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ABSTRACT:

Reducing methane emissions is essential to tackle climate change. Here, we address the problem of detecting large methane
leaks using hyperspectral data from the Sentinel-5P satellite. For that we exploit the fine spectral sampling of Sentinel-5P data to
detect methane absorption features visible in the shortwave infrared wavelength range (SWIR). Our method involves three separate
steps: i) background subtraction, ii) detection of local maxima in the negative logarithmic spectrum of each pixel and iii) anomaly
detection in the background-free image. In the first step, we remove the impact of the albedo using albedo maps and the impact
of the atmosphere by using a principal component analysis (PCA) over a time series of past observations. In the second step, we
count for each pixel the number of local maxima that correspond to a subset of local maxima in the methane absorption spectrum.
This counting method allows us to set up a statistical a contrario test that controls the false alarm rate of our detections. In the last
step we use an anomaly detector to isolate potential methane plumes and we intersect those potential plumes with what have been
detected in the second step. This process strongly reduces the number of false alarms. We validate our method by comparing the
detected plumes against a dataset of plumes manually annotated on the Sentinel-5P L2 methane product.

1. INTRODUCTION

The detection of large methane (CH4) leaks linked to oil and gas
production is currently a major stake in order to reduce green-
house gas (GHG) emissions. In a time lapse of 20 years, a
CH4 molecule has a global warming potential 80 times larger
than carbon dioxide (CO2) (Anthropogenic and Natural Radiat-
ive Forcing, 2013). A large part of the CH4 emissions could be
controlled or avoided, as they come from oil rigs and other oil
and gas infrastructures. In order to detect GHG fossil fuel emis-
sions produced by human activities, several satellites have been
placed in orbit around the Earth over the past ten years. Here,
we focus on the data provided by Sentinel-5P, launched in 2017
by ESA. Sentinel-5P provides hyper-spectral images in wave-
bands for which CH4 has a significant absorption coefficient.
Data from Sentinel-5P is publicly available and is already being
used by ESA to quantify CH4 emissions and other greenhouse
gases (Pandey et al., 2019).

CH4 detection belongs to the traditional field of anomaly de-
tection in hyper-spectral imagery. Usually, detection is per-
formed on infrared wavelengths (Scafutto and Filho, 2018, Cre-
voisier et al., 2009). Although the absorption features of CH4

and water vapor (H2O) sometimes overlap in the infrared spec-
trum, their separation can be addressed by a wise selection of
wavelengths (Crevoisier et al., 2009).

A classic anomaly detection strategy consists in performing a
background subtraction - for example with a principal compon-
ent analysis (PCA) (Reitberger and Sauer, 2019) - then locally
modeling the remaining residual image as following a Gaussian
model. This probabilistic model then enables Neyman-Pearson
tests to be carried out on the pixels to detect anomalies (Mano-
lakis and Shaw, 2002, Matteoli et al., 2010).
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Figure 1. Figure (a) shows the concentration of methane in parts
per billion (ppb) given by the L2 methane product from

Sentinel-5P. A methane plume is visible in green. Pixels in white
are discarded pixels (cloudy for example). Figure (b) gives the
number of CH4 spectrum maxima counted for each pixel in the

original image with the proposed method.

In (Scafutto and Filho, 2018), a CH4-specific technique is de-
veloped where the background is removed by precise atmo-
sphere modeling. Then, CH4 is detected by a matched filter
using the CH4 absorption spectrum. Another matched filter
is used for CH4 detection in the Cluster-Tuned Matched Fil-
ter (CTMF), originally dedicated to sulfur dioxide (Funk et al.,
2001), and then applied to CH4 detection in (Thorpe et al.,
2013). The idea proposed by (Funk et al., 2001) is to use a
modified version of a k-means clustering prior to the matched
filter. Spatial clustering allows to obtain results over very large
areas without the risk of confusing anomalies due to CH4 with
those due to other gases.

Another well-established technique in remote sensing is the band
ratio technique. This method is quite usual for glacier mon-
itoring (Citterio et al., 2010) but is also used for hydrocarbon
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detection (Garain et al., 2019), and is highly-relevant to our
goals (Varon et al., 2020, Bradley et al., 2011). Band ratios
are used to enhance the spectral signature of hydrocarbons. In
(Garain et al., 2019), those band ratios are used jointly with
a PCA. PCA of several spectral bands is computed in order to
highlight the presence of hydrocarbons in the resulting principal
component image. Then, all the computed images are superim-
posed to perform the detection.

Many methane monitoring approaches aim at quantifying meth-
ane emissions. Besides that, we want to have a daily monitoring
of methane emissions. By covering the entire earth once a day,
data from Sentinel-5P satellite allow us to do that.

Our objective is to introduce a flexible CH4 emission detec-
tion method using the level 1 (L1) data provided by Sentinel-
5P. We do so by using the fine spectral sampling of Sentinel-
5P data. We detect local maxima in the negative logarithmic
spectra of pixels that correspond to maxima in CH4 absorption
spectrum. Observing an excess of such maxima in the same
pixel after background subtraction should be the consequence
of CH4 emissions (see Figure 1). Our contribution is to use this
count of spectrum extrema as a cue, to find statistically foun-
ded detection thresholds. In that way we reduce considerably
the false alarms and obtain a proof that the methane finger-
print is indeed present in the pixel after background subtrac-
tion. We complete the method with a classic anomaly detector.
We use the Reed-Xiaoli algorithm (RX) with two different sets
of wavelength bands (one sensitive to methane, the other not) to
detect independently potential methane plumes. By intersecting
those potential plumes with those detected by the local maxima
method, we still reduce the number of false alarms. To validate
the method, we shall use a set of manually detected plumes by
experts in the L2 product.

2. MATERIALS

We use hyper-spectral images from Sentinel-5P. This satellite
provides a dense spectrum (nearly 4,000 wavelengths) for each
pixel and covers the entire Earth once a day. All the available
wavelengths are organized in eight wavelength bands. Each
band is composed of a given number of channels. A channel
corresponds to an image at a precise wavelength. Thus, each
band can be seen as a hyper-spectral image. Here, we use the
SWIR bands 7 and 8 which cover the 2,300-2,389 nm range
where the main absorption features of CH4 are located. These
images are part of the level 1 (L1) product.

We also use the level 2 (L2) fully-processed data including cloud
maps, albedo andXCH4 column mixing ratios. Cloud maps are
necessary because clouds preclude any CH4 detection. XCH4

images will be used to identify plumes of CH4 only for valida-
tion purposes.

It should be noted that the L2 product provides a quantifica-
tion of methane but not a plume detection. Therefore it is not
a proper ground truth for plume detection. To get a methane
plume mask from the L2 product, a detection must be per-
formed on the L2 product. This detection, performed manu-
ally or automatically, can introduce its own bias in the results,
with false alarms or under-detections. For example, as we will
see in Section 5, the L2 product can yield high methane con-
centrations on some areas, which are unlikely to be real meth-
ane sources; but a detection algorithm based on the L2 product
might detect those areas as methane plumes.
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Figure 2. Comparison of methane absorption spectra under
several pressure/temperature conditions. Red dots highlight the

70 maxima we use for detecting the plumes.

Lastly, we use a detailed CH4 absorption spectrum taken from
the HITRAN spectral database (Gordon et al., 2017). CH4

spectrum varies depending on pressure and temperature. How-
ever, here we are only interested in CH4 spectrum within the
bottom layers of the atmosphere (below 1,500 meters above
ground), because we want to detect CH4 shortly after being
emitted, before it rises and dilutes.

Moreover, spectrum variations are small in the conditions of
the near-surface atmospheric layers. Moreover, here we use the
CH4 absorption spectrum only for detecting local maxima, and
as we can see from Figure 2, its profile practically does not
change for the near-surface conditions. Here, we selected the
CH4 spectrum at 15◦C and 1 atm to represent near-surface at-
mospheric conditions.

3. MODELING

We shall use a simplified atmospheric absorption model to ex-
plain the value of each pixel of an image. Let us consider a pixel
P in a Sentinel-5P image. Such a pixel is a vector in Rd where
d is the number of channels in the image (for our case 960 chan-
nels from bands 7 and 8). Each pixel component corresponds
to a wavelength λ.

Our model takes into account: the effect of sun irradianceFI(λ),
the albedo A, the absorption coefficients of the dry atmosphere
Katm(λ), water vaporKH2O(λ) and methaneKCH4(λ). We de-
note by egas the thickness of gas crossed by the radiation before
reaching the sensor. Making implicit the dependence on λ we
can write the absorption model for the whole vector P as

P = A exp(FI −Katmeatm −KH2OeH2O −KCH4eCH4). (1)

Similarly to other works (Coakley, 2002), we assume here that
the albedo is roughly constant over the part of the infrared spec-
trum we use, as it is extremely regular near 2000nm (Montpetit
et al., 2012). We take into account the absorption by the dry
atmosphere, as a single gas whose absorption spectrum is well
known. This spectrum includes absorption from methane that is
always present in the atmosphere. The term KCH4eCH4 repres-
ents the excess of emitted methane over the one already present
in the dry atmosphere.

From now on, we shall work with − log(P) instead of P. This
allows us to have a linear model where excesses of methane
comes out positively. We denote by P0 the new pixel value.
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Figure 3. Diagram summarizing the method.

4. METHODS

Our methane plume detection method consists of three steps:
first a background subtraction to remove the contribution of al-
bedo and atmosphere, then a counting step where we count for
each pixel the number of local maxima that correspond to a
shortlist of local maxima in methane absorption spectrum, and
finally Reed-Xiaoli algorithm (RX) is used on the background-
free image to isolate potential methane plumes. We use RX
both to highlight pixels which might present an excess of meth-
ane and to remove anomalies which are not due to an excess
of methane. A diagram summarizing the proposed method is
shown in Figure 3.

4.1 Background subtraction

Our observations are dominated by the absorption of the atmo-
sphere and the albedo. In order to detect potential local excess
of CH4, we start by performing a background subtraction. This
background subtraction has two advantages. First, it removes
the contribution of albedo and atmosphere from the spectrum
of the current pixel. Second, it sets the mean CH4 concentra-
tion to zero. Indeed, there is a nearly-constant concentration of
CH4 in the atmosphere and CH4 plumes rarely exceed 3% of
this concentration. So, we must make sure that this mean CH4

concentration is completely removed during background sub-
traction. To do so background subtraction applies three steps.

I. Albedo removal. First, albedo values from the L2 data are
used to remove the albedo component from each pixel. Given
a pixel P0 from a pre-processed hyperspectral image I and the
albedo A corresponding to this pixel, we compute the albedo-
corrected pixel

P1 = P0 + log(A). (2)

The albedo is assumed to be identical for each channel, as vari-
ations of albedo are minor in the infrared spectrum (Coakley,
2002, Montpetit et al., 2012). After this first subtraction, P1

contains only contributions from irradiance, atmosphere, water
vapor and CH4.

II. Atmosphere removal. For removing the contribution of the
atmosphere we assume the irradiance and the absorption spec-
trum of the dry atmosphere to be roughly constant over a short
period of time (in practice this analysis is performed over two
weeks or less). Therefore, we can estimate those two compon-
ents using a time series. For each pixel P1, we gather obser-
vations X1, ...Xn of the same area at earlier dates and without
clouds. The background is then modeled as the principal com-
ponent ofX1, ..., Xn, which we denote F . To remove the back-
ground of P1 we then remove its projection on the subspace
directed by F , i.e.

P2 = P1 − 〈P1, F 〉F. (3)

In practice, we perform this substraction on a pixel P1 only if
we can gather at least ten observations for the time series, oth-
erwise we discard this pixel. If pixels in previous dates contain
excesses of methane, it could affect the principal component
F and the background substraction might remove a potential
excess of methane in P1. With a time series long enough, an
excess of methane on one or two dates should not impact the
principal component.

Furthermore, we take our observations X1, · · · , Xn only from
images where there is at most 50% of clouds. If in several
images there is more than 50% of clouds, a part of the image
under test might have a background quite different from the
rest. Thus, the background will not be homogeneous and the
background-free image will not be either. This leads to poorly
estimated parameters for our model. A direct consequence of
this is that the detection threshold will be too high or too low
which can lead to under-detection or over-detection.

III. Methane equalization. The last part of the background
subtraction is an equalization of the level of CH4 in the cur-
rent image. This subtraction works both spatially and spectrally.
After the second part of the background subtraction, only CH4

and water vapor should be left. However, this is not enough
to detect CH4 anomalies. Indeed, there are about 1900 ppb
(particles per billion) of CH4 in the atmosphere, but we want to
detect variations in the order of 40 to 80 ppb. When the back-
ground is subtracted, a variable fraction of those 1900 ppb are
removed, depending on the atmospheric CH4 concentrations of
earlier observations. This difference in background CH4 can
prevent a detection using local maxima. To address this issue
we first compute a spatial average of CH4 concentration M by
projecting each pixel on the CH4 direction

M = 1
|I|
∑

P∈I

〈
P2,

KCH4

‖KCH4‖

〉
. (4)
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Then, we remove this mean M from each pixel

P3 = P2 −M ×
KCH4

‖KCH4‖
. (5)

After this last operation each pixel should only display a mix
of water vapor and excess CH4. Thus, CH4 detection should be
possible when the concentration of water vapor is not too high.

0 20 40 60

0

10

20

30

40

50

60

70

1800

1900

2000

2100

2200

2300

(a) L2 data: CH4 (ppb)

0 20 40 60

0

10

20

30

40

50

60

70 16.7

16.8

16.9

17.0

17.1

17.2

(b) Original image

0 20 40 60

0

10

20

30

40

50

60

70

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05

(c) Background-free image

Figure 4. In the image (a) we see a methane plume in green.
Images (b) and (c) show the channel at wavelength 2370.448nm

before and after background substraction respectively.

We can see on Figure 4 an example of result of the background
substraction. On image (b) we have the L1 data in negative
logarithmic from the channel at wavelength 2370.448nm and
on image (c) the same image but after background substraction.
We can see that background substraction highlights the methane
plume. Even if the plume is slightly visible on image (b), the
contrast between the plume and the background is far better
on image (c). In particular, in image (c) the local maxima are
almost only excesses of methane as seen in image (a).

4.2 Local maxima detection

Once the background has been removed, the spectrum of a pixel
should mostly be composed of excess CH4, water vapor and
sensor noise. CH4 and water vapor have different spectra in
the wavelengths we are interested in. Thus, we expect that the
wavelengths where CH4 absorption is maximal, should also ap-
pear as maxima in the negative logarithmic spectrum of a pixel
with excess CH4. Otherwise, there should be only noise on
those wavelengths. Therefore, to detect CH4 plumes, we count
for each pixel the number of local maxima coinciding to local
maxima in the CH4 absorption spectrum. We also refer to this
step as pattern recognition as the goal is to recognize the spe-
cific absorption pattern due to methane.

For this, we cannot use all of CH4 local maxima. Some of them
correspond to small absorption coefficients, which could be eas-

ily confused with noise. Thus, we can only use the highest
maxima in the methane spectrum. We selected the 70 highest
maxima in the CH4 absorption spectrum between 2300nm and
2380nm. This number of maxima is the one that empirically
gives the best results with the proposed method. With more
than 70 maxima we end up with wavelengths for which meth-
ane has a low absorption coefficient and with less than 70 max-
ima the gap between methane plumes and background can be
too small to perform detection without false alarms. We can
see the chosen maxima in Figure 2. In addition, we define two
adapted thresholds for the detection of each of these maxima.

The first threshold τ1(P ) is the median of the spectrum of the
pixel P ; this prevents low maxima from being detected. Since
we use only the 70 highest maxima of the CH4 spectrum, we
should also have high maxima in P . So this threshold will not
hinder the detection of CH4-related maxima.

We then compute a threshold adapted to each of the 70 chosen
maxima. With the first threshold some maxima can appear in al-
most every pixel in the image, just because a specific wavelength
usually shows high values. For the wavelength λ we set the
threshold τ2(λ) as the 70% quantile of all the values of the im-
age at that wavelength; i.e for an image I the 70% quantile of
{Pλ | P ∈ I}. To summarize, for a maximum at wavelength λ
in a pixel P , our detection threshold is max(τ1(P ), τ2(λ)).

We need to define a final decision threshold to tell apart CH4

plume (excess CH4) pixels from background pixels based on
the maxima that were counted. In order to do this, we rely on
an a contrario model. We take the a contrario assumption that
the image has no excess CH4, and compute the probability of
false detection under this assumption (Desolneux et al., 2003).
To do so, we index the 70 highest CH4 spectrum maxima by i,
going from 1 to 70, and we denote by pi the empirical probab-
ility that a spectrum maximum occurs at i in a “normal” image.
If CH4 anomalies occur in the image under study, they are gen-
erally concentrated on very few pixels. Hence we can estimate
pi from the image itself, and this will lead to a tiny overestim-
ation of this probability if some pixels have excess CH4. The
random variable Xi, which is equal to 1 if the i-th maximum
appears and 0 otherwise, follows a Bernoulli distribution with
parameter pi. To complete the a contrario model, we assume
that X1, ..., Xn are independent (in the absence of CH4). We
denote by S(P ) = X1 + ...+Xn the number of counted max-
ima on a given pixel P . We then compute a detection threshold
τ which guarantees a given false alarm rate pfa

pfa(τ) = P(S(P ) > τ |P without excess CH4). (6)

The value of pfa is set to 10−6 in our experiments, which amounts
statistically to less than 0.01 false alarm per image.

4.3 Anomaly detection

To further reduce the false alarms, we are going to combine the
counting of local maxima with an anomaly detection algorithm.
The anomaly detection algorithm used here is the classic Reed-
Xiaoli algorithm (RX) (Matteoli et al., 2010). The goal of this
algorithm is to detect anomalies in hyper-spectral images. The
algorithm learns a model around a pixel of interest then checks
if this pixel follows the model. The input of this algorithm is an
image after the background subtraction described above.

4.3.1 The Reed-Xiaoli algorithm. For each pixel, RX first
estimates a model from its neighbors. It assumes that all pixels
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in a neighborhood of the pixel under test (PUT) are independ-
ent and stem from the same random variable which follows a
multivariate normal distribution. Those pixels are used to com-
pute the parameters of the normal law. Here, the neighborhood
is a rectangular block centered on the PUT, deprived of a guard
window. The size of the block is a parameter which needs to be
chosen adequately; it depends mostly on the image resolution
and on the size of the anomaly we want to detect. Inside the
block centered on the PUT, we need to select the pixels used to
compute distribution parameters. The guard window is a smal-
ler block centered on the PUT. Thus, the Gaussian parameters
are computed with pixels outside the guard window. As a rule
of thumb, the guard window should be larger than the expected
anomaly size.

We compute the empirical mean µ and covariance matrix C
of the multivariate distribution with their usual non biased em-
pirical estimators. Then we compute the likelihood of each
pixel with respect to the multivariate distribution. Finally, we
compare the likelihood of each pixel to a detection threshold
η which depends on µ and C. The detection criterion on the
likelihood for a pixel P can be written as follows :

Pixel P is an anomaly iff (P − µ)TC−1(P − µ) > η. (7)

We want a detection threshold τ which guarantees a given false
alarm rate pfa. For a given threshold η, we denote by H0 the
hypothesis : the pixel P follows the model ; and H1 the hypo-
thesis : the pixel P is an anomaly i.e (P−µ)TC−1(P−µ) > η).
The probability of false alarm is given by P(H1|H0). By im-
posing a probability of false alarm per pixel, we can compute
the corresponding detection threshold.

Unfortunately, this method has some drawbacks, quite well de-
tailed in (Matteoli et al., 2010). These drawbacks caused by
fixed shape learning detection windows can lead to over-detection
and sometimes to under-detection. To address this issue, we use
RX twice : a first time to detect potential methane plumes and a
second time to remove over-detection caused by other parts of
the spectrum.

4.3.2 Methane specific anomaly detection. Indeed, RX de-
tects anomalies but does not decide if they are due to local meth-
ane excess or to other causes. But we can adapt RX to detect
specifically methane emissions. The method described below is
used to reduce the number of false detection and should only be
used jointly with an other detection method such as the pattern
recognition method described in Section 4.2.

The main idea is to execute the RX algorithm several times
but with disjoint groups of channels. First we apply RX with
wavelengths for which the methane absorbs practically no radi-
ation. We obtain a first binary mask A0. Then, we apply RX
with channels that are the most sensitive to methane. We obtain
a second mask Amethane.

Anomalies in Amethane are most likely due to methane and an-
omalies in A0 are most likely not. However some anomalies
detected in Amethane are also detected in A0. Therefore, we
can assume that those anomalies are not due to methane. In-
deed, methane has no effect on channels used to compute A0.
So in Amethane we remove anomalies detected in A0. Finally,
we multiply the resulting mask (Amethane−A0)

+ with the an-
omaly mask obtained by pattern recognition.

In practice, this process systematically reduces the number of
false alarms. However, this method can only be used in con-
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Figure 5. In the image (a), a methane plume is visible in green.
Each other image correspond to a part of the detection

algorithm, from the counting of maxima to the final detection.
Detected pixels are in purple.

junction with another detection technique. As we can see in
Figure 5, in the image (f) - which represents (Amethane−A0)

+

- many areas are potential plumes but only one of them is actu-
ally a methane plume. Even if we use RX with only methane
sensitive channels, we detect many anomalies which are not due
to an excess of methane. For example, a lack of methane could
induce an anomaly.

5. RESULTS AND DISCUSSION

As shown in Figure 1, the results obtained with our method are
consistent with the excess in XCH4 observed in the L2 product.
We detect the plumes seen in L2 data. There is a significant gap
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Location Number of
tested plumes

Number of
detected plumes

North of Africa 11 8
Middle-east 9 7
Eastearn asia 7 5

Total 27 20

Table 1. Results of the method in several locations.
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Figure 6. On the top right of (d) we detect a methane plume that
cannot be seen in the L2 product. Figures (b) and (c) show that
this plume is found with the counting of maxima and with RX.

of the number of maxima between the pixels with excess CH4

and the others. This allows us to have few false detections.

It should be noted that the image obtained with the local max-
ima counting is not proportional to the methane concentration.
The number of maxima provides an information about the exist-
ence of a plume but not about its methane concentration. Thus,
this method allow us to detect methane plumes but not to say
if a methane plume has a higher methane concentration than
another, even if they are in the same image.

Furthermore, as illustrated in Figure 5, the false alarms remain-
ing after the detection based on the spectrum local maxima
count are removed by the anomaly detection step. We see in
Figure 5 that after the detections based on the spectrum local
maxima count, two areas are potential false alarms; but those
areas are also detected as anomalies when using the methane-
insensitive wavelengths. Therefore, we remove those areas from
our methane plume candidates. Finally, we detect some pixels
in the center of the image which correspond to the center of the
plume seen in the L2 image.

In absence of published benchmarks with ground truth, we val-
idated the proposed method by comparing our results with plumes
detected by Kayrros experts on the L2 product. This detection
did not involve just L2, but also information on wind, on the po-
tential presence of oil & gas installations, etc. The L2 product
by itself does not provide a methane plume mask, it only quan-
tifies the dry column mixing ratio of methane. Local extrema in
the L2 product are detected and then the experts checked manu-
ally these potential plumes using information mentioned above.
As we shall see, only a few (potentially) false alarms remain by
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Figure 7. A potential methane plume in Australia at two
different dates that is discarded by our method.

our method. The plumes detected by experts on the L2 product
were considered ground truth true positives. These plumes are
taken from several locations, the results are summarized in the
Table 1.

Each plume was tested within a 200km × 200km squared area.
In total, to test all the plumes, the algorithm was applied to more
than 800,000 km2. Over those 800,000 km2 we found only 7
potential false alarms. Without any proper measurement on the
ground, we cannot tell if these detected pixels are indeed false
alarms or missed methane plumes. For each tested pixel, the
probability of false alarm was set to 10−6.

Conversely, as illustrated in Figure 6, we detected plumes that
were not found in the L2 product. Nonetheless, without any
proper ground truth we cannot tell if those detections are real.
A way to to tell apart false and new detections could be to look
at the number of spectrum maxima. If a pixel is detected but
with a small number of spectrum maxima (indeed, the detec-
tion threshold can be small if the background shows nearly no
maxima in most of pixels) we can classify them as low confid-
ence detections.

We compared our method with false alarms typically deduced
from the L2 product. In Figure 7 we see such potential false
alarms. The plume visible on this figure appears on every ob-
servation of this area, independently of the day or weather con-
ditions, and has always the same shape. This plume found in the
L2 product is arguably a false alarm. We tested our algorithm
on this potential false alarm at several dates and we never de-
tected it as a methane plume. In images (b) and (d) we see
the number of counted maxima corresponding respectively to
images (a) and (c). Images (b) and (d) show that the pattern
recognition step of the algorithm prevents the detection of the
shape seen in the L2 product.

In short, our CH4 detection method detects anomalous pixels
backed by a statistical model. It demonstrates the presence of
methane in a pixel after background subtraction by a statistical
proof of an excess of methane spectrum extrema. The probabil-
ity of detection is computed as the probability that such a num-
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ber of extrema would be observed just by chance in the residual
spectrum after background subtraction. The lower this probab-
ility the more secure the detection. We saw that fixing an a pri-
ori threshold on this probability guarantees a very low number
of false alarms, which may help experts focus on meaningful
detection. However, the method does not work in presence of
clouds or over water where albedo is very small. Moreover, the
model used here is a simplified model ignoring the Sentinel-5P
instrument noise and the influence of other greenhouse gases
like NO2. Further atmospheric modeling could improve the
background subtraction and the final detection. Beside these
modeling improvements, two main ideas could be developed.
First, more information about weather conditions could be used.
In particular, the use of the wind direction could help validate
plumes by looking at their shape. Second, instead of detecting
the plume pixel by pixel, we could detect groups of pixels. De-
tection of groups of pixels would lower the probability of false
alarms and reinforce the confidence in the detection.
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