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Abstract. Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount
of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil
P availability. However, global patterns and predictors of soil total P concentration remain poorly understood.
To address this knowledge gap, we constructed a database of total P concentration of 5275 globally distributed
(semi-)natural soils from 761 published studies. We quantified the relative importance of 13 soil-forming vari-
ables in predicting soil total P concentration and then made further predictions at the global scale using a ran-
dom forest approach. Soil total P concentration varied significantly among parent material types, soil orders,
biomes, and continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean 570.0) mg kg−1 across
the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we se-
lected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand
content were the most important ones. While predicted soil total P concentrations increased significantly with
latitude, they varied largely among regions with similar latitudes due to regional differences in parent mate-
rial, topography, and/or climate conditions. Soil P stocks (excluding Antarctica) were estimated to be 26.8± 3.1
(mean± standard deviation) Pg and 62.2± 8.9 Pg (1 Pg= 1× 1015 g) in the topsoil (0–30 cm) and subsoil (30–
100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil
total P concentration can be used to constraint Earth system models that represent the P cycle and to inform
quantification of global soil P availability. Raw datasets and global maps generated in this study are available at
https://doi.org/10.6084/m9.figshare.14583375 (He et al., 2021).
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1 Introduction

In terrestrial ecosystems, to a depth of 1 m from the land sur-
face, most of the P is found in the soil (Zhang et al., 2021).
The amount and form of P determine the supply of soil P
to plants, which further regulates the structure and function
of global terrestrial ecosystems (Vitousek et al., 2010; Hou
et al., 2020; Elser et al., 2007; Hou et al., 2021). Moreover,
the amount or total concentration of P in soils determines P
concentration in all major forms in soils (Hou et al., 2018a;
Turner and Engelbrecht, 2011). Therefore, it is important to
determine the total concentration of P in soils, which varies
by up to 3 orders of magnitude across the globe (Yanai, 1998;
Augusto et al., 2010; Zhang et al., 2021). Despite the large
variation in soil total P concentration, its global patterns and
drivers remain poorly resolved, and improving this knowl-
edge gap is needed to better represent the P cycle in Earth
system models (Fleischer et al., 2019; Goll et al., 2017; Reed
et al., 2015; Wang et al., 2015; Wieder et al., 2015; Zhang et
al., 2011; Achat et al., 2016a).

Soil total P concentration is the outcome of climatic, bi-
otic, and landscape processes interacting over time on soil
parent material (Dokuchaev, 1883; Jenny, 1941; Buendía et
al., 2010). Each of these factors may be characterized by a
few variables; for example, climate may be characterized by
mean annual temperature (MAT) and precipitation (MAP).
Relationships between soil total P concentration and vari-
ables such as parent material type and P concentration, MAT,
MAP, site slope, and soil organic carbon (SOC) have been
reported in previous studies but mostly at local to regional
scales (Brédoire et al., 2016; Cheng et al., 2018; Li et al.,
2019; Porder and Chadwick, 2009; Wang et al., 2009). Few
studies have quantified the relative importance of these vari-
ables for predicting soil total P concentration at a global scale
(Delgado-Baquerizo et al., 2020; Augusto et al., 2017; Yang
et al., 2013). Such an understanding can guide the manage-
ment of the soil P supply in agroecosystems of different re-
gions (Ringeval et al., 2017) and is crucial for both map-
ping soil total P concentration in natural terrestrial ecosys-
tems (Reed et al., 2015) and simulating ecosystem function-
ing (Achat et al., 2016a).

While each soil-forming factor can determine soil total P
concentration, the roles of some factors (e.g., climate and
vegetation) are less understood than other factors (e.g., par-
ent material and soil age). Since P in soil is derived mainly
from parent materials, the control of parent material on soil
total P concentration has been well recognized (Augusto et
al., 2017; Porder and Ramachandran, 2013). Soil chronose-
quences provide a unique opportunity to isolate the effect of
soil age from other soil-forming factors on soil P dynamics
and have shown that soil age negatively impacts soil total P
concentration (Wardle et al., 2004; Delgado-Baquerizo et al.,
2020; Vitousek et al., 2010; Walker and Syers, 1976). Due
to climate change, there is an increasing interest in how cli-
mate impacts soil total P concentration (Augusto et al., 2017;

Vitousek and Chadwick, 2013; Hou et al., 2018a). Yet the ef-
fects of climate, vegetation, and topography on soil total P
concentration remain largely unknown. Recently, Delgado-
Baquerizo et al. (2020) surveyed 32 ecosystem properties, in-
cluding soil total P concentration, in 16 soil chronosequences
globally. They found that climate, vegetation, topography,
and soil age together explained only about 60 % of the vari-
ation in soil total P concentration, despite examining 30 pre-
dictors and considering all possible interactions among pre-
dictors. This finding reflects our incomplete understanding of
the controls of soil total P concentration.

Several pressing global issues, such as mitigating cli-
mate change, increasing food security, and reducing nutri-
ent runoff to bodies of water, rely on accurate soil P maps
(Alewell et al., 2020; Ringeval et al., 2017; Beusen et al.,
2015; Wang et al., 2010). While several maps of soil total P
concentration have been produced (Viscarra Rossel and Bui,
2016; Ballabio et al., 2019; Hengl et al., 2017a; Delmas et al.,
2015), to our knowledge, there are only two published maps
of soil total P concentration in natural terrestrial ecosystems
(Shangguan et al., 2014; Yang et al., 2013). These two maps
have been used to explore global patterns of soil P supply
(Yang et al., 2013), to estimate P limitation on future ter-
restrial C sequestration (Sun et al., 2017), and as baseline
information to quantify P supply in agricultural ecosystems
(Ringeval et al., 2017). They are also used frequently in land
surface models to benchmark soil P modules (Yang et al.,
2014; Goll et al., 2012). However, the two maps may suffer
from large uncertainties due to the limited numbers of predic-
tors used and/or low spatial coverage of global soils. First, for
example, Yang et al. (2013) mapped soil total P concentration
based only on parent material and soil chronosequence mea-
surements. The map by Shangguang et al. (2014) was based
on a database that had poor coverage of many parts of the
world (e.g., high latitudes, Africa, South America). Second,
both maps only focus on the surface layers of soils, though
subsoils are known to contribute to the P nutrition of plants
and P leaching to groundwater (Rodionov et al., 2020; An-
dersson et al., 2013).

To address these issues, we constructed a global database
of total P concentration of 5275 (semi-)natural soils from
761 published studies. We defined (semi-)natural ecosystems
as ecosystems without any documented significant anthro-
pogenic activities such as tillage, fertilization, and heavy
grazing. We then used random forest algorithms to quan-
tify the relative importance of soil-forming variables for pre-
dicting soil total P concentration and further predicted it at
the global scale. In our predicted map, we did not remove
cropland or other heavily influenced areas (e.g., cities and
roads), so the predicted map represents a potential natural
background without direct anthropogenic influence. With our
enlarged dataset and our map of global soil P distribution, we
addressed the following research questions: (1) which factors
are the most important for predicting the spatial variation in
soil total P concentration in the top 1 m of soil? (2) How does
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soil total P concentration differ among regions and soil lay-
ers? (3) How large is the global total P stock in the top 1 m
of soil?

2 Material and methods

2.1 Data source and processing

Given massive measurements of soil total P concentration
in the literature, it is practically infeasible to collect all the
measurements in the literature. Therefore, we collected soil
total P concentration measurements in (semi-)natural ter-
restrial ecosystems mainly from existing global or regional
databases, as well as from literature with a focus on the un-
derrepresented regions identified in global databases, to en-
sure a good coverage of global terrestrial ecosystems. We
defined (semi-)natural ecosystems as ecosystems without
any documented significant anthropogenic activities such as
tillage, fertilization, and heavy grazing. Forests with a stand
age greater than 10 years were considered (semi-)natural
ecosystems. We carefully checked the description of soil
sampling in every cited paper for any anthropogenic activ-
ities such as tillage, fertilization, and heavy grazing and ex-
cluded such samples. Despite our efforts to exclude soils af-
fected by anthropogenic activities, some soils in our database
might be influenced by undocumented anthropogenic activ-
ities (e.g., P fertilization in reforested lands), particularly in
western Europe and the eastern USA (e.g., De Schrijver et
al., 2012). We compiled the database in four steps, which are
described as follows.

First, we searched existing global or regional databases
that may include soil total P concentration measurements in
(semi-)natural ecosystems in the Web of Science using key-
words “global OR terrestrial OR meta-analysis” AND “soil
phosphorus” NOT “crop OR agriculture” in the topic search
field. This search returned 714 papers up to 15 September
2020. After excluding site-level studies and studies with arti-
ficial treatments (e.g., treatment with fertilizer, elevated tem-
perature, or elevated CO2), 163 papers were retained. We
then checked the main text and the supplementary files, if
available, of the 163 papers to identify databases with soil to-
tal P concentration measurements. Seven databases with soil
total P measures from seven studies were selected. As obser-
vations in two databases (i.e., Li et al., 2014; Xu et al., 2013)
were included in another database (i.e., Wang et al., 2021),
we finally used five databases (i.e., Wang et al., 2021; Hou et
al., 2020, 2018b; Deng et al., 2017; Augusto et al., 2017) and
found 2591 observations in this step, as described in detail in
Table S1 in the Supplement.

Second, we used “soil phosphorus” as keywords to search
global or regional databases stored in public data reposito-
ries on 10 October 2020, including Figshare (https://figshare.
com/categories/EarthandEnvironmentalSciences/33, last ac-
cess: 15 December 2021), Earthdata (https://earthdata.
nasa.gov/, last access: 15 December 2021), PANGAEA

(https://www.pangaea.de/, last access: 15 December 2021),
data.world (https://data.world/, last access: 15 Decem-
ber 2021), Dryad (https://datadryad.org/stash/, last access:
15 December 2021), and Zenodo (https://zenodo.org/, last
access: 15 December 2021). We firstly screened the
databases by titles and then picked out 80 potentially use-
ful databases which were checked further by looking into the
databases. There were nine databases with soil total P con-
centration in (semi-)natural terrestrial ecosystems. Among
the nine databases, five (Ji et al., 2018; Tipping et al., 2016;
McGroddy, 2012; Baribault et al., 2012; Cross, 2013) were
excluded, due to a lack of specific site coordinates (i.e., lon-
gitude and latitude), which are needed to fill missing values
of predictors from their global maps. In this step, 210 obser-
vations from four databases (i.e., Adams et al., 2020; Deiss
et al., 2018; Yan et al., 2018; Gama-Rodrigues et al., 2014)
were collected.

Third, we included 1693 measurements of soil total P con-
centration in a global database of soil extractable P concen-
tration (Hou et al., unpublished) and 262 measurements of
soil total P concentration in a global database of soil P frac-
tions (He et al., unpublished). Original data sources of the
two databases are given in Text S1 in the Supplement. Af-
ter step 3, we combined measurements collected in steps 1–3
and deleted 22 duplicated ones (i.e., measurements with the
same site coordinates and soil total P concentration), result-
ing in a total of 4734 site-level measurements of soil total P
concentration from the 11 databases listed in Table S1.

Fourth, we searched additional soil total P concentration
measurements from underrepresented regions identified in
steps 1–3 from the Web of Science using keywords of “soil
phosphorus” along with the keywords of the underrepre-
sented regions (listed in detail in Table S2). According to
the criteria above, we only collected soil total P concentra-
tion measurements in (semi-)natural terrestrial ecosystems.
In this step, we collected 541 additional site-level measure-
ments of soil total P concentrations from 60 additional papers
(Table S2, Text S1).

Following these steps, our database included 5275 mea-
surements of soil total P concentration at 1894 sites from
761 studies (Text S1 and Fig. S1), with 4536 measurements
in the top 30 cm of soil and 739 measurements in deeper soil
(depth > 30 cm). Besides soil total P concentration and site
coordinates, we also included climate variables (i.e., MAT
and MAP), vegetation type, and soil physiochemical proper-
ties (e.g., SOC, soil clay and sand contents, soil pH) in our
database whenever available.

Soil total P concentration is thought to be influenced by
five soil-forming factors, which are parent material, climate,
vegetation productivity, topography, and soil age (Delgado-
Baquerizo et al., 2020; Jenny, 1941; Dokuchaev, 1883).
Four of the five factors were directly considered here (Ta-
ble 1): parent material, climate (i.e., mean annual tempera-
ture (MAT), mean annual precipitation (MAP), and biome),
vegetation (i.e., net primary production (NPP)), and topog-
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Table 1. Summary of training data used to predict soil total P concentration. P10 and P90 indicate the percentile ranks of 10 % and 90 %.

Group Variables Unit Min P10 Mean P90 Max PFLa PFGMb

Climate MAT ◦C −14 0.7 11.9 25.1 31.6 91 % 9 %
MAP mm 10 356 1146 2337 6576 91 % 9 %

Soil property SOC g kg−1 0.1 2.6 41.3 92.8 545 81 % 19 %
Soil pH 2.5 4.2 5.9 8.1 10.5 77 % 23 %
Soil clay g kg−1 0.3 50 222 435 954 48 % 52 %
Soil sand g kg−1 10 135 497 862 997 29 % 71 %
Depth cm 0.5 5 19.4 50 100 100 % 0 %
Soil order 12 USDA soil orders 64 % 36 %

Parent material 13 parent materials 0 % 100 %

Vegetation Biomes 6 major biomes 91 % 9 %
NPP kg C m−2 < 0.1 0.2 0.6 1.0 2.2 0 % 100 %

Topography Slope ◦ 0 0 8.28 22 72 0 % 100 %
Elevation m −41 34 861 2141 5175 67 % 33 %

MAT: mean annual temperature; MAP: mean annual precipitation; SOC: soil organic carbon; NPP: net primary production. a PFL:
proportion from the literature. b PFGM: proportion from the gridded map.

raphy (e.g., slope and elevation). As soil age was rarely re-
ported, we used USDA (United States Department of Agri-
culture) soil orders as a proxy for age with three classes:
slightly, intermediately, and strongly weathered (Yang et al.,
2013; Smeck, 1985). Among the 12 USDA soil orders, Enti-
sols, Inceptisols, Histosols, Andisols, and Gelisols are classi-
fied as slightly weathered soils. Alfisols, Mollisols, Aridisols,
and Vertisols are classified as intermediately weathered soils.
Oxisols, Ultisols, and Spodosols are classified as strongly
weathered soils (Yang et al., 2013; Smeck, 1985). Moreover,
we have classified each soil in our database according to soil
types of the World Reference Base for Soil Resources (WRB)
(Table S3). We extracted the WRB soil type of each site from
a global WRB soil type map (Hengl et al., 2017b) based on
geographical coordinates.

In addition to predictors of soil total P concentration re-
lated to soil-forming factors, we collected information about
the properties of the soils (e.g., soil organic carbon (SOC),
soil pH, soil clay content (Clay) and soil sand content (Sand),
and soil depth (Depth); Table 1). These soil properties were
used as additional predictors. We extracted predictors from
each original publication when available. In cases where in-
formation on predictors was not reported, we extracted the
missing data from gridded datasets (Table S3) based on the
geographical coordinates of the measurement sites.

In the random forest model, correlated predictors can be
substituted for each other so that the importance of correlated
predictors will be shared, making the estimated importance
smaller than the true value (Strobl et al., 2008). Thus, we did
not include soil total nitrogen content as it is correlated with
SOC (r =+0.84), nor did we include the aridity index as it is
strongly correlated with MAP (r =+0.82). We also did not
include variables that were rarely reported in the referenced

studies (e.g., soil extractable aluminum and iron concentra-
tions).

2.2 Statistical modeling

Among the 5275 soil total P measurements, there were 15 ex-
tremely high values (> 4000 mg kg−1) (Fig. 1b). These high
values were likely derived in exceptional geological contexts
(Porder and Ramachandran, 2013) or special soils (e.g., very
young volcanic soils). We reported these extremely high val-
ues while summarizing the database, for example, in Tables 2
and 3. However, we excluded these 15 measurements from
model training and correlation analyses to avoid their possi-
bly large influences on the overall relationships between soil
total P concentration and other variables.

We compared a suite of algorithms against the aforemen-
tioned 13 predictors which included three generalized linear
models: a cubist model, a boosted tree model, and a random
forest model (Table S4). Model performance was compared
in terms of R2 and root mean square error (RMSE) (Mal-
one et al., 2017). A 5-fold cross-validation method was used
to evaluate the performance of the models. In this method,
the whole dataset was randomly split into five folds, each of
which contained 20 % of the data. One fold of data was used
as test data, while the other four folds were used as training
data. Then another fold of data was used as test data and the
remaining ones as training data and so on and so forth for
a total of five times. Averages of five sets of R2 and RMSE
were used as the model R2 and RMSE, respectively. Based
on the 5-fold cross-validation method, the random forest al-
gorithm performed the best (R2

= 0.65) among all five algo-
rithms (Table S4) and was therefore selected for follow-up
analyses. The 5-fold cross-validation was performed using
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Figure 1. The distribution of our site-level training data. The database contains 5275 observations (a, b) covering all major terrestrial
biomes (c), 12 soil orders (d), and 12 parent materials (e). The dashed red line in panel (b) indicates the arithmetic mean of the soil
total P concentration (570 mg kg−1). The abbreviations in panel (e) represent the following: SU, unconsolidated sediments; SS, siliciclastic
sedimentary; SM, mixed sedimentary; MT, metamorphics; SC, carbonate sedimentary; PA, acid plutonic; VB, basic volcanic; PI, intermediate
plutonic; VI, intermediate volcanic; VA, acid volcanic; PY, pyroclastics; PB, basic plutonic.

the R package “caret” (v. 6.0-86) (Kuhn, 2020). Random for-
est analysis was performed with the R package caret by ap-
plying the embedded R package “randomForest” version 3.1
(Liaw and Wiener, 2002) with an automated ”mtry” param-
eter. The mean decrease in accuracy (%IncMSE) was used
to indicate the relative importance of each variable for pre-
dicting soil total P concentration. Partial dependence plots
showed the marginal effect of each continuous predictor on
soil total P concentration.

Finally, we applied the above trained model to global
databases of the 13 predictors to generate a global map of
soil total P concentration. The gridded driver variables used
for the global prediction were all re-gridded to a spatial reso-
lution of 0.05◦× 0.05◦ (the original resolution can be found
in Table S3). We did not remove cropland or other heavily
influenced areas (e.g., cities, roads), so the predicted map
can be used to represent an initial state without direct anthro-
pogenic influence. Here we assume that cropland and other
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Table 2. Soil total P concentration (mg kg−1) in natural ecosystems for major biomes at 0–30 and 0–100 cm depth. Results are based on our
site-level database. P10, P25, P75, and P90 indicate the percentile ranks of 10 %, 25 %, 75 %, and 90 %.

Min P10 P25 Median Mean P75 P90 Max

0–30 cm

Tundra 35.0 100.0 228.5 517.7 946.2 891.5 2016.4 9630.0
Boreal 3.0 99.9 317.2 571.0 705.2 879.5 1429.0 5520.0
Mediterranean 4.8 93.8 247.5 449.2 563.0 626.0 899.4 4433.0
Temperate 3.0 130.2 260.0 484.0 559.0 704.0 1037.4 4086.6
Tropics 3.4 73.0 146.6 293.0 439.0 531.5 968.7 3898.0
Desert 5.0 33.0 63.0 330.0 383.6 566.2 727.9 4800.0
Global 3.0 103.0 240.0 462.0 597.0 721.0 1100.0 9630.0

0–100 cm

Tundra 35.0 104.7 253.8 550.1 984.8 1000.0 2222.0 9630.0
Boreal 3.0 116.3 327.5 560.0 723.3 864.8 1424.1 5520.0
Mediterranean 4.8 96.0 252.3 443.3 554.4 621.5 873.0 4433.0
Temperate 3.0 128.9 250.0 460.0 539.7 679.6 1008.6 4086.6
Tropics 1.4 63.0 140.0 284.0 421.2 529.0 922.0 3898.0
Desert 5.0 33.7 62.1 337.5 381.0 566.9 710.0 4800.0
Global 1.4 90.4 217.0 437.0 569.0 690.0 1070.0 9630.0

heavily influenced areas in their native states had the same
set of relationships as for (semi-)natural lands.

Soil depth was used as a covariate so that the models could
predict soil total P concentration for any given depth (Hengl
et al., 2017b). The partial dependence plot indicated that soil
total P concentration approximately linearly decreased with
soil depth in the top 30 cm and there was no apparent trend
with depth in the subsoil (∼ 30–100 cm). Given this, we pre-
dicted global soil total P concentration at 5, 15, 25, and 65 cm
to represent the soil total P concentration in the 0–10, 10–20,
20–30, and 30–100 cm layers, respectively. Averages in other
depth intervals (e.g., 0–30 cm or 0–100 cm) can be derived by
taking a weighted average of the predictions within the depth
interval (Hengl et al., 2017b). We used global gridded soil
depth data (Shangguan et al., 2017) to correct the soil depth
when it was less than 100 cm in any cell. The global soil P
stock maps for 0–10, 10–20, 20–30, and 30–100 cm layers
were calculated from the soil total P concentrations predicted
here and the soil bulk density in corresponding layers pre-
dicted by Hengl et al. (2017b).

The prediction uncertainty of each cell in the global grid-
ded map was assessed using bootstrap samples with the
quantile regression forest technique (Meinshausen, 2006).
Standard deviation was calculated to represent the uncer-
tainty using the quantregForest function in the “quantregFor-
est” R package (Meinshausen, 2017). Individual predictions
of each tree in the random forest model (n= 500) were re-
turned to assess the variation in predicted global mean soil
total P concentration, and these results were used to assess
the standard deviation of the estimated global soil P stock.

All statistical analyses and plotting were performed in the
R environment (v. 4.0.2) (R Core Team, 2018).

3 Results

3.1 Characteristics of soil total P concentration across
the world

Our soil total P concentration database included 5275 mea-
surements from 1894 geographically distinct sites and cov-
ered 6 continents, all major biomes, and all 12 USDA soil
orders in terrestrial ecosystems (Fig. 1a–d and Table S5).
The database was highly right-skewed (Fig. 1b) and revealed
that the soil total P concentration in natural soils of terres-
trial ecosystems varied from 1.4 to 9636.0 mg kg−1, with a
mean, median, and standard deviation of 570.0, 430.0, and
646.5 mg kg−1, respectively (Table 2). The database included
soil total P concentration measurements from the topsoil to
100 cm depth, with 84.4 % of the measurements from the top-
soil (e.g., 0–30 cm). The average soil total P concentration in
our database was 583.7 and 495.2 mg kg−1 in the topsoil (0–
30 cm) and subsoil (30–100 cm), respectively.

The database revealed that soil total P concentration var-
ied within and among biomes. The soil from tundra and
boreal biomes had the highest soil total P concentrations.
Mediterranean and temperate soils had intermediate soil total
P concentrations. Soils in the desert and tropics had relatively
lower soil total P concentrations (Table 2 and Fig. 2b). Soil
total P concentration also varied with different soil orders
(Table 3). Soil total P concentration decreased from slightly
weathered soil (mean value 719.4 mg kg−1) to intermedi-
ately and strongly weathered soils (mean values of 481.1 and
472.3 mg kg−1, respectively) (Fig. 2c). The declining trend
of soil total P during soil development supports the Walker
and Syers (1976) conceptual model of phosphorus dynamics
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Table 3. Soil total P concentration (mg kg−1) in 12 USDA soil orders and three weathering stages at 0–30 and 0–100 cm depth. Results are
based on our database. P10, P25, P75, and P90 indicate the percentile ranks of 10 %, 25 %, 75 %, and 90 %.

Min P10 P25 Median Mean P75 P90 Max

0–30 cm

Slightly weathered 11.0 145.4 295.3 552.0 721.0 850.0 1368.4 9630.0
Andisols 175.0 321.9 534.4 883.2 1042.4 1459.8 2040.9 3548.0
Gelisols 35.0 169.2 307.7 552.0 1116.5 990.0 2950.0 9630.0
Entisols 24.3 100.0 263.9 540.3 583.0 834.1 1090.0 2321.3
Inceptisols 11.0 143.1 285.4 536.3 654.8 812.2 1200.0 5520.0
Histosols 66.0 336.9 550.0 753.5 837.0 1029.7 1484.0 1711.0

Intermediately weathered 3.0 38.4 169.2 390.0 492.7 630.0 1019.8 4800.0
Aridisols 5.0 34.1 180.0 396.7 450.7 600.0 805.8 4800.0
Alfisols 3.0 29.8 133.6 352.5 495.5 639.4 1160.9 4243.0
Mollisols 9.8 53.3 213.9 420.5 462.0 627.6 848.6 3199.0
Vertisols 112.7 202.6 243.0 480.0 923.2 1087.0 2870.0 3680.0

Strongly weathered 3.4 104.7 220.0 390.0 483.6 613.8 912.0 4086.6
Oxisols 5.1 79.0 128.0 333.5 400.5 518.3 912.3 2000.0
Ultisols 3.4 129.8 246.6 406.0 491.2 607.8 870.0 4086.6
Spodosols 14.5 145.8 270.0 436.5 591.4 751.5 1124.2 3444.2

0–100 cm

Slightly weathered 11.0 144.6 296.1 547.6 719.4 838.6 1362.4 9630.0
Andisols 175.0 321.9 534.4 883.2 1042.4 1459.8 2040.9 3548.0
Gelisols 35.0 175.1 321.8 584.1 1145.8 1047.7 3013.0 9630.0
Entisols 14.1 80.0 246.3 515.7 551.0 800.0 1030.0 2321.3
Inceptisols 11.0 150.4 292.0 530.8 667.7 805.8 1240.0 5520.0
Histosols 66.0 341.4 550.0 800.0 877.0 1061.4 1686.0 1996.0

Intermediately weathered 1.4 41.2 191.3 390.0 481.1 612.6 965.0 4800.0
Aridisols 5.0 35.9 175.0 395.7 446.8 590.5 806.6 4800.0
Alfisols 1.4 27.1 141.4 325.2 470.1 610.0 1072.5 4243.0
Mollisols 9.8 76.1 261.1 457.4 470.3 622.3 838.2 3199.0
Vertisols 112.7 199.6 242.0 421.8 871.5 1012.5 2825.0 3680.0

Strongly weathered 3.4 103.9 210.0 377.1 472.3 597.3 900.0 4086.6
Oxisols 5.1 89.1 141.0 360.5 435.9 625.0 950.8 2000.0
Ultisols 3.4 111.7 219.5 380.0 466.6 582.8 837.0 4086.6
Spodosols 14.5 149.1 262.4 424.0 597.9 731.0 1138.9 3444.2

during long-term ecosystem development. And this pattern is
consistent with previous studies (i.e., Cross and Schlesinger,
1995; Yang et al., 2013). The relationship between soil total
P concentration and different World Reference Base for Soil
Resources (WRB) soil types can be found in the Supplement
(Table S6).

3.2 Model performance and drivers of soil total P
concentration

The random forest regression model explained 65 % of soil
total P concentration variability across all sites, with an
RMSE of 288.8 mg kg−1 (Fig. 3b and Table S4). The random
forest model revealed that the two most important predictors
of soil total P concentration were SOC content and parent

material. The remaining predictors showed a lower but non-
negligible influence, with MAT and soil sand content having
the most noticeable influence (Fig. 3a). Although soil order,
biome, elevation, slope, depth, NPP, and pH showed signifi-
cant influences on soil total P concentration (Figs. 2 and S3),
their relative importance was lower than the above four pre-
dictors. Partial dependent plots (Fig. 4) revealed similar re-
sults to Pearson correlation analysis (Fig. S3). The partial
dependent plots indicated a significant and positive relation-
ship between soil total P concentration and SOC at a global
scale; soil total P concentration was significantly and nega-
tively correlated with MAT and soil sand content (Fig. S4).
The Pearson correlation indicated the correlation coefficients
between soil total P concentration, and the top three continu-
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Figure 2. Soil total P concentration in relation to parent material,
biome, and soil weathering extent. For visualization, we chose to
limit the y axis to 1500 mg kg−1; and in panel (a), only parent ma-
terial types with more than 100 measurements in our database were
shown; the abbreviations in panel (a) represent the following: SC,
carbonate sedimentary; VB, basic volcanic; SM, mixed sedimen-
tary; SU, unconsolidated sediments; SS, siliciclastic sedimentary;
PA, acid plutonic; MT, metamorphics.

ous predictors MAT, SOC, and soil sand content were−0.23,
0.19, and −0.18, respectively (Fig. S3).

3.3 Global patterns of soil total P

In our predicted global map (Fig. 5), we did not remove
cropland or other heavily influenced areas (e.g., cities and
roads), so the predicted map can be used to represent a
natural background without direct anthropogenic influence.
The predicted soil total P indicated that the total global P
stocks in the topsoil (0–30 cm) and subsoil (30–100 cm) were
26.8 (standard deviation 3.1) Pg and 62.2 (standard devia-
tion 8.9) Pg, respectively (excluding Antarctica; Table 4). Es-
timated area-weighted average soil total P concentrations in

the topsoil and subsoil were 529.0 and 502.3 mg kg−1, re-
spectively. Estimated area-weighted average soil total P con-
tent in the topsoil and subsoil were 209.7 and 487.0 g cm−2,
respectively.

The estimated global map of soil total P concentration re-
vealed latitudinal patterns (Fig. 5), which were also found
from analysis of the site-level data (Fig. S4k). Soil total P
concentration significantly increased from the Equator to the
poles in both hemispheres (P < 0.001). The latitudinal pat-
tern of soil total P concentration was not found in earlier
work aiming at extrapolating global soil P measurements to a
global scale (Yang et al., 2013; Shangguan et al., 2014). Our
predicted soil total P concentrations were weakly correlated,
though significantly, with earlier predicted maps, i.e., Yang
et al. (2013) and Shangguan et al. (2014) (Fig. S6).

Highlands and mountains at low latitudes (e.g., the Tibetan
Plateau, Andes, Africa highlands, west India) had high soil
total P concentrations. Our map also indicated some regional
difference in soil total P; for example, central Australia was
low in soil total P compared with east and west Australia.
On a larger scale, South America, Oceania, and Africa had
the lowest soil total P concentration, while soil total P con-
centration was highest in Europe, North America, and Asia
(Table 4). The estimated soil total P concentrations in the
subsoil showed similar patterns to those found in the topsoil
(Fig. 5a, c).

4 Discussion

With our soil total P concentration dataset, we quantified soil
total P concentration in natural ecosystems, identified its key
drivers, and predicted it for terrestrial ecosystems globally.
Our work goes beyond previous studies (Delmas et al., 2015;
Hengl et al., 2017a; Shangguan et al., 2014; Viscarra Rossel
and Bui, 2016; Yang et al., 2013; Cheng et al., 2016), which
used limited data that did not represent the heterogeneous
conditions found on Earth well and did not separate natural
soils from human-managed soils and therefore may not be
able to distinguish natural drivers from anthropogenic fac-
tors (e.g., land use type, mineral fertilizer). In addition, we
mapped soil total P concentration by considering more pre-
dictors and multiple soil depths.

4.1 Characteristics of soil total P concentration

Given the larger number of measurements that we consid-
ered, the range of total P concentration in our study (1.4–
9630.0 mg kg−1) is wider than that reported in Cleveland
and Liptzin (2007) (83.7–2746.6 mg kg−1; n= 186), Xu et
al. (2013) (12.7–8400.1 mg kg−1; n= 536), Li et al. (2014)
(30–2744 mg kg−1; n= 178), and Hou et al. (2018b) (4.8–
2157.0 mg kg−1; n= 254). The average soil total P con-
centration in our site-level database (570.0 mg kg−1) was
within the range of previous estimates by Cleveland
and Liptzin (2007) (721.1 mg kg−1), Xu et al. (2013)
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Figure 3. Results of the random forest model predicting soil total P concentration. (a) The relative importance of predictors in the model.
(b) Predicted vs. observed soil total P concentration; the dashed line indicates the 1 : 1 line; the blue line indicates the regression line between
predicted and observed values.

Table 4. Analysis of the predicted global map of soil total P. The area-weighted average soil total P concentration was calculated based on
our predicted map. Converting soil total P concentration to soil total P content and stock used the soil bulk density (Hengl et al., 2017b) and
land area.

0–30 cm 30–100 cm

Continent Soil total P Soil total Soil P Soil total P Soil total Soil P
concentration P content stock concentration P content stock

(mg kg−1) (g m−2) (Pg) (mg kg−1) (g m−2) (Pg)

Africa 390.2 164.1 4.5 360.7 362.8 10.1
Asia 603.0 238.7 10.3 576.3 565.2 24.3
Europe 632.4 240.9 2.4 601.1 581.7 5.7
Oceania 401.5 177.1 1.4 373.4 397.6 3.4
South America 411.5 158.1 2.8 392.0 358.6 6.3
North America 657.3 251.2 5.3 631.5 587.4 12.3
Global 529.0 209.7 26.8 502.3 487.0 62.2

(756.4 mg kg−1), Li et al. (2014) (463.6 mg kg−1), and Hou
et al. (2018b) (471.9 mg kg−1).

4.2 Soil total P concentration in relation to its predictors

In agreement with previous studies, soil total P concentra-
tion was largely predicted by parent material type (Deiss
et al., 2018; Augusto et al., 2017; Porder and Ramachan-
dran, 2013). This result supports the use of parent material
to map soil total P concentration at the global scale (Yang
et al., 2013). Parent material can affect soil total P concen-
tration both directly and indirectly. Some parent materials
tend to have higher P concentrations, which then translate
into higher total soil P (Mage and Porder, 2013; Dieter et
al., 2010; Kitayama et al., 2000). Additionally, parent mate-
rial also affects soil total P indirectly via the influence of soil

physiochemical properties such as soil texture, pH, and Al
and Fe oxides (Siqueira et al., 2021; Mehmood et al., 2018).
For example, the retention of P in soil can be influenced by
the soil content of clay, soluble calcium, and Fe oxyhydrox-
ides (Delgado-Baquerizo et al., 2020; Mehmood et al., 2018;
Achat et al., 2016b). As such, parent material type is a critical
predictor of soil total P from local to global scales.

Interestingly, we found that SOC was one of the two most
important predictors of soil total P concentration. The posi-
tive relationship between soil total P and SOC has two possi-
ble explanations. First, this relationship may reflect the cou-
pling between P and C in soils (Hou et al., 2018a) given that
soil organic matter is characterized by a rather narrow range
of C : P ratio values (Cleveland and Liptzin, 2007; Spohn,
2020; Tipping et al., 2016). Second, P and organic C are sta-
bilized and retained through similar processes in soil (Doet-
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Figure 4. Partial dependence plots showing the dependence of soil total P concentration on predictors. Soil total P concentration in relation
to (a) SOC concentration, (b) MAT, (c) soil sand content, (d) elevation, (e) MAP, (f) net primary production, (g) soil pH, (h) slope, and
(i) soil depth.

terl et al., 2015). For example, reactive minerals can simulta-
neously stabilize both P and organic C in soil (Helfenstein et
al., 2018). As such, the strong relationship between SOC and
total P at the global scale confirms that SOC is an integrated
measure of biotic (e.g., soil microbial activity) and abiotic
(e.g., cation exchangeable capacity) factors that regulate soil
total P (Spohn, 2020; Wang et al., 2020).

Consistent with a recent global synthesis that focused on
soil P fractions (Hou et al., 2018a), our result indicated that
MAT was a more important predictor of soil total P concen-
tration than MAP. The negative relationship could be because
soils under low MAT are often found at high latitudes where
soils were eroded during the last glaciation. These soils tend
to be much younger compared to soils at low latitudes with
high MAT and thus have experienced less loss of P (Vitousek
et al., 2010). In addition, high MAT and MAP generally pro-
mote soil weathering as well as plant growth and P uptake,

resulting in the depletion of soil P (Huston and Wolverton,
2009; Arenberg and Arai, 2019; Huston, 2012).

Further, we provide two explanations for the negative re-
lationship between soil total P concentration and sand con-
tent. First, soil sand content is a surrogate for quartz content
(Bui and Henderson, 2013), and the rock content in quartz
is usually negatively correlated with the total P content of
siliceous rocks (Hahm et al., 2014; Vitousek et al., 2010).
Second, soil sand is worse at retaining nutrients including P
than other soil fractions (Augusto et al., 2017). For example,
loamy soils regularly lose 0.3–0.5 kg P ha−1 yr−1 by leach-
ing, while coarse sandy soils lose up to 2.0 kg P ha−1 yr−1

(Amberger, 1996).
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Figure 5. Global maps of total P concentration in the 0–30 and 30–100 cm layers of soils. Panels (a) and (b) are maps of topsoil (0–30 cm)
total P concentration and the latitudinal patterns, respectively. Panels (c) and (d) are maps of subsoil (30–100 cm) total P concentration and
the latitudinal patterns, respectively. Red lines in panels (b) and (d) indicate the locally weighted regressions between latitude and soil total
P concentration in the precited global map. Note that we did not remove cropland or any other heavily influenced areas from the predicted
maps, so they can be used to represent soils without essential anthropogenic activities. In this figure, we used gray cells to indicate grid cells
with more than 50 % of areas comprising cropland. A map without the cropland symbols is visible in Fig. S7.

4.3 Global patterns of soil total P

Based on our predicted global map, we estimated that the
area-weighted global average of soil total P concentration
was 529.0 and 502.3 mg kg−1 in the topsoil (0–30 cm) and
subsoil (30–100 cm), respectively. Our estimate of the area-
weighted average soil total P in the topsoil was higher than
previous estimates by Yang et al. (2013) (374.7 mg kg−1) and
Shangguan et al. (2014) (484.7 mg kg−1) but was very close
to the estimate by Xu et al. (2013) (514.6 mg kg−1). Our es-
timate of the global soil P stock in the top 30 cm of soil
(26.8 Pg, excluding Antarctica) was in line with the estimate
of Shuanguan et al. (2014) (26.7 Pg in the top 30 cm) but was
higher than the estimates of Yang et al. (2013) (24.4 Pg in the
top 30 cm), Wang et al. (2010) (18.2 Pg in the top 30 cm), and
Smil (2000) (24 Pg). Additionally, our estimate was much

lower than a much earlier estimate by Butcher et al. (1992)
(about 120 Pg in the top 30 cm).

Our predicted soil total P concentrations decreased signifi-
cantly with decreasing latitude in both hemispheres. This re-
sult is consistent with our theoretical understanding of the
evolution of soils in soil chronosequences (Walker and Syres,
1976) and the stark differences in soil age and weathering in-
tensity between low- and high-latitude regions. And this re-
sult is in agreement with a recent meta-analysis that revealed
P limitation to plant growth decreased significantly with lat-
itude (Hou et al., 2021). Lowland tropical soils tend to be
more weathered compared to soils at high latitudes due to
warmer and more humid climate which promotes weather-
ing (Hou et al., 2018a). Moreover, the last glaciation could
have eroded soils at more northern higher latitudes and have
caused relatively young and P-enriched soils (Vitousek et
al., 2010; Reich and Oleksyn, 2004). Our result is consistent
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with Xu et al. (2013); by comparing soil total P concentra-
tion across the major biomes, the authors found the highest
soil total P concentration in the tundra and the lowest in the
tropical and subtropical forest. Previous global maps of soil
total P concentration were not able to capture the latitudinal
trend of soil total P concentrations (Yang et al., 2013; Shang-
guan et al., 2014), likely due to poorer spatial coverage of
their measurements. For example, their measurements were
mostly from the USA and China, with a very small propor-
tion of measurements from high latitudes.

While we found a latitudinal gradient in soil total P con-
centration, heterogeneity in soil total P concentration at the
regional and local scales was large. For example, consistent
with Brédoire et al. (2016), we found that the soil total P
concentration was higher in Siberia than in northern Europe,
both of which have similar latitudes. First, this difference
may be due to the fact that glaciation was more regular and
intense in Siberia than in northern Europe (Wassen et al.,
2021), leading to a more intensive rejuvenation of soils. Sec-
ond, the warmer and wetter climate in northern Europe may
promote weathering which releases P from parent material
(Goll et al., 2014) and makes it subject to loss (Fig. S8). Re-
gional variation in soil total P concentration may also be at-
tributable to regional variation in parent material. For exam-
ple, higher soil total P concentration in eastern Australia than
in central Australia was probably due to P-enriched basaltic
lithologies in eastern Australia (6500–8700 mg kg−1) (Vis-
carra Rossel and Bui, 2016). Moreover, regional differences
in soil total P concentration may be related to topography
conditions. For example, higher soil total P concentration in
the Tibetan Plateau than in eastern China may be the result
of higher elevation and lower MAT in the Tibetan Plateau
(Zhang et al., 2005).

4.4 Limitation and prediction uncertainty

Despite our unprecedented effort to construct a database and
perform global predictions, our study has some limitations.
First, some regions were still underrepresented, e.g., northern
Canada, Russia, middle Asia, and inner Australia, which may
result in a low accuracy of predicted values in these regions
(Ploton et al., 2020). Further, our assumption that soils which
are or have been in agricultural use can be characterized in
their native state by the same relationships as (semi-)natural
soils might not hold true. For example, fertile soils are pre-
ferred in agriculture and forestry. Second, subsoils (> 30 cm
depth) were not well represented in our dataset (14 %), and
therefore predicted P concentrations of subsoils may suf-
fer from larger uncertainties than those of topsoils (< 30 cm
depth). Third, some predictors were largely missing. Map-
filled values suffer from large uncertainties, especially for
the soil variables. This may cause some uncertainties in the
predicted soil total P concentration. Finally, 36 % of the vari-
ation in soil total P concentration was not explained, despite
the inclusion of 13 predictors using an advanced machine

learning approach. This result may be because of measure-
ment errors and/or methodological constraints. These limi-
tations highlight the need for more measurements of subsoil
total P concentration and closely associated variables, espe-
cially from the underrepresented regions, as well as more ad-
vanced statistical methods for spatial predictions.

5 Data availability

Raw datasets, R code, and global maps generated in this
study are available at https://doi.org/10.6084/m9.figshare.
14583375 (He et al., 2021).

6 Conclusion

By constructing a database of total P concentration glob-
ally, we quantified the relative importance of multiple soil-
forming variables for predicting soil total P concentration
and further estimated it at the global scale. Our results in-
dicated that no single variable can be used to predict soil to-
tal P concentration. Instead, a combination of variables are
needed to reliably predict soil total P concentration, among
which SOC, parent material, MAT, and soil sand content
are the most important predictors. Soil total P concentra-
tion was positively correlated with SOC and negatively cor-
related with both MAT and soil sand content. Our predicted
map captures the latitudinal gradient in potential soil total
P concentration expected from our theoretical understand-
ing. We estimated that P stocks in the topsoil (0–30 cm) and
subsoil (30–100 cm) of soil of natural ecosystems (exclud-
ing Antarctica) were 26.8 and 62.2 Pg, respectively. Our im-
proved global map of soil total P will be an important re-
source for future work which aims to tackle issues related to
P cycling, including predicting future land carbon sink po-
tential and P losses to aquatic and marine ecosystems as well
as modeling the P needs of crops to increase food security.
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