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A B S T R A C T 

We leverage state-of-the-art machine learning methods and a decade’s worth of archi v al data from Canada–France–Hawaii 
Telescope (CFHT) to predict observatory image quality (IQ) from environmental conditions and observatory operating 

parameters. Specifically, we develop accurate and interpretable models of the complex dependence between data features 
and observed IQ for CFHT’s wide-field camera, MegaCam. Our contributions are several-fold. First, we collect, collate, and 

reprocess several disparate data sets gathered by CFHT scientists. Second, we predict probability distribution functions of IQ 

and achieve a mean absolute error of ∼0.07 arcsec for the predicted medians. Third, we explore the data-driven actuation of the 
12 dome ‘vents’ installed in 2013–14 to accelerate the flushing of hot air from the dome. We leverage epistemic and aleatoric 
uncertainties in conjunction with probabilistic generative modelling to identify candidate vent adjustments that are in-distribution 

(ID); for the optimal configuration for each ID sample, we predict the reduction in required observing time to achieve a fixed 

signal-to-noise ratio. On average, the reduction is ∼ 12 per cent . Finally, we rank input features by their Shapley values to identify 

the most predictive variables for each observation. Our long-term goal is to construct reliable and real-time models that can 

forecast optimal observatory operating parameters to optimize IQ. We can then feed such forecasts into scheduling protocols and 

predictive maintenance routines. We anticipate that such approaches will become standard in automating observatory operations 
and maintenance by the time CFHT’s successor, the Maunakea Spectroscopic Explorer, is installed in the next decade. 

Key words: instrumentation: miscellaneous – methods: analytical – methods: observational – methods: statistical – telescopes. 
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 I N T RO D U C T I O N  

ituated at the summit of the 4200-m volcano of Maunakea on the
sland of Hawaii, the Canada–France–Hawaii Telescope (CFHT)
s one of the world’s most productive ground-based observato-
ies (Crabtree 2019 ). The productivity of CFHT is due, in part, to the
xquisite natural image quality (IQ) delivered at the observatory’s
ocation on Maunakea. IQ is key metric of observatory operations
nd relates directly to realized signal-to-noise ratio (SNR) as well as
o achie v able spatial resolution. SNR and spatial resolution, in turn,
ictate the information content of an image. They thereby provide a
irect measure of the efficacy of scientific observation. 
 E-mail: sankalp.gilda@gmail.com 

 This work was conducted while the first author was a Ph.D. candidate in 
he Department of Astronomy, University of Florida, Gainseville, FL 32611, 
SA. 
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The difference between the theoretically achie v able and measured
Q can be attributed to air turbulence in the optical path. There are
wo sources of turbulence. The first is atmospheric. At the summit
f Maunakea atmospheric turbulence is minimal due to the smooth
aminar flow of the prevailing trade winds and the height of the
ummit; this is the reason CFHT and other world-class observatories
re located on Maunakea. The second is turbulence induced by
ocal thermal gradients between the observatory dome itself (and
he structures within) and the surrounding air. There have been
ontinual impro v ements in the CFHT facility since 1979, man y aimed
t reducing this source of turbulence. We particularly make note of
he 2012 December installation of dome vents. After a protracted
echanical commissioning period that lasted about 18 months, the

ents came online in July of 2014. By allowing the (generally)
otter air within the observatory to flush faster, the vents accelerate
hermal equalization. A schematic of the dome and the vents is
rovided in Fig. 1 . A listing of the temperature sensors marked
n Fig. 1 is provided in Table 1 . Even given these improvements,
© 2021 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Figure 1. A schematic of the CFHT; top-view and profile. The 12 actionable dome vents are marked. Important thermal sensors identified in past works (see 
Section 2) are highlighted. These sensors are detailed in Table 1 . 

Table 1. Brief description of the temperature sensors marked in Fig. 1 . 

Probe label Description 

AIR-4 Air temperature – Caisson, west 
SURF-5 Steel temperature – Caisson, east 
AIR-6 Air temperature – Upper end, west 
AIR-23 Air temperature – Under end, east 
AIR-33 Air temperature – Under primary, west 
AIR-54 Air temperature – Mirror cell, west 
AIR-63 Air temperature – Under primary, south 
AIR-65 Air temperature – Inside spigot, north 
AIR-67 Air temperature – Under primary, north 
GLASS-70 Glass temperature – Under primary, south 
AIR-86 Air temperature – Weather tower 
AIR-101 Air temperature – MegaPrime exterior 
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nd as is the case with all major ground-based observatories, the 
Q attained at CFHT rarely reaches what the site can theoretically 
eliver. 1 

Our project is moti v ated by our strong belief that the ability to
odel and predict IQ accurately in terms of the exogenous factors that

ffect IQ would pro v e enormously useful to observatory operations. 
bserving time at w orld-class f acilities lik e CFHT is o v ersubscribed
any-fold by science proposals. Specifically at CFHT, good seeing 

ime, defined as time when IQ is smaller than the mode seeing
f 0.70 arcsec in the r -band, is o v ersubscribed roughly three-fold.
 Direct (prime focus) wide field imaging systems that we consider in this 
aper are not compatible with adaptive optics (Roddier 1988 ; Beckers 1993 ), 
hich require a relay or an adaptive secondary mirror. Although such AO 

ystems can be designed to specifically correct for ground layer, enabling 
maging of wide fields at impro v ed seeing resolutions (Chun et al. 2016 ), 
hey are not well suited to correct dome induced turbulence, which may not 
e homogeneously distributed o v er the pupil or may be at too high a spatial 
requencies to be corrected by a deformable mirror. 

i  

d  

M  

i
g
o  

2

urther, observations frequently either fail to meet, or exceed, the IQ
equirements of their respective science proposals (Milli et al. 2019 ).
hrough accurate predictions we can better match delivered IQ to 
cientific requirements. We thereby aim to unlock the full science 
otential of the observatory. If we can predict the impact on IQ of
he parameters the observatory can control (pointing, vent and wind- 
creen settings, cooling systems), then by adjusting these parameters 
nd (perhaps) the order of imaging, we create an opportunity to
ccelerate scientific productivity. In this work, we lay the groundwork 
or these types of impro v ements. 

In this paper, we leverage almost a decade-worth of sensor 
elemetry data, post-processing IQ measurements, and exposure 
nformation that is collected in tandem with each CFHT observation. 
ased on this data, we build a predictive model of IQ. Through the

mplementation of a feed-forward mixture density network (MDN; 
ishop 1995 ), we demonstrate that ancillary environmental and 
perating parameter data are sufficient to predict IQ accurately. 
urther, we illustrate that, keeping all other settings constant, 

here exists an optimal configuration of the dome vents that can
ubstantially impro v e IQ. Our successes here lay the foundation for
he development of automated control and scheduling software. 

The IQ prediction system we detail in this paper is developed 
or MegaPrime, 2 a wide-field optical system with its mosaic camera 

egaCam (Boulade et al. 2003 ). MegaPrime is one of CFHT’s most
cientifically productive instruments. Built by CEA in Saclay, France, 
nd deployed in 2003, MegaCam is a wide-field imaging camera. It
s used e xtensiv ely for large surv e ys co v ering thousands of square
egrees in the sky and ranging in depth from 24 to 28.5 magnitude.
egaCam is placed at the prime focus of CFHT. It includes an

mage stabilization unit and an auto-focus unit with two independent 
uide charge-coupled device (CCD) detectors. MegaCam consists 
f 40 CCDs, each 2048 × 4612 pixels in size, for a total of 378
 ht tps://www.cfht .hawaii.edu/Inst rument s/Imaging/MegaPrime/

MNRAS 510, 870–902 (2022) 

art/stab3243_f1.eps
https://www.cfht.hawaii.edu/Instruments/Imaging/MegaPrime/


872 S. Gilda et al. 

m  

v  

a  

3  

i  

m  

o  

(  

a
 

o  

c  

w  

i  

a  

w  

o  

w
 

o  

o  

c  

t  

t  

f  

i  

m

 

v  

c  

a  

t
 

a  

a  

a  

e
 

u  

a  

i
 

w  

m  

W  

r  

m  

o  

r  

p

 

d  

t  

i  

u  

i  

3

u
4

m  

v  

i  

fi  

d

2

T  

i  

h  

c  

m  

i  

m  

t  

t  

2  

o  

u  

t  

w  

s  

i  

a  

w  

m

I

I  

e  

o  

i  

K  

w  

u  

t  

a
 

i  

t  

T  

I  

g  

o  

e  

w  

S  

t  

w  

t  

d
 

(  

a  

o  

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/1/870/6425766 by C
N

R
S user on 07 April 2023
e gapix els. The image plane co v ers a 1 ◦ × 1 ◦ square field of
iew at a resolution of 0.187 arcsec per pixel. The CFHT archive
t the Canadian Astronomy Data Centre (CADC) contains close to
00 k Megacam science exposures with 24 filter pass bands. These
mages have a median IQ of ∼0.7 arcsec in the r -band. One of our

ain results is that, based purely on environmental and observatory
perating conditions, we can predict the effective MegaPrime IQ
MPIQ for the rest of the paper) to a mean accuracy of about 0.07
rcsec. 

We train our models to predict MegaPrime IQ (MPIQ) using CFHT
bservations dating back to 2014 July 23. While the CFHT data
atalogue dates back to 1979, we use data only for the period in
hich the dome vents have been present. The collected measurements

nclude temperature, wind speed, barometric pressure, telescope
ltitude and azimuth, and configurations of the dome vents and
indscreen. 3 In Table 2 , we summarize the environmental sensors,
bservatory parameters, and miscellaneous features used in this
ork. 
Our goal is to toggle the 12 CFHT vents based on our predictions

f MPIQ. We must thus err on the side of caution – CFHT is already
 v ersubscribed by a factor of ∼3, and any mis-prediction of vent
onfigurations w ould w aste valuable time in re-observing targets. We
herefore eschew point predictions in fa v our of making a prediction of
he MPIQ distribution (the conditional PDF) for each data sample. We
ollowed this procedure when presenting some preliminary results
n Gilda et al. ( 2020 ). Here, we extend that work significantly and
ake the following contributions: 

(i) We compile and collate several sets of measurements from
arious environmental sensors, metadata about observatory operating
onditions, and measured IQ from MegaCam on CFHT. We curate
nd combine these sources of data into a single data set. We publish
he curated data set. 

(ii) We use supervised learning algorithms to predict IQ at 0.07
rcsec accuracy. We present results for a gradient boosting tree
lgorithm and for an MDN. For the latter, we provide a detailed
nalysis of feature attributions , assigning the relative contribution of
ach input variable to predicting MPIQ. 

(iii) The IQ predictions we produce are robust. We perform an
ncertainty quantification analysis. Guided by a robust variational
utoencoder (RVAE) that models the density of the data set, we
dentify non-representative configurations of our sensors. 

(iv) We use our MDN to find the optimal vent configurations that
ould have resulted in the lowest IQ. We use these predictions to esti-
ate the annual increase in science return and scientific observations.
e find the impro v ement to be ∼ 12 per cent . This impro v ement

esults from increased observational efficiency at CFHT, in particular
inimizing the observation times for hypothetical r- band targets

f the 25th magnitude to achieve an SNR of 10; these figures are
epresentative of deep observations of faint targets of large imaging
rograms at CFHT like the Canada France Imaging Surv e y. 4 

We structure the rest of this paper as follows. In Section 2, we
iscuss rele v ant pre vious work. In Section 3, we explore in depth
he various sources of input data and the processing pipeline we
mplement to collate and convert the data sources into the final
sable data set. In Section 4, we describe in detail our methodology,
ncluding attributes of our gradient boosting tree and neural network
 We have made our data set publicly available at ht tps://www.cfht .hawaii.ed 
/ en/science/ImageQuality2020/ . 
 ht tps://www.cfht .hawaii.edu/Science/CFIS/

R  
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6
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ethods, feature importance method, and our predictions for best
ent configurations. In Section 5, we present our results. We conclude
n Section 6. To help keep our focus on astronomy, some supporting
gures that help detail our machine-learning implementations are
eferred to Appendix A. 

 RELATED  WO R K  

he summit of Maunak ea w as selected as the site for CFHT due to
ts excellent astronomical observing properties: low turbulence, low
umidity, low infrared absorption and scattering, excellent weather,
lear nights. IQ, or ‘seeing’, is quantified using the full width at half-
aximum (FWHM) measure. FWHM, expressed in arcseconds ( 

′′ 
),

s calculated as the ratio of the width of the support of a distribution,
easured at half the peak amplitude of the distribution, to half

he peak-amplitude value; smaller FWHM is better. For example,
he FWHM of the Gaussian distribution is 2 

√ 

2 log 2 σ , roughly
.4 times the standard deviation σ . In our application, FWHM
perationally quantifies the degree of blurring of uncrowded and
nsaturated images of point sources (such as a star or a quasar) on
he central CCDs of a MegaCam frame. The FWHM measured this
ay, referred to as image quality or IQ, is an aggregate of multiple

ources. 5 The main contributors to FWHM/IQ are: imperfections
n the optics (IQ Optics ), turbulence induced by the dome (IQ Dome ),
nd atmospheric turbulence (IQ Atmospheric ). These contributions are
ell modelled as being independent and as combining to form the
easured IQ (IQ Measured ) according to 

Q 

5 / 3 
Measured = IQ 

5 / 3 
Optics + IQ 

5 / 3 
Dome + IQ 

5 / 3 
Atmospheric . (1) 

f the contributions were modelled by a Gaussian distribution, the
xponents in equation (1) would be 2 = 6/3 (because variances
f independent Gaussian random variables add). The 5/3 rd power
s due to the spectrum of turbulence which was characterized by
olmogorov in 1941 (Tartarski ̌ı & Silverman 1961 ). We note that
hile the contribution of the optics is not due to turbulence, we still
se the power of 5/3 in our model for consistency . Finally , we note
hat of the three contributors we can only influence IQ Dome through
ctuation of various observatory controls. 

While the mean free atmosphere (IQ Atmosphere ) seeing on Maunakea
s estimated to be about 0.43 arcsec (Salmon et al. 2009 ), in practice,
he IQ realized at CFHT is usually worse (i.e. the seeing is higher).
hrough 40 yr of effort by the CFHT staff and consortium scientists,

Q Measured has steadily decreased, from early values of 2 arcsec or
reater to its current median value of around 0.71 arcsec. Removal
f IQ Optics further reduces this figure to 0.55 arcsec (see Fig. 2 ,
quation 2, and Section 3.3). 6 In the remainder of this section,
e discuss prior efforts to quantify IQ and to reduce IQ. Later, in
ection 3, when we discuss our data sources, we return to (1) and step

hrough a number of sources of variation in observing conditions (e.g.
avelength of observ ation, ele v ation of observation) that we correct

o produce a normalized data set in which IQ measurements from
istinct observations can be directly compared. 
Early published efforts to quantify and reduce the IQ at CFHT

e.g. Racine 1984 ) detail campaigns to minimize turbulence inside
nd around the dome, including analysis and measurements of the
pto-mechanical imperfections of the telescope. The team led by
en ́e Racine estimated that if the in-dome turbulence was corrected
 Note that larger FWHM ⇒ higher ‘seeing’ ⇒ poorer IQ ⇒ more arcsec. 
o, lower FWHM which equates to a better IQ (fewer arcsec) is desired. 
 ht tps://www.cfht .hawaii.edu/Science/CFHLS/T0007/T0007-docsu11.ht ml 

https://www.cfht.hawaii.edu/en/science/ImageQuality2020/
https://www.cfht.hawaii.edu/Science/CFIS/
https://www.cfht.hawaii.edu/Science/CFHLS/T0007/T0007-docsu11.html
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Table 2. Data fields in the MegaCam data set. 

Parameter Units #Features Range Description 

Environmental 
Temperature ◦ C 57 [ −8,20] / [ −200,850] Temperature values from sensors in and around the dome. Three 

sensors are placed within the dome. The rest are external. 
Wind speed knots 1 [0,35] Wind speed at the weather tower. 
Wind azimuth NONE 2 [ −1,1] Sine and cosine of wind azimuth with respect to true north. 
Humidity per cent 2 [1.4,100] Measured both at the top of the observatory dome, and at the 

weather tower. 
Dew point per cent 2 [1.4,100] Measured both in the basement of the observatory building, and at 

the telescope mirror cell (near GLASS 70 in Fig. 1 ) 
Barometric pressure mm of Hg 1 [607,626] Atmospheric pressure measured on the fourth floor of the 

observatory building. 
MPIQ arcsec 1 [0.35,2.36] Measured seeing from Me gaCam/Me gaPrime. 

Observatory 
Vents NONE; NONE; 

NONE 

36 { 0,1 } ; [0,1]; [0,1] For each sample, we have three types of vent values: vent 
configuration (‘OPEN’ or ‘CLOSE’), and Sine and cosine of vent AZ 

Dome azimuth NONE 2 Sine and cosine of the angle of the slit-centre from true North. 
Pointing altitude NONE 1 [0.15,1] Sine of the angle of the telescope focus from the horizontal. 
Pointing azimuth NONE 2 [ −1,1] Sine and cosine of angle of the telescope focus from true north. 
Wind screen position NONE 2 [0,1] Fraction that the wind screen is open. (The wind screen is located at 

the ‘Slit’ position in the left of Fig. 1 .) 
Central Wavelength nm 1 [354,1170] Central wavelengths of each of the 22 filters. 
Dome Az − Pointing Az NONE 2 [ −1,1] Sine and cosine of difference between dome and pointing azimuths. 
Dome Az − Wind Az NONE 2 [ −1,1] Sine and cosine of difference between dome and wind azimuths. 
Pointing Az − Wind Az NONE 2 [ −1,1] Sine and cosine of difference between wind and pointing azimuths. 

Other 
Exposure time seconds 1 [30,1800] Observation time per sample. 
Observation Time NONE 4 [ −1,1] Sine and cosine of hour of day 

23 and week of year 
51 . 
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nd the telescope imperfections were remo v ed, the natural Maunakea 
eeing would offer images with IQ below 0.4 arcsec FWHM on one-
uarter of the nights. Later efforts (Racine et al. 1991 ) used data
rom the (then) new HRCam, a high-resolution imaging camera at 
he prime focus of CFHT, to develop a large and homogeneous IQ
ata set. They correlated their IQ data with thermal sensor data, 
hrough which they were able to identify and quantify ‘local seeing’ 
ffects. Their main findings, relevant to our work, are listed below. 

(i) The contribution of mirror optics IQ Optics amounts to about 0.4 
rcsec ( � T ) 6/5 , where � T is the temperature difference between the
rimary mirror and the surrounding air. 
(ii) The dome contribution IQ Dome amounts to about 0.1 arcsec 

 � T ) 6/5 , where � T is the temperature difference between the air
nside and outside of the dome. 

(iii) The median natural atmospheric seeing at the CFHT site 
Q Atmospheric is 0.43 arcsec ± 0.05 arcsec. The 10th and 90th 
ercentiles are roughly 0.25 arcsec and 0.7 arcsec. 

More recent follow-up work is presented in Salmon et al. ( 2009 ).
he authors correlate measured IQ using the (then) new MegaCam 

ith temperature measurements. They analyse 36,520 MegaCam 

xposures made in the u , g , r , i , and z-bands in the 3 yr period between
005 August and 2008 August. They find strong dependences of 
he measured IQ on temperature gradients. Furthermore, in table 4 
f Salmon et al. ( 2009 ) the authors categorize important factors that
ontribute to the seeing – atmosphere, dome, optics – and provide 
stimates of their respective contribution. 

As the authors discuss, these estimates update the findings 
f Racine et al. ( 1991 ). The most significant findings of Salmon
t al. ( 2009 ) can be summarized as follows. 
(i) The orientation of the dome slit with respect to the wind
irection has important effects on IQ. 
(ii) The median dome induced seeing IQ Dome before the installa- 

ion of the vents in 2013 was 0.43 arcsec. 
(iii) The seeing contribution from optics and opto-mechanical 

mperfections IQ Optics varied from 0.46 arcsec in the u-band to 0.28
rcsec in the i-band. 

(iv) Atmospheric seeing IQ Atmospheric at the CFHT site at a wave- 
ength of 500 nm and an ele v ation of 17 m abo v e ground was

easured using a separate imager. The median IQ Atmospheric measured 
as 0.55 arcsec. This estimate of atmospheric seeing is independent 
f effects related to the dome and the optics. 

The culminating result of these studies that analysed the delivered 
Q was the 2012 December installation, and 2014 July initial use,
f the 12 dome vents depicted Fig. 1 . Since their installation, CFHT
perators have kept all 12 vents completely open as often as possible,
arring conditions of mechanical failure and strong winds. As already 
entioned, this allows faster venting of internal air and equalization 

f internal and external temperatures. 7 The vent-related improvement 
n seeing has been dramatic, with median IQ Measured improving from 

bout 0.67 arcsec to 0.55 arcsec. 8 

In order to have an external, regularly sampled seeing reference, 
e use the Maunakea Atmospheric Monitor (MKAM; Tokovinin 

t al. 2005 ; Skidmore et al. 2009 ). This telescope, dedicated to
eeing monitoring, is mounted on top of a weather tower just
utside of CFHT. It has a composite instrument, including a Multi
perture Scintillation Sensor (MASS) and a Differential Image 
MNRAS 510, 870–902 (2022) 
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Figure 2. Seeing evolution and distribution. Upper left: Distribution of seeing measured by the MKAM DIMM and ef fecti v e IQ measured at Me gaPrime since 
2010. Ef fecti ve MPIQ is the measured IQ less the contributions from optics – see equation (1) and Section 3.2. Both the MKAM and the MPIQ curves peak at 
∼0.55 arcsec; the former contains relatively higher seeing contribution from the ground layer, while the latter includes contribution from the dome itself (see 
Section 2 for detailed discussion). Both peaks are higher than the best possible seeing at the site of ∼0.43 arcsec. Upper right: Distribution of seeing after the 
installation of the vents as a function of vent configuration: all-open or all-closed . Observe the statistics of the former are much better than those of the latter. 
We also plot the MKAM histogram, which is basically unchanged from prior to the installation of the vents. Lower: Quarterly averaged MegaPrime IQ of the 
CFHT. The wiggly curve of decaying mean and oscillation amplitude is a model that peaks in midwinter, when the outside air temperature tends to be colder 
than the dome air. The drop in July of 2014 corresponds to when the vents first started to be used; this is why in the data input to our models we do not use 
samples from before this month. 
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otion Monitor (DIMM). We only use data from the latter as
he former is insensitive to the lower layers of turbulence. DIMMs

easure seeing by computing the variance of the relative motion of
he images formed by two separate sub-apertures, therefore probing
he curvature of the wave-front. This variance can be directly related
o the FWHM of the point spread function in long exposures given
he wavelength of observation and the sub-apertures diameter (see
.g. Sarazin & Roddier 1990 ). While MKAM measurements are free
f the CFHT dome contribution to seeing, they are also sensitive
o part of the ground layer contributions to seeing that are not seen
y the CFHT instruments, partly due to the lower altitude of the
eather tower as compared to the CFHT aperture, and to localized
ifferences in the summit turbulence in the first few meters abo v e
round. MKAM thus serves as a slightly noisy seeing reference for
egacam, free of CFHT dome seeing contributions. 
In the left sub-plot of Fig. 2 , we plot histograms of the corrected

eeing values from MegaCam both before (starting 2002 February
) and after 2014 July 7, when the vents started being used; the latter
NRAS 510, 870–902 (2022) 
s the start date of our data set used in the remainder of this work.
e compare these with the seeing distribution from MKAM and
egaCam for observations since 2002. Corrected seeing remo v es the

ontribution of the telescope optics from the measured seeing, and is
efined in equation (2). In the top-right plot in Fig. 2 , ‘Vents Open’
efers to samples where the 12 vents are either all open, or at most
ne of them is closed, whereas ‘Vents Closed’ incorporates samples
here all 12 vents are closed. As can be seen, the introduction of

he vents has reduced the median MPIQ by 0.21 arcsec = ((0.55 5/3 

0.48 5/3 ) 3/5 ), and the mean MPIQ by 0.27 arcsec = ((0.61 5/3 −
.51 5/3 ) 3/5 ). Ho we ver, there is still money on the table – the estimated
ree-air, observatory-free IQ at the CFHT site is estimated to be
0.43–0.44 arcsec (Salmon et al. 2009 ). This means that there is still
 possible impro v ement in median IQ of 0.15 arcsec = ((0.48 5/3 −
.435 5/3 ) 3/5 ), and a mean IQ of 0.23 arcsec = ((0.52 5/3 − 0.435 5/3 ) 3/5 ).
his range of impro v ement was independently verified by another
FHT team in 2018 (Racine et al. 2018 ). They found that, when
pen, the dome vents on average reduce IQ by 0.37 arcsec. While
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Table 3. Summary statistics of data sets described in Section 3.2. ‘#Original 
Features’ includes the MegaPrime Image Quality (MPIQ), while ‘#Engi- 
neered Features’ are additional hand-crafted ones added to enhance the 
predictive capability of our models (see Section 3.3 for details). However, 
for the remainder of this paper, we use ‘features’ to refer to the union of 
original and engineered features less the MPIQ column: these are predictive, 
independent variables. Similarly, going forward MPIQ – the dependent 
variable – is referred to as the ‘target’. 

Data set #Samples #Original #Engineering Percentage 
Identifier Features Features Missing 

D F S , S L 160 341 86 34 62 per cent 
D F S , S S 63 082 86 34 0 per cent 
D F L , S S 63 082 86 1115 0 per cent 
D F L , S L 160 341 86 1115 62 per cent 
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9 We emphasize that in this work we forego temporal dependences and treat 
all exposures as independent. We provide the time between exposures for the 
sake of context. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/1/870/6425766 by C
N

R
S user on 07 April 2023
his number is significantly larger their either of our estimates of 0.21
rcsec or 0.27 arcsec, their estimate of degradation of IQ of about
.20 arcsec, caused by residual eddies induced by thermal differences 
n the dome, closely matches our own. It is precisely this residual
art of IQ Dome that we aim to capture in our work. We later show in
igs 10 (c) and (d), and in Section 5.3 that our models are indeed able

o capture these impro v ements. 
We remind the reader, as mentioned abo v e, that CFHT operators

ave kept all 12 vents completely open as much as possible. They
ave chosen this manner of operation as they had no basis upon which
o choose a more varied configuration of the dome vents. Although, 
e note that fluid flow modelling conducted during the vent design 
rocess predicted that intermediate settings (i.e. neither all-optimal 
or all-closed) would optimally reduce internal turbulence (Baril 
t al. 2012 ). By tuning the dome vent configurations, based on
urrent environmental conditions, to a setting between all-open and 
ll-closed, we aim to reduce this residual. 

From a programmatic perspective, our work is a natural extension 
f Racine ( 1984 ), Racine et al. ( 1991 , 2018 ), and Salmon et al. ( 2009 ).
hile these prior investigations correlated IQ with measurements of 

emperature gradients, our work tries to relate all of the metrics 
not solely the temperature metrics) with the IQ Measured through 
he application of advanced machine learning techniques. Further, 
ather than only establishing correlation, we also seek to understand 
hether by actuating the dome parameters under our control we 

an impro v e the deliv ered IQ Measured . Recent work at the P aranal
bservatory by Milli et al. ( 2019 ) similarly collected 4 yr of sensor
ata, and trained random forest and neural networks to model and 
orecast o v er the short term ( < 2 h) the DIMM seeing and the MASS-
IMM atmospheric coherence time and ground layer fraction. Their 

arly results demonstrate good promise, especially for scheduling 
daptive optics instruments. 

Finally, we mention recent work (Lyman, Cherubini & Businger 
020 ) by the Maunakea Weather Center that takes a macro approach
o predict IQ Atmospheric . The authors tap into large meteorological 
odelling models. They start from the NCEP/Global Forecasting 
ystem that outputs a 3D-grid analysis for standard operational me- 

eorological fields: pressure, wind, temperature, precipitable water, 
nd relative humidity. Coupling these predictions with advanced 
nalytics and decades of MKAM DIMM seeing data, Lyman et al. 
 2020 ) predict the free air contribution (IQ Atmospheric ) to seeing on
he mountain. Their work is complementary to ours in that we take
n our local sensor measurements to predict (and reduce) the effect 
f IQ Dome on IQ Measured , while Lyman et al. ( 2020 ) directly predict
Q Atmospheric . In the long term, these two models can be combined to
ield impro v ed seeing estimates, forecasts, and decisions. 

 DATA  

n this section, we discuss how we curated and prepared the data
or use in our models. As mentioned already, our efforts began with
lmost a decade’s worth of sensor measurements archived at CFHT, 
ogether with IQ measured on the MegaCam exposures retrieved from 

he CADC web services. At the start pertinent variables were spread 
cross multiple data sets, sensor measurements were missing due 
o sensor failures, data records contained errant values due to mis-
alibrated data reduction pipelines. We therefore spent substantial 
ffort cleaning the data. In Section 3.1, we discuss the various data
ources that we collate to form our final data set. We then discuss
ur data cleaning and feature engineering procedures in Sections 3.2 
nd 3.3. 
.1 Data sources 

ur first step in data collection was to build a data archive that
ontains one record per Me gaCam e xposure. In the remainder of
his paper, we refer to each exposure and its associated sensor
easurements interchangeably as a ‘sample’, a ‘record’, or an 

observation’. Each record contains three distinct types of predictive 
ariables: 

(i) Observatory parameters . These can be divided into operating 
controllable) and non-operating (fixed) parameters. The former 
nclude the configurations of the 12 dome vents (open or closed),
nd the windscreen setting (degrees open). These are examples of 
he variables that we can adjust the settings of in real time. The non-
perating features include measurements of the telescope altitude and 
zimuth (which correspond to pointing of the astronomical object 
eing observed) and the central wavelength of the observing filter. 
(ii) Environmental parameters . These include exposure-averaged 

ind speed, wind direction, barometric pressure, and temperature 
alues at various points both inside and outside the observatory. 

(iii) Ancillary parameters . Each exposure comes with metadata. 
ele v ant to our work are the date and time of the observation and the

ength of exposure. All predicti ve v ariables have been summarized
n Table 2 . The median time of each exposure is ∼150 s, while the
edian time between two consecutiv e e xposures made on the same

ight is ∼240 s. 9 

In total, there are 160 341 observations, and 86 variables ( including
Q) are provided with each exposure. The records span 2005 February 
o 2020 March. An o v erview of the data is provided in Table 3 ,
here we note the expanded number of features created using feature

ngineering , which we expound upon below. 

.2 Data cleaning 

e now list the data cleaning we performed. In short, these included
he removal of data records corresponding to (i) non-sidereal targets, 
ii) data records associated with too-short or too-long exposures, (iii) 
ata records associated with IQ estimates deemed unrealistic, and 
iv) data records containing missing or errant data values. 

(i) Non-sidereal: We remo v e mo ving, non-sidereal, targets. The 
Q measurements for these data records are not valid as the data
MNRAS 510, 870–902 (2022) 
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Table 4. IQ Optics for different bands, calculated according to the prescription 
of Salmon et al. ( 2009 ). The average seeing across all bands is about 0.33 
arcsec, as noted in table 4 of Salmon et al. ( 2009 ). 

Filter Central λ (nm) IQ Optics (arcsec) 

Ha.MP7605 645.3 0.284 
HaOFF.MP7604 658.4 0.280 
Ha.MP9603 659.1 0.280 
HaOFF.MP9604 671.9 0.276 
TiO.MP7701 777.7 0.260 
CN.MP7803 812 0.260 
u.MP9301 374.3 0.441 
u.MP9302 353.8 0.459 
CaHK.MP9303 395.2 0.424 
g.MP9401 487.2 0.358 
g.MP9402 472 0.368 
OIII.MP7504 487.2 0.358 
OIII.MP9501 487.2 0.358 
OIIIOFF.MP9502 500.7 0.350 
r.MP9601 628.2 0.290 
r.MP9602 640.4 0.285 
gri.MP9605 610.68 0.296 
i.MP9701 777.6 0.261 
i.MP9702 764.4 0.261 
i.MP9703 776.4 0.261 
z.MP9801 1170.2 0.397 
z.MP9901 925.6 0.276 
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ipeline that calculates IQ assumes sidereal observation. Therefore,
hese records are not appropriate for training. We note that as part
f the configuration data recorded along with each observation the
stronomer specifies whether the observation is sidereal or not.
ence, these data records are easy to remo v e. 
(ii) Non-trustworthy IQ estimates: We remo v e Me gaCam e xpo-

ures associated with IQ estimates of less than 0.15 arcsec or greater
han 2 arcsec. Such IQ numbers are deemed unrealistic. It is believed
hat an IQ of ∼0.2 arcsec is the best possible at Maunakea. Anything
elow this is deemed to result from an erroneous calculation when
onverting from the raw exposure data. On the other hand, IQ > 2
rcsec is too large for useful science. 

(iii) Missing and errant measurements: Not all sensor measure-
ents are available at all times of the exposure. We refer to these

s ‘missing data’. As is tabulated in the first row of Table 3 ,
rior to considering missing data, our cleaned data set (cleaned
f non-sidereal and non-trustworthy) contains 120 features (86
riginal + rest engineered features + 1 MPIQ, see Section 3.3)
nd 160 341 samples. Of these, just under 100 000 samples do
ot contain all measurements; we specify the fraction of missing
easurements in the last column of Table 3 . We refer to the

ata set with all samples as D F S , S L , i.e. Data set with a Small
umber of Features, and a L arge number of Samples. By re-
oving those samples that contain at least one missing feature,
e obtain D F S , S S : Data set with a Small number of Features,

nd a Small number of S samples. This latter data set consists
f 63 082 samples (second and third rows in Table 3 ). In this
aper, we train our models on D F S , S S , since feed-forward neural
etworks cannot handle missing values without non-trivial mod-
fications. In future work, we will use a variational autoencoder
apable of imputing missing values (Collier, Nazabal & Williams
020 ) to enable us to leverage the larger data set, D F L , S L : Data
et with a L arge number of Features, and a L arge number of
amples. 
NRAS 510, 870–902 (2022) 
.3 Feature engineering 

eature engineering is the process of modifying existing features,
sing either domain expertise, statistical analysis, or intuition derived
rom scientific expertise. The goal is to create predicti ve v ariables that
re more easily understood by a machine learning (ML) algorithm.
e now describe the feature engineering we performed. 

(i) Optics IQ correction: We remo v e the fixed, but wavelength
ependent, contributions of the telescope optics to IQ, IQ Optics . These
orrections are based on work by Salmon et al. ( 2009 ), and range
rom 0.31 arcsec in the i -band to 0.53 arcsec in the u -band (Racine
t al. 2018 ); cf. second column of Table 4 . After removing the
ontribution of optics, we are left with a convolution of dome seeing
nd atmospheric seeing. This is because dome seeing, referred here
o as IQ Dome , is enmeshed with IQ Measured in a complicated way that
oes not lend itself to easy separation; the relationship between these
s go v erned by equation (2), a rearranged v ersion of equation (1): 

Q 

5 / 3 
Atmospheric + IQ 

5 / 3 
Dome = IQ 

5 / 3 
Measured − IQ 

5 / 3 
Optics , 

IQ 

′ 
Atmospheric = 

(
IQ 

5 / 3 
Measured − IQ 

5 / 3 
Optics 

)3 / 5 
. (2) 

t the risk of being redundant with information presented towards
he tail-end of Section 2, we remind the readers that Racine et al.
 2018 ) and Salmon et al. ( 2009 ) estimate IQ Atmospheric to be in the
ange of 0.43 to 0.45 arcsec, and IQ 

′ 
Atmospheric to be about 0.55 arcsec.

hey demonstrate that opening all 12 vents completely allows one
o reduce IQ 

′ 
Atmospheric to about 0.51 arcsec, which leaves a residual

edian 0.20 arcsec ((0.51 5/3 − 0.43 5/3 ) 3/5 ) on the table, which is what
e aim to capture in this paper. These numbers also agree with our
wn calculations, as described in Section 2 and visualized in the top
wo sub-figures of Fig. 2 . Our argument, introduced in Section 1 and
xpounded upon in Section 1, is that for an y giv en observation, there
s an optimal set of vent configuration, somewhere between all-open
nd all-closed, that allows us to bite into this 0.20 arcsec residual
Q Dome . 

(ii) Wavelength IQ correction: Each Me gaCam e xposure is taken
sing one of 22 band-pass filters. The right-hand subfigure in Fig. 3
lots a histogram of observations across bands. The use of the
lters results in a wavelength-dependent IQ variation. To make IQ
easurements consistent we scale IQ to a common wavelength of 500

m. The formula for the scaling is provided in equation (3), which
e present in conjunction with a zenith angle correction, discussed
ext. 
(iii) Zenith angle correction: IQ is also affected by the amount of

tmosphere through which the observation is made. The contribution
f airmass is, to first degree, predictable, and can be remo v ed together
ith the wavelength correction via (3), where z is the zenith angle in
egrees and λ is the central wavelength of a given filter in nm. 

Q Corrected = IQ 

′ 
Atmospheric ×

(
λ

500 

)1 / 5 

× ( cos z ) 3 / 5 . (3) 

(iv) Cyclic encoding of time-of-day and day-of-year: Every ob-
ervation has an associated time stamp, indicating the beginning of
mage acquisition. Using this ‘timestamp’ feature, we derive two
ime-features, the hour-of-day and the day-of-year. These features
etter capture latent cyclical relationship between weather events
nd IQ. We represent each of these two features into a pair cyclical
sinusoidal’ and ‘co-sinusoidal’ component. F or e xample, for the
ay-of-week feature values – which can range from 0 to 6 – we encode
t as day-of-week-sine and day-of-week-cosine. These can each
espectively take on values from sin (0 × 180 ◦/6), to sin (6 × 180 ◦/6),
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Figure 3. Left: Histogram of exposure times of the ∼60 000 samples/exposures used in this paper. Middle: Collected observations per year, broken down by 
quarter. Right: Same observations group by filter as represented by the filter central wavelength. 
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nd cos (0 × 180 ◦/6), to cos (6 × 180 ◦/6). In this way, we replace the
imestamp feature with four new, and more easily digestible features. 

(v) Cyclic encoding of azimuth: Similar to the temporal informa- 
ion, we cyclically encode the telescope azimuth, splitting it into two 
eatures. We note that since the altitude of observation ranges from
 to 90 degrees, and is not cyclical in nature, we leave that feature
nmodified. 
(vi) Temperatur e differ ences featur es: As argued in our discussion, 

nd evidenced by the prior work, temperature differences are the 
rime source of turbulence. In recognition of this key generative 
rocess, we engineer new temperature features that consist of the 
airwise differences of existing temperature measurements. 
e note that, given sufficient data, a deep enough neural network 

hould be able to disco v er that temperature differences are important
eatures. We engineer in such features as, from our knowledge of
hysics, we understand temperature differences are important and 
ro viding them e xplicitly to the network eases the inference task
aced by the network. In addition, unlike a neural network, the 
oosted-tree model that we use for comparative analysis is, by design, 
nable to create new features. The boosted-tree therefore benefits 
uite significantly from increased feature representation. 
We implement two different fla v ours of engineering here. First,
or every temperature feature in our two data sets of 160 341 and
3 082 samples, we subtract it from every other temperature feature. 
e calculate the Spearman correlation of these newly generated 

eatures with the MPIQ values. We then rank them by magnitude in
escending order and pick the top three features. This increases our 
riginal 85 input features to 119, and this is how we get D F S , S L 
nd D F S , S S . For the second variation, we do not pick the top 3, but
etain all the newly generated temperature-difference features. This 
ncreases the number of features from 86 to 1115. This is how we get
 F L , S L and D F L , S S . This is summarized in Table 3 . As a reminder,

n this work, we only use D F S , S S ; empirical results showed that our
eural networks’ performance did not significantly impro v e by using
 F L , S S . 

 M E T H O D O L O G Y  

he raw sensor data is a collection of time series and ultimately it
ould best to model the multiple sensors in their native data structure. 

n the analysis we perform in this paper, we compiled the sensor data
nto a large table to ease exploration, consisting of heterogeneous 
nd categorical data. The heterogeneity is caused by the wide 
ariety of sensors (wind speed, temperature, telescope pointing) 
ach recorded in specific units. Categorical features emerged because 
ertain measurements values were binned. For instance, due to the 
nreliability of wind speed measurement, we have binned these 
alues – wind speed below 5 knots, 5–10 knots, etc. Similarly, 
or simplicity, each of the 12 vents has been encoded into either
ompletely open or completely closed. These characteristics induce 
 discontinuous feature space. Our training data set is thus tabular in
ature. At hand with our curated data set, we are equipped to work on
ur two objectives: making accurate predictions of MegaPrime Image 
uality, and use our predictor to, on a per-sample basis, explore the

mportance of each feature on IQ. 
Decision tree-based models (Quinlan 1986 ) and their popular 

eri v ati ves such as random forests (Breiman 2001 ), and gradient
oosted trees (Friedman 2001 ) are well matched to tabular data.
nd often are the best performers. Tree-based models select and 
ombine features greedily to whittle down the list of pertinent 
eatures to include only the most predictive ones. Feature sparsity 
nd missing data is naturally accommodated by tree models, they 
imply do not include feature cells containing such values in 
heir splits. We sho w belo w our implementation of a variant of
radient boosted tree with uncertainty quantification, and feature 
xploration. 

Ho we ver, tree-based models require the human process of feature
ngineering and are known (e.g. Bengio, Delalleau & Simard 2010 )
o poorly generalize. In contrast to tree-based models, deep neural 
etworks (DNNs) are powerful feature pre-processors. Using back- 
ropagation, they learn a fine-tuned hierarchical representation of 
ata by mapping input features to the output label(s). This allows us
o shift our focus from feature engineering to fine-tuning the archi-
ecture, designing better loss functions, and generally experimenting 
ith the mechanics of our neural network. In reported comparison 

ases, DNNs yield impro v ed performance with larger sized data
ets (Haldar et al. 2019 ). As we will show, our neural network
mplementation, with the feature engineering steps described abo v e, 
erforms better than the alternative tree-based boosted model. We 
herefore deepen our analysis of the DNNs further: we quantify 
ts probabilistic predictions, and we attempt to model the feature 
pace. 
MNRAS 510, 870–902 (2022) 
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.1 Pr obabilistic pr edictions with a mixtur e density network 

DNs are composed of a neural network, the output of which are
he parameters of a mixture model (Bishop 1995 ). They are of
nterest here because the relationship between the feature vectors
 and target labels y can be thought of stochastic nature. Therefore,
DNs express the probability distribution parameters of MPIQ as

 function of the input sensor features. In a 1D mixture model,
he o v erall probability density function (PDF) is a weighted sum
f M individual PDF p 

m 

θ ( y | x ) parametrized by a neural network of
arameters θ10 : 

 θ ( y | x ) = 

M ∑ 

m = 1 

αm 

θ ( x ) p 

m 

θ ( y | x ) with 
M ∑ 

m = 1 

αm 

θ ( x ) = 1 . 

Under the assumption of N independent samples x from the
eatures distribution, and the corresponding conditional samples y of

PIQ, we minimize o v er the ne gativ e log-likelihood of the density
ixture to obtain the neural network weights: 

∗ = argmin 
θ

− 1 

N 

N ∑ 

n = 1 

log p θ ( y n | x n ) . (4) 

To train the neural network, we take as the network input the data
ecord of sensor readings, observatory operating conditions, etc. The
etwork outputs are the (per-vector) mixture model parameters mod-
lling the MPIQ conditional distribution, implicitly parametrized by
he neural network. In our experiments, we use β distributions, and
et M = 5 as it gave sensible results. 

.2 Complementary predictions and interpretation with 

radient boosted decision trees 

e complement the MDN IQ predictions by another algorithm to
ecure our results: a gradient boosted decision tree (GBDT) to predict
Q from the sensor data. This is in fact one of the main reasons so
uch of feature engineering was performed on the sensor data. A set

f consecutive decision trees is fit where each successive model is fit
o obtain less o v erall residuals than the previous ones by weighting

ore the larger sample residuals. Once converged, we can obtain
nal predictions from the trained boosted tree as the weighted mean
f all models. The optimization can be performed with gradient
escent. Several implementations of this popular algorithm exist
nd we selected the CATBOOST 11 one for our modelling, with a loss
ptimized for both the mean and the variance of the predictions.
e first perform nested cross-validation as for the MDN, obtain

he best hyper-parameters. We then train 10 GBDT models with
he same hyper-parameters with a stochastic optimization, each
ith a different initialization of the model parameters. Aleatoric

nd epistemic uncertainties are estimated with a simple ensemble
veraging method (Malinin, Prokhorenkova & Ustimenko 2020 ) of
ach model prediction. We show our results in Fig. 6 , and discuss
hem in detail in Section 5. 

.3 Density estimation with a robust variational autoencoder 

n autoencoder (Hinton & Salakhutdinov 2006 ) is a neural net-
ork that takes high-dimensional input data, encode it into a

ommon efficient representation (usually of lower dimension), and
0 In their initial form Bishop ( 1995 ), MDNs used a Gaussian mixture model. 
hey can easily be generalized to other distributions. 

1 ht tps://catboost .ai/
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o  
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r  
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hen recreates a full-dimensional approximation at the other end.
hrough its mapping of the input to a smaller or sparser, and more
anageable, but information-dense, latent vector, the autoencoder
nds application in many areas including compression, filtering, and
ccelerated search. A variational encoder (Kingma & Welling 2013 ;
ezende, Mohamed & Wierstra 2014 ) is a probabilistic version of the
utoencoder. Rather than mapping the input data to a specific (fixed)
pproximating vector, it maps the input data to the parameters of a
robability distribution, e.g. the mean and variance of a Gaussian.
AEs produce a latent variable z , useful for data generation. We refer

o the prior for this latent variable by p( z ), the observed variable
 input ) by x , and its conditional distribution ( likelihood ) as p θ ( x | z ).
n a Bayesian framework, the relationship between the input and the
atent variable can be fully defined by the prior , the likelihood , and
he marginal p θ ( x ) as: 

 θ ( x ) = 

∫ 
Z 

p θ ( x | z ) p( z )d z . (5) 

It is not easy to solve equation (5) as the integration across z is most
ften computationally intractable, especially in high dimensions.
o tackle this, variational inference (e.g. Jordan et al. 1999 ) is
sed to introduce an approximation q φ( z | x ) to the posterior p θ ( z | x ).
n addition to maximizing the probability of generating real data,
he goal now is also to minimize the difference between the real
 θ ( z | x ) and estimated q φ( z | x ) posteriors . We state without proof

see Kingma & Welling 2019 for detailed deri v ation): 

− log p θ ( x ) + D KL 

(
q φ( z | x ) ‖ p θ ( z | x )) 

= −E z ∼q φ ( z | x ) [ log p θ ( x | z )] + D KL 

(
q φ( z | x ) ‖ p θ ( z ) 

)
. (6) 

The approximating distribution q is chosen to make the right-hand
ide of equation (6) tractable and differentiable. Taking the right-hand
ide as the objective to simultaneously minimize both the divergence
erm on the left-hand side (making q a good approximation to p ) and

log p ( x ). This is exactly the loss function that we want to minimize
ia backpropagation: 

 VAE ( θ, φ; x ) = −E z ∼q φ ( z | x ) 
[
log ( p θ ( x | z )) ]

+ D KL 

(
q φ( z | x ) ‖ p θ ( z ) 

)− L ELBO 

= L REC ( θ, φ; x ) + D KL ( θ, φ; x ) , (7) 

here θ∗, φ∗ = argmin θ,φ L VAE . Since KL-divergence is non-
e gativ e, equation (7) abo v e can be thought of as the lower bound
f p θ ( x ), and is the loss function to minimize. It is commonly called
he ELBO, short for evidence based lower bound . L REC minimizes
he difference between input and encoded samples, while D KL acts
s a regularizer (Hoffman & Johnson 2016 ). 

The typical choice for q (that we also make) is an isotropic condi-
ionally Gaussian distribution whose mean and (diagonal) covariance
epend on x . The result is that the divergence term has a closed-form
xpression where the mean and variance are learned, for example
y using a neural network. To be able to backpropagate through the
rst term (the expectation) in the loss function, a reparametrization

s introduced. For each sample from x take one sample of z from
he conditionally Gaussian distribution q φ( z | x ). Without loss of
enerality we can generate an isotropic Gaussian z by taking a
aussian source ε ∼ N (0 , I ) shifting it by the x -dependent mean μ

nd scaling by the standard deviation σ to get z = μ + σ 	 ε, where
is the element-wise product. Approximating the first (expectation)

erm in the objective with a single term using this value for z allows
ne to backpropagate gradients through this objective. Note that,
n the terminology of autoencoders, the q and p functions play the
espective roles of encoder and decoder; q φ( z | x ) generate the latent

https://catboost.ai/
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12 The word ‘aleatoric’ derives from the Latin ‘aleator’ that means ‘dice 
player’. The word ‘epistemic’ derives from the Greek ‘episteme’ meaning 
‘knowledge’ (Gal 2016 ). 
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epresentation from a data point and p θ ( x | z ) defines a generative
odel. 
The VAE described so far, which we refer to as the ‘vanilla’ VAE,

s not the optimal model for our purposes. This is because our data
et D F S , S S can contain outliers caused mostly by sensor failures, 
nd sometimes by faulty data processing pipelines. The ELBO for 
vanilla’ VAE contains a log-likelihood term (first term in RHS of
quation 6) that will give high values for low-probability samples 
Akrami et al. 2019 ). 

We state without proof (see Akrami et al. 2019 , 2020 for details)
hat L REC for a single sample can be re-written as: 

 

( i) 
REC = E z ∼q φ ( z | x ( i) ) [ D KL ( ̂  p ( X ) | p θ ( X | Z ) ) ] , (8) 

here ˆ p ( X ) = 

1 
N 

∑ N 

i= 1 δ( X − x ( i) ) is the empirical distribution of the
nput matrix X , and N is the number of samples in a mini-batch. We
hen substitute the KL-divergence with the β-cross entropy (Ghosh & 

asu 2016 ) which is considerably more immune to outliers: 

 

( i) 
REC ,β = E Z ∼q φ ( Z | x ( i) ) 

[
H β ( ̂  p ( X ) , p θ ( X | Z )) 

]
, (9) 

here the β cross-entropy is given by Eguchi & Kato ( 2010 ), Roddier
 1988 ), Futami, Sato & Sugiyama ( 2018 ): 

H β ( ̂  p ( X ) , p θ ( X | Z )) = 

−β + 1 

β

∫ 
ˆ p ( X ) 

(
p θ ( X | Z ) β − 1 

)
dX + 

∫ 
p θ ( X | Z ) β+ 1 dX . (10) 

ere, β is a constant close to 0. This makes the total loss function
or a given sample: 

 β

(
θ, φ; x ( i) 

) = E Z ∼q φ ( Z | x ( i) ) 
[
H β ( ̂  p ( X ) , p θ ( X | Z )) 

]
+ D KL 

(
q φ

(
Z | x ( i) ) ‖ p θ ( Z ) 

)
. (11) 

To draw from the continuous Z , we use an empirical estimate
f the expectation, and convert the above into a form of the
tochastic Gradient Variational Bayes cost (Kingma & Welling 
013 ) with a single sample z ( j= 1) from Z . Next, for each sample
e calculate H β ( ̂  p ( X ) , p θ ( X | z (1) )) when x ( i) ∈ [0 , 1]. We substitute

ˆ  ( X ) = δ( X − x ( i) ) and model p θ ( X | z (1) ) with a mixture of Beta
istributions with weight vector ω. That is, 

 θ ( X | z (1) ) = 

k ∑ 

k= 1 

ω k ( X 

p k −1 )(1 − X ) q k −1 × �( p k + q k ) 

� ( p k ) � ( q k ) 
. (12) 

sing equations (10) and (12), we obtain: 

H β ( δ( X − x ( i) ) , p θ ( X | Z )) = 

− β + 1 

β

( 

D ∑ 

d= 1 

( 

K ∑ 

k= 1 

ω k ( x 
( i) ·p k −1 
d )(1 − x ( i) d ) q k −1  d,k 

) ) 

+ 

D ∑ 

d= 1 

K ∑ 

k= 1 

(
( p d,k − 1) 1 + β + 1 

) (
( q d,k − 1) 1 + β + 1 

)
( p d,k − 1) 1 + β + ( q d,k − 1) 1 + β + 2 

, (13) 

here  d,k = 

� ( p d,k ) + � ( q d,k ) 
� ( p d,k ) � ( q d,k ) 

, D is the number of dimensions in a
ingle sample, and K is the number of components in the mixture.
quations (11) and (13) together give us the total loss across all N
amples in a given mini-batch: 

 β ( θ, φ; X ) = 

1 

N 

N ∑ 

i= 1 

[ 
H 

( i) 
β ( ̂  p ( X ) , p θ ( X | Z )) 

+ D KL 

(
q φ

(
z (1) | x ( i) ) ‖ p θ ( z (1) ) 

)]
, (14) 

here the superscript (1) implies a single draw from z from Z . 
The final, RVAE architecture is denoted in the left of Fig. 4 . 
.4 Uncertainty quantification 

ur predictions will be safer for decision making if for each input
ector, in addition to the prediction of IQ, we also predict the degree
f (un)certainty. This is especially true since we aim to toggle the 12
ents based on our predictions, which is an e xpensiv e manoeuvre – a
onfiguration of vents that ends up increasing observed IQ as opposed 
o decreasing it would require re-observation of the target, when 
FHT is already o v ersubscribed by a factor of ∼3. For this reason,
e predict a PDF of MPIQ for every input sample, as described in
ection 4.1. 
Higher error (corresponding to lower model belief or confidence 

n the estimate) can result from absence of predictive features, error
r failure in important sensors, or an input vector that value has
rifted from the training distribution. We decompose the sources of 
redictive uncertainties into two distinct categories: aleatoric and 
pistemic . Aleatoric uncertainty captures the uncertainty inherent to 
he data generating process. To analogize using an everyday object, 
his is the entropy associated with an independent toss of a fair coin.
pistemic uncertainty, on the other hand captures the uncertainty 
ssociated with improper model fitting. In contrast to its aleatoric 
ounterpart, given a sufficiently large data set epistemic uncertainty 
an theoretically be reduced to zero. 12 Aleatoric uncertainty is thus 
ometimes referred to as irreducible uncertainty, while epistemic as 
he reducible uncertainty. High aleatoric uncertainty can be indicative 
f noisy measurements or missing informative features, while high 
pistemic uncertainty for a prediction could be a pointer to the outlier
tatus of the associated input vector. 

The architecture of the MDN (Section 4.1) allows us to predict a
DF of MPIQ for each sample. For each sample and mixture model
omponent, let μm , ( σ m ) 2 , and αm , respectively, denote the mean,
ariance, and normalized weight (weights for all mixture model 
omponents must sum to 1) in the mixture model. We obtain the
redicted IQ value as the weighted mean of the individual means: 

= 

M ∑ 

m = 1 

αm 

μm 

. (15) 

leatoric uncertainty is the weighted average of the mixture model 
ariances, calculated as (Choi et al. 2018 ): 

2 
al = 

M ∑ 

m = 1 

αm 

σ 2 
m 

, (16) 

hile epistemic uncertainty is the weighed variance of the mixture 
odel means: 

2 
epis = 

M ∑ 

m = 1 

αm 

μ2 
m 

− μ2 . (17) 

he total uncertainty is computed by adding equations (16) and (17)
n quadrature. 

.5 Probability calibration 

n Section 4.4, we describe how to derive both aleatoric and epistemic
rrors. While these variance estimates yield a second-order statistical 
haracterization of the distribution of output errors, they can at 
imes mislead the practitioner into a false sense of o v erconfidence
MNRAS 510, 870–902 (2022) 
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Figure 4. The architectures of the tw o netw orks used in this study. To the left of the dashed vertical line, we show the o v ervie w of a v ariational autoencoder, 
but note that the robust V AE (i.e. RV AE) used in this work uses a special reconstruction loss (comparing x and x’ ) which is not depicted in this cartoon. On 
the right , we show a dense feed-forward network with skip connections, mish acti v ations (Misra 2019 ), positional normalization (PONO; Li et al. 2019 ), batch 
normalization (Ioffe & Szegedy 2015 ), and momentum exchange (MoEx; Li et al. 2020 ) augmentation layers. This MDN has five components. Near the right 
edge of the figure, we indicate in cyan coloured rectangles the output shapes after an input sample has passed through each layer. 
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Lakshminarayanan, Pritzel & Blundell 2017 ; K ulesho v, Fenner &
rmon 2018 ; Zelikman & Healy 2020 ). 
It therefore becomes imperative to calibrate our uncertainty

stimates to more closely match the true distribution of errors. In
ther words, we ensure that 68 per cent confidence intervals for MPIQ
redictions (derived from the epistemic uncertainty) contain the true
PIQ values ∼ 68 per cent of times. The confidence interval is the

ange about the point prediction of IQ in which we expect, to some
egree of confidence, the true IQ value will lie. For example, if our
rror were conditionally Gaussian, centred on our point prediction,
hen we would expect that with about 68.2 per cent probability the
rue IQ value would lie within ±1 σ of our IQ prediction where σ
s the standard deviation of the Gaussian. To accomplish this we
eserve some of our data which we use to estimate the distribution
f errors – this is the validation set. Using the inverse cumulative
istribution function of this estimated distribution, scaled by the
redicted standard deviation and shifted by the predicted mean,
llows us to obtain a calibrated estimate of the output realization
orresponding to any particular percentile of the distribution. The
pecific approach we use is the CRUDE method (Zelikman & Healy
020 ). 
Ho we ver, calibrating the error estimates is not the only thing we

are about if, through the calibration process we loose substantial
ccurac y. F or instance, one can increase predicted uncertainties to
rbitrarily high values to obtain a perfectly calibrated model; how-
ver, this w ould mak e these predictions useless for practically any
ownstream task. Therefore, CRUDE not only calibrates our post-
rocessed predictions, but also ensures that they are sharp (Nixon
t al. 2019 ). Sharpness refers to the concentration of the predictions,
kin to the inverse of the posterior error variance. The more peaked
NRAS 510, 870–902 (2022) 
the sharper) the predictions are, the better, provided the sharpness
oes not come at the expense of calibration. 

.6 Performance metrics 

or each input sample x we derive the predicted IQ, the aleatoric
ncertainty, and the epistemic uncertainty, respectively, μ, σ a , and
e , cf. equations (15), (16), (17). In Section 4.6.1, we compare the
edian of predicted IQ values against their ground truth values. In
ection 4.6.2, we e v aluate the quality of the predicted PDF. 

.6.1 Metrics for deterministic predictions 

e present three measures to quantify the quality of the IQ prediction,
oot-mean-square error (RMSE), mean absolute error (MAE), and
ias error (BE). Respectively, these three measures are defined as 

MSE = 

√ √ √ √ 

1 

N 

N ∑ 

i= 1 

( μi − y i ) 
2 , 

MAE = 

1 

N 

N ∑ 

i= 1 

| μi − y i | , 

BE = 

1 

N 

N ∑ 

i= 1 

( μi − y i ) . 

In the abo v e definitions, y i and μi are the true and predicted IQ
alues corresponding to an input sample and N is the number of
amples. 

art/stab3243_f4.eps
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.6.2 Metrics for probabilistic predictions 

s discussed, for each sample our model yields a prediction tuple 
 μ, σ a , σ e } . We further use σ to denote total uncertainty where
2 = σ 2 

a + σ 2 
e . Considering 68th percentile (‘one-sigma’) confi- 

ence interv als, the lo wer and upper bounds of the interval are L α =
− σ e and U α = μ + σ e where, for this example of a one-sigma con-

dence interval, CI = 0 . 682 and α = 1 − CI = 1 − 0 . 682 = 0 . 318.
he parameter α is the fraction of time the model predicts the true

Q will fall outside the confidence interval. We denote by l α and u α
he cumulative distribution function of the (assumed Gaussian) PDF, 
especti vely, e v aluated at L α and U α , i.e. l α = 0 . 5 − CI / 2 = 0 . 159,
 α = 0 . 5 + CI / 2 = 0 . 841. 
We are now ready to introduce our two measures of the quality of

ur probabilistic predictor: average coverage area (ACE) and interval 
harpness (IS). Given N predictions, let the true IQ for one sample be
enoted y . We also define an indicator function 1 α that e v aluates to
 if the true IQ of a sample falls within the corresponding predicted
onfidence intervals, and zero elsewhere: 

 α = 

{
1 if y ∈ [ L α, U α] 
0 else 

. 

he average coverage estimator is defined as for all samples: 

CE α = 

1 

N 

N ∑ 

i= 1 

1 i α − (1 − α) 

nd is a measure of how well the confidence interval captures 
he realized distribution of predictions. A value of zero tells us
hat exactly a fraction 1 − α of the predicted confidence intervals 
ncapsulate the respective true IQs. Generally if ACE α is small in 
agnitude then the prediction interval is well matched to the realized 

istribution of predictions. 
While the ACE gives us a sense of the match between the

redicted and realized distributions, it does not give us a sense of
he concentration of the error. By letting α → 0 all data points
ill fall in the bounds and so ACE α → 0 too. Therefore, we
eed a second measure of probabilistic prediction. We use interval 
harpness/interval score (IS) as this second measure (Gneiting & 

aftery 2007 ; Bracher et al. 2021 ). IS for a single sample is defined
s: 

S α = 

⎧ ⎨ 

⎩ 

α( U α − L α) + 2 [ L α − y ] if y < L α, 

α( U α − L α) if L α ≤ y ≤ U α, 

α( U α − L α) + 2 [ y − U α] if y > U α, 

e normalize this against similar values for all samples, such that 
he final value lies between 0 and 1: 

S α, norm 

= 

IS α − min ( IS α) 

max ( IS α) − min ( IS α) 

nd finally average the normalized values across the samples in the 
est set: 

S α = 

1 

N 

N ∑ 

i= 1 

IS 

i 
α, norm 

. (18) 

o understand equation (18), we note first that 0 ≤ IS α ≤ 1 and 
igher sharpness (less positive) corresponds to more concentration 
nd therefore more useful predictions. The first term, α( u α − l α), is
 constant, parametrized by α. In our experiments, we set α = 0.318
orresponding to ±1 standard deviation. Then a smaller variance will 
ead to a narrower confidence interval and a smaller IS α if the sample
alls within the confidence interval. The sharpness is decreased (IS α

ncreases) if the prediction y falls outside of the confidence interval, 
nd the penalty applied is proportional to the distance between the
round truth value and the nearest interval limit. Generally, an IS α

mall in magnitude means the estimates both fall in the confidence 
nterval and the confidence interval is narrow. 

We calculate ACE and IS for all three uncertainties – aleatoric, 
pistemic, and total. 

.7 Feature ranking 

ne of our goals in this work is to understand the physical mecha-
isms that yield high and low IQ values so that, in the future, we can
ctuate the observatory to impro v e the realized IQ. To accomplish
his we need to understand the insights that the ML models decision
aking processes reveal. To this end, we utilize the methods of

ntegrated Hessians and Shapley values (Janizek, Sturmfels & Lee 
021 ; Gilda, Lower & Narayanan 2021b , c ) for the MDN model. We
se an implementation provided by the pathexplainer software 
ackage that compute feature attributions (or importances). The 
ttributions plot ranks the 119 input features, guiding us on how
mportant each feature is, relative to all other ones, in explaining the
redicted MPIQ. These enable us to understand the model’s decision 
aking process, and to ascertain that the features deemed important 

y the model make sense physically. 

.8 Putting it all together 

.8.1 Training and test sets 

or both the MDN (Section 4.1) and the RVAE (Section 4.3), we
artition D F S , S S into two unequally sized subsets – a training super- 
et containing 90 per cent of the samples and a test set containing
he rest. We are following a nested cross-validation scenario. We 
artition the data sets carefully, to ensure that the distribution of
PIQ values in both the test and training sets reflect the distribution

n the original data set. To accomplish this we sort the samples by
PIQ values and, starting from the lowest MPIQ value allocate each

ample in a round-robin fashion to one of 10 buckets generated. We
hen iterate this process for the training super-set – again producing 
 90–10 split – to respectively produce the final training set and the
alidation set . We train the models on the training set and record its
redictions on the validation and test sets. The validation set guards
gainst o v erfitting – we want our models to learn patterns from the
raining set, but not to the extent where they fail to generalize to
nseen samples. Before making predictions on the test set, we revert
he weights of both the MDN and RVAE models to their respective
pochs where their respective losses on the validation data set were
inimal, as shown in Fig. A3 (b) for the MDN. As a quick reminder,
 ‘prediction’ for the MDN is a three-tuple consisting of mean μ,
leatoric uncertainty σ a , and epistemic uncertainty σ e for the MPIQ, 
hereas for the RVAE it is the reconstructed input sample. 

.8.2 Learning rate and optimizer 

e use a cyclical learning rate scheduler to vary the learning rate
rom an initial high to a final low value, in multiple cycles; this
as been shown to result in a considerably better convergence than
sing step-wise or constant learning rate schedules (Smith 2017 ). 
o determine these limits for the MDN and the RVAE, we pick
rbitrarily high (10 −1 ) and low (10 −7 ) limits, exponentially increase
he learning rate from the latter to the former in a mere 20 epochs,
nd e v aluate the behaviour of the respecti v e loss functions. F or the
DN, we determine that at 10 −3 and 10 −6 , the loss begins to plateau,
MNRAS 510, 870–902 (2022) 
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s can be seen from Fig. A3 (a). We thus pick these as the higher and
o wer limits, respecti vely, and indicate them by dashed vertical lines.
imilarly, from Fig. A4 (a) we can see that these limits for the RVAE
re 10 −3 and 10 −5 . We use the Yogi optimizer (Reddi et al. 2018 )
or stochastic gradient descent; this optimizer is an impro v ement
 v er the commonly used Adam (Kingma & Ba 2015 ), and we find
xperimentally that it provides faster convergence. We wrap this
ptimizer in the Stochastic Weight Averaging optimizer (Izmailov
t al. 2018 ) – accessible via the TENSORFLOW ADDONS library 13 

and average the model weights every 20 epochs, to o v erlap with
he length of a training cycle. The batch size when using both models
s 128. 

.8.3 Feature normalization and data augmentation 

inally, we apply strong feature normalization and data augmentation
o regularize against overfitting. Specifically, we use PONO (Li
t al. 2019 ) layers to capture both the first and second moments
f latent feature vectors, and use MoEx (Li et al. 2020 ) to mix the
oments of one input sample with that of another, to encourage our
odels to draw out training signal from the moments as well as from

he normalized features. In each mini-batch of 128 samples, every
eature vector for every sample is added with the feature vector for
 randomly picked sample; the probability that this happens is set to
.5 – this is, half the times, there is no mixing. In case of mixing, the
eight assigned to the original sample is picked from a β distribution
ith both concentration parameters set to 100, while the weight of

he randomly picked sample is the difference of this from 1 (so that
oth weights sum to unity). The same random ordering of samples
nd the same weights are carried o v er to the model outputs as well
MPIQ for the MDN, the reconstructed input for the RVAE). This
ugmentation scheme has shown to produce state-of-the-art results,
nd our own experiments confirm excellent performance. This can
e seen in Fig. A3 (b), where we plot the training and validation
osses for one of 10 folds; the training loss is significantly higher
han the validation loss for a large part of the training process.

e insert a PONO layer after each Dense layer in the MDN, and
fter the penultimate encoding layer in the RVAE. The MoEx layers
re inserted before the ultimate Dense layer in the MDN, and the
ltimate layer in the RVAE. Each PONO layer is followed by a
roup Normalization layer (GN; Wu & He 2018 ) with a channel

ize of 16 (see the MDN in Fig. 4 ), except when an MoEx layer
irectly follows the PONO layer, where the former is followed by a
atch Normalization layer (Ioffe & Szegedy 2015 ). 

.8.4 Calibration 

or the MDN, we implement additional steps to calibrate the
redicted MPIQ PDFs. We treat each of the 10 training sets (these are
btained after splitting the respective training super-sets into training
nd validation sets, as explained at the beginning of this section) as
 training super-set , and the associated validation set as the test set.
n other words, we sub-divide the training set into 10 training and
alidation sets, train on the new training data sets and use the new
alidation sets as guardrails against o v erfitting, and predict MPIQ
n the new test sets. After repeating this process a total of 10 times,
e now have predictions for the mean and both uncertainties for

ll samples in the original training set. Finally, we calibrate our
odel’s predictions on the original test set by using the predictions
3 ht tps://github.com/t ensorflow/addons 
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n the original training set, by following the method described in
elikman & Healy ( 2020 ). This is the post-processing step discussed

n Section 4.5. We repeat this entire process a total of 10 times to
o v er all samples in D F S , S S . We illustrate this workflow in Fig. A1
n Appendix A, where in the interest of saving space we show only
hree splits instead of 10. 

.8.5 RVAE tuning 

or the RVAE, there are a couple of additional considerations. For
ne, we adopt an annealing methodology to handle the problem of
 anishing KL-di vergence (Fu et al. 2019 ). It is kno wn that the KL-
ivergence loss term in equation (7) very quickly collapses to 0 if
oth L REC and L KL are equally weighted. We therefore adopt the
ethodology suggested by Fu et al. ( 2019 ): we modify equation (7)

y multiplying the second term by a weight scalar W KL , and vary
his from 0 to 1 in a cyclical fashion, as shown in Fig. A4 (b). Next,
here is the requirement to choose an appropriate β in equation (13).

e choose β = 0.005 based as suggested by Futami et al. ( 2018 ),
nd leave the task of finding an optimal β to future work. Finally,
ince W KL is annealed with epochs, we need to ensure that our lower
nd upper learning rates help with convergence for all values of this
calar. From Fig. A4 (a), we see that between learning rates of 10 −5 

nd 10 −3 , the total loss decreases for all values of W KL . 

.8.6 Overall workflow 

ur o v erall workflo w is as follo ws: 

(i) F or a giv en train-test split (out of a total of 10) of D F S , S S , we
se the training set with the MDN, record predictions on the test set,
nd calibrate them using the methodology described abo v e. We sav e
he weights of the MDN at the epoch of minimum validation loss –
his is shown by the dashed vertical line in Fig. A3 (b), and for the
pecific split shown, occurs at epoch 38. 

(ii) Next, we train the RVAE using the same training set. Similar
o the process with the MDN, we revert the model weights back to
he epoch of minimum loss, and make predictions on the test set.

e gather for the training, validation, and test sets the total loss
L ELBO , reconstruction loss L REC , and the KL-divergence loss L KL .
hese are plotted in Figs A4 (c) and (d). We save the 95th percentile
f -L ELBO,Train as the L2; this is our cut-off between ID and out-of-
istribution (OoD) samples. 
(iii) Next, we create a small data set of only those samples from the

est set where all 12 vents are open. While our goal is to hypothesize
he gains in seeing/MPIQ we could have gotten had the vents been in
heir optimal configuration instead of in the all-open configuration,
e believe it is important to be conserv ati ve in our estimates. Thus,
e select only those samples for further processing where we are

onfident that there were no mechanical malfunctions, high wind
onditions, or other system errors that could have prevented the
elescope operator from opening all vents. 

(iv) As a first filter, we select only those samples for which
 ELBO,Test < L2, with the intention of filtering out samples for which
e are not extremely confident about the ID characteristic. 
(v) From this newly created test set, we further only select those

amples where our MDN from Step (i) predicts that the true MPIQ is
o v ered by 68 th per cent spread about the median in the predicted
PIQ PDF. This is again enacted in the interest of obtaining

onserv ati ve predictions downstream. 
(vi) From the filtered test set in Step (v), we create a permutated

ata set by toggling all 12 vents ON ( == 1) and OFF ( = = 0).

https://github.com/tensorflow/addons
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or a total of 12 vents, this results in 4095 new samples for each
nput sample, where the remaining 107 features remain unchanged. 
he 4096 th sample is the input test sample itself, since its vents are
lready in the all-open configuration. For each of these 4095 samples, 
e again apply the same filter as in Step (iv) – filtering out those vent

onfigurations which, given the training set, are OoD. 
(vii) Finally, we obtain MPIQ predictions using the MDN for 

ll samples in the permutated data set, created by collation ID 

ermutations for all selected test samples. 

.8.7 Identifying predictable vent variations and separating 
n-distribution from out-of-distribution samples 

n Fig. 8 (a), we demonstrate our methodology for separating ID 

amples from OoD ones. As should be expected, most test samples 
re ID, as are 95 per cent training samples (by definition). A striking
et expected result is that only a very small sample of possible per-
utations are ID. The reason for this becomes clear from Fig. 11 (c),
here we plot histograms of the different vent configurations in 

he training set – 0 on the x -axis corresponds to the all-open
onfiguration, while 1 to all-closed. The vast majority of samples, 

80 per cent , have all vents closed, while ∼ 20 per cent have either 
ll vents or most vents open. Thus, the vast majority of samples
n the permutated data set, where the 12 vents can take arbitrary
onfigurations – say half open and half closed, corresponding to a 
amming distance ( x -axis in Fig. 8 a) of 0.5 – are those that the RVAE
as not seen before, and thus classifies as OoD. 

.8.8 Process illustration 

inally, we illustrate the workflow delineated in Steps (ii) through 
vii) abo v e in Fig. A2 . 

 RESULTS  

n Section 5.1, we present results on using our model to predict the
Q given the current environmental and dome operating conditions. 
n Section 5.2, we discuss how we might better operate the dome to
mpro v e IQ. In particular , we in vestigate the potential improvement
hat could result from smart actuation of the configuration of the dome 
ents. In Section 5.3, we present results on the relative contribution of
ifferent features to the predicted mean MPIQ. Through these results 
e verify observations by earlier groups and we start to understand 
etter what information our models use in its inference process. 

.1 Predicting image quality 

n Fig. 5 , we present our main results on the accuracy of probabilistic
redictions of MPIQ using the MDN. In Fig. 6 , we present compar-
tive results for the gradient-boosted tree model. Table 5 tabulates 
ummary results. We describe each set of results in turn. 

Fig. 5 (a) quantifies the accuracy of our predictions. The horizontal 
xis displays measured (a.k.a. nominal) MPIQ, while the y -axis 
isplays predicted MPIQ. The units of both are arcseconds ( 

′′ 
). Perfect

rediction is represented by the red 45 ◦ line. True MPIQ varies from
 bit below 0.5 arcsec to just o v er 2 arcsec. The blue dots depict
he point-predictions (the medians of the output PDFs). The light 
lue bars plot the estimated aleatoric uncertainties ( σ a ) of the point
redictions. These are superimposed on the total uncertainty, the 
ifferences are the epistemic uncertainties ( σ e ), visible in orange. As
s tabulated in Table 5 , the MAE between the true MPIQ values and
he medians of our calibrated predictions is ∼0.07 arcsec. 

Fig. 5 (b) helps us understand the impro v ement due to calibration.
e plot the histograms of the differences between the calibrated 

redictions and the true MPIQ values, and between the uncali- 
rated predictions and the true MPIQ values. These histograms 
re respectively plotted in pink and black. We use three metrics
cf. Section 4.6.1) to quantify the impro v ement resulting from
alibration: RMSE, MAE, and BE. The values in the first row are
or uncalibrated medians while those in the second row are for
alibrated models. We remind the reader that the calibration using 
RUDE (Zelikman & Healy 2020 ) is enacted only for the epistemic
ncertainties, σ epis , which we observe is significantly decreased for 
he calibrated model. 

Figs 5 (c) and (d) show smoothed averages of the aleatoric, epis-
emic, and total uncertainties, for both calibrated and uncalibrated 

odels. We highlight a few important aspects. First, as expected, 
al is unchanged by calibration since we do not calibrate aleatoric 
ncertainty. (The light-blue and dark-blue plots coincide so we do 
ot see both.) Second, as a function of increasing MPIQ, σ al (and
he identical σ al,cal curve) start from a low value, decreases slightly, 
nd then increases almost 3 ×. The initial dip can be attributed to the
igh density of data points near the mode of the MPIQ distribution
t ∼0.7 arcsec. The increase at higher MPIQ is likely due to the
ecreasing density of data points (see the red curve in the left sub-
gure of Fig. 2 ). As the model has access to fewer and fewer points

t becomes challenging to learn latent representations discriminative 
nough to be able make good predictions. Hence, the aleatoric error
ncreases. Third, comparing σ epis to σ epis, cal we observe that cali- 
ration increases epistemic uncertainty. This justifies our suspicion 
hat the probabilistic MPIQ predictions are o v erconfident, and that
ur decision to calibrate them post-hoc was sensible. Fourth, σ epis 

nd σ epis,cal follow the same pattern as the aleatoric uncertainty; 
hey initially dip to a minimum and then rise with increasing true

PIQ. That said, relative to their starting values, they dip down to
o wer le vels, and rise asymptotically to about 1.25 × their respecti ve
tarting levels. Since epistemic uncertainty quantifies the degree to 
hich a sample is OoD, these curves imply that, compared to the

amples near the median MPIQ of 0.7 arcsec, samples at both the
ow and high ends of the measured MPIQ distribution are slightly
oD. (We do note that using predicted epistemic uncertainties is 
ot a reliable way to filter out OoD samples, as expounded upon in
ection 5.2 and Fig. 7 ). We believe that both σ al and σ epis can be
educed by weighing the loss function for the MDN so that samples
ith poorer predictions are given more attention by the network. 
nother strategy would be to o v er- and undersample data points near

he ends and the mode of the MPIQ distribution, respectively. This
ill make the curve be less peaked. By attacking the class-imbalance
roblem at both the algorithm- and data-level, we expect to de-bias
ur predictions. 
Finally, in Figs 5 (e), (f), and (g), we demonstrate the effect of

robability calibration on the three uncertainties. The x - and y -
x es, respectiv ely, quantify the e xpected and observ ed confidence
evels. If we sample the 50 per cent CI spread around the median
f the predicted MPIQ PDF from the MDN, 50 per cent of samples
hould have their measured MPIQ values be covered by the predicted
ntervals. Hence, the black dashed 1:1 line in all three plots is the
deal calibration plot. In the inserts, we also quantify the difference
hat calibration makes via the ACE and IS metrics, defined in
ection 4.6.2. The values to the left of the vertical bar (‘ | ’) in the
heat-coloured inserts are for calibrated results, while those to the 

ight for uncalibrated results. Since we only calibrate σ epis , only 
MNRAS 510, 870–902 (2022) 
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(a)

(c)

(e) (f) (g)

(d)

(b)

Figure 5. Predictions using the MDN. σ⇒ 0.5 × (84 th − 16 th ) quantiles. In (a), we plot the predicted MPIQ, characterized by the 16 th , 50 th , and 84 th percentiles 
of their respective calibrated PDFs. These are plotted versus measured (i.e. true) MPIQs. In (b), we subtract the ground-truth MPIQ from the 50 th percentile 
predictions, from both the raw uncalibrated, and the calibrated PDFs, and plot their histograms. We also quantify the quality of both calibrated and uncalibrated 
predictions using RMSE, MAE, and BE; in the inset box read calibrated on left and uncalibrated on right. Calibration results in better BE. In (c) and (d), we 
plot the smoothed mean and standard deviations of the aleatoric, epistemic, and total uncertainties as a function of the measured MPIQs. All three uncertainties 
increase when σ epis is calibrated. Uncertainty is highest near the low-end and high-end MPIQ values; in these regimes we have the least number of observations. 
Uncertainty is lowest near the mode of the histogram of measured MPIQs where data is plentiful (cf. the histograms in Fig. 2 ). Finally, in (e), (f), and (g), we 
visualize the benefits of calibrating σ epis . The ideal is the 1:1 line; closer is better. In the inset box the IS and average calibration error (ACE) metrics, with and 
without calibration, are provided. 
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(a) (b)

Figure 6. Prediction results using GBDTs. 

Table 5. Comparative performance of methods, across all four data sets (cf. Section 3), and all six metrics (cf. Section 4.6). The top ro w sho ws uncalibrated 
results for the MDN and the GBDT models. To ease direct comparison, we present results as an ordered tuple (MDN, GBDT). The bottom ro w sho ws calibrated 
results for the MDN. We do not provide calibrated results for the GBDT. For each metric the performance of the best-performing model is highlighted in bold; 
in all cases the MDN performs at least as well as the GBDT. 

Metric RMSE MAE BE ACE al ACE epis ACE total IS al IS epis IS total 

Uncalibrated ( 0.11 , 0.11 ) ( 0.07 , 0.08) ( 0.00 , 0.00 ) ( −0.01 , −0.09) ( −0.31 , −0.59) ( 0.04 , −0.08) ( 0.03 , 0.06) ( 0.04 , 0.08) ( 0.03 , 0.06) 
Calibrated 0.11 0.07 0.03 −0.02 −0.10 0.11 0.02 0.04 0.03 
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ig. 5 (f) shows an impro v ement. This comes at the cost of poorer
ost-calibration results for σ al and σ total . 
In Fig. 6 , we show comparative plots for predictions made using

ur gradient-boosted tree models. This model is described in Sec- 
ion 4.2. Comparing Fig. 6 (a) to Fig. 5 (a), we see that GBDT models
ignificantly underestimate σ epis . Calibrating the GBDT model using 
RUDE does not result in substantial impro v ement. This is why we
se the MDN as our workhorse for MPIQ predictions. For sake of
ompleteness, we compare predictions from CATBOOST with those 
rom MDN, and hypothesize reasons for deficient performance of 
ATBOOST , in Appendix B. 
In Table 5 , we collate the results on the five metrics, for both

alibrated and uncalibrated predictions from the MDN. We compare 
hese predictions from those from the boosted-tree GBDT model. 
hese results demonstrate that the MDN outperforms the GBDT, 
gain supporting the choice to use it as the workhorse model for
PIQ prediction. 

.2 Actuating dome parameters to impro v e IQ 

.2.1 Separating in-distribution (ID) from out-of-distribution 
OoD) actuations 

n addition to predicting MPIQ, one of our driving motivations is to
earn how to actuate observatory operating parameters to impro v e 

PIQ. One set of easily actuatable parameters is the dome vents. 
ndeed, as mentioned in the discussion of related work in Section 2,
uid flow models were developed in the vent design process to predict

he effect on MPIQ of various vent configurations. These models 
redicted that the optimal MPIQ is achie v able with intermediate 
ent configurations, where the 12 vents are neither all-open nor 
s
ll-closed (Baril et al. 2012 ). In contrast, in most usage to date
 ents hav e been configured either to the all-open or to the all-closed
etting. We therefore explore what our MDN model predicts – how 

uch impro v ement a modified v ent configuration might hav e on
PIQ reduction. We note that we must be cautious when pursuing

his e x ercise as some v ent configurations are not within the training
ample. As we describe in Section 4 and Fig. 7 (c), we use the pseudo-
arginal log likelihood, -L ELBO , from the RVAE model as a filter to

iscriminate ID samples from OoD ones. In Fig. 7 , we justify our
hoice to use this metric to detect distribution shift. 

In Fig. 7 (a), the pink and cyan curves are the histograms for
epis for the training and test sets for one of 10 folds. To simulate
oD data, we synthesize four data sets. The uniform noise data set,
epicted in green, is generated by drawing 50 000 × 119 samples,
ndependently, from the uniform distribution between 0 and 1. The 
onstant noise data set, depicted in blue, is generated by drawing
0 000 × 1 samples, independently, from the uniform distribution 
etween 0 and 1, and copying this o v er 119 times. The orange and
ed curves are noisy versions of the training data set, where we add
aussian noise with μ = 0 and σ = 0.10 and 0.05, respectively.
ince we do not train the MDN with noisy versions of the training
ata (we use the MoEx data augmentation method only, as described
n Section 4), the uncertainty in predicting MPIQ as a result of noisy
ersions of training data is classified as epistemic and not aleatoric.
he dashed vertical black line marks the 95 th percentile value for
epis, train – we classify all values to its right as OoD. We plot the
ensity in log scale to better capture different ranges. Fig. 7 (b) is the
ame as Fig. 7 (a), except it plots histograms for calibrated epistemic
ncertainty. In both figures, it is apparent that epistemic uncertainty, 
hether calibrated or uncalibrated, is a poor detector of a distribution

hift. Distribution shift identification using discriminative models 
MNRAS 510, 870–902 (2022) 
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(a)

(c) (d)

(e) (f)

(b)

Figure 7. We visualize the discriminative ability of various metrics to separate OoD samples from ID samples. Perhaps surprisingly, we observe that epistemic 
uncertainties, whether calibrated or uncalibrated, are poor metrics for OoD detection. This is our moti v ation for the RVAE, which directly captures the likelihood 
of the training data-generating distribution. (c) and (e) show that log-likelihood is an excellent, if not perfect, discriminator that can separate ID training and test 
data from even slightly OoD synthetic data created by adding Gaussian noise of the indicated standard deviation ( σ ) to normalized training data. In (d) and (f), 
we calculate the log-likelihood regret (Xiao et al. 2020 ), as explained in Section 4.3. Comparing (e) and (f), we see that regret is a slightly better OoD detector. 
In these plots, the training data histogram is more concentrated, and the modes of the histograms of the two noisy data sets are farther away from the mode of 
the histogram of the training data set. 
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(a) (b)

Figure 8. Identifying valid, ID samples from the corpus of all toggled vent configurations. From samples in the test set with all 12 vents open, we select 
only those about which we can make confident predictions of MPIQ using our MDN. Only a very small subset of the blue curve is ID. This makes sense, 
since the training set consists mostly of samples where the vents are almost all-open or all-closed. Hence, most samples in the toggled data set with other vent 
configurations are classified as OoD by our RVAE. 
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uch as the MDN is an area of active research, and we relegate
urther exploration of this limitation to future work. In this paper, we
nstead use the RVAE as a proxy for our data distribution, and justify
ur decision in Figs 7 (c), (d), (e), and (f). 
In Figs 7 (c) and (e), we plot the L ELBO for the same data sets

escribed abo v e; the latter figures focus on the ‘hard’ cases of noisy
raining data. The samples to the left are OoD. It is immediately clear
hat the marginal likelihood is a much better distribution shift detector 
han is the epistemic uncertainty. This follows because the uniform 

nd constant noise data sets are very easily separable, and the supports 
f the two Gaussian data sets are also almost completely to the left of
he vertical line. In Figs 7 (d) and (f), instead of using L ELBO as the dis-
riminative metric, we instead use the pseudo-log likelihood regret. 
roposed in Xiao et al. ( 2020 ), likelihood regret for a sample is de-
ived by passing it through the trained RVAE and caching L ELBO . We
hen fix the weights of the decoder and train the encoder to minimize
 ELBO for that single sample. The difference between L ELBO,sample and 
 ELBO is the pseudo-log likelihood regret. In Xiao et al. ( 2020 ), this is
hown to be a better detector of OoD samples than L ELBO . By defini-
ion, regret is al w ays non-negative. Comparing Figs 7 (e) and (f), we
erify that regret is indeed a better separator – the pink curve is less
pread out, and the modes of both the red and orange curves are farther 
way from the black line. Given these results, it is natural to question
ur design choice of using L ELBO as the metric we used to identify
oD samples. We use L ELBO rather than regret because while pseudo- 

og likelihood regret is more robust, it also takes about 50 times longer
o calculate than L ELBO . This is because the calculation of regret
equires retraining of the encoder, once per input sample. Even if we
ivide our GPU 

14 into multiple virtual cores for parallel processing, 
t took about 2 h to calculate regret for 4096 samples (4096 = 2 12 is
he number of permuted vent configurations possible for each input 
4 NVIDIA Titan RTX 24Gb 

(  

d
 

v

ample). For these computational reasons, we use L ELBO . Depending 
n computing resources, in the future we may mo v e to distributed
omputing framework to make the use of regret practical. 

.2.2 Pr edicted r eduction in MPIQ using only on in-distribution 
ID) vent configurations 

e now use L ELBO to identify the vent settings that are not too ‘out-
f-distribution’ for which our model will be able to make reliable
PIQ predictions. As we will develop in the following, these robust

redictions indicate that substantial MPIQ impro v ement is possible 
y optimizing the vent configuration. In future work, we plan to
xtend our data set to reduce the set of OoD vent configurations,
hereby enabling a wider range of reliable predictions, and helping 
s to realize even greater MPIQ improvements. 
Fig. 8 demonstrates results from the process we use to identify,

mong all possible vent configurations, those for which we can make
eliable MPIQ predictions. By this process, we filter out those data
ecords that are OoD. (The workflow that led to these results was
escribed towards the end of Section 4.8 and is illustrated in Fig. A2 .)
s this restricted, or ‘filtered’, set of vent configurations that we use
o assess the possible impro v ement. In Fig. 8 (a), we show results for
ne of the 10 splits of D F S , S S and predict the MPIQ that would
esults for all possible vent settings. On average, each test split of
6000 data records results in ∼600 samples. For each of these 6000

amples on average only about four other vent configurations (out of a
ossible 2 12 − 1 = 4095) are not OoD given the training distribution.
or each of these vent configurations, we use the MDN to predict the
PIQ three-tuple ( μ, σ al , and σ epis ). We compare these predictions

o the MPIQ three-tuple predictions for the respective base samples 
with all vents open). The results of this e x ercise, which we will
iscuss next, are presented in Figs 9 , 10 , and 11 . 
In Fig. 9 (a), we plot bar-charts for the change in MPIQ with optimal

ent configurations, with respect to the predicted (calibrated) mean 
MNRAS 510, 870–902 (2022) 
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(a)

(b)

Figure 9. Visualizing the predicted effect on IQ of optimizing vent configurations. 
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PIQs for the respective reference test samples with all vents open.
or each of the 10 train-test splits of D F S , S S we recall that there
re ∼600 viable all-open data samples. Of these viable samples
e randomly sub-sample 100 and, for each of these, predict their
ean MPIQ for the all-open configuration using our MDN. We then

alibrate these predictions using the CRUDE method, as described in
ection 4.5. We note this prediction will be some what dif ferent from

he measured MPIQ associated with these data records. Finally, we
ake predictions for each of the ID vent configurations for all 100

amples (roughly 100 × 4 = 400) and subtract each of these MPIQ
redictions from the predicated calibrated median MPIQs for the
ll-open configuration. In Fig. 9 (a), we plot these differences against
he measured MPIQ values. Values abo v e dashed zero-lev el imply a
orsened (predicted) MPIQ in comparison to the baseline of keeping

ll 12 vents open. Values below the dashed zero-level suggest that
nother ID vent configuration will likely result in reduced seeing.
ote that we predict the difference in predicted seeing levels as

hese are the levels the model would predict were it not to have
 measurement of MPIQ for the baseline all-open configuration.

hile in our data set we do have the baseline MPIQ, in real-time
peration that baseline MPIQ value would not be available prior
NRAS 510, 870–902 (2022) 
o the observation when the observer would be using the model to
ecide how to actuate the vent configurations. 
To better understand how to read the vent configurations that

ead to an impro v ement in predicted MPIQ, we have colour-
oded Fig. 9 (a). Bars that are dark purple correspond to the all-
lose configuration; dark brown to all-open. The colour gradient
orresponds to Hamming distances of the configuration vectors from
ll-open. As one would suppose, the model predicts all-closed to
e a worse setting more often than not. This is in keeping with the
riginal moti v ation for installing the vents, discussed in Section 2.
y and large, opening vents improves MPIQ by allowing air currents
uilt up inside the dome to flush. All-close is the same as having no
ents, thus represents the scenario that was meant to impro v e upon
y installing the vents. As we consider higher measured MPIQs
moving from left to right on the x -axis), we see that the optimal
onfigurations tend to be closer to all-close. This is also in line with
ntuition pre viously de veloped at CFHT. Higher measured MPIQs
re typically obtained in high wind speed scenarios, where it makes
ense to close the vents. 

Fig. 9 (b) consists of only those test samples from the same ∼600
hat were used to draw from in Fig. 9 (a), where the predicted,

art/stab3243_f9.eps
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(a) (b)

(c) (d)

Figure 10. We visualize the gains in terms of impro v ed MPIQ prediction that can be achieved by our proposed methodology of toggling the 12 vents open and 
close individually as a function of environmental and observatory characteristics. The baseline configuration is all-open. After restricting ourselves to a subset 
of ID ‘togglings’, in (a) and (b) we plot the impro v ement o v er the measured MPIQ values, whereas in (c) and (d) we plot the impro v ement o v er MPIQ values 
predicted for the same samples in all-open configuration. In (b) and (d), we sub-sample the data points from (a) and (c), respectively, only presenting those 
samples for which we are quite confident in our estimates. In (c), the several y = 0 red dots in the left-half of the plot signify that for those samples, the all-open 
vent configuration is in fact the optimal vent configuration. Finally, we present third-order polynomial fits in (c) and (d), and estimate total gains achie v able 
using our predicted, optimal vent configurations, using weighted mean and weighted median metrics. These fits are used to calculate av erage e xpected reduction 
in observing times to achieve a fixed SNR. 
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alibrated upper 84 th quantiles of the total uncertainties ( μcal + 

total, cal ) are ≤ the predicted calibrated medians for the respective 
est samples with all vents open. Our idea here is to create a robust
ubset. On average, for all 10 train-test splits, this results in 62 robust
amples. We emphasize that this is a second, distinct sampling, with 
o guarantees of o v erlap with the 100 randomly selected samples
sed to plot Fig. 9 (a). If we were to mis-actuate the vents and decrease
he MPIQ, there would be a ne gativ e effect on the downstream science
pplications. To mitigate this risk here we chart only those instances 
here, if our models were to be put into production, we would be
ery confident in directing the telescope operator to move the vents 
ccording to our predictions. From Fig. 9 (b), we observe that all-
pen is not the optimal configuration in most situations. This is true
 ven at lo wer measured MPIQ v alues. In fact, significant gains in
PIQ can be realized by switching each observation from the all- 

pen configuration to the best configuration (from out limited choice 
v  
f ID and therefore ‘viable’ configurations) is significant. When we 
onsider higher MPIQs ( ∼≥1 arcsec), the optimal configuration is 
ikely to be all-close. 

.2.3 Best ac hie vable MPIQ: a ne w regime 

n Fig. 10 , we present results on the impro v ement in MPIQ predicted
y our MDN given the (hypothetically) optimal vent configurations 
elected from the restricted set of ID configurations selected by the
VAE. Figs 10 (a) and (b) plot the impro v ement v ersus measured IQ,
hile Figs 10 (c) and (d) plot the impro v ement v ersus predicted and

alibrated median MPIQ. Further, the two right-hand plots, Figs 10 (b) 
nd (d) plot the impro v ement for robust sub-samples (the samples
rom the 84 th quantiles) discussed in the last paragraph. We note
wo differences here, compared to Fig. 9 . First, we use all ∼600
iable test samples (for Figs 10 a and c) in a given train-test split,
MNRAS 510, 870–902 (2022) 
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(a) (b)

(c) (d)

Figure 11. Distribution of predicted optimal vent configuration. Distribution is measured as Hamming distance from the all-open baseline. 
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nd not sub-sample of 100; in Fig. 9 we were forced to sub-sample
ue to space constraints. Second, here we show the difference in
redicted optimal MPIQs with respect to both the predicted all-
pen MPIQs, and the measured MPIQs. For Figs 10 (a) and (c), we
ick the optimal vent configuration for each of the ∼600 viable
amples, use the MDN to derive calibrated predictions of MPIQ, and
lot the difference between predicted calibrated optimal median and
redicted calibrated median for the corresponding test sample with
ll 12 vents open. For Figs 10 (b) and (d), we do the same, but only for
he robust samples from the ∼600 samples. We observe that as we
onsider larger measured MPIQ values there is increased advantage
o optimizing the vent configuration. 

In the four sub-figures in Fig. 11 , we visualize the distribution
f Hamming distances for the optimal vent configurations chosen
or the samples in Fig. 10 . Either from the density of points plotted
n Fig. 11 (a), or from the distribution of Hamming distances from
he all-open configuration plotted in Fig. 11 (c), we observe that most
ptimal vents configurations are close to either all-open or all-closed.
his should not come as a surprise. As discussed earlier, most vent
onfigurations that are not close to either the all-open or all-closed
onfigurations were OoD and so were filtered out of the ‘viable’ set
NRAS 510, 870–902 (2022) 
f configurations for which we consider the MPIQ predictions. At
he risk of repeating some of the broader context provided earlier,
he fact that the intermediate vent configurations are OoD is a result
f the way the observatory has been operated to date. Most often
he vents have been configured either all-open or all-closed, to a
arge degree because observers have had no reasoned methodology
o follow to choose alternate configurations. The training data we
ave access to therefore clusters around the all-open and all-closed
onfigurations. In a sense then, Fig. 11 is another illustration of
 main moti v ation for our w ork; we w ant to expand the range
f options for the observers so they can better tune observatory
erformance. 
An important observation from Figs 11 (a) and (c) is that the
odel predicts about 60 per cent of samples would have resulted

n impro v ed MPIQ had a different setting been chosen. Figs 11 (b)
nd (d), which are the predictions for the ‘robust’ subset discussed
arlier are even more definitive – a full 85 per cent of samples would
ave benefitted from a different vent configuration. About half of the
djustments would have be to close a single vent, while the other
alf would have closed all 12 vents. Only a smattering of predictions
alls between these two choices. Of course, as just discussed, the
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(a) (b)

Figure 12. Attribution (a.k.a. summary) plots. By using expected gradients (Janizek et al. 2021 ), we obtain the impact of each feature on the MDN’s predicted 
output. These are then collated for all samples in the test set (for a given fold), and collated again for all test sets from all folds. (a): Using all ∼60 000 samples. 
(b): Using only the ∼6000 ID samples for which there exist vent configurations that result in lower predicted median MPIQ than their counterparts with all 12 
vents open. 
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ntermediate range is mostly OoD. 15 That said, the peakiness at one- 
losed-vent and at all-12-closed-vents is, for us, a strong indication 
hat the true optimal configuration lies somewhere in the middle. Not 
ill we can collect additional data on this intermediate range to bring
t in distribution will we be able to make robust predictions in that
ange that we can use to advise – with confidence – how the observer

ight more productively operate the telescope. 

5 At this point is very helpful to refer back to Fig. 8 (b) and observe that 
single-vent-closed’ is the third most frequent vent setting in the training 
et. This explains why our model finds that this type of close-a-single-vent 
djustment is ID. Further, the ∼ 38 per cent pre v alence of one-closed-vent 
onfigurations in the robustified results of Figs 11 (b) and (d) tells us that 
his option is of great use in improving the (robustly predicted) MPIQ results 
lotted in Figs 10 (b) and (d). 

o  

‘  

g  

f  

f  

i  

f  

o  

t  
.3 Quantifying feature importance in prediction of MPIQ 

s a final contribution, we quantify the relative importance of each
f the 119 features in predicted median MPIQ. By leveraging the
ntegrated gradients technique (Janizek et al. 2021 ), we can attribute
 Shapley score to each feature for each sample. This score measures
he linear change in the predicted output (with respect to the average
f the MPIQs across all samples in the training set, which is called the
offset’) that is induced by a small change in any given feature (i.e. the
radient). A positive score for a feature f in sample x implies that in x ,
 acts to increase the predicted MPIQ, while a ne gativ e score points to
 ’s role in decreasing the predicted MPIQ. The larger the magnitude
s of this Shapley’ score, the bigger the role of f in determining MPIQ
or x . We average such scores for all 119 features across all samples
f interest, plot attribution plots in Fig. 12 , and explicitly list the
op most important features in Table 6 . In Fig. 12 (a), we carry out
MNRAS 510, 870–902 (2022) 
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Table 6. Most predictive features identified in Fig. 12 . 

Abbreviation Feature Abbreviation Feature 

F:000 Barometric pressure F:057 Rear observing room air temperature 
F:004 Catwalk temperature, north F:060 Thrust bearing surface temperature, south beam 

F:007 Filter central wavelength F:061 Top ring air temperature, east 
F:015 Current altitude F:063 Top ring air temperature, west 
F:023 Dome top temperature F:065 Truss surface temperature, north halfway-up 
F:027 Dome wall temperature, west F:069 Truss surface temperature, west halfway-up 
F:037 Fourth floor crawlspace air temperature F:070 Vent L1 
F:042 sin (hour of day) F:107 Weather tower temperature 
F:051 Mirror surface temperature, east underside F:110 Weather tower wind speed 
F:052 Mirror surface temperature, south underside spigot F:111 cos (week of year) 
F:056 Observing room air temperature F:112 sin (week of year) 
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his e x ercise for all test samples for each train-test split of D F S , S S ,
nd collate the results from all 10 cycles (assuming the number of
plits is 10). In Fig. 12 (b), we repeat this e x ercise, but only for the
ignificantly smaller test set samples ( ∼600 per train-test split) that
re ID. 

Concentrating on ID samples ( 12 b), we can see that the most
mportant features in the prediction of MPIQ can be grouped
oughly into three groups, related respectively to dome convection,
easonal variations, and filter central wavelengths. In the first group,
dditional dome turbulence can be sourced by air convection, which
s sourced by (positive) internal temperature gradients within the
ome, with respect to altitude in the dome. Therefore, MPIQ is
xpected to increase with the mirror temperature that acts as a
ource of convection, and decrease with the temperature of the upper
tructures of the telescope (truss), that tends to reduce the temperature
radient. This is precisely what we see in the attribution plots of the
wo most important features. The third feature in importance shows
 correction of the predicted MPIQ with respect to the λ1/5 law used
n equation (3), with a predicted MPIQ larger at smaller wavelength
ompared to the theoretical scaling. Finally, the fourth ranked feature
hows the seasonal variation of IQ, with better average seeing during
he summer months due to more clement weather. Further features
n the list can most of the time be attributed to one of the groups
escribed abo v e. 

 C O N C L U S I O N S  A N D  F U T U R E  WO R K  

n this paper, we present what we envisage to be the first in a series of
tudies that will ultimately lead to dynamically optimized scheduling
t the CFHT. We have initiated that program herein by developing
achine-learning based data-driven methods of IQ prediction. We

resent results for two models. The first is a feed-forward MDN used
n conjunction with an RVAE. We trained both on a new data set
hat comprises 8 yr of data collected at CFHT since the installation
f the dome vents. The MDN produces probabilistic predictions
f IQ, while the autoencoder estimates the marginal distribution of
he data. On average, IQ can be predicted to be within 0.07 arcsec
ccuracy based on environmental conditions and telescope operating
arameters. By varying the configuration of the dome vents (in an ID
ay) in response to environmental conditions, our model predicts that

Q can be impro v ed by about 10 per cent o v er historical patterns, with
he gains increasing when the nominal IQ value is large. For SNR-
ased observations, this represents gains of up to 10–15 per cent.
hese gains, in turn, can be equated to approximately 1M USD

n operating costs per year of SNR-based observing. Such gains
NRAS 510, 870–902 (2022) 
ould be realized in the form of additional observations made and
xperiments conducted; additional science accomplished. 

We see several important avenues for further inquiry. Perhaps
ost immediate, the impro v ements in IQ that we present are

redicted by extrapolating over hypothetical vent configurations.
hile the uncertainties predicted by our model suggest that these
oD predictions are robust, we need to verify our predictions by

ollecting additional observation data in these operating regimes. By
ollecting such data we will be able to extend our model and robustly
redict IQ for the more intermediate vent configurations ‘half-way’
etween all-open and all-closed. In doing so we aim, finally, to realize
he full utility of the dome vents. 

Second, in this study we have treated each data record as an
ndependent sample. In reality of course, exposures are temporally
elated. Numerous exposures are collected each night. By treating
ata records as independent, we do not leverage what we anticipate
re quite important temporal relationships extant in the data. By
ncorporating temporal models, our aim is to be able to produce
eal-time robust forecasts of IQ some 5-to-20 min into the future.
he realization of such capabilities will enable the adaptive reorga-
ization of a nominal observation schedule, the real-time scheduling
rotocols we mention in the introduction. 
Connected to the second point, in this paper we work e xclusiv ely

ith data records from MegaCam. Going forward we plan to
ugment our data set with records from other CFHT instruments.

hile MegaCam’s IQ measurements are the most accurate, other
nstruments also measure IQ with acceptable accuracy, and equally
mportantly, operate when MegaCam is offline. CFHT schedules
nstruments in blocks or ‘runs’ of several consecutive nights, e.g.
wapping out instruments twice a month according to their sensitivity
o moonlight. The consequence of this is that training data from

egaCam is not temporally contiguous. This makes it more difficult
o use in training a scheduler. 

Fourth, we do not currently take into account the physical locations
f the different sensors. While discarding this spatial information
ade modelling and data analysis easier for this initial study, it

eaves out useful side information that can connect the placement of
ensors and their relati ve v alues. Going forward we will incorporate
uch information into our models. 

Fifth, the approach we take to post-hoc calibration of epistemic
ncertainties – CRUDE (Zelikman & Healy 2020 ) – has its own set
f limitations. While state-of-the-art in terms of improving sharpness
nd calibration, CRUDE implicitly assumes a symmetric distribution
f uncertainty. In our context, this means we do not fully leverage
he asymmetric uncertainties output by our β posteriors. CRUDE
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lso assumes that, once normalized (by their standard deviations), 
ll errors are drawn from the same distribution. Therefore, CRUDE 

eights all data points equally. In our context, one implication is that
hile calibrating the PDF for a test sample with nominal (true) IQ
f 2 arcsec, which is near the right tail of the distribution (see the red
urve in the left sub-figure of Fig. 2 ), we are strongly impacted by
amples with nominal IQ values near 0.6 arcsec, which is the mode
f the distribution. This uniformity of treatment is not ideal. We plan
o address this shortcoming in the future. 

Sixth, we note that we are cautious about the thresholding method 
e apply to detect OoD samples (see Fig. 8 a). In this work, we take

he 95 th percentile of the pseudo-marginal log-likelihoods for the 
raining set samples as the OoD threshold. Ho we ver, this is an ad
oc choice based on intuition. We do not claim that it is the optimal
ethod to filter out OoD samples. We also show that log-likelihood 

egret is a more accurate metric than is log-likelihood when aiming to
eparate the two types of distributions. We refrain from using regret in 
his work due to practical concerns about run-time. In future work, we 
ill leverage distributed computing to integrate this superior metric 

nto our pipeline, and we will explore more principled ways to set
he threshold. 

Finally, in a slightly different direction, we note that a subset of the
uthors are collaborating with a concurrent and complimentary study 
f dome seeing at CFHT. In that study direct measurements of local
n-dome optical turbulence are being collected using AIRFLOW 

nstruments (Lai et al. 2019 ). AIRFLOW sensors are al w ays-on
ptical turbulence sensors and, as discussed in the introduction, 
urbulence is highly correlated with instrument IQ, the metric of 
nterest herein. This work informs the AIRFLOW study in that it
an provide insight into which locations sensors should be placed. 
onversely, data from the AIRFLOW study can provide a new data 

tream for this study. Taken together, these two studies will offer
nique insights into the nature of dome seeing and ways that effects
hich degrade seeing can be mitigated. 
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ETA I LS  

n this appendix, we present a few figures that we anticipate will
elp the reader better understand our implementation of the machine
earning techniques we use. In particular, in Fig. A1 we illustrate our

DN training process. In Fig. A2 , we illustrate the approach taken to
dentify ID vent configurations among all possible 2 12 configurations.
ur predictions are restricted to only ID vent configurations. Finally,

n Figs A4 (c) and A4 we present some details on how we select our
earning rate. 
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Figure A1. Workflow for generating predictions for MPIQ using our MDN (Fig. 4 ). First , we divide the input data set X into N CV,1 = 10 cross-validation folds, 
at any point referring to the collation of N CV,1 − 1 of them as X TRAIN , and the remaining fold as X TEST . We repeat this N CV,1 times to co v er all samples in X , 
but depict only one such iteration here for illustration. Second , we sub-divide X TRAIN into N CV,2 = 3 CV folds. Same as before, N CV,2 − 1 folds are collated 
while the remaining fold, referred to as the validation set V , is set aside. Third , each of the N CV,2 CV folds is used to create N bags = 3 ‘bags’ by randomly 
shuffling its data and picking the same number of samples with replacement. The MDN is trained on one of such folds, and predictions on the validation set give 
us the 16 th , 50 th , and 84 th quantile predictions, plus the epistemic uncertainty per sample in V . This process is repeated N CV,2 − 1 more times to get predictions 
for all samples in X TRAIN . Fourth , the MDN is now trained on the entire training set, and predictions collected for samples in X TEST . Fifth , we use CRUDE 

(Zelikman & Healy 2020 ), and the predictions from the third step to calibrate the predicted values from the fourth. 
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Figure A2. Workflow for identifying acceptable, ID vent configurations, for each sample in the test set. First , we isolate samples with all 12 vents open. 
Second , we further pick only those samples for which the predicted 84 th and 16 th quantiles, generated by adding the epistemic and aleatoric uncertainties in 
quadrature, envelope the true MPIQ. ‘MDN’ stands for MDN, see Fig. A1 . Third , we use the training set with our robust VAE, calculate the 5 th percentile of 
the pseudo-marginal log likelihood loss, and use that as a lower cut-off to separate ID test samples from OoD ones. Fourth , for the test samples thus filtered, 
we generate 2 12 − 1 samples by toggling the 12 vents into open and close positions, but skip the all-open configuration since that is the base case. From these 
hypothetical samples, we find the ID ones by repeating the procedure of step 3. Finally , we throw out those test samples for which none of the hypothetical 
cases passed the cut-off test. 
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(a) (b)

Figure A3. Loss as a function of learning rate and epochs for one of 10 folds when training using the MDN. In (b) , the training loss is higher than the validation 
loss owing to the MoEx augmentation (Li et al. 2020 ), as we explain in Section 4.1. 
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(a) (b)

(c) (d)

Figure A4. Losses as a function of learning rate, W KL , and epochs, for one of 10 folds when training using the RVAE. While the MDN has a single loss (see 
Fig. A3 ), the RVAE has two individual losses. In conjunction, these form the final loss that is minimized by mini-batch gradient descent (-L ELBO = L REC + L KL , 
see Section 4.3). Different from Figs A3 (b), (c), and (d) here are not ‘live’ plots, but constructed once the RVAE has been fully trained. 

A

I  

f  

B  

t  

i  

h  

m  

t  

p  

M  

m
 

C  

c  

s  

y  

1

t  

p  

F  

c  

h  

(  

M  

M  

a  

t  

a  

o  

m  

fl  

t  

a
 

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/1/870/6425766 by C
N

R
S user on 07 April 2023
PPENDIX  B:  M D N  VERSUS  C AT B O O S T  

n Figs B1 and B2 , we plot the predicted PDFs for three samples each
rom the training and the test sets, using both the MDN and the CAT-
OOST ensemble. Note that while GBDT (gradient boosted decision

ree) is the specific algorithm, and the term we have repeatedly used
n the main text of this paper, the specific implementation of it used
ere is CATBOOST . 16 These samples are those with the minimum,
edian, and maximum measured MPIQ, in both the training and

est sets, respectively. We aim to visualize both the difference in
erformance between the two models at v arious le vels of measured
PIQ, as well as the full PDF for all model components for both
odels. 
We make several observations. First, all 10 components of the

ATBOOST ensemble have equal weights, whereas each of the five
omponents of the MDN can have variable weights depending on the
ample. Second, the diversity in model components, both in x- and
- values, is much larger for MDN than for CATBOOST . Third, uncer-
6 ht tps://catboost .ai/

d  

a  

t  

NRAS 510, 870–902 (2022) 
ainties as quantified by the FWHM are significantly lower for PDFs
redicted by MDN than they are for PDFs predicted by CATBOOST .
ourth, for both low and high MPIQ values, the β likelihoods in MDN
omponents enable a significantly more flexible representation, and
ence a more realistic, asymmetric PDF. Specifically, the low-MPIQ
 ∼0.15 arcsec) and high-MPIQ ( ∼2 arcsec) both have quite distinct

DN components (in terms of the predictions) whereas the mid-
PIQ ( ∼0.5 arcsec) MDN predictions are all quite similar, more

kin to the CATBOOST ensemble. As ∼0.5 arcsec is near the mode of
he MPIQ distribution (see the top plots in Fig. 2 ), both models are
ble to capture the relationship between the input features and the
utput MPIQ values quite well. In contrast, the behaviour of the two
odels is quite different at the tails of the distribution. The added
exibility if the MDN results in significantly better predictions than

he CATBOOST ensemble can accomplish. This is especially the case
t low and high MPIQ values, which are close to OoD. 

Finally, in Figs B3 and B4 we highlight the CATBOOST ensemble’s
eficiencies as a predictor, justifying our decision to use MDN for
ll tasks in this paper. In Fig. B3 , we see that for all except 14
est samples, the CATBOOST ensemble is unable to hypothesize vent

art/stab3243_fA4.eps
https://catboost.ai/
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(a)

(b)

(c)

Figure B1. PDFs of model components for both MDN and CATBOOST ensembles, for three samples from the training set (at low, medium, and high MPIQ). In 
each subfigure, the coloured curves represent model components PDFs. The solid black curve in each subfigure is the weighted, final PDF. The dashed, grey 
vertical line indicates the true or measured MPIQ. 
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(a)

(b)

(c)

Figure B2. This figure is similar to Fig. B1 , but now for three samples (at low, medium, and high MPIQ) selected from the test set of ∼6600 samples (as 
opposed to the training set in Fig. B1 ). 
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(a)

(c)

(b)

Figure B3. We use the CATBOOST ensemble to find the optimal vent configurations that would result in the lowest MPIQ values for each of the ∼660 test 
samples with all vents open. Our results indicate that by and large, the CATBOOST ensemble is unable to find any superior alternative configurations. 
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onfigurations that can impro v e o v er the all-open baseline. And, ev en
n cases where impro v ement is hypothesized, the impro v ements are
inuscule. In Fig. B4 (a), we explicitly highlight the large difference 

n performance between the MDN and the CATBOOST models, 
specially when it comes to the tails of the MPIQ distributions.
his is something we also showed in Figs B1 and B2 . In Fig. B3 (b),
e check how the CATBOOST model performs on test samples with 
ent configurations designated as optimal by the MDN, and observe, 
nsurprisingly, poor performance. Recall that from Fig. B3 (b) we 
lready know that only for a very small fraction of samples (14
ut of ∼660) does the CATBOOST ensemble predict any reduction in
PIQ at all. 
MNRAS 510, 870–902 (2022) 
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(a) (b)

Figure B4. CATBOOST versus MDN. In (a), we highlight that CATBOOST ’s predictions are highly biased at both low and high MPIQ, whereas the MDN is only 
slightly biased for large MPIQ values. In (b), we use CATBOOST to predict MPIQ PDFs for the hypothetical samples with optimal vent configurations identified 
by the MDN. CATBOOST predicts an increase in MPIQ, further verifying that it does not extrapolate well beyond densely sampled data regions. 
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