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Abstract The South Tibetan Detachment (STD) in the Himalayan orogen juxtaposes low-grade Tethyan
Himalayan sequence sedimentary rocks over high-grade metamorphic rocks of the Himalayan crystalline
core. We document infiltration of meteoric fluids into the STD footwall at ~17-15 Ma, when recrystallized
hydrous minerals equilibrated with low-3D (meteoric) water. Synkinematic biotite collected over 200 m of
structural section in the STD mylonitic footwall (Rongbuk Valley, near Mount Everest) record
high-temperature isotopic exchange with D-depleted water (8Dyater = — 150 £ 5%o) that infiltrated the ductile
segment of the detachment most likely during mylonitic deformation, although later isotopic exchange
cannot be definitively excluded. These minerals also reveal a uniform pattern of middle Miocene (15 Ma)
“OAr/*°Ar plateau ages. The presence of low-5D meteoric water in the STD mylonitic footwall is further
supported by hornblende and chlorite with very low 8D values of —183%o0 and —162%o, respectively. The 8D
values in the STD footwall suggest that surface-derived fluids were channeled down to the brittle-ductile
transition. Migration of fluids from the Earth’s surface to the active mylonitic detachment footwall may have
been achieved by fluid flow along steep normal faults that developed during synconvergent extension of the
upper Tethyan Himalayan plate. High heat flow helped sustain buoyancy-driven fluid convection over the
timescale of detachment tectonics. Low 3D values in synkinematic fluids are indicative of precipitation-derived
fluids sourced at high elevation and document that the ground surface above this section of the STD had
already attained similar-to-modern topographic elevations in the middle Miocene.

1. Introduction

Assessing the role of fluids in detachment systems is important because fluids may influence the mechanisms
and rates of detachment faulting from the grain scale to the scale of entire faults/shear zones [e.g., Mulch
et al.,, 2006; Whitney et al., 2013]. Fluid infiltration along and within shear zones can induce metamorphic reac-
tions [e.g., Mertanen and Karell, 2012; Saxena et al., 2012] and influence deformation mechanisms (recrystalli-
zation and recovery) by formation of rheologically weak phyllosilicate layers that may localize deformation
[Wintsch et al., 1995; Warr and Cox, 2001] or by enhancing crystal-scale recrystallization [Rutter and
Mainprice, 1979; Paterson, 1995]. The presence of phyllosilicates may favor intergranular pressure solution
processes [Renard et al., 2001] and thus reduce the porosity and permeability of deforming rocks.
Combined recrystallization and fluid-mediated element transport are hence critical in controlling the porosity
and permeability structure of deforming crystalline rocks [Person et al., 2007].

Infiltration of meteoric fluids has been documented in the footwall of detachment zones that bound the
metamorphic core complexes of the North American Cordillera, based mainly on the low hydrogen (3D)
and oxygen (8'80) isotope values of synkinematic hydrous minerals [e.qg., Fricke et al., 1992; Losh, 1997;
Mulch et al., 2004, 2006; Holk and Taylor, 2007; Gottardi et al., 2011; Gébelin et al., 2011, 2012, 2015; Methner
et al.,, 2015; Quilichini et al., 2015, 2016], the Menderes Massif of Turkey [Hetzel et al., 2013], and extensional
detachments in the European Central Alps [Campani et al., 2012]. Surface fluids penetrated the deforming
crust down to the brittle-ductile transition in these orogens by means of normal faults and fractures that
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dissected the brittle upper crust, while at the same time movement within the detachment zone induced
advection of hot footwall material that promoted buoyancy-driven fluid convection [e.g. Person et al.,
2007]. The downward migration of fluids is also facilitated by the presence of a hydraulic head that is gener-
ated in high-relief areas such as domino-style tilted blocks of upper crust [Person et al., 2007]. Therefore,
detachment zones represent a domain in the crust where surface fluids and metamorphic fluids may meet
[e.g., Fricke et al., 1992; Nesbitt and Muehlenbachs, 1995; Losh, 1997; Mulch et al., 2004, 2006; Holk and
Taylor, 2007; Gébelin et al., 2011, 2015].

Here we document similar fluid infiltration into the South Tibetan Detachment (STD) of the Himalayan oro-
gen that may be viewed as a special category of normal-sense shear detachments because it developed
during overall continental convergence. Some authors consider it as a passive structure [e.g., Chemenda
et al, 2000; Ring and Glodny, 2010] that formed to accommodate the exhumation of underlying rocks in
an extruded wedge or a flowing channel [e.g., Burg et al., 1984; Burchfiel and Royden, 1985; Grujic et al.,
1996, 2002; Grasemann et al., 1999; Beaumont et al., 2001, 2004; Searle et al., 2003; Godin et al., 2006].
Others view the STD as a thrust that was reactivated as a top-to-the-north shear zone and alternatively
played the role of passive-roof and active-roof thrust during emplacement of the Himalayan crystalline
core (HCCQ) [e.g., Yin, 2006; Webb et al., 2011]. Here we show that at least from a crustal permeability stand-
point the STD is similar to extensional detachments of the metamorphic core complexes of western North
America. We suggest that localized hydration of the STD footwall was enhanced by the combined effects
of porosity and permeability pathways in the overlying Tethyan sedimentary rocks and high heat flow in
the metamorphic footwall.

To determine fluid provenance and the timing and duration of fluid flow in the STD footwall, we use a com-
bination of hydrogen isotope (3D) geochemistry and *°Ar/>*°Ar geochronology of hydrous minerals from STD
mylonites collected in the Rongbuk Valley, located to the north of Mount Everest. This analytical approach,
pioneered in the North American Cordillera [e.g., Fricke et al., 1992; Losh, 1997; Mulch et al., 2004], is based
on the concept of water-rock interaction in active crustal-scale shear zones and involves measurement of
8D values of hydrous minerals (e.g., mica and amphibole) that interacted with aqueous fluids at high tem-
perature. If mineral water-hydrogen isotope equilibrium was achieved during deformation and recrystalliza-
tion, and if the temperature of hydrogen isotope exchange can be independently estimated, 8D values of
fluids can be retrieved from synkinematic minerals through experimentally calibrated hydrogen isotope
exchange parameters.

The 6D values of hydrous minerals have been recognized to be sensitive tracers of fluid-rock interaction
because hydrogen is a constituent of the H,O molecule itself and is a trace element in silicate rocks (order
of 2000 ppm; e.g., Sheppard [1986]) compared to oxygen, which is typically the most abundant element in
rocks. Therefore, a small amount of fluid will be detectable by measuring the hydrogen isotope ratios
because the volume of fluid required for changing the hydrogen bulk-rock composition of a unit is several
orders of magnitude smaller than that required for changing the oxygen bulk-rock composition. Hydrogen
also provides a wide range of 3D values in silicates [Coplen et al., 2002] that allow the origin of fluids involved
in the formation or alteration of hydrogen-bearing silicates to be determined (e.g., 8Dses water =0 £ 1-2%o,
Hoefs [2004]; —80%o0 < 3Dmagmatic fluids < —40%o, e.g., Sheppard [1986]; —70%0 < 8Dmetamorphic fluids < —20%o,
e.g., Field and Fifarek [1985]; —495%0 < 8Dmeteoric water < +129%o0, €.g., Fontes and Gonfiantini [1967] and
Jouzel et al. [1987]).

Negative 8D values for hydrous silicates (< —120%o) are a valuable indicator of interaction with meteoric
fluids [e.g., Taylor, 1990; Mulch et al., 2004, 2006; Gébelin et al., 2011, 2012, 2015] because 8D values in
precipitation decrease with increasing altitude on the windward side of mountain ranges (~20%o in 6D per
kilometer; e.g., Poage and Chamberlain [2001]) and low-8D fluids are typically absent in the crust. The pre-
sence of cool surface-derived fluids descending into the brittle-ductile transition influences the thermome-
chanical behavior of shear zones and also impacts the radiogenic isotope chronometers at this critical
structural level within the continental crust [e.g., Mulch et al., 2005; Gottardi et al., 2011]. Therefore, combining
hydrogen isotope and “°Ar/>*°Ar geochronology data from a transect across the STD into the underlying
mylonitic footwall provides insight on the origin of fluids within the shear zone exposed in the northern part
of the Rongbuk Valley, as well as the timing and possible duration of fluid flow and isotope exchange (hydro-
gen and argon) between mineral grains and circulating fluids.
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The Rongbuk Valley mylonites (Figure 1) provide an excellent target for assessing the role of fluids in the STD
because (1) the structural, metamorphic, and geochronologic record of the region is well established [e.g.,
Burchfiel et al., 1992; Hodges et al., 1992, 1998; Carosi et al., 1998; Searle et al., 2003, 2006; Law et al., 2004,
2011; Jessup et al., 2006, 2008; Cottle et al., 2015; Schultz et al., 2017]; (2) the region had a high geothermal
gradient in part generated by the emplacement of syntectonic leucogranite bodies in the STD footwall
[Hodges et al., 1998; Murphy and Harrison, 1999; Searle et al., 2003]; and (3) surface topography and relief were
sufficiently high during motion on the STD to create a regional hydraulic head [Gébelin et al., 2013].

The new data presented here support previous claims that surface-derived fluids infiltrated the detachment
shear zone over a minimum duration of circa 2 Myr in response to localized extension associated with devel-
opment of steep normal faults in Tethyan Himalayan sequence hanging wall rocks at ~17-15 Ma.

2. Tectonic Setting

2.1. Tectonic Architecture of the Himalaya

For more than 1500 km along strike the STD parallels the east-west arcuate trend of the Himalayan range and
juxtaposes unmetamorphosed or low-grade Tethyan Himalayan sequence (THS) sedimentary rocks over
high-grade metamorphic rocks of the HCC (Figure 1a; e.g., Burg et al. [1984] and Burchfiel et al. [1992]). The
~25 km thick HCC slab of metasedimentary and granitic rocks is bounded along the base by the south direc-
ted Main Central Thrust (MCT) that separates the HCC from lower grade Lesser Himalayan sequence (LHS)
rocks [e.g., Heim and Gansser, 1939; LeFort, 1975; Pécher, 1989; Searle et al., 2008]. Structural and geochrono-
logical studies indicate that activity on the MCT and the STD was spatially and temporally related and played
a major role in exhuming the HCC all along the Himalayan range [e.g., Burchfiel and Royden, 1985; Grujic et al.,
1996, 2002; Beaumont et al., 2004; Webb et al., 2011] between 24 and 12 Ma [e.g., Hodges et al., 1992, 1996;
Murphy and Harrison, 1999; Vannay and Grasemann, 2001; Daniel et al., 2003; Searle et al., 2003; Godin et al.,
2006; Kellett et al., 2009, 2010; Leloup et al., 2010; Chambers et al., 2011; Kellett and Grujic, 2012].

Various models have been proposed to explain emplacement of the HCC. In the channel flow model [e.g.,
Nelson et al., 1996; Hodges et al., 2001; Beaumont et al., 2001, 2004], the MCT and STD are viewed as parallel
structures that channelize the southward extrusion of partially molten crust sustained by continued erosion
at the Himalayan front. In the wedge extrusion model [e.g., Burg et al., 1984; Burchfiel and Royden, 1985; Grujic
et al.,, 1996], the MCT and STD merge downdip and facilitate exhumation of the HCC within the Indian crust as
a wedge. Grujic et al. [2011] proposed a hybrid model of the channel flow and wedge models. The tectonic
wedging model is radically different from the other models; in this model the HCC is bounded by the MCT
and STD surfaces that merge in their updip direction [e.g., Yin, 2006; Webb et al., 2007, 2011]. Although these
models have differences in timing and style, all attempt to explain Miocene exhumation of the HCC. In the
channel flow and wedge extrusion models, southward crustal flow is enhanced by both erosion at the
Himalayan front and north directed normal-sense slip on the STD that facilitates southward movement of
low-viscosity material, whereas in the tectonic wedging model, exhumation of the HCC is a consequence
of crustal thickening by accretion and interleaving of thrust slices. The resolution of this debate relies in part
on the tectonic regime that prevailed in the overlying Tethyan Himalayan sequence and on the timing,
kinematics, and magnitude of motion on the STD.

2.2. Metamorphic History of the Mount Everest Region

Prior to localization of deformation along the STD in the Everest region, the HCC (including the Everest series)
was buried during crustal thickening that resulted in Barrovian metamorphism at ~650°C, 6 kbar [Pognante
and Benna, 1993; Carosi et al., 1998; Searle et al., 2003; Jessup et al., 2008] at around ~32 Ma in the upper
reaches of the Khumbu region [Simpson et al., 2000; Searle et al., 2003]. At similar structural positions exposed
in the Kangshung Valley on the east side of Everest, U-Th-Pb dating indicates that peak-Barrovian conditions
were reached by at least ~38.9 Ma [Cottle et al., 2009]. This was followed by sillimanite-grade metamorphism
at ~28 Ma [Cottle et al., 2009]. In structurally higher positions within the northward dipping HCC, exposed to
the north of the Kangshung Valley, the regional metamorphism occurred later at ~25.4 Ma [Cottle et al., 2009].

In the upper portions of the HCC, as exposed in the Khumbu region, the record of Barrovian metamorphism
was variably overprinted by isothermal, high temperature (>620°C) and moderate pressure (~3-5 kbar)
metamorphism associated with Miocene partial melting and decompression [Pognante and Benna, 1993;
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Figure 1. (a) Simplified geologic sketch map of the Himalaya showing distribution of the main lithotectonic units and main areas discussed in text (modified after
Burchfiel et al. [1992] and Searle et al. [2008]). (b) Tectonic map of the Mount Everest region modified after Burchfiel et al. [1992]. (c) Simplified geological map of the
Mount Everest region and Rongbuk Valley, Tibet (modified after Chi-Hsiang and Shih-Tseng [1978], Carosi et al. [1998], Searle [2003], and Jessup et al. [2006, 2008]).
(d) N-S cross section across Mount Everest (modified after Searle [2003] and Jessup et al. [2006, 2008]) showing the upper brittle Qomolangma detachment and the
lower ductile Lhotse detachment merging toward the north into the South Tibetan Detachment shear zone; position of studied section is indicated.
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Carosi et al., 1998; Searle et al., 2003; Jessup et al., 2008]. High temperatures characterized the Khumbu area
rocks between~32 and 17Ma [Searle et al, 2010], induced partial melting between ~26 and 20 Ma
[Viskupic et al., 2005], and fed the overlying leucogranite injection complexes [Carosi et al., 1999; Searle
et al., 2003]. Similar structural positions in the Kangshung Valley also record partial melting at ~20.8 Ma
(prekinematic to synkinematic) and 16.7 Ma (postkinematic) [Cottle et al, 2009]. Early metamorphism at
higher structural positions within the northward dipping HCC was overprinted by a metamorphic event at
~16.1 Ma that was followed by partial melting at ~15.2 Ma (prekinematic to synkinematic) and ~12.6 Ma
(postkinematic; Cottle et al. [2009]). When combined with data from a north Himalayan gneiss dome, Cottle
et al. [2009] proposed that the HCC recorded metamorphism and partial melting that resulted in flow of a
weakened, southward directed channel for 20 Myr. prior to ~16 Ma.

2.3. Timing of Deformation in the Mount Everest Region

The timing of STD activity varies significantly along the Himalayan belt covering the early to middle Miocene
[Hodges et al., 1992; Godin et al., 2006; Carosi et al., 2013], an age range that mimics ages obtained for activity
on the MCT.

In the structurally highest position of the HCC near Mount Everest (Hermit's Gorge of Rongbuk Valley)
(Figures 1c and 1d), various generations of leucogranite record a minimum age of ~16.4 Ma for ductile fabric
development related to deformation along the STD, while extrusion of partially melted sillimanite-grade
rocks beneath a passive-roof fault occurred prior to 15.4 Ma [Cottle et al., 2015]. In the same area, U-Pb ages
from sheared schist (16.9 £ 2 Ma) were interpreted as evidence for movement on the STD at this time [Searle
et al., 2003].

Farther to the north in Rongbuk Valley, a series of leucogranite dikes and sills exposed in the cliffs above
Rongbuk Monastery (Figures 1c and 1d) record the timing of ductile deformation at ~17 Ma [Murphy and
Harrison, 1999]. The northernmost dated mylonitic leucogranite sill (100-150m thick) recorded an upper
bound for the timing of the shear zone of 16.67 +0.04 Ma (U/Pb; Hodges et al. [1998]).

Despite some lack of precision, the cessation of movement on the STD occurred during the middle to late
Miocene [e.g., Edwards et al., 1996, 1999; Wu et al., 1998; Kellett et al, 2009, 2013; Schultz et al., 2017].
However, based on field relations combined with monazite U-Pb data from leucogranite dikes at Hermit's
Gorge, Cottle et al. [2015] proposed a minimum age of 15.6 Ma for ductile shearing on the STD. The end of
shearing on the STD footwall must reflect important geodynamic changes in the south Tibetan region. It is
marked by a transition at ~15-13 Ma [Nagy et al., 2015] from N-S stretching and south directed extrusion
of the HCC, as evidenced by E-W striking extensional shear zones and normal faults (Figure 1b; Chi-Hsiang
and Shih-Tseng [1978], Burchfiel et al. [1992], and Carosi et al. [1998]), to orogen-parallel E-W
stretching/extension accommodated by the development of high-angle N-S striking normal faults that
formed perpendicular to the gently dipping STD along the length of the Himalayan orogen [e.g., Jessup
and Cottle, 2010; Leloup et al., 2010; Lee et al., 2011; Nagy et al., 2015].

Hydrogen isotope ratios (8D) in silicate minerals that crystallized in the immediate footwall to the STD
exposed in the Rongbuk Valley indicate that meteoric water penetrated the ductile segment of the detach-
ment over the timescale of mylonitic deformation [Gébelin et al., 2013]. Based on geochronological data from
syntectonic leucogranite and sheared biotite-schist (see above, Hodges et al. [1998], Murphy and Harrison
[1999], and Searle et al. [2003]) hydrogen isotope exchange between meteoric fluids and recrystallized sili-
cates is thought to have occurred at ~17 Ma during normal-sense movement on the STD [Gébelin et al.,
2013]. In addition to the 3D values of biotite and hornblende presented in Gébelin et al. [2013], the present
study offers a more complete set of hydrogen isotope data and microstructural observations, as well as
new *°Ar/**Ar geochronological data from the STD footwall in the Rongbuk Valley indicating that fluid-rock
isotopic exchange occurred over a longer time interval and ceased shortly before 15 Ma.

The presence of low-8D meteoric water in the STD footwall raises the question of how these fluids reached
down to the brittle-ductile transition. Although a wide range of structural and thermochronological data
for the STD have been recorded along the length of the Himalaya, the relationship between the timing of
deformation, fluid flow, and normal-sense northward shearing along the STD remains elusive. The results pre-
sented here shed new light on Miocene crustal hydrology in the Himalaya region and offer new ideas regard-
ing the relationship among crustal deformation, Himalayan topography, and fluid circulation along the STD.
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3. RongbukValley Transect: Petrography and Deformation Temperatures

We collected oriented samples for structural analysis along a transect from the STD into the underlying mylo-
nitic footwall in the Rongbuk Valley immediately north of Mount Everest (Figures 1b and 1c). In this area, the
STD consists of two major detachment zones that gradually merge northward (Figure 1d): the brittle
Qomolangma detachment (QD) and the structurally lower ductile Lhotse detachment shear zone (LD)
[Burchfiel et al., 1992; Carosi et al., 1998; Searle, 2003; Searle et al., 2003; Sakai et al., 2005].

The QD represents a sharp zone that juxtaposes low-grade Ordovician limestone [Corthouts et al., 2015, and
references therein] against underlying coarse-grained recrystallized marbles of the Yellow Band (Figures 1c
and 1d). The sheared marbles below the QD form the top of the Everest Series and are underlain by metape-
lites in which metamorphic grade increases downward from greenschist to lower amphibolite facies in the
structural section [Pognante and Benna, 1993; Lombardo et al., 1993; Waters et al., 2006; Jessup et al., 2008].
The LD separates these penetratively deformed metasedimentary rocks from underlying biotite-schists and
gneisses (sillimanite grade) injected by leucogranite sills [Searle, 2003; Searle et al., 2003] that form the upper
part of the Himalayan crystalline core.

Our samples were collected from the Northern Transect [Jessup et al., 2006; Law et al., 2011] located at the
northern end of Rongbuk Valley, ~35km to the north of Mount Everest (Figures 1c and 1d). Here the QD
and LD merge and form a single high-strain detachment zone that separates upper plate Tethyan limestone
from high-grade metamorphic rocks and syntectonic leucogranite below (Figure 1d). Quartz-rich layers at the
top of the detachment footwall display intense dynamic recrystallization with development of subgrains and
window microstructures or isolated grains (i.e., “leftover grains” of Jessel [1987]) indicating that subgrain rota-
tion and grain boundary migration were the dominant dynamic recrystallization processes [Hirth and Tullis,
1992; Jessup et al., 2006]. This deformation mechanism can occur over a wide temperature range (400°C to
>550°C) as indicated by the opening angle of quartz c axes fabrics in samples from the Northern Transect that
are systematically consistent with deformation temperatures of >540°C (Figure 3; Law et al. [2011], Law
[2014], and Faleiros et al. [2016]).

Mylonitic leucogranite sills intruding marbles within the top 7 m of the section contain abundant muscovite
(>30%) forming elongate lenticular mica fish and fish with small aspect ratios and curved tails [Ten Grotenhuis
et al., 2003] that are consistent with top-to-northeast sense of shear (Figures 2a and 3). In contrast, mica fish
observed in mylonitic cross-cutting leucogranites in deeper parts (>31 m) of the section have sigmoidal clea-
vage planes that converge at both tips of the mica grain (Figures 2b and 3; Ten Grotenhuis et al. [2003]).

Calc-silicate units in the immediate footwall to the detachment exposed on the Northern Transect contain
abundant quartz and feldspar grains, as well as amphibole and biotite grains oriented subparallel to foliation
(Figure 2c). Tension gashes oriented perpendicular to the NNE-SSW trending stretching lineation are filled by
chlorite [Jessup et al., 2006] and postdate the main foliation (Figure 2d). The calc-silicate units are underlain by
biotite-schists and gneisses that represent the structurally lowest unit exposed on the Northern Transect.
Biotite is abundant and forms shear bands consistent with top-to-north sense of shear (Figures 2e and 2f).
Biotite grains are locally kinked, indicating late-stage deformation under low-grade conditions.

4, Hydrogen Isotope Geochemistry

The 8D values of biotite, hornblende, muscovite, and chlorite were measured in 23 samples of sheared leu-
cogranite, pegmatite, biotite-schist/gneiss, and calc-silicate across approximately 200 m of structural section
from the STD into the underlying mylonitic footwall (Figure 3 and Table 1); analytical procedures are summar-
ized in the supporting information (Text 1). These samples include 8D values for biotite and hornblende pre-
viously reported by Gébelin et al. [2013] (see their Table DR1 in Data Repository). As the presence of fluid
during mylonitization can induce the breakdown of porphyroclasts and the growth of newly recrystallized
grains [e.g., Paterson, 1995; Gébelin et al., 2011; Quilichini et al., 2015], different grain size fractions were mea-
sured in order to identify potentially different generations of hydrous minerals.

4.1. Hydrogen Isotope Composition of Minerals From Biotite-Schist and Calc-Silicate Samples

Biotite from the biotite-schist and calc-silicate rock samples analyzed is characterized by very low 3D values of
—132%o0 to —176%o at distances of 9-109 m beneath the STD and attains progressively higher values of up to
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Figure 2. Photomicrograph of mylonitic rocks collected in the footwall to the STD exposed on the Northern Transect,
Rongbuk Valley (sample number, lithology, and sampling depth beneath the detachment are indicated). All thin sections
cut perpendicular to foliation and parallel to mineral lineation. (a) Muscovite fish with small aspect ratios [Ten Grotenhuis
et al., 2003] indicating top-to-northeast sense of shear. (b) Muscovite fish showing sigmoidal cleavage planes converging at
the tip of the grain [Ten Grotenhuis et al., 2003] consistent with a top-to-northeast normal sense of shear. (c) Elongated
amphibole and biotite grains parallel to the foliation in calc-silicate. (d) Microboudinage and tension gashes filled by
chlorite in calc-silicate postdating the main foliation. (e) Biotite-bearing shear bands indicating top-to-north sense of shear.
(f) Biotite fish from schist.

—85%o (156 m) toward the base of the section. Similarly, hornblende separates from two calc-silicate samples
at 24 and 98 m beneath the detachment yield very low 8D values of —183 and —181%o, respectively. Chlorite
from one calc-silicate sample has a very low 8D value of —162%o.

4.2, Hydrogen Isotope Composition of Minerals From Leucogranite Samples

Syntectonic leucogranites at 25-97 m beneath the detachment contain biotite grains characterized by low
8D values that range from —126%o to —182%o. Muscovite grains from the leucogranites have higher 6D
values (between —129 and —77%o) than biotite grains, even though they are from similar, and in some
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Figure 3. The 3D values of biotite, muscovite, hornblende, and chlorite from mylonitic rocks in the footwall of the South
Tibetan Detachment (STD) and calculated 6D,y ater Values. Most of sample separates are from the grain size fraction

250 < f< 500 pm, except those shown in red (f > 500 um) and blue (f < 250 um). Note that the 8D values of biotite and
hornblende are those previously published in Gébelin et al. [2013]. (left) Lithologic section through the STD at Northern
Transect (Rongbuk Valley). Note that “OAr/3%Ar results are given with respect to their structural position on the stratigraphic
column. (right) Deformation/recrystallization temperatures based on opening angle of quartz c axes fabric patterns with
nominal uncertainties of +50°C [Law et al., 2011].

cases the same, leucogranite samples collected at distances less than 41 m beneath the detachment. The
highest 8D values for muscovite grains (—77 to —86%o) from leucogranite samples fall within the 8D range
of metamorphic muscovite [e.g., Sheppard, 1986] and occur within the 0-7 m and 40 m depth intervals. In
addition, we note that the largest muscovite size fractions (f> 500 um) yield 3D values up to 20%o higher
than the smallest size fractions (250 < f < 500 um) (Table 1).

5. 4°Ar/3>°Ar Geochronology

We dated seven samples of schist, leucogranite, and calc-silicate collected over 156 m of section of STD foot-
wall mylonites (Figure 4 and Table 2). In an attempt to make a link between potential hydrogen isotope and
4OAr loss, we selected samples from which we had previously obtained low 3D values at the top of the section
and high 8D values at the bottom of the section. Analyses were conducted on multigrain mineral separates
using furnace step-heating *°Ar/3°Ar geochronology (Table 2; analytical procedures can be found in Text 2 of
the supporting information; Dalrymple et al. [1981], Min et al. [2000], Lee et al. [2006], and Kuiper et al. [2008]).
Plateau ages of biotite fish from samples M2 (9m below detachment), R-05-09 (100 m), R-07-03 (104 m),
R-07-05 (109 m), R-07-07 (134 m), and R-07-08 (156 m) are 14.77 +0.17 Ma, 14.61 +0.13 Ma, 14.54+0.11 Ma,
15.25+0.13 Ma, 14.72+£0.11 Ma, and 15.16 + 0.15 Ma, respectively (Figure 4). A multigrain muscovite separate
from sample M2 yields a plateau age of 14.89 + 0.07 Ma. These muscovite grains are from a syntectonic leu-
cogranite sill that parallels the foliation in biotite-schist sample M2.

In contrast, hornblende separates from calc-silicates (sample R-05-06; 24 m below detachment) provide a dis-
turbed *°Ar/*°Ar age spectrum with low-temperature release steps indicating Eocene ages, followed by a
plateau-like spectrum defined by two higher-temperature release steps that include ~79% of >°Ar and give
a late Eocene-early Oligocene age of 33.0+0.8 Ma (Figure 4). The last step that comprises ~10% of total
3%Ar released gives an early to middle Miocene age.

6. Discussion

Two lines of evidence point to operation of the STD in the Mount Everest region as a hydrothermal system
that permitted the circulation of meteoric water during a restricted time interval in the middle Miocene:

1. 8Dpiotite Values as low as —182%o require the presence of meteoric fluids in the detachment footwall
during deformation [e.g., Taylor, 1990]. Infiltration of surface-derived fluids down to the brittle-ductile
transition is also supported by low 8Dpornbiende aNd 8Dchiorite Values of —182%o and —162%o, respectively.
Consistent with localized meteoric fluid flow in the topmost part of the detachment footwall, 3D values
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Figure 4. The “Onr/2oAr step-heating spectra of biotite, muscovite, and hornblende from mylonitic rocks from the STD at

Northern Transect, Rongbuk Valley.
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increase progressively toward metamorphic values (8Dpjotite > —100%o0) toward the base of the exposed
footwall section. This trend is consistent with low 8D values acquisition by isotopic exchange between
minerals and meteoric fluids during activity of the detachment system, including mylonitic deformation
and recrystallization in the immediate footwall of the detachment, although postdeformation hydrogen
isotope exchange cannot be totally ruled out.

2. *®Ar/*°Ar geochronology yields middle Miocene plateau ages over the same ~200m of structural
section. We interpret these ages to represent cooling ages from which, together with published U-Pb data
[Hodges et al., 1998; Murphy and Harrison, 1999; Searle et al., 2003; Cottle et al., 2015], we can estimate a
minimum duration of deformation-controlled hydrogen isotope exchange between meteoric fluids and
(re)-crystallized syntectonic silicate minerals of less than 2 Myr (~16.7-14.9 Ma).

Although a number of geodynamic models have been proposed to explain the exhumation of lower to mid-
dle crustal rocks in association with normal-sense motion on the STD, none of these models have highlighted
the potential importance of fluids, as recorded by stable isotopes from shear zones, during extensional
tectonics/normal faulting in the Tethyan sedimentary rocks that form the hanging wall to the STD. We pro-
pose that the influx of meteoric water into the STD system was facilitated by brittle faulting and extension
of these upper crustal hanging wall rocks.

6.1. Interpretation of 6D Values

Low 3D values of biotite, muscovite, chlorite, and hornblende grains (8Dsjjicate < —126%0) from schist, calc-
silicate, and leucogranite characterize the STD footwall at distances of 9-35m and 97-109 m beneath the
detachment (Figure 3 and Table 1). Such negative D values suggest the presence of low-6D meteoric
water associated with the growth of these synkinematic hydrous minerals during high-temperature pene-
trative deformation in the STD footwall (see below). In addition, as highlighted by 6Dy;uite Values that
range from —126%o to —182%o, these minerals interacted to various degrees with meteoric fluids that
were most likely sourced at high elevation [e.g., Taylor, 1990]. In contrast, leucogranite samples collected
from the top 9 m of STD footwall, as well as at 40-41 m beneath the detachment, contain muscovite grains
that have higher 3D values ranging from —80 to —100%o and from —77 to —98%o, respectively. Similarly,
biotite grains in leucogranites collected at 40-41 m have higher 6D values (—129%o) than those usually
observed in the surrounding metasedimentary rocks, reflecting only moderate interaction with surface-
derived fluids (Figure 3 and Table 1). Below the 109 m depth interval, schist, gneiss, and calc-silicate sam-
ples that form the base of the section provide high 8Dyjstite Values ranging from —85 to —97%o (Figure 3
and Table 1) that indicate a signature again dominated by metamorphic fluids.

The 8D data suggest that during development of the observed deformation microstructures, the footwall
rocks interacted with surface-derived fluids down to present-day depths of 109 m beneath the STD. We view
the variations in 3D values within the structural section as reflecting the result of time-integrated hydrogen
isotope exchange between water and rock controlled by the depth to which meteoric fluids were able to
penetrate beneath the detachment, which was itself probably modulated by the contrast in permeability
of the different rock types (principally metasedimentary rocks versus leucogranites).

Using a deformation and isotopic exchange temperature of ~580 + 50°C inferred from the opening angles of
quartz c axis fabric girdles from the mylonitic footwall leucogranites [Law et al., 201 1], combined with the cali-
bration for hydrogen isotope exchange between biotite and water [Suzuoki and Epstein, 1976], biotite grains
from leucogranites within the top ~100m of STD footwall yield 3D,yater Values as low as —150 + 5/—4%o
(Figure 3 and Table 1). Similarly, hornblende separates from calc-silicates give low 8D,yater Values of
—155 + 5%o0 using a deformation temperature of ~ 540 + 50°C [Law et al.,, 2011] and the Suzuoki and Epstein
[1976] calibration for hydrogen isotope hornblende-water fractionation. Biotite grains from schist and
calc-silicate samples provide very consistent results with 3D,y,te, Values as low as —141%o (Figure 3 and
Table 1). In contrast, 8Dyater Values calculated for muscovite are typically less negative ranging from
—65+4%0 to —118+4%o using the same deformation temperatures determined by Law et al. [2011] for
mylonitic leucogranite from the Northern Transect (Figure 3 and Table 1) and the muscovite-water-hydrogen
isotope exchange equations of Suzuoki and Epstein [1976].

The 4D values of muscovite vary with grain size (Figure 3). This is also reflected in the 6Dy ater Values calculated
for samples R-05-04 and R-03-24 for which the largest grain size (f> 500 um) yields 8Dy, ater Values 14 and
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20%o higher, respectively, when compared to the smallest fraction (250 < f< 500 um) (Table 1). The larger
muscovite grains, characterized by lenticular mica fish or fish with small aspect ratios (Figure 2a), may be
older grains from the protolith that did not (completely) recrystallize in the presence of meteoric fluids in
the STD footwall during high-temperature shearing. In contrast, smaller grains that formed by solution-
precipitation in strain shadows of porphyroclasts (Figure 2b) and/or crystallized parallel to foliation or shear
bands equilibrated with surface-derived fluids during deformation. However, this grain size dependence is
not observed for biotite (see sample R-07-03 or R-07-05, Table 1). This difference for muscovite grains could
be related to texture, composition, and permeability of the rock; leucogranite samples display, on average,
higher 8Dyater Values than those calculated for biotite-schist and calc-silicate samples and/or a different
hydrogen isotope exchange mechanism in biotite and muscovite. One alternative interpretation is that the
syntectonic 17-16 Ma leucogranites [Hodges et al., 1998; Murphy and Harrison, 1999; Searle et al., 2003] were
susceptible to deformation-induced recrystallization and therefore fluid-rock exchange, for only a relatively
short time compared to the metasedimentary host rocks.

6.2. Timing of Fluid Flow and Deformation

We have established “°Ar/3?Ar ages for multigrain biotite separates showing low 8D values (—163%0<8
Dpiotite < —135%0) from the top 9-109m of the STD footwall. All of these separates display constant
“OAr/*°Ar ages of ~15Ma from the top to the bottom of the section. The *°Ar/*°Ar thermochronology
conducted on biotite separates that were collected toward the base of the section, where interaction with
surface-derived fluids was minimal (8Dp;otite ~ —85%o0), yield similar ~15 Ma ages. Schultz et al. [2017] have
reported similar *°Ar/*°Ar cooling ages (15.4-14.4Ma) for white mica grains in samples of leucogranite
collected from the footwall of the STD in the Rongbuk Valley in outcrops located ~ 7-20 km to the south of
our Northern Transect. Additionally, Carrapa et al. [2016, Table DR4] also report similar “°Ar/>°Ar ages for
white mica grains (~16.5-14.9 Ma) in river sands from the Rongbuk Valley that have presumably been eroded
from these footwall rocks.

In biotite-schist sample M2 (9 m beneath the detachment), very similar 4OAr/3°Ar ages were obtained on
biotite (14.77+0.17 Ma) and muscovite (14.89+0.07 Ma) grains from a foliation-parallel syntectonic
muscovite-bearing pegmatite vein. This similarity in biotite and muscovite *°Ar/>*°Ar ages suggests that the
pegmatite underwent rapid cooling, considering estimated closure temperatures of 335+ 50°C for biotite
[Harrison et al, 1985] and >400+50°C for muscovite [Hames and Bowring, 1994; Harrison et al., 2009].
However, while biotite and muscovite yield similar ages at ~15Ma, they have different 3D values
(0Dpiotite = —156%0 and 3D myscovite = —100%0). The biotite undoubtedly recrystallized in the presence of
meteoric water (8Dyater = —124+4%o0), while the muscovite (8Dyater=—89+4%0) displays either only
moderate exchange with meteoric fluids or interaction with fluids that had a mixed meteoric-magmatic
source. Considering that, for the same temperature, biotite and muscovite show a ~20%o difference in hydro-
gen isotope fractionation (lower for biotite) and that the STD footwall at this structural distance beneath the
detachment (9 m) was infiltrated by meteoric fluids, we would have expected 8D uscovite Values as low as
—136%o. Instead, we obtained a 6D ,nyscovite Value ~36%o higher (8D uscovite = —100%0). We note that both
biotite and muscovite from sample M2 have appropriate water concentrations (H,0,.%=4.14 (Bt),
H,0,,:% =4.26 (Ms)) for their mineral chemistries (see Text 1 of supporting information for explanation of
calculations; Gong et al. [2007]). Differences in 8D values and similarities in “°Ar/>°Ar ages highlight a lack
of correlation between hydrogen and “OAr isotope exchange.

Two lines of evidence indicate that hydrogen isotope exchange between biotite grains and meteoric fluids
occurred during grain-scale deformation. (1) Elongate lenticular biotite fish [Ten Grotenhuis et al., 2003] indi-
cate a top-to-north sense of shear (Figure 2e). Formation of mica fish involves recrystallization by solution-
precipitation where mica dissolution and element transport via a fluid phase enable new biotite growth
[e.g., Dunlap, 1992; Mulch et al., 2005; Gébelin et al., 2011]. (2) Biotite fish record low 8Dpjqite Values within
the top 109 m of the STD footwall, requiring exchange with low-3D meteoric water during mylonitization.
Similarly, muscovite grains display recrystallized tails with a top-north sense of shear that are, however, not
necessarily associated with low 3D yscovite Values.

As also suggested by previous studies in the Everest area [e.g,, Streule et al,, 2012], we interpret our *°Ar/*°Ar
ages obtained on biotite and muscovite grains in terms of cooling through the appropriate closure
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temperatures at ~15 Ma, with isotopic exchange between hydrous minerals and meteoric fluids occurring
shortly before that time. The syntectonic intrusive pegmatite vein (sample M2) represents an excellent
marker of incremental deformation and provides key information on the timing and duration of isotopic
exchange. Published U-Pb data indicate that leucogranite intrusion and penetrative shearing was active
along the Rongbuk segment of the STD at ~16.7 Ma [Hodges et al., 1998; Murphy and Harrison, 1999; Searle
et al., 2003; Cottle et al., 2015] and that movement had ceased prior to 15.6 Ma [Cottle et al., 2015]. In addition,
despite a ~70°C difference in nominal closure temperature (see below), biotite and muscovite grains yield
similar ages, suggesting that rapid cooling ensued at ~15Ma. Following high-temperature syntectonic
foliation-parallel emplacement of pegmatite (temperature above the closure temperature of the “°Ar/>°Ar
system in biotite and muscovite), we propose that at ~ 15 Ma both sheared leucogranites and metasedimen-
tary rocks cooled rapidly through the closure temperature of argon in muscovite (=400 + 50°C; Hames and
Bowring [1994] and Harrison et al. [2009]) and biotite (335 + 50°C; Harrison et al. [1985]). In contrast to biotite
grains from the host metasedimentary rocks that likely exchanged with surface-derived fluids before pegma-
tite intrusion, we suggest that muscovite grains in the pegmatite with a “°Ar/*°Ar age of 14.89+0.07 Ma
(sample M2) and 8D yscovite Of —100%o0 interacted with surface-derived fluids for only a short time period.
As a consequence, based on our “°Ar/*°Ar data and U-Pb data acquired previously on leucogranites from
Rongbuk [Hodges et al., 1998; Murphy and Harrison, 1999; Searle et al., 2003; Cottle et al., 2015], we suggest
that hydrogen isotopic exchange between meteoric fluids and minerals occurred (1) prior to 15Ma and
yet (2) after intrusion of the earliest leucogranites in the Rongbuk STD footwall at ~16.7 Ma. One or
two million years (between 16.7 and 14.9Ma) would, therefore, represent the minimum duration of
hydrogen isotopic exchange. However, this does not preclude the possibility that fluid infiltration and
detachment activity may have occurred before ~16.7 Ma but rather that the 8D values we measure in
the leucogranites/pegmatites were likely acquired during this time interval.

In contrast to biotite and muscovite, hornblende from a calc-silicate layer at 24 m beneath the detachment
(sample R-05-06) provides an older “°Ar/*°Ar plateau age of 33.0+ 0.8 Ma. The hornblende in this sample
displays a low 3D value of —183%o. Hornblende occurs as elongate grains with recrystallization tails oriented
parallel to the foliation (Figure 2c), a textural relation also displayed by biotite fish with a low 6D value
(—174%o0) in the same sample, suggesting that both minerals exchanged with deuterium-depleted meteoric
fluids during deformation.

In contrast to biotite, the hornblende grains that show a complex 3°Ar release spectrum could be related to
partial resetting during deformation and infiltration of meteoric fluids and in that case would suggest that the
deformation temperature that affected the calc-silicate layer (~545 + 50°C estimated from quartz c axis fabric
opening angles; Law et al. [2011], their samples R-03-15, 16, 18, and 19 from the Northern Transect) was
slightly below the argon closure temperature of hornblende (~530 + 40°C; Harrison [1981]). This age spectrum
could also reflect chemical zonation of hornblende and/or the presence of exsolution features [e.g., Harrison
and Fitz Gerald, 1986].

6.3. Tectonic Implications

Hydrogen isotope ratios of silicate minerals that formed in the STD footwall in the Mount Everest region indi-
cate that meteoric water penetrated down to the ductile crust at least between 16.7 and 14.9 Ma during high-
temperature deformation. The presence of low-3D meteoric water in the STD footwall raises the question of
how these fluids penetrated the crust down to the ductile segment of the STD during the middle Miocene.
We propose that the presence of these fluids in the STD footwall is consistent with a model involving syncon-
vergent stretching/extension of the upper crust, high (paleo-) geothermal gradient, and high topography.

If stretching/extension did occur in the Tethyan Himalayan sequence during top-to-the-north normal-sense
motion on the underlying STD, the activation of normal faults and the prevalence of open vertical fractures
would likely have enhanced porosity and permeability, creating conduits for fluid flow from the Earth'’s
surface down to the detachment system. In general, downward penetration of meteoric fluids is limited when
the upper crust is in compression [Nesbitt and Muehlenbachs, 1995; Pollyea et al., 2015] but is enhanced during
regional extension [Person et al., 2007]. Additional heat input coeval with exhumation of the STD footwall
would favor buoyancy-driven, convective fluid flow and hence transport of meteoric water to significant
depths. Finally, high surface topography creates the necessary hydraulic head, especially in regions of high
relief, for surface-derived fluids to penetrate to deep levels of the continental crust. In the Himalaya, the
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combination of open fractures, high thermal gradient, and topography/hydraulic head would have gener-
ated the necessary sustained fluid flow over the timescale of motion on the STD to promote (deep) circulation
of meteoric fluids.

It seems likely that these three conditions for promoting extension-related fluid flow in the upper crust (syn-
convergent stretching/extension of the upper crust, high (paleo-) geothermal gradient, and high topogra-
phy) were met in the Himalaya during the middle Miocene. High heat flow would have been provided by
crustal thickening, partial melting, and intrusion of leucogranites in the STD footwall [Hodges et al., 1998;
Murphy and Harrison, 1999], and a topographic high characterized the Mount Everest region [Gébelin et al.,
2013] and southern Tibet [Spicer et al., 2003; Ding et al., 2017] at that time. Of critical importance, this model
for flow of meteoric water through the Tethyan sedimentary rocks down to the STD also requires the
presence of normal faults in the Tethyan hanging wall rocks that sole down on to the STD and were demon-
strably active at the same time (~15 Ma) as normal-sense shearing on the STD. At least within the Everest area,
the transport direction indicated by mineral stretching lineations and quartz c axis fabrics for normal-sense
motion on the STD is ~030° (i.e,, N30°E, Carosi et al. [1998] and Law et al. [2011]), and presumably the sug-
gested hanging wall normal faults would strike at a high angle to this transport direction [e.g., Wernicke
and Burchfiel, 1982]. At least one high-angle normal fault striking 120° has been mapped displacing lithologic
units within the Tethyan rocks lying above the STD to the south of the Northern Transect (Figures 1c and 1d;
Chi-Hsiang and Shih-Tseng [1978]). Several other similarly oriented normal faults were mapped cutting
Tethyan sedimentary rocks and in ~ E-W trending valleys to the north of the Northern Transect (Figure 1b).

Burchfiel et al. [1992] in their seminal reconnaissance study of the STD exposed in the central eastern
Himalaya and adjacent Tibetan Plateau mapped a number of normal faults within the Tethyan rocks striking
at a high angle to the STD transport direction (Figure 1b). In some cases these faults were interpreted as cross-
cutting and down-dropping local strands of the STD to the north (e.g., Rongbuk Valley), while in other cases
the normal faults soled into the underlying STD [see Burchfiel et al., 1992, Figure 25]. They were unsure if
“these faults are part of separate detachment systems or whether they form hanging wall splays that merge
at depth into the South Tibetan detachment system” [see Burchfiel et al., 1992, p. 371.

It should also be kept in mind that if there were normal faults acting as conduits for meteoric water penetrat-
ing down to the STD mylonitic footwall rocks that were deforming at ~500-600°C and are now exposed in
the Rongbuk Valley, these would not have been the faults in the unmetamorphosed Tethyan sedimentary
rocks that now overlie exposures of the footwall at Rongbuk (Figures 1c and 1d). Such faults would be located
farther to the north, with the distance depending on factors such as the dip and amount of slip on the STD.
Geologic mapping indicates an absolute minimum normal-sense displacement of ~ 35 km on the STD in the
Everest region [see Burchfiel et al., 1992, p. 20]. Searle et al. [2002, 2003] calculated a total slip of ~ 100-200 km
(depending on assumed regional dip of the detachment) on the STD in the Everest region based on barome-
try of metamorphic mineral assemblages in HCC rocks in the footwall to the STD. Subsequently, Law et al.
[2011] estimated normal-sense slip values of between 25 and 170 km using particle path models based on
the apparent telescoping of synkinematic isotherms associated with plastic deformation of HCC footwall
rocks exposed in the Rongbuk Valley. Law et al. [2011] noted that their slip estimates largely refer to the por-
tion of motion on the STD accommodated by high-temperature ductile deformation, whereas the higher
values estimated by Searle et al. [2002, 2003] are for total offset and include both ductile and brittle deforma-
tion. If these estimates are valid, then clearly the normal faults originally feeding meteoric waters down to the
plastically deforming footwall rocks now exposed at Rongbuk would have been located far to the north of the
Rongbuk Valley.

Several models involving different crustal and mantle processes have been proposed to explain formation of
the Himalayan-Tibetan orogenic system, including its high elevation and the mechanisms responsible for
exhumation of its high-grade metamorphic rocks [e.g., England and Houseman, 1986, 1988; Harrison et al.,
1992; Clark and Royden, 2000; Tapponnier et al., 2001]. However, although these geodynamic and tectonics
models differ in timing and style, all consider that the orogen has remained in a convergent tectonic setting
since initiation of collision between India and Eurasia at ~50 Ma. In the following we evaluate competing
models proposed for exhumation of the HCC and activation of the STD in the light of our evidence that
meteoric fluids penetrated the upper crust to depths beneath the brittle-ductile transition zone and reached
the plastically deforming STD footwall (Figure 5d).
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Figure 5. Models for exhumation of the Himalayan crystalline core. Models include (a) channel flow [Nelson et al., 1996;
Beaumont et al., 2001; Hodges et al., 2001], (b) wedge extrusion [Burchfiel and Royden, 1985; Grujic et al., 1996; Grasemann
et al., 1999], and (c) tectonic wedging [Yin, 2006; Webb et al., 2007]. (d) Conceptual model (from this study) proposing

extensional tectonics in the upper Tethyan Himalayan plate (hanging wall to the STD) with development of E-W striking

normal faults within a convergent setting (see text for explanation).

GEBELIN ET AL.

METEORIC FLUID INFILTRATION IN THE STD

707



@AG U Tectonics 10.1002/2016TC004399

The channel flow [Nelson et al., 1996; Beaumont et al., 2001; Hodges et al., 2001] and wedge extrusion
[Burchfiel and Royden, 1985; Grujic et al., 1996] models favor the southward extrusion of middle to lower
crust as a result of overthickening of partially molten crust located to the north (Figures 5a and 5b).
Here extrusion is accommodated by reverse- and normal-sense shearing on the MCT and STD at the base
and top of the extruding tectonic unit, respectively. In this scenario the STD may have been active up to
(or close to) the Earth’s surface and could be infiltrated by meteoric fluids. In both models, the presence of
steep normal faults in the hanging wall to the STD would increase fluid circulation. In the tectonic
wedging model [Yin, 2006; Webb et al., 2007] that involves the MCT and STD merging in their updip direc-
tion (Figure 5c), development of the STD is a consequence of early crustal thickening and development of
duplex systems via underplating due to material being accreted from the down-going Indian crust. In this
context, where the contact between the high-grade metamorphic rocks and the overlying Tethyan
sedimentary units (marking the STD) remains at depth, it appears very unlikely that surface-derived fluids
would be able to penetrate the crust down to the STD. In addition, the presence of steep normal faults
might not extend to the horizontal segment of the STD. Although bending of the upper crust in response
to movement on ramps might create fractures that could provide fluid pathways, the overall ability for
fluids to penetrate down to the STDS along fractures would be less without steep normal faults. In
contrast, fluid infiltration down to the STD footwall would be maximized if the Tethyan Himalayan
sequence was subject to normal faulting (Figure 5d). Development of normal faulting in the Tethyan
Himalayan sequence implies that the upper crust experienced stretching/extension. While remaining in
a convergent setting, two scenarios triggering extension in the Tethyan sedimentary sequence overlying
the STD may be considered: (1) gravitational instability and/or (2) Indian plate rollback.

1. As suggested for southern Tibet [Burg et al., 1984; Burchfiel and Royden, 1985; Avouac, 2015], a change to
positive elevation may have triggered gravitational spreading of the upper to middle crust in response to
a vertical stress component. It is well recognized that local stress fields in the upper crust vary with topo-
graphy [e.g., Bollinger et al., 2004], and in our case study, it has been demonstrated that the Mount Everest
region was standing at high elevation (=5000 m) during the middle Miocene [Gébelin et al., 2013]. As a
consequence of crustal overthickening, the maximum principal compressive stress (1o) in the upper part
of the crust may have rotated from a north-south horizontal direction to a near vertical orientation,
triggering the development of E-W striking normal faults within a tectonic regime still involving
regional/crustal-scale north-south convergence [Burchfiel and Royden, 1985; Bollinger et al., 2004].
Following the end of activity on the STD, this continued topographic load was expressed by E-W extension
along the Himalayan arc from the late Miocene to the present.

2. North-south lithosphere-scale extension beneath the Tibetan Plateau may explain the rapid subsidence of
the Kailas basin in southern Tibet from 26 to 21 Ma or later by southward rollback of Indian lithosphere
[DeCelles et al., 2011; Carrapa et al., 2014]. This scenario involves southward retreat of the India-Asia suture
and back-arc extension with development of tilted fault blocks in the upper plate.

Our results suggesting that E-W striking brittle normal faults affected the crust down to the brittle-ductile
transition would support the idea of localized stretching/extension of the upper and middle crust in middle
Miocene times (Figure 5d). However, a number of interconnected events occurring in late-early to middle
Miocene times point to more complex larger-scale extensional tectonic processes that may have been in
operation at that time: (1) deposition of the Kailas Formation during the early Miocene in a transtensional rift
along the India-Asia suture zone [DeCelles et al., 2011], (2) rapid exhumation of granulitized eclogites in NW
Bhutan [Grujic et al., 2011] and the Ama Drime Massif to the NE of Mount Everest [Cottle et al., 2009; Kali et al.,
2010], and (3) eruption of mantle-derived potassic basalt lava flows in southern Tibet [e.g., Turner et al., 1996].

Our results suggest that major geodynamic changes may have characterized the Mount Everest region
during the middle Miocene from N-S stretching with development of E-W striking normal faults to orogen-
parallel E-W extension as evidenced by N-S striking normal faults. Both types of normal faults may have
served as conduits for fluids that, as observed for modern fluids issuing out of springs on N-S striking normal
faults in the northern part of the Mount Everest region and the STDS near Nyalam, have penetrated down to
shallow, intermediate, and even deep crustal levels [Newell et al., 2008]. The present-day seismic activity
observed in southern Tibet along active normal faults [e.g., Bollinger et al., 2004; Avouac, 2015] suggests that
the vertical stress field has not changed significantly over the last 15 Myr, as also suggested by stable isotope
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paleoaltimetry [Gébelin et al., 2013], indicating that the mean elevation of the central Himalaya at the long-
itude of Mount Everest (~5200 m) has remained stable since the middle Miocene.

7. Conclusion

Synkinematic biotite collected systematically over 200m of structural section from the STD into the
underlying mylonitic footwall exposed in the Rongbuk Valley reveals consistent middle Miocene “°Ar/*°Ar
plateau ages. The same mineral grains are interpreted to have exchanged isotopically at high temperature
with D-depleted water (8Dyater=—150%5%0) that originated as high-elevation meteoric water and
infiltrated the crustal hydrologic system most likely during ductile extensional deformation. As observed
for metamorphic core complexes of the North American Cordillera, we suggest that fluid flow in the STD
footwall was intimately coupled to the porosity-permeability structure of the brittle upper Tethyan
Himalayan sequence that was undergoing extension during the middle Miocene. This extensional event
may have developed as a result of rotation of the maximum principle stress direction from horizontal
north-south to near vertical, owing to the development of a topographic high in the Mount Everest region
at ~15 Ma. Steep normal faults mapped in the Tethyan units above the detachment may represent a part
of the conduit system that delivered surface-derived fluids down to the brittle-ductile transition while
deformation in the STD footwall was active.

The STD can be traced for a distance of > 1500 km along the length of the Himalaya and is one of the funda-
mental structures within the Himalayan orogenic belt. The presence of surface-derived fluids in the STD foot-
wall between 16.7 and 14.9 Ma, at least in the Mount Everest region, highlights the importance of the STD as a
fault-controlled hydrothermal system sustained by the combination of heat advection (including leucogra-
nites bodies; Hodges et al. [1998], Murphy and Harrison [1999], and Searle et al. [2003]) and the presence of
a hydraulic head [Person et al., 2007] generated by high topography in the region [Gébelin et al., 2013].
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