely on a sole generic multivariate analysis but go beyond evaluating for each sample the 660 

statistical possibility that a sample can come from a specific mining region. Doing so, better take into 661 

account the possibility that some outcrops used by past populations are nowadays depleted. As the 662 

statistical tests used to do so (mainly linear discriminant analysis) require the comparison of distinct 663 

distributions (ideally normal distributions), each archaeological sample should be represented by a 664 

distribution of analyses. The cost and time required to do this with a unique invasive technique are 665 

tremendous and explain why it has so far never been performed. Through this unification procedure, 666 

each archaeological sample could easily be represented by a distribution.  As we are convinced, studies 667 

on ferruginous colouring matters should go towards this direction, our future research will focus on the 668 

possibility to use our multi-technical tectonostratigraphic zone discrimination model to perform such 669 

provenance analyses. However, comparing and unifying the data is different than performing 670 

provenance analyses and further work are necessary to ensure such an approach would fulfil the 671 

Provenance Postulate (Weigand, 1977). 672 

Beyond the possibility to perform robust provenance studies, this unification of the datasets allows 673 

provenance studies to be anchored into the investigation of ferruginous colouring matters evolutive 674 

chain as defined for siliceous resources by Fernandes and colleagues (2008) . Such an approach is crucial 675 



 

 

when studying the social-cultural behaviours of past populations.  As stated by Fernandes and colleagues 676 

(2008), identifying characteristic specific to secondary beds, called “gitological types” is more useful 677 

than “genetic types” which depend upon the initial geological formations from which the ferruginous 678 

colouring matter come from for provenance studies. To this aspect, our results are crucial for general 679 

geochemical analyses studies of archaeological materials and cultural material analyses. Our result will 680 

enable inter-study comparisons of new analytical techniques or procedures applied to sourcing research 681 

and existing techniques applied to new materials or geographic regions. 682 
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