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1. Introduction
Characterization of fractured rock is a critical challenge in a wide variety of research fields and applications, 
such as extraction, management, and protection of water resources. In fractured-rock aquifers, fractures can act 
as preferential flow paths that increase the risk of rapid contaminant migration over large distances. While the re-
source is generally stored in the surrounding matrix, fractures often determine the spatial extent of the extraction 
area (the cone of depression or well capture zone). Similar considerations play an important role in (oil/gas and 
geothermal) reservoir engineering, carbon sequestration, etc.

Various characterization techniques provide complementary information about fractured rocks. These typical-
ly rely on direct observation data, surface and borehole data acquired with geophysical techniques, and bore-
hole data collected during hydraulic and tracer experiments (Bonnet et  al.,  2001; Demirel et  al.,  2018; Dorn 
et al., 2012, 2013; Roubinet et al., 2018). We focus on the latter because they provide information that is directly 
related to the hydrogeological structures that drive flow and transport processes. For example, measurements 
of vertical flow velocities in a borehole under ambient and forced hydraulic conditions are used to estimate the 
properties of individual fractures that intersect the borehole (Klepikova et al., 2013; Paillet et al., 2012; Roubinet 
et al., 2015), and piezometric data collected in observation boreholes allow one to provide models of fracture 
network organization (Fischer et al., 2018; Le Goc et al., 2010; Lods et al., 2020). Chemical tracer experiments, 
typically comprising the interpretation of breakthrough curves, yield information on the short and long paths in 
the fractured rock; these characterize the discrete fracture network (DFN) and matrix block properties, respective-
ly (Haddad et al., 2014; Roubinet et al., 2013).

The deployment of heat tracers in the natural environment engendered new characterization methods for several 
applications. For instance, heat tracers were used to monitor groundwater in large-scale systems (Anderson, 2005; 
Saar, 2011), quantify hydraulic exchanges between surface and subsurface (Conant, 2004; Constantz, 2008), and 
evaluate groundwater discharge (Lowry et  al.,  2007). Heat has also been utilized to identify the presence of 
fractures intersecting boreholes (Pehme et al., 2013; Read et al., 2013), to estimate their hydraulic properties 
(Klepikova et al., 2014), and to study flow channeling and fracture–matrix exchange at the fracture scale (de La 
Bernardie et al., 2018; Klepikova et al., 2016). Most of these thermal experiments employ advanced equipment, 
which deploys the active line source to uniformly modify water temperature in a borehole (Pehme et al., 2007) 
and the distributed temperature sensing to simultaneously monitor the resulting temperature changes in observa-
tion boreholes (Read et al., 2013). Thermal tracer experiments offer several advantages over their chemical coun-
terparts. They rely on neither localized multilevel sampling techniques nor localized tracer injection in boreholes. 
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Such experiments might interrogate bigger areas because heat conduction covers larger area than solute diffusion, 
although heat loss to the matrix undermines thermal tracer’s ability to travel over large distances. Regardless, heat 
tracers are not restricted by environmental constraints, whereas chemical tracers may remain in the environment 
for a long time (Akoachere & Van Tonder, 2011; Ptak et al., 2004).

Without exception, the interpretation of hydraulic and tracer experiments involves inverse modeling. The choice 
of a strategy for the latter depends on the properties of interest, the data considered, the models available to re-
produce the data, and the prior information about the studied environment. For canonical fracture configurations 
between two boreholes, (semi)analytical and numerical models can be used in the cross-borehole flow-meter 
experiments mentioned above to evaluate the transmissivity and storativity of the fractures that intersect the bore-
holes at known depths (Klepikova et al., 2013; Paillet et al., 2012; Roubinet et al., 2015); the inversion consists of 
the gradient-based minimization of a discrepancy between the model’s predictions and the collected data. Large-
scale systems with complex fracture configurations require the use of sophisticated inversion strategies designed 
for high volumes of data. Most of such studies generate data via hydraulic and/or tracer tomography experiments, 
and use the inversion to identify the geometric and hydraulic properties of a fracture network (Fischer et al., 2018; 
Le Goc et al., 2010; Ringel et al., 2019; Somogyvári et al., 2017).

These studies limit the number of fractures in a network in order to work with a tractable number of parameters 
to invert. On the other side, forward models relating the fracture network properties to chemical or thermal 
breakthrough curves show that the shape of these curves is impacted by two factors. The first is the degree of 
heterogeneity of the fracture network and the matrix block size distribution (Roubinet et al., 2013); the second 
is the fracture density and fractal dimension, with the latter impacting the breakthrough curves when a fracture 
network is dense and flow is slow (Gisladottir et al., 2016). These findings suggest that breakthrough curves 
might provide valuable information about the statistical properties of a fracture network; with the exception of a 
few studies (Jang et al., 2008; Jang et al., 2013), this hypothesis has received very little attention. In contrast to 
strategies inferring geometric and hydraulic properties, the number of statistical parameters is sufficiently low to 
be identified via inverse modeling.

Yet, such statistics are necessary to quantify uncertainty in predictions of hydraulic and transport processes in 
fractured rocks. Their identification rests on ensemble-based computation, which involves repeated solves of a 
forward model. Two complementary strategies for making the inversion feasible for large, complex problems 
are (a) to reduce the number of forward solves that are necessary for the inversion algorithm to converge and (b) 
to reduce the computational cost of an individual forward solve. The former strategy includes the development 
of accelerated Markov chain samplers, Hamiltonian Monte Carlo sampling, iterative local updating ensemble 
smoother, ensemble Kalman filters, and learning on statistical manifolds (Barajas-Solano et al., 2019; Boso & 
Tartakovsky, 2020a, 2020b; Kang et al., 2021; Zhou & Tartakovsky, 2021). The latter strategy aims to replace an 
expensive forward model with its cheap surrogate/emulator/reduced-order model (Ciriello et al., 2019; Lu & Tar-
takovsky, 2020a, 2020b). Among these techniques, various flavors of deep neural networks (DNNs) have attract-
ed attention, in part, because they remain robust for large numbers of inputs and outputs (Kang et al., 2021; Mo 
et al., 2020; Zhou & Tartakovsky, 2021). Another benefit of DNNs is that their implementation in open-source 
software is portable to advanced computer architectures, such as graphics processing units and tensor processing 
units, without significant coding effort from the user. A Python package PyTorch (Paszke et al., 2019), which was 
used in this study, is a common choice for deep learning tasks.

We combine these two strategies for ensemble-based computation to develop an inversion method, which makes 
it possible to infer the statistical properties of a fracture network from cross-borehole thermal experiments 
(CBTEs). To alleviate the high cost of a forward model of hydro-thermal experiments, we use a meshless, par-
ticle-based method to solve the two-dimensional governing equations for fluid flow and heat transfer in DFNs 
(Section 2). These solutions, obtained for several realizations of the DFN parameters, are used in Section 3 to 
train a DNN-based surrogate. The latter’s cost is so low as to enable us to deploy a fully Bayesian inversion 
(Section 4) that, unlike ensemble Kalman filter, does not require our quantity of interest to be (approximately) 
Gaussian. Our numerical experiments, reported in Section 5, show that our approach is four orders of magnitude 
faster than the equivalent inversion based on the physics-based model. These synthetic experiments also reveal 
that the CBTE data allow one to obtain accurate estimates of fracture density, while the inference of a DFN’s 
fractal dimension is less robust. Main conclusions of this study are summarized in Section 6, together with a 
discussion of alternative strategies to improve the estimation of fractal dimension.
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2. Models of Fracture Networks and Transport Phenomena
A forward model of CBTEs consists of a two-dimensional fracture network model and those of fluid flow and 
heat transfer. These models are described in Sections 2.1, 2.2, and 2.3, respectively.

2.1. Model of Fracture Networks

To be specific, we conceptualize a DFN via the fractal model of Watanabe and Takahashi (1995), henceforth 
referred to as the WT model,

𝑁𝑁𝑟𝑟 = 𝐶𝐶𝑟𝑟−𝐷𝐷, (1)

that postulates a power law relationship between the number of fractures, Nr, and their relative length r (nor-
malized by smallest fracture length r0), in a domain of characteristic length L. The parameters C and D denote 
fracture density and fractal dimension, respectively. If a network’s smallest fracture has length r0, then the number 
of classes in the WT model is 𝐴𝐴 𝐴𝐴𝑓𝑓 = int(𝐶𝐶∕𝑟𝑟𝐷𝐷0 ) and the relative length of fractures in the ith class is ri = (C/i)1/D 
(i = 1, …, Nf). This formulation is equivalent to the model (Davy et al., 1990) that expresses fracture density 

𝐴𝐴 𝐴𝐴(𝑙𝑙𝑙 𝑙𝑙) = 𝛼𝛼𝑙𝑙𝑙𝑙−𝑎𝑎 in terms of fracture length l and domain size L, if one sets α = CD/Nf, 𝐴𝐴  = 𝐷𝐷 , and a = D + 1. 
The latter model reproduces self-similar structures observed in numerous studies (Sahimi, 2011, Chapter 6.6.8), 
allowing one to represent realistic fracture networks with the minimal number of parameters.

To generate a synthetic data set, we consider fractures arranged at two preferred angles θ1 = 25° and θ2 = 145° in 
a 100 × 100 m2 domain. Fracture centers are randomly distributed over the whole domain, and their aperture is 
set to 5 × 10−4 m, as in Gisladottir et al. (2016). The resulting DFN is simplified by removing the fractures that 
are not, directly or indirectly through other fractures, connected to the domain’s perimeter. Fluid flow and heat 
transfer are modeled on this fracture network backbone.

2.2. Model of Fluid Flow in Fracture Networks

We deploy a standard model of single-phase steady-state laminar flow in a DFN, which assumes the rock ma-
trix to be impervious to fluid. The flow of an incompressible fluid is driven by a hydraulic head gradient, J, 
due to constant hydraulic heads imposed on the left and right boundaries, the top and bottom boundaries are 
impermeable.

The fracture extremities and intersections of the DFN, whose construction is detailed above, form the network 
nodes and a fracture connecting two adjacent nodes is referred to as a network edge. Flow velocity in each edge 
is computed as the cross-sectional average of the Poiseuille velocity profile for flow between two parallel plates 
(Figure 1). Thus, the velocity, uij, of flow from node i to node j is 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 = −𝑏𝑏2𝑖𝑖𝑖𝑖𝑔𝑔∕(12𝜈𝜈)𝐽𝐽𝑖𝑖𝑖𝑖 , where ν is the fluid’s 

Figure 1. A representative two-dimensional fracture network generated with the WT model for (C, D) = (4.5, 1.2) and the 
other discrete fracture network parameters defined in Section 2.1. The fracture connecting node i and node j is shown on 
the right. A series of fracture networks corresponding to other combinations of (C, D) are shown in Figure 1 of Gisladottir 
et al. (2016).
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kinematic viscosity (m2/s), g is the gravitational acceleration constant (m/s2), bij is the aperture (m) of the fracture 
connecting the nodes i and j, and Jij = (hj − hi)/lij is the hydraulic head gradient between these nodes separated 
by the distance lij (m). The hydraulic heads at the DFN nodes, hi (i = 1, 2, …), are computed as the solution of 
a linear system built by enforcing mass conservation at each node: 𝐴𝐴

∑

𝑘𝑘∈𝑖𝑖
𝑏𝑏𝑘𝑘𝑖𝑖𝑢𝑢𝑘𝑘𝑖𝑖 = 0 , where 𝐴𝐴 𝑖𝑖 is the set of the 

neighboring nodes of node i; see, for example, Gisladottir et al. (2016) and Zimmerman and Tartakovsky (2020) 
for details.

2.3. Model of Heat Transfer in Fractured Rock

The DFN backbone constructed in Section 2.1 is further pruned by removing the edges representing the fractures 
with negligible flow velocities, for example, uij ≤ 10−10 m/s used in the subsequent numerical experiments. This 
standard procedure in DFN modeling eliminates the network’s dead-ends, that is, fracture segments that are con-
nected to the network through only one node and for which the flow velocity is theoretically equal to zero. It also 
ensures that solute/heat particles are not lost in these stagnant areas during transport simulations. The presence of 
these segments is implicitly taken into account in the equivalent diffusion properties of the surrounding matrix. 
Convection in the resulting fracture network and conduction in the host matrix rock are modeled via the parti-
cle-based approach (Gisladottir et al., 2016). The latter combines one-dimensional advective transport in each 
fracture (obtained by averaging heat-transfer equations over the fracture aperture and assuming that longitudinal 
diffusion is negligible in comparison with convection) and one-dimensional heat conduction in the matrix (in the 
direction perpendicular to the fracture). Complete mixing is assumed at the fracture intersections, implying that 
the probability for a particle to enter a fracture depends only on the flow rate at the considered node. Ruiz Martin-
ez et al. (2014) provide a complete analysis of the validity and accuracy of these assumptions. The computational 
cost of this method is significantly lower than that of its mesh-based alternatives because it discretizes only the 
fracture segments, while the matrix is not meshed. The particle displacement is associated with convection and 
conduction times in the fracture and the matrix, respectively. The latter time is defined from analytical solutions 
to the transport equations for a fracture–matrix system and truncated according to the probability plim for the 
particle to reach a neighboring fracture by conduction through the matrix.

CBTEs are simulated by uniformly injecting Npart particles on the left side of the domain and recording their 
arrival times on the right side. The cumulative distribution functions (CDFs) of these arrival times describe the 
changes in the relative temperature T* observed at distance L from the heat source, assuming complete mixing 
in the vertical direction at the observation position. The relative temperature is defined as T* = (Tobs − Tin)/
(Tinj − Tin), where Tin is the initial (at t = 0) fluid temperature in the system, and Tinj and Tobs are the temperatures 
at the injection and observation positions, respectively (Gisladottir et al., 2016).

3. Neural Network Model Formulation
While computationally efficient, the particle-based model described in Section 2 is too expensive to be used 
in ensemble-based simulations required for numerical inversion. Instead, we replace it with a DNN surrogate 
defined by a map,

𝐟𝐟 ∶ (𝐶𝐶𝐶𝐶𝐶) → 𝐹𝐹 (𝑥𝑥)𝐶 𝐹𝐹 (𝑥𝑥) = ℙ(𝑋𝑋 ≤ 𝑥𝑥)𝐶 𝑥𝑥 ∈ ℝ𝐶 (2)

where (C, D) are the fracture network parameters, and F(x) is the CDF of a particle’s arrival time X, that is, the 
probability that X does not exceed a certain value x. Since the nonzero probability space of F(x) varies for differ-
ent simulations (Gisladottir et al., 2016; Ruiz Martinez et al., 2014, and Section 5), we find it convenient to work 
with the inverse CDF (iCDF) F−1. Because any CDF is a continuous monotonically increasing function, the iCDF 
(or quantile CDF) is defined as

iCDF ∶ 𝑄𝑄(𝑝𝑝) = 𝐹𝐹 −1(𝑝𝑝) = min {𝑥𝑥 ∈ ℝ ∶ 𝐹𝐹 (𝑥𝑥) ≥ 𝑝𝑝} , 𝑝𝑝 ∈ (0, 1). (3)

If Q(p) is discretized into a set of Nk quantiles 𝐴𝐴
{

𝑝𝑝1,… , 𝑝𝑝𝑁𝑁𝑘𝑘 ∶ 0 < 𝑝𝑝1 < ⋯ < 𝑝𝑝𝑁𝑁𝑘𝑘 < 1
}

 , then

iCDF =
{

𝑄𝑄(𝑝𝑝1),… , 𝑄𝑄(𝑝𝑝𝑁𝑁𝑘𝑘 )
}

, 𝑄𝑄(𝑝𝑝1) < ⋯ < 𝑄𝑄(𝑝𝑝𝑁𝑁𝑘𝑘 ). (4)

Among various DNN architectures, we consider a fully connected neural network (FCNN)
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�� ∶ �
FCNN
←←←←←←←←←←←←←←←←←←←←→ �̂ (5)

that describes the forward surrogate model 2–4. The vector m, of length Nm, contains the parameters to be esti-
mated (in our problems, these parameters are C and D, so that Nm = 2); the vector 𝐴𝐴 �̂�𝐝 , of length Nd, contains the 
discretized values of the iCDF computed with the model NN. This model is built by defining an Nd × Nm matrix of 
weights W, whose values are obtained by minimizing the discrepancy between the vector 𝐴𝐴 �̂�𝐝 and the vector d com-
prising the output of the physics-based model from Section 2. Since the relationship between m and d is likely to 
be highly nonlinear, we relate m and 𝐴𝐴 �̂�𝐝 via a nonlinear model 𝐴𝐴 �̂�𝐝 = 𝜎𝜎(𝐖𝐖𝐖𝐖) , in which the prescribed “activation” 
function σ(⋅) operates on each element of the vector Wm. Commonly used activation functions include sigmoid 
functions (e.g., tanh) and the rectified linear unit (ReLU). The latter, σ(s) = max(0, s), is used in this study due 
to its proven performance in similar applications (Agarap, 2018; Mo et al., 2019; Zhou & Tartakovsky, 2021).

The nonlinear regression model 𝐴𝐴 �̂�𝐝 = 𝜎𝜎(𝐖𝐖𝐖𝐖) ≡ (𝜎𝜎 ◦ 𝐖𝐖)(𝐖𝐖) constitutes a single layer in a NN. A (deep) FCNN 
model with Nl layers is constructed by a repeated application of the activation function to the input,

�̂�𝐝 = 𝐍𝐍𝐍𝐍(𝐦𝐦;𝚯𝚯) ≡ (𝜎𝜎𝑁𝑁𝑙𝑙 ◦ 𝐖𝐖𝑁𝑁𝑙𝑙−1) ◦… ◦ (𝜎𝜎2 ◦ 𝐖𝐖1)(𝐦𝐦). (6a)

The parameter set 𝐴𝐴 𝚯𝚯 =
{

𝐖𝐖1,… ,𝐖𝐖𝑁𝑁𝑙𝑙−1
}

 consists of the weights Wn connecting the nth and (n + 1)st layers with 
the recursive relationships

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�1 = (�2 ◦ �1)(�) ≡ �2(�1�),

�� = (��+1 ◦ ��)(��−1) ≡ ��+1(����−1), � = 2,… , �� − 2

�̂ = (��� ◦ ���−1)(���−2) ≡ ��� (���−1���−2).

 (6b)

Here, si is the vector of data estimated in the ith layer; W1, Wi (i = 2, …, Nl − 2), and 𝐴𝐴 𝐖𝐖𝑁𝑁𝑙𝑙−1 are the matrices of 
size d1 × Nm, di × di−1, and 𝐴𝐴 𝐴𝐴𝑑𝑑 × 𝑑𝑑𝐴𝐴𝑙𝑙−2 , respectively; and the integers di (i = 1, …, Nl − 2) represent the number 
of neurons in the corresponding inner layers of the NN. The fitting parameters Θ are obtained by minimizing the 
discrepancy (or “loss function”) 𝐴𝐴 (𝐝𝐝𝑖𝑖, �̂�𝐝𝑖𝑖) between 𝐴𝐴 �̂�𝐝 and d,

𝚯𝚯 = argmin
𝚯𝚯

𝑁𝑁data
∑

𝑖𝑖=1

(𝐝𝐝𝑖𝑖, �̂�𝐝𝑖𝑖), 𝐝𝐝𝑖𝑖 = 𝐍𝐍𝐍𝐍(𝐦𝐦𝑖𝑖;𝚯𝚯), (7)

where Ndata is the number of forward runs of the physics-based model. We use the stochastic gradient-descent 
optimizer (Ruder, 2016) to carry out this step, which is commonly referred to as “network training.”

A choice of the functional form of the loss function 𝐴𝐴  affects a NN’s performance. Studies on measuring quantile 
divergence, especially for discrete inverse distribution, are scarce. Measures of the distance between probability 
distributions, such as the Kullback–Leibler (KL) divergence (Kullback, 1997) 𝐴𝐴 𝐴𝐴𝐿𝐿(⋅, ⋅) and the Hellinger distance 
(Le Cam, 2012) 𝐴𝐴 H(⋅, ⋅) , might or might not be appropriate for inverse distributions. Thus, while the KL diver-
gence is a popular metric in Bayesian inference (Boso & Tartakovsky, 2020b) and generative NNs (Goodfellow 
et al., 2014; Kingma & Welling, 2013), it is not a distance, that is, 𝐴𝐴 𝐴𝐴(𝑃𝑃 𝑃 𝑃𝑃 ′) ≠ 𝐴𝐴𝐿𝐿(𝑃𝑃 ′𝑃 𝑃𝑃 ) for any two distinct 
points P and P′, and, hence, cannot be used as such in Equation 7. Consequently, we quantify the distance be-
tween two discrete distributions 𝐴𝐴 𝐴𝐴 = (𝑝𝑝1,… , 𝑝𝑝𝑁𝑁𝑘𝑘 ) and 𝐴𝐴 𝐴𝐴 ′ = (𝑝𝑝′1,… , 𝑝𝑝′𝑁𝑁𝑘𝑘

) in terms of the Hellinger distance,

H(� , � ′) = 1
√

2
‖

√

� −
√

� ′
‖2 =

(

1
2

��
∑

�=1

(

√

�� −
√

�′�
)2
)1∕2

, (8)

that is, solve the minimization problem (Equation 7) with 𝐴𝐴  ≡ H(𝑄𝑄𝑄 �̂�𝑄) .

To reduce the training cost and improve the NN’s performance, we specify additional features to refine the 
initial guess of input parameters. The relationships between the fractal DFN parameters in Section 2.1 suggest 
the choice of C1/D, C−D, and CD (which are equal to rii

1/D, 𝐴𝐴 𝐴𝐴0∕𝑁𝑁𝐷𝐷
𝑓𝑓  , and αNf, respectively) and 1/D as extra input 

features. Given the pair of initial parameters (C, D), the resulting full set of parameters for the NN is
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𝐦𝐦NN = (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1∕𝐶𝐶𝐶 𝐶𝐶−𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶 1∕𝐶𝐶)⊤. (9)

4. Inversion Via Bayesian Update
According to the Bayes rule, the posterior probability density function (PDF) fm|d of the parameter vector m is 
computed as

𝑓𝑓𝐦𝐦|𝐝𝐝(�̃�𝐦; 𝐝𝐝) =
𝑓𝑓𝐦𝐦(�̃�𝐦)𝑓𝑓𝐝𝐝|𝐦𝐦(�̃�𝐦; 𝐝𝐝)

𝑓𝑓𝐝𝐝(𝐝𝐝)
, 𝑓𝑓𝐝𝐝(𝐝𝐝) = ∫ 𝑓𝑓𝐦𝐦(�̃�𝐦)𝑓𝑓𝐝𝐝|𝐦𝐦(�̃�𝐦; 𝐝𝐝)d�̃�𝐦, (10)

where 𝐴𝐴 𝐝𝐝 and 𝐴𝐴 �̃�𝐦 are the deterministic outcomes of random variables d and m, respectively; fm is the prior PDF of 
m; fd|m is the likelihood function (i.e., the joint PDF of the measurements conditioned on the model predictions, 
which is treated as a function of m); and the normalizing factor fd ensures that fm|d integrates to 1.

We take the likelihood function fd|m to be Gaussian,

��|�(�̃; �̃) = 1

�d

√

2�
exp

[

−1
2
�� (�̃, �(�̃))

�2
d

]

. (11)

This PDF has the standard deviation σd (in the simulations reported below, we set σd = 0.4) and is centered on the 
square root of the Hellinger distance between the data 𝐴𝐴 𝐝𝐝 predicted by the likelihood and the data 𝐴𝐴 𝐠𝐠(�̃�𝑚) provided 
by the forward model g. Addition of prior knowledge of m to the likelihood function is done within the standard 
Bayesian framework by assuming that the prior PDF is as important as the data. We explore how the posterior 
PDF can be improved by adjusting the impact of the prior. To do so, we treat the latter as a regularization term 
with a tunable hyperparameter γ that corresponds to the weight associated with the prior, enabling us to reduce 
the impact of the prior when its knowledge does not seem to be persuasive. The resulting posterior PDF is for-
mulated as

𝑓𝑓𝐦𝐦|𝐝𝐝(�̃�𝐦; 𝐝𝐝) ∝ e−𝐻𝐻(�̃�𝐦), 𝐻𝐻(�̃�𝐦) = 𝐻𝐻obs(�̃�𝐦) + 𝛾𝛾𝐻𝐻reg(�̃�𝐦), (12)

where 𝐴𝐴 𝐴𝐴obs(�̃�𝐦) = −ln(𝑓𝑓𝐝𝐝|𝐦𝐦(�̃�𝐦; 𝐝𝐝)) and 𝐴𝐴 𝐴𝐴reg(�̃�𝐦) = −ln(𝑓𝑓𝐦𝐦(�̃�𝐦)) are the negative log likelihood and log-prior distri-
butions, respectively. This yields

𝑓𝑓𝐦𝐦|𝐝𝐝(�̃�𝐦; 𝐝𝐝) ∝ 𝑓𝑓𝐝𝐝|𝐦𝐦(�̃�𝐦; 𝐝𝐝)(𝑓𝑓𝐦𝐦(�̃�𝐦))𝛾𝛾 , 𝛾𝛾 ∈ [0, 1]. (13)

This posterior PDF is computed via the following algorithm.

1.  Latin hypercube sampling (Stein, 1987) with NC and ND nodes is used to explore the domains 𝐴𝐴  and 𝐴𝐴  , over 
which the parameters C and D are allowed to vary. The result is a set of NC × ND points for the parameter pair 
(C, D) with coordinate vectors 𝐴𝐴 𝐦𝐦𝑖𝑖𝑖𝑖 = (𝐶𝐶𝑖𝑖,𝐷𝐷𝑖𝑖)⊤ (i = 1, …, NC, j = 1, …, ND).

2.  The iCDFs (Equation 4) are computed with the forward model g for all pairs mij.
3.  The negative log likelihood 𝐴𝐴 𝐴𝐴obs(𝐦𝐦) = −ln(𝑓𝑓𝐝𝐝|𝐦𝐦(�̃�𝐦; 𝐝𝐝)) is computed via (Equation 11), with the data g(m) 

provided by model g in Step 2.
4.  The posterior PDF fm|d is computed via Equation 13 by adjusting the weight γ assigned to the prior knowledge. 

(The case γ = 0 corresponds to a uniform prior for m, where the unnormalized posterior PDF is equivalent to 
the likelihood.)

This brute-force implementation of Bayesian inference is only made possible by the availability of the FCNN sur-
rogate, whose forward runs carry virtually zero computational cost. In its absence, or if the number of unknown 
parameters were large, one would have to deploy more advanced Bayesian update schemes such as Markov 
chain Monte Carlo (Barajas-Solano et al., 2019; Zhou & Tartakovsky, 2021) or ensemble updating methods (Mo 
et al., 2019, 2020).
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5. Numerical Experiments
The synthetic generation of DFNs and breakthrough times, tbreak, for a heat tracer is described Section 5.1. Gen-
eration of the data for CNN training is described in Section 5.2, with the construction of a CNN surrogate for the 
PDE-based model (Section 2) reported in Section 5.3. In Sections 5.4 and 5.5, we use this surrogate to accelerate 
the solution of the inverse problem of identifying the DFN properties from the breakthrough-time data.

5.1. Synthetic Heat-Tracer Experiment

Our synthetic heat-tracer experiment consists of injected hot water with temperature Tinj at the inlet (x1 = 0) and 
observing temperature changes at the outlet (x1 = L). The goal is to infer the statistical properties of a DFN, frac-
ture density C and fractal dimension D, from the resulting breakthrough curve. A fracture network with known 
values of C and D serves as ground truth, with possible measurement errors neglected. Consistent with Gislado-
ttir et al. (2016), we set the externally imposed hydraulic gradient across the simulation domain to J = 0.01 and 
the thermal diffusion coefficient in the matrix to Dtherm = 9.16 × 10−7 m2/s. The considered configurations are 
inspired by the experiments in natural geothermal reservoirs (Watanabe & Takahashi, 1995) and were used in a 
related analytical study of heat conduction in fractured rock (Ruiz Martinez et al., 2014).

5.2. Generation and Analysis of Synthetic Data

To generate data for the CNN training and testing, we considered the WT fracture networks (Equation 1) with 
C ∈ [2.5, 6.5] and D ∈ [1.0, 1.3]. These parameter ranges are both observed experimentally (Main et al., 1990; 
Scholz et al., 1993) and used in previous numerical studies (Gisladottir et al., 2016; Watanabe & Takahashi, 1995). 
The parameter space [2.5, 6.5] × [1.0, 1.3] was discretized into Nsim = 104 nodes, that is, pairs of the parameters 
(C,D)i with i = 1, …, Nsim, identified by the Latin hypercube sampling.

In addition to the number of injected particles, Npart, the simulation time and accuracy of each forward model run 
are largely controlled by the number of elements used to discretize a fracture, which is defined by the parameter 
plim introduced in Section 2.3. The simulation time tsim refers to the time (in seconds) it takes to estimate the CDF 
of breakthrough times for one random DFN realization and one of the Nsim = 104 pairs of the parameters (C, D). 
We found the average tsim not to exceed 1 s if either Npart = 100 or the fracture is not discretized; the average is 
over 20 random realizations of the DFN obtained with different random seeds for each parameter pair (C, D).

Representative CDFs of breakthrough times of Npart particles, in each of these 20 DFN realizations, are displayed 
in Figure 2 for three pairs of the DFN parameters (C, D). The across-realization variability of the CDFs is more 
pronounced for Npart = 102 than 103 particles, and visually indistinguishable when going from Npart = 103 to 104 
particles (not shown here). Likewise, no appreciable differences between the CDFs computed with plim = 0.5 
and 0.2 were observed. Finally, when the random-seed effects are averaged out, the resulting breakthrough-time 
CDFs for Npart = 102 and 103 are practically identical (Figure 3). Based on these findings, in the subsequent sim-
ulations, we set Npart = 100 and plim = 0.5 in order to obtain an optimal balance between the computational time 
and accuracy.

For some parameter-pairs (C, D), not every DFN realization (defined by the random seed) hydraulically connects 
the injection and observation boundaries. Such hydraulically disconnected networks are not suitable for our flow 
model (see Section 2.2). However, in our numerical experiments, there were at least 10—and, in the majority of 
cases, 19—connected fracture networks for each (C, D) pair.

The final step in our data generation procedure consists of converting the estimated CDFs F into corresponding 
iCDFs F−1 (Figure 4). The latter form the data set d, different parts of which are used to train a CNN and to verify 
its performance.

5.3. FCNN Training and Testing

The data generated above are arranged in a set 𝐴𝐴
{

𝐦𝐦NN𝑖𝑖 , 𝐝𝐝𝑖𝑖
}𝑁𝑁sim
𝑖𝑖=1  with Nsim = 104 and mNN defined in Equation 9. 

We randomly select 8 × 103 of these pairs to train the FCNN NN in Equation 5, leaving the remaining 2 × 103 
for testing. The output data d come in the form of iCDFs, that is, nondecreasing series of numbers. Since the 
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construction of a DNN surrogate does not guarantee this property, we use the hyperparameter tuning method 
of Liaw et al. (2018) to find a set of hyperparameters that produce a nondecreasing approximation of the iCDF. 
Table 1 identifies the region of the hyperparameter space used in this search.

Figure 2. Representative cumulative distribution functions (CDFs) of the logarithm of breakthrough times (in seconds) of Npart particles, F(ln tbreak), for 20 realizations 
of the discrete fracture network (DFN) characterized by a given combination of the DFN parameters (C, D). Each colored curve corresponds to a different random 
realization; in all simulations, we set plim = 0.5.

Figure 3. Mean cumulative distribution functions (CDFs) of the logarithm of breakthrough times (in seconds) of Npart particles, F(ln tbreak), averaged over the 
corresponding discrete fracture network (DFN) realizations in Figure 2.
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The hyperparameter search involved 2,500 trials; in each trial, the subset of data 𝐴𝐴
{

𝐦𝐦NN𝑖𝑖 , 𝐝𝐝𝑖𝑖
}8,000
𝑖𝑖=1  were randomly 

split into a training set consisting of 6,400 pairs 𝐴𝐴
{

𝐦𝐦NN𝑖𝑖 , 𝐝𝐝𝑖𝑖
}

 and a validation set comprising the remaining 1,600 
pairs 𝐴𝐴

{

𝐦𝐦NN𝑖𝑖 , 𝐝𝐝𝑖𝑖
}

 . For each epoch, the 6,400 training pairs were used to optimize the NN parameters, and the NN 
accuracy is evaluated on the validation set. Each trial used one of the optimizers in Table 1 for at most 103 ep-
ochs; the trial was stopped if the validation loss did not decrease for 102 epochs. After completion of all the trials 
with these rules, the trial with the smallest validation loss was saved. The optimal FCNN, described in Table 2, 
has six layers between the input and output layers and is obtained using the Adam optimizer with the Adam 
optimizer coefficients β = (0.9, 0.999) to perform gradient descent. This trial is associated with a learning rate 
lr = 0.00403 and the averaged Hellinger loss of 0.0827 on the validation set. This FCNN was further trained with 
a learning rate that reduces on plateau of the validation performance to further fine-tune the model parameters 

for another 103 epochs; the ending testing Hellinger loss is 0.0652 and the 
total training time is 37,340 s. Figure 5 depicts the FCNN predictions of the 
iCDFs of the particle breakthrough times in DFNs characterized by different 
parameter-pairs (C, D) not used for training. These predictions are visually 
indistinguishable from those obtained with the physics-based model g(m) 
described in Section 2.1.

5.4. Bayesian Inversion Without Prior Information

We start with the Bayesian data assimilation and parameter estimation from 
Section 4. Taking the uniform prior, γ = 0 in Equation 13, and assimilating 
the Nsim = 104 candidates provided by the physics-based model g, this pro-
cedure yields the posterior PDFs of C and D shown in Figure 6. While this 
noninformative prior indicates that all values of the parameters (C, D) are 
equally likely, the sharpened posterior correctly assigns higher probability to 
the region containing the reference (C, D) values. The relatively small num-
ber (Nsim = 104) of the forward solves of the physics-based model g manifests 
itself in granularity of the posterior PDF maps.

Figure 4. Cumulative distribution functions (CDFs) (left) and corresponding inverse CDFs (iCDFs) (right) of the thermal 
breakthrough times for a single realization of the six discrete fracture network (DFNs) characterized by six pairs of the 
parameters (C, D).

Parameter name Search region

Number of layers U {3, 4, 5, 6}

Number of neurons U {22, 23, . . . , 29}

Optimizer name U {rms, sgd, ada, adam}

Learning rate, lr log10(lr) ∼ U [−4,−2]

Note. These parameters are uniformly sampled from either a discrete set 
of values, U {·, ·, . . . , ·} , or an interval, U [·, ·] . The RMSprop optimizer 
(Graves,  2013; Hinton et  al.,  2012), rms; the stochastic gradient-descent 
optimizer (Sutskever et  al.,  2013), sgd; the Adagrad optimizer (Duchi 
et  al.,  2011) ada; and the Adam optimizer (Kingma & Ba,  2014), adam, 
slightly differ from each other when performing the parameter gradient 
descent during the NN training.

Table 1 
Hyperparameter Search Space Defined by the Number of Layers, the 
Number of Neurons in Each Layer, the Optimizer Names, and (Logarithm 
of) the Learning Rate
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Significantly more forward model runs are needed to further sharpen these 
posterior PDFs around the true values of (C, D) and to reduce the image 
pixelation. Generating the significant amounts of such data with the phys-
ics-based model is computationally prohibitive. Instead, we use 107 addi-
tional candidates, corresponding to a 104 × 103 mesh of the parameter space, 
provided by the FCNN surrogate. Figure 6 demonstrates that assimilation of 
these data (forward runs of the cheap FCNN surrogate) further reduces the 
band containing the unknown model parameters (C, D) with high probability. 
Generation of such large data sets with the physics-based model is 4 orders of 
magnitude more expensive than that with the FCNN (Table 3).

The posterior PDFs displayed in Figure 6 show that the fracture density C is 
well constrained and amenable to our Bayesian inversion, whereas the infer-
ence of the fractal dimension D is more elusive. Examples of the DFNs in this 
study are provided in Figure 2 of Gisladottir et al. (2016). They suggest that, 
for the parameter ranges considered, C impacts the spatial extent of a fracture 
network, while D affects the fracture-length distribution. Consequently, C 
has a more significant impact on the overall structures.

5.5. Bayesian Inversion With Data-Informed Priors

To refine the inference of parameters C and D from the breakthrough-time CDFs, we add some prior information. 
First, we observe that the field data reported in Appendix A suggest that C and D are correlated. These data are 
fitted with a shallow feed-forward NN resulting in the prior PDF of C and D shown in Figure 7. These data vary 
over larger ranges than those used for C and D in the previous section; at the same time, most values correspond to 
C < 2. That is because the field data come from a large number of different sites and from direct outcrop observa-
tions. Figure 9 in Watanabe and Takahashi (1995) shows that a network with C < 2 would have low connectivity. 
On the other hand, a DFN with a large D is very dense, requiring large computational times to simulate and, pos-
sibly, being amenable to a (stochastic) continuum representation. Driven by these practical considerations, and 
to ascertain the value of this additional information, we restrict the prior PDF from Figure 7 to the same range of 
parameters as that used in the previous section.

The relative importance given to the prior information about the DFN properties C and D (Figure 7) is controlled 
by the parameter γ in Equation 12. Large values of γ correspond to higher confidence in the quality and relevance 
of the data reported in Appendix A. Figure 8 exhibits posterior PDFs of C and D computed via our Bayesian 
assimilation procedure with γ = 0.5 and 1. Visual comparison of Figures 6 and 8 reveals that the incorporation 
of the prior information about generic (not site-specific) correlations between C and D sharpens our estimation 

Layer Weights Layer output

Input – 6

FC1 W1: 256 × 6 s1: 256

FC2 W2: 64 × 256 s2: 64

FC3 W3: 512 × 64 s3: 512

FC4 W4: 256 × 512 s4: 256

FC5 W5: 32 × 256 s5: 32

FC6 W6: 128 × 32 s6: 128

Output W7: 50 × 128 50

Note. Bias parameters are added to each layer, but not shown in this table.

Table 2 
The Best-Trial NN Architecture Consists of Six Hidden Layers, FCi  
(i = 1, …, 6), With the Corresponding Weight Matrix Wi and Layer Output 
si (i = 1, …, 6) in Equation 6

Figure 5. Physics-based and fully connected neural network (FCNN) predictions of the iCDFs of the particle breakthrough times in DFNs characterized by different 
parameter-pairs (C, D) not used for training.
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of these parameters, that is, decreases the area in the parameter space where they are predicted to lie with high 
probability. Putting more trust in the prior, that is, using a higher value of γ, amplifies this trend. However, the 
increase in certainty might be misplaced, as witnessed by several examples in which the reference parameter 
values fall outside the high-probability regions.

Fracture network’s connectivity is another potential source of information that can boost one’s ability to infer the 
parameters C and D from CBTEs. Let 𝐴𝐴 𝐴𝐴con𝑖𝑖 denote the number of connected fracture networks among 20 random 
realizations of a DFN characterized by (C, D)i. Figure 9 exhibits 𝐴𝐴 𝐴𝐴con𝑖𝑖 for Nsim = 104 DFNs characterized by (C, 
D)i (i = 1, …, Nsim), with the results interpolated to 104 × 103 mesh of the (C, D) space by means of a shallow 
NN. We define a prior PDF for C and D as

𝑓𝑓𝐦𝐦(�̃�𝐦) ∝ 𝑁𝑁2
con(�̃�𝐦), 𝑁𝑁con ∈ [0, 1,… , 20], (14)

which is properly normalized to ensure it integrates to one. This prior PDF, shown in Figure 9, assigns larger 
probability to those (C, D) pairs that show higher connectivity in our data set.

The Bayesian inference procedure with this prior yields the posterior joint PDFs of C and D in Figure 10. These 
distributions are sharper than those computed with either uninformative (Figure 6) or correlation-based (Figure 8) 

priors, indicating the further increased confidence in the method’s predictions 
of C and D. As before, assigning more weight to the prior, that is, increasing 
γ, reduces the area of the high-probability regions in the (C, D) space. This 
increased confidence in predictions of C and D is more pronounced when the 
connectivity-based prior, rather than the correlation-based prior, is used. The 
connectivity information also ensures that this confidence is not misplaced, 
that is, the reference parameter values lie within the high-probability regions.

6. Conclusions and Discussion
We developed and applied a computationally efficient parameter-estimation 
method, which makes it possible to infer the statistical properties of a fracture 
network from CBTEs. A key component of our method is the construction 
of a neural network surrogate of the physics-based model of fluid flow and 

Figure 6. Examples of the normalized posterior probability density functions (PDFs) of the DFN parameters C and D: 𝐴𝐴 𝐴𝐴𝐦𝐦|𝐝𝐝(�̃�𝐦; 𝑑𝑑), 𝐦𝐦 = (𝐶𝐶,𝐶𝐶)⊤ , for three experiments 
defined by the reference parameter values (blue circles). These PDFs are computed via Bayesian assimilation of either 104 runs of the physics-based model (top row) or 
additional 107 runs of the FCNN surrogate (bottom row). The posterior PDFs in each figure here and in Figures 8 and 10 are normalized to integrate to 1.

Nsim Ttrain Trun Tgrid Ttot

g(m) 2 × 108 0 1.312 × 108 5.47 1.312 × 108

NN(m) 107 37 ,340 1.26 5.47 3.735 × 104

Note. Each inversion requires Nsim forward runs and takes time Ttot. The latter 
comprises time to train the model (Ttrain), time to execute the forward runs 
(Trun), and time to define the posterior PDF on the discretized parameter grid 
(Tgrid). The running time for g(m) is a projection based on the simulation time 
of 6,560 s that was necessary to run 104 simulations. The FCNN was trained 
and executed on GPUs provided by GoogleColab. All times are in seconds.

Table 3 
Computational Cost of the Bayesian Inversion Using the Physics-Based 
Model g(m) or the FCNN Surrogate NN(m)
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heat transfer in fractured rocks. The negligible computational cost of this surrogate allows for the deployment of 
a straightforward grid search in the parameter space spanned by fracture density C and fractal dimension D. Our 
numerical experiments lead to the following major conclusions.

1.  The neural network surrogate provides accurate estimates of an average iCDF of breakthrough times, for the 
fracture network characterized by given parameters (C, D).

2.  In the absence of any expert knowledge about C and D, that is, when an uninformative prior is used, our 
method—with the likelihood function defined in terms of the Hellinger distance between the predicted and 
observed iCDFs—significantly sharpens this prior, correctly identifying parameter regions wherein the true 
values of (C, D) lie.

3.  Incorporation of the prior information about generic (not site-specific) correlations between C and D sharpens 
our estimation of these parameters, that is, decreases the area in the parameter space where they are predicted 
to lie with high probability. Putting more trust in the prior, that is, using a higher value of γ, amplifies this 

Figure 7. Prior joint PDF of C and D inferred from the field-scale data in Appendix A (left) and its rescaled counterpart over 
the parameter range used in our study (right).

Figure 8. Examples of the normalized posterior PDFs of the DFN parameters C and D: 𝐴𝐴 𝐴𝐴𝐦𝐦|𝐝𝐝(�̃�𝐦; 𝑑𝑑), 𝐦𝐦 = (𝐶𝐶,𝐶𝐶)⊤ , in the presence of prior information, for three 
experiments defined by the reference parameter values (blue circles). These PDFs are computed via Bayesian assimilation with the informative prior (Figure 7), whose 
relative importance increases from γ = 0.5 (top) to γ = 1.0 (bottom).
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trend. However, the increase in certainty might be misplaced, as witnessed by several examples in which the 
reference parameter values fall outside the high-probability regions.

4.  Incorporation of the prior information about a fracture network’s connectivity yields the posterior joint PDFs 
of C and D that are sharper than those computed with either uninformative or correlation-based priors, indi-
cating the further increased confidence in the method’s predictions of C and D.

5.  The increased confidence in predictions of C and D is more pronounced when the connectivity-based prior, 
rather than the correlation-based prior, is used. The connectivity information also ensures that this confidence 
is not misplaced, that is, the reference parameter values lie within the high-probability regions.

Figure 9. Number of connected networks, Ncon, averaged over 20 random realizations of the DFN model with a given 
parameter pair m = (C, D)⊤ (left); and corresponding prior PDF fm in Equation 14 (right).

Figure 10. Examples of the normalized posterior PDFs of the DFN parameters C and D: 𝐴𝐴 𝐴𝐴𝐦𝐦|𝐝𝐝(�̃�𝐦; 𝑑𝑑), 𝐦𝐦 = (𝐶𝐶,𝐶𝐶)⊤ , in the presence of prior information, for three 
experiments defined by the reference parameter values (blue circles). These PDFs are computed via Bayesian assimilation with the informative prior (Equation 14), 
whose relative importance increases from γ = 0.5 (top) to γ = 1.0 (bottom).
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While this study focused on two-dimensional networks whose statistical properties are characterized by two 
(unknown) DFN parameters, our methodology is equally applicable to three-dimensional problems with a larger 
number of DFN characteristics. Such a generalization would not require a significant implementation effort and 
is not expected to appreciably increase its computational cost. Populating a FCNN’s input and output with extra 
characteristics does not increase the training cost as much as the forward run of a physics-based model. In fact, 
the advantage of a NN-based surrogate of the forward model is likely to become even more pronounced (Mo 
et al., 2019).

Our deployment of NN-based surrogates has several shortcomings. First, systematic analyses of their accuracy 
and robustness in the context of approximating iCDFs are scarce. Second, identification of “optimal” values of 
the large number of hyperparameters specifying a FCNN (the number of NN layers, the number of neurons in 
each layer, a gradient-descent method used in optimization, etc.) requires many trials and is time-consuming. 
Third, the “as is” deployment of our NN architecture to analyze other thermal experiments is problematic if an 
experimental setup is materially different from that considered in our study; a possible use of transfer learning 
(Song & Tartakovsky, 2021) for this purpose is left for a follow-up study.

Appendix A: Field-Scale Characterization of Fracture Networks
For the sake of completeness, we report in Table  A1 the field-scale observations of fracture networks from  
Bonnet et al. (2001). These are accompanied by our calculation of the corresponding values of parameters C and 
D in the WT model of fracture networks.

Nf a S (m2) lmin (m) α D C

107 1.74 24 0.1 0.60035 0.74 86.80731

121 2.11 25 0.1 0.41703 1.11 45.46014

3,499 1.88 2.70 × 1011 103 4.97809 × 10−6 0.88 0.01979

120 0.9 8.25 × 107 40 −1.00582 × 10−7 −0.1 0.00012

101 1 2.62 × 107 57 0 0 NaN

300 1.76 NP 7.00 × 103 NaN 0.76 NaN

380 1.9 3.43 × 103 3 0.26777 0.9 113.05832

350 2.1 1.26 × 108 220 0.00115 1.1 0.36680

1,000 3.2 1.60 × 109 380 0.65137 2.2 296.07649

1,000 2.1 1.65 × 1010 2.00 × 103 0.00028 1.1 0.25921

800 2.2 2.50 × 101 6.00 × 10−2 1.31254 1.2 875.02702

380 2.1 NP 2.50 × 103 NaN 1.1 NaN

1,700 2.02 1.00 × 1010 1.00 × 103 0.0002 1.02 0.33182

260 1.3 8.75 × 103 1.00 0.00891 0.3 7.72571

100 1.8 2.10 × 103 1.00 0.03809 0.8 4.76190

873 2.64 3.40 × 101 5.00 × 10−3 0.00709 1.64 3.7745

320 2.61 2.07 × 107 4.00 × 10 0.00945 1.61 1.87779

50 1.67 2.90 × 107 7.00 × 10 1.99004 × 10−5 0.67 0.00148

180 1.97 2.80 × 108 3.00 × 102 0.00016 0.97 0.02925

400 2.21 1.20 × 108 4.00 × 10 0.00035 1.21 0.11573

250 2.11 2.50 × 1011 4.50 × 103 1.26005 × 10−5 1.11 0.00284

400 2.84 2.90 × 1011 5.50 × 103 0.01935 1.84 4.20716

70 2.67 3.60 × 109 1.60 × 103 0.00728 1.67 0.30533

150 2.66 5.10 × 109 1.25 × 103 0.00675 1.66 0.61021

Table A1 
Fracture Number (Nf), Power Law Exponent (a), Surface Area (S), Minimum Fracture Length (lmin), and Density Parameter 
α for Various Fracture Networks Reported in Table 2 in Bonnet et al. (2001)
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Data Availability Statement
There are no data sharing issues since all of the numerical information is provided in the figures produced by 
solving the equations in the paper and is available for download at https://github.com/DDMS-ERE-Stanford/
DFN_inverse or at https://doi.org/10.528 1/zenodo.5643615.
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