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Abstract. Marine coastal processes are highly variable over

different space scales and timescales. In this paper we anal-

yse the intermittency properties of particle size distribu-

tion (PSD) recorded every second using a LISST instrument

(Laser In-Situ Scattering and Transmissometry). The particle

concentrations have been recorded over 32 size classes from

2.5 to 500 µm, at 1 Hz resolution. Such information is used to

estimate at each time step the hyperbolic slope of the particle

size distribution, and to consider its dynamics. Shannon en-

tropy, as an indicator of the randomness, is estimated at each

time step and its dynamics is analysed. Furthermore, particles

are separated into four classes according to their size, and

the intermittent properties of these classes are considered.

The empirical mode decomposition (EMD) is used, associ-

ated with arbitrary-order Hilbert spectral analysis (AHSA),

in order to retrieve scaling multifractal moment functions,

for scales from 10 s to 8 min. The intermittent properties of

two other indicators of particle concentration are also con-

sidered in the same range of scales: the total volume concen-

tration Cvol-total and the particulate beam attenuation coeffi-

cient cp(670). Both show quite similar intermittent dynamics

and are characterised by the same exponents. Globally we

find here negative Hurst exponents (meaning the small scales

show larger fluctuation than large scales) for each time series

considered, and nonlinear moment functions.

1 Introduction

Ocean data fields show a high variability over many differ-

ent time and space scales. Such variability is often associ-

ated with turbulence, and multi-scaling properties of oceanic

fields have been reported and studied in many previous

studies: sea state (Kerman, 1993); phytoplankton concentra-

tion (Seuront et al., 1996a, b, 1999; Lovejoy et al., 2001a);

rainfall and cloud radiance (Tessier et al., 1993; Lovejoy

and Schertzer, 2006); and satellite images of ocean colour,

chlorophyll a and sea surface temperature (Lovejoy et al.,

2001b; Nieves et al., 2007; Pottier et al., 2008; Turiel et al.,

2009; de Montera et al., 2011; Renosh et al., 2015). Here

we focus on coastal waters and consider particles transported

by oceanic currents in this highly energetic medium (Svend-

sen, 1987; Schmitt et al., 2009). The solid phases in the en-

vironment have been described by hyperbolic particle size

distribution (PSD) of clay aggregates in water (Amal et al.,

1990), biological aggregate and marine snow (Jiang and Lo-

gan, 1991; Logan and Wilkinson, 1991), aerosol agglomer-

ates (Wu and Friedlander, 1993) and flocs produced in the

water, and wastewater discharge (Li and Ganczarczyk, 1989).

PSD has a major influence in biological, physical and

chemical processes in the aquatic environment (Boss et al.,

2001; Twardowski et al., 2001; Reynolds et al., 2010). For

instance, PSD is strongly involved in the trophic inter-

action within the plankton community and in the chemi-

cal/geological aspects. The shape of the PSD is also used in

computing the sinking rate of the sediment fluxes. The study

carried out by Renosh et al. (2014) using the same in situ

data set as the present study showed that the dynamics of the

PSD is controlled by many oceanographic parameters like

tidal currents, waves, and turbulence. The present study is a

continuation of this work.

Most environmental and geophysical data sets are nonlin-

ear and non-stationary at many different scales of time and

space. Intermittency is a property that occurs in fully de-

veloped turbulence ranging between the large-scale injection

and the small-scale dissipation (Frisch, 1995; Pope, 2000).
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The main objective of this study is to analyse the intermit-

tency properties of particle size distribution (PSD). In this

study we mainly focus on the dynamics of the PSD along

with the velocity data. For that we decomposed the PSD into

different size classes and also derived the Shannon entropy

from the probability density function (PDF) of the PSD.

Empirical mode of decomposition (EMD) together with

Hilbert spectral analysis (HSA) is a well-known time-

frequency analysis method for non-stationary and nonlinear

time series (Huang et al., 1998, 1999). Such analysis is done

in two parts: the EMD is an algorithm to decompose a time

series into a sum of mono-chromatic modes, and HSA ex-

tends for each mode into characteristic amplitude and fre-

quency. Hence this method is a time–amplitude frequency

analysis, which is recalled in Appendices A and B. This ap-

proach can be generalised to extract intermittency exponents

(Huang et al., 2008, 2011). AHSA scaling exponent func-

tion ξ(q) is related to the classical structure function scaling

exponent ζ(q) by ξ(q)= ζ(q)+ 1, where q is the statistical

moment. This is presented in Appendix C.

The first part of the paper presents the study area and in

situ data, and contains the separation of different size classes

and the hyperbolic shape of the PSD. Intermittency analysis

using the EMD–AHSA method (presented in the appendices)

is then provided in the next section.

2 In situ data

The measurements were conducted 50 cm from the bottom

of coastal waters of the eastern English Channel at a fixed

station (50 45.676◦ N, 01 35.117◦ E) from 25 to 28 June 2012

(Fig. 1).

We consider here simultaneous measurements of velocity

and particle concentrations. The in situ sampling of Laser In-

Situ Scattering and Transmissometry (LISST 100X type C)

has been carried out at 1.0 Hz. The main part of the instru-

ment is a collimated laser diode and a specially constructed

annular ring detector. The primary information collected by

the LISST is the scattering of the laser at 32 angles, which are

converted into size distribution using an inverting method.

The size distribution is presented as volume concentration

with units of micro-litres per litre (µL L−1). The LISST mea-

sures the volume concentration Cvol,i of particles having di-

ameters ranging from 2.5 to 500 µm in 32 size classes in log-

arithmic scale (Agrawal and Pottsmith, 2000). Because of

instability in the smallest and largest size classes, the data

recorded in the inner and outer rings are excluded from fur-

ther analysis (Traykovski et al., 1999; Jouon et al., 2008;

Neukermans et al., 2012). These instabilities observed in

the smaller size classes have also been related to effects of

stray light (Reynolds et al., 2010). The LISST also records

the beam attenuation (c) at 670 nm (±0.1 nm) over a 5 cm

path length with an acceptance angle of 0.0135◦. The par-

ticulate attenuation coefficient cp has been derived from c

Figure 1. Location (black triangle) of the sampling station in the

eastern English Channel together with the isobaths.

after calibration with MilliQ water before and after the field

campaign, using the assumption that chromophoric dissolved

organic matter (CDOM) does not absorb light at 670 nm.

cp(670) is an important parameter which is directly linked

to the suspended particulate matter (SPM) of the water body

(Boss et al., 2009; Neukermans et al., 2012). Simultaneously,

velocity time series are measured using a Nortek Vector ADV

current meter fixed on the same platform along with the

LISST at 0.5 m above the sea bottom. The ADV measured

the north, east and up components of velocity with an accu-

racy of ±0.5 %.

2.1 Separation into size classes

The volume concentration distributed of a particle size class

can also be expressed as the concentration Cvol(σ ) per unit

volume per unit bin width (Jouon et al., 2008):

Cvol(σ )=
Cvol,i

σmax(i)− σmin(i)
, (1)

where σ is the median diameter of the particle size class i,

and σmax(i) and σmin(i) are respectively the maximum and

minimum particle size of the class i. This resulting volumet-

ric PSD is expressed in µL L−1 µm−1. The total volume con-

centration of the PSD (Cvol-total) has been derived at each

time step:

Cvol-total(t)=

31∑
i=6

Cvol, i(t). (2)

This quantity gives the total volume of the particles

in µL L−1. For the present study we consider four dif-

ferent size classes, using the following classification:

silt/clay (σ < 30 µm), fine (30<σ < 105 µm), coarse/micro

Nonlin. Processes Geophys., 22, 633–643, 2015 www.nonlin-processes-geophys.net/22/633/2015/
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Figure 2. The first 3000 samples of the time series of volume concentrations of different size classes of PSD. (a) Silt/clay, (b) fine particles,

(c) coarse/micro particles and (d) macro particles/flocs.

(105<σ < 300 µm) and macro flocs/particles (σ > 300 µm)

(Lefebvre et al., 2012; Renosh et al., 2014). Figure 2 shows

the time series of normalised volume concentrations (VC) of

different size classes of PSD. All four size classes show large

temporal fluctuations in their magnitude. Their statistical and

dynamical properties are considered below.

2.2 PSD slope (ξ )

The particle size distribution in the ocean, which de-

scribes the particle concentration as a function of particle

size/number, typically shows a rapid decrease in concentra-

tion with increasing size from a sub-micrometre range to

hundreds of micrometres. This feature is common to all the

suspended particles and also for plankton micro-organisms

(Sheldon et al., 1972; McCave, 1983; Stramski and Kiefer,

1991; Jackson et al., 1997). The number of particles for a

given size σ is estimated by a normalisation by their vol-

ume (Jouon et al., 2008). We obtain the number density n(σ),

which is also the product of the probability density function

of the size, p(σ), times N , the total number of particles:

n(σ)=Np(σ)=
Cvol(σ )

4
3
π(σ/2)3

. (3)

The PSD of this density number classically follows a power-

law distribution for aquatic particles in suspension (Sheldon

et al., 1972; Kitchen et al., 1982; Jonaszz, 1983; Boss et al.,

2001; Twardowski et al., 2001; Loisel et al., 2006; Reynolds

et al., 2010; Renosh et al., 2014):

n(σ)∼Kσ−ξ , (4)

whereK is a constant and ξ > 0 is the PSD hyperbolic slope.

Since the LISST provides size class information at each time

step, the power-law distribution can be fitted at each time

step, providing the exponent as a time series ξ(t). The ξ value

provides information on the relative concentration of small

and large particles: the steeper the slope (the greater ξ ), the

more small particles relative to large particles are present in

the water (and vice versa). A small portion of 3000 samples

of ξ is shown in Fig. 3a: large temporal fluctuations in its

magnitude are visible. When considering all size classes in

all the time steps, a hyperbolic PDF is also obtained, repre-

sented in Fig. 3b with a slope value of ξ = 2.9± 0.16.

The study carried out by Renosh et al. (2014) considered

the dynamics of the ξ(t) in relation to different hydrody-

namic quantities like waves, tidal currents and turbulence. It

showed that turbulence has a major role in the re-suspension

of the particles in the aquatic environment. It also showed

that along-shore (U ) and cross-shore (V ) components of ve-

locity have power spectra showing different scaling regimes

in low-frequency and high-frequency regions (Fig. 4). At

the low-frequency scale there is a typical Kolmogorov −5/3

slope and at high frequency a scaling regime with a 0.6 slope.

For high frequencies there is a hump-like structure, which

can be identified as the high energy associated with surf zone

wave breaking (Schmitt et al., 2009).

The study of Renosh et al. (2014) showed that the low-

frequency variability of ξ(t) and cp(670) is controlled by

www.nonlin-processes-geophys.net/22/633/2015/ Nonlin. Processes Geophys., 22, 633–643, 2015
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Figure 3. The first 3000 samples of the time series of PSD slope (ξ ) (a) and PSD slope of the entire data set with a power-law fit with a slope

value of ξ = 2.9± 0.16 (b).

turbulence and that the high-frequency part is related to dy-

namical processes impacted by the sea bottom. The present

study is a continuation of Renosh et al. (2014); it considers

the high-frequency scaling regimes and studies the intermit-

tency of particle concentration in this range of scales.

3 Intermittent dynamics

3.1 Velocity intermittency

We first consider here the scaling and intermittency prop-

erties of the velocity. Figure 4a shows the Fourier and

Hilbert (HSA) estimations of the U and V components of

the velocity. Scaling ranges are found from 20 to 500 s

with a slope of about −0.6. In this range of scales the

AHSA method has been applied to characterise intermit-

tency in a multi-fractal framework (see Appendix C for the

AHSA method). First a negative Hurst exponent is found:

HU =−0.30± 0.02 and HV =−0.20± 0.02. Such a nega-

tive sign for H values indicates that small scales show larger

fluctuations than the larger scales in a scaling way (Lovejoy

and Schertzer, 2012). Both curves become quite different for

larger moments: the U curve is more nonlinear, associated

with larger intermittency (Fig. 4b).

3.2 Dynamics of the entropy of particle size

The LISST system records at each time step a discretised

PDF of the particle size. Hence it is possible to estimate at

all time steps the entropy of the particle size distribution as

S(t)=−

31∑
i=6

Pi(t) logPi(t), (5)

where Pi(t)= n(σi)(t)/N(t). The Shannon entropy S(t) is

estimated at each time step with values centered around

S= 1.59± 0.03. Figure 5a shows a sample of S(t) and

Fig. 5b shows its PDF, which is centered around S with val-

ues ranging mainly between 1.5 and 1.7. As a stochastic pro-

cess, in order to consider the dynamics of S(t), we plot in

Figure 4. Turbulent power spectra of U and V components of ve-

locity fields showing different scaling regimes as calculated by both

FFT and HSA (a). The scaling exponents estimated using the HSA

method (b). The vertical line in (a) shows the memory time of

36.26 min found in Eq. (6).

Fig. 5c the autocorrelation of S(t). A memory time of the

entropy series can be estimated as

T =

T0∫
0

Cs(t)dt, (6)

Nonlin. Processes Geophys., 22, 633–643, 2015 www.nonlin-processes-geophys.net/22/633/2015/
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Figure 5. The first 3000 samples of the time series of Shannon entropy in (a), PDF of Shannon entropy along with a Gaussian fit in semi-log

plot (inset) in (b) and the autocorrelation of Shannon entropy in (c).

where Cs is the autocorrelation of the entropy S and T0 is

the first time for which Cs(t)= 0; we find here T0= 7826 s

and we compute T = 2176 s= 36.26 min. This characteristic

timescale could be related to the transition scale (Fig. 4a) be-

tween two scaling regimes of low-frequency injection scale

and high-frequency wave-breaking scale.

The entropy of particle sizes characterises the “disorder”

of the size distribution, its information content. We showed

here that the dynamics of such a quantity can be considered

by using LISST data. A very interesting feature of LISST

measurements is hence to be able to characterise nonlinear

classical indicators such as the Shannon entropy in a dynam-

ical way.

3.3 Intermittent dynamics of different size classes

As explained above, the PSD is decomposed into four dif-

ferent size classes of particles (silt/clay, fine particles,

coarse/micro particles and macro particles/flocs). The power

spectra of these four size classes have been derived using

Fourier as well as Hilbert transforms (Fig. 6) for understand-

ing the turbulent characteristics. Similar spectra are found

from Fourier and Hilbert transforms, and there is a good

power-law behaviour observed in the high-frequency region

(0.09–0.002 Hz).

This scale range has been taken for the extraction of

the scaling exponents. The scaling exponent function ξ(q)

has been extracted for all size classes using arbitrary-

order Hilbert spectral analysis (Appendix C). The expo-

nent ζ(q)= ξ(q)− 1 is computed. Nonlinear functions are

visible for each size class (Fig. 7). The Hurst number

H = ζ (1)= ξ (1)− 1 is estimated for each class: we find

that H =−0.17± 0.01, −0.19± 0.01, −0.38± 0.02, and

−0.26± 0.02 for increasing size classes. The high H val-

ues are observed in the larger size classes and low H values

are observed in the lower size classes. This parameter deter-

mines the rate at which mean fluctuations grow (H > 0) or

decrease (H < 0) with the scale. We found negative H val-

ues in the present study. Negative H values have not been

found in many studies. Recently in Lovejoy and Schertzer

(2012, 2013) it was argued that Haar wavelet analysis can

be used to extract the H values with any sign for the expo-

nent (−1<H < 1). Such a sign indicates that small scales

show larger fluctuation than large scales. If ζ(q) is linear,

www.nonlin-processes-geophys.net/22/633/2015/ Nonlin. Processes Geophys., 22, 633–643, 2015
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Figure 6. Power spectra for different size classes of PSD estimated for Fourier and Hilbert transforms. Silt/clay (a), fine (b), coarse/micro (c)

and macro particles/flocs (d). The red lines shows the scaling range and the slope of the best fit in this range.

Figure 7. Scaling exponents ζ(q) estimated for different particle

sizes using the HSA method.

the statistical behaviour is mono-scaling; if ζ(q) is nonlinear

and concave/convex, the behaviour is defined as multiscal-

ing, corresponding to a multifractal process. The concavity

of this function is a characteristic of the intermittency: the

more concave the curve is, the more intermittent the process

is (Frisch, 1995; Schertzer et al., 1997; Vulpiani and Livi,

2003; Lovejoy and Schertzer, 2012). The slight curvature

which is found here for all size classes (Fig. 7) is hence a

signature of intermittency in the particle dynamics.

3.4 Intermittent concentration dynamics

We perform here an analysis of intermittency of concen-

tration dynamics considering two indicators of this parti-

cle concentration: cp(670) and total volume concentration

(Cvol-total). At first order, cp(670) is driven by the suspended

particulate matter (SPM). We observe here a large variabil-

ity in the cp(670) data (Fig. 8a). The total volume concen-

tration of the PSD has been derived for each time step us-

ing Eq. (2). The derived Cvol-total shows large fluctuation

in its magnitude (Fig. 8b). The turbulent power spectra de-

rived for these series show two scaling regimes similar to

the size classes (Fig. 8c and d). A good scaling between

0.002 and 0.09 Hz with a β value of 0.8 for cp(670) and

of 0.9 for Cvol-total for the power spectra E(f ) of the form

E(f )∼ f−β is observed (Fig. 8c and d). Hence the region

between 0.002 and 0.09 Hz (10 s to 8 min) has been identified

for the multi-scaling analysis. The structure function scaling

moment function derived for this series shows a nonlinear-

ity and concavity in its shape (Fig. 8e). The H value derived

for the Cvol-total is slightly negative: H =−0.08± 0.01. The

scaling moment function of the cp(670) showed a nonlinear-

ity in its behaviour showing its intermittent characteristics

(Fig. 8e). We find here H =−0.06± 0.01, which is quite

similar to Cvol-total. Globally, for power spectra as well as

for their intermittency properties, both proxies of SPM show

similar scaling properties. These two different indicators of

Nonlin. Processes Geophys., 22, 633–643, 2015 www.nonlin-processes-geophys.net/22/633/2015/
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Figure 8. The first 3000 samples of the time series of cp(670) in (a), the first 3000 samples of the time series of Cvol-total in (b), the turbulent

power spectrum of cp(670) and the turbulent power spectrum of Cvol-total showing different scaling regimes (the scaling regime indicated as

red is used for the scaling exponent computation) in (c, d) and the scaling moment function of cp(670) and Cvol-total in (e).

particle concentrations show quite similar dynamics and sta-

tistically intermittent properties.

For comparison purposes, the Haar wavelet structure func-

tion method, which can also be used for negative H values

(Lovejoy and Schertzer, 2012, 2013), has also been applied

to the time series. The first-order Haar structure function has

been selected for the Hurst number estimation. The same

scaling region as for AHSA has been chosen for this anal-

ysis. Negative Hurst exponents for all parameters have been

found, with values similar to those from the AHSA method.

In some cases, there are some slight differences (Table 1).

An interesting point that can be noticed for these time se-

ries is that none of the scaling moment functions extracted

through the AHSA method for various parameters showed

ζ (0)= 0. This is due to the fact that a large number of

1X values are equal to zero, where X is the time series:

ζ (0)= 0 only if there are no zeros in the time series. When

H < 0, such a situation is more likely than when H > 0, be-

cause the series is noisier.

4 Conclusions

This work analysed the intermittency and scaling properties

of particles using the AHSA method. The intermittent trans-

port of particles in complex flows, like in coastal waters, is

very important for the study of partition dynamics, erosion

processes, ecosystem modelling, sediment transport and tur-

bidity dynamics. Suspended particle dynamics in turbulent

flows are complex: some studies showed preferential concen-

www.nonlin-processes-geophys.net/22/633/2015/ Nonlin. Processes Geophys., 22, 633–643, 2015
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Table 1. The Hurst exponent values derived through AHSA and the

Haar wavelet method for various parameters.

Parameter H (AHSA) H (Haar wavelet)

U −0.30± 0.02 −0.25± 0.03

V −0.20± 0.02 −0.20± 0.01

Silt −0.17± 0.01 −0.09± 0.01

Fine −0.19± 0.01 −0.10± 0.01

Coarse −0.38± 0.02 −0.24± 0.04

Macro −0.26± 0.02 −0.18± 0.02

cp(670) −0.06± 0.01 −0.02± 0.01

Cvol-total −0.08± 0.01 −0.03± 0.01

tration (Eaton and Fessler, 1994; Squires and Eaton, 1991)

and some other studies showed multifractal repartition ac-

cording to the Stokes number (Bec, 2005; Yoshimoto and

Goto, 2007). We thus also expect here, in the natural envi-

ronment, to find intermittent particle dynamics.

This work has analysed the intermittency and scaling prop-

erties of the PSD using different aspects. Time series of nor-

malised volume concentrations of different size classes of

PSD and Shannon entropy have been derived from the num-

ber density of PSD. Here we showed the intermittency of

particles for different size classes. The cp(670), a proxy of

the suspended sediment concentration, and the total volume

concentration (Cvol-total), showed intermittent and multiscal-

ing properties in their dynamics.

Turbulent scaling of these parameters has been derived

through both Fourier power spectra and spectra derived

through HSA. The scaling moment function derived for

Cvol-total and cp(670) show similar nonlinear curve stress-

ing the intermittency in their dynamics. The scaling moment

functions derived for each size class of the particle are also

nonlinear. The curvature of the spectrum for various size

class shows the intermittency of the particle dynamics in dif-

ferent sizes.

We may note also that the Hurst exponents derived for

the velocity components and the particle concentrations are

negative. This negative sign indicates that small scales show

larger fluctuations than large scales. We have here no theoret-

ical interpretation to propose to explain these values, which

could be related to the particular statistical characteristics of

a bottom boundary-layer flow.

This multiscaling analysis has been tested only in the bot-

tom of the highly dynamic coastal waters of the eastern En-

glish channel. Such an analysis is an illustration of the poten-

tial provided by LISST data, with many particle size classes

recorded at each time step. It may be applied to other time

series in the open ocean, coastal waters and also freshwater

situations, in order to provide comparison and help to look

for universal properties.

Nonlin. Processes Geophys., 22, 633–643, 2015 www.nonlin-processes-geophys.net/22/633/2015/
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Appendix A: Empirical mode of decomposition (EMD)

Hilbert spectral analysis (HSA) and empirical mode of de-

composition (EMD) were introduced by Norden Huang and

collaborators at the end of the 1990s (Huang et al., 1998)

to locally extract amplitude and frequency information in a

time series. They were mainly introduced for nonlinear and

non-stationary time series. The first step of this approach is

EMD. The objective of the EMD method is to decompose

a signal into a series of modes. Each component is defined

as an intrinsic mode function (IMF) satisfying the following

conditions: (1) in the whole data set, the number of extrema

and the number of zero crossings must either equal or differ

at most by one. (2) The mean value of the envelope defined

using the local maxima and the envelope defined using the

local minima are zero (Huang et al., 1998; Huang and Wu,

2008). An iterative algorithm was proposed to extract suc-

cessive IMF from time series. We do not reproduce all the

details of this algorithm here, and refer to the original publi-

cations (Huang et al., 1998, 1999).

The decomposition process stops when the residue, rn, be-

comes a monotonic function or a function with only one ex-

tremum from which no more IMF can be extracted. At the

end of the decomposition, the original time series x(t) is de-

composed into a sum of n modes and a residue:

x(t)=

n∑
j=1

cj (t)+ rn(t), (A1)

where cj (t) are IMFs and rn(t) is the residue. In this de-

composition, each mode has a decreasing characteristic fre-

quency. If N is the number of points of the original series,

we have n≈ log2(N); hence, in general, 10≤ n< 20 (Flan-

drin and Goncalves, 2004; Huang et al., 2008).

Appendix B: Hilbert spectral analysis (HSA)

Hilbert spectral analysis (HSA) is the second step of the

analysis, which is applied to each mode cj (t) extracted for

the time series x(t) using the procedure discussed in Ap-

pendix A. For any function x(t), its Hilbert transform y(t) is

written as

y(t)=H {x}(t)=
1

π

+∞∫
−∞

x(τ)

t − τ
dτ. (B1)

The analytic function z(t) is estimated from x(t) using the

Hilbert transform y(t):

z(t)= x(t)+ iy(t)= x(t)+ iH {x}(t), (B2)

where i=
√
−1. The analytical function is estimated for each

mode and at each time step. For each mode and each time

step, a local amplitude A and phase function θ can be esti-

mated:

A(t)=
(
x2
+ y2

)1/2

, (B3)

θ(t)= tan−1(y/x). (B4)

The local frequency is estimated from the phase function:

ω =
dθ

dt
. (B5)

The HSA represents a time–amplitude frequency analysis.

This helps to estimate a joint PDF p(ω, A) of frequency and

amplitude. From this, a marginal spectrum is estimated:

h(ω)=

∞∫
0

p(ω,A)A2dA. (B6)

This h(ω) spectral analysis is done through a Hilbert trans-

form and can be compared to the Fourier spectrum E(f ) ob-

tained through the classical Fourier analysis (Huang et al.,

2008).

Appendix C: Arbitrary-order Hilbert spectral

analysis (AHSA)

The equation obtained in the previous section giving h(ω) is

a second-order statistical moment; it can be generalised into

an arbitrary-order moment (Huang et al., 2008, 2011), by tak-

ing a moment of order q:

Lq(ω)=

∞∫
0

p(ω,A)AqdA, (C1)

where q ≥ 0. In case of scale invariance we can write

Lq(ω)≈ ω
−ξ(q), (C2)

where ξ(q) is the corresponding scaling exponent, which is

related to the classical structure function by ξ(q)= 1+ ζ(q)

(Huang et al., 2008), for example, for a fractional Brownian

motion ξ(q)= 1+ qH . Here we are interested in the Hurst

exponent given by H = ζ (1)= ξ (1)− 1. H can be positive

or negative, and it characterises the degree of stationarity of

the scaling process. The nonlinearity of ζ(q) is related to the

intermittency of the time series: the more nonlinear the scal-

ing exponent ζ(q), the more intermittent the series (Schmitt

and Huang, 2015).
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