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ARTICLE

Photoreduction of gaseous oxidized mercury
changes global atmospheric mercury speciation,
transport and deposition
Alfonso Saiz-Lopez 1, Sebastian P. Sitkiewicz2,3, Daniel Roca-Sanjuán3, Josep M. Oliva-Enrich1,

Juan Z. Dávalos1, Rafael Notario1, Martin Jiskra 4, Yang Xu4, Feiyue Wang 5, Colin P. Thackray 6,

Elsie M. Sunderland6, Daniel J. Jacob6, Oleg Travnikov7, Carlos A. Cuevas1, A. Ulises Acuña1, Daniel Rivero1,

John M.C. Plane8, Douglas E. Kinnison9 & Jeroen E. Sonke4

Anthropogenic mercury (Hg(0)) emissions oxidize to gaseous Hg(II) compounds, before

deposition to Earth surface ecosystems. Atmospheric reduction of Hg(II) competes with

deposition, thereby modifying the magnitude and pattern of Hg deposition. Global Hg models

have postulated that Hg(II) reduction in the atmosphere occurs through aqueous-phase

photoreduction that may take place in clouds. Here we report that experimental rainfall Hg(II)

photoreduction rates are much slower than modelled rates. We compute absorption cross

sections of Hg(II) compounds and show that fast gas-phase Hg(II) photolysis can dominate

atmospheric mercury reduction and lead to a substantial increase in the modelled, global

atmospheric Hg lifetime by a factor two. Models with Hg(II) photolysis show enhanced Hg

(0) deposition to land, which may prolong recovery of aquatic ecosystems long after Hg

emissions are lowered, due to the longer residence time of Hg in soils compared with the

ocean. Fast Hg(II) photolysis substantially changes atmospheric Hg dynamics and requires

further assessment at regional and local scales.
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Atmospheric mercury, a contaminant of global concern, is
primarily emitted in the gaseous elemental Hg(0) form,
with smaller contributions of gaseous oxidized Hg(II) and

particle-bound Hg(II)1,2. Gaseous oxidized Hg(II)XY compounds
may contain a variety of X,Y halogen atoms or oxygen-containing
species, including Br, BrO, Cl, I, O, OH, HO2, NO2, and organic
groups. Due to the low ambient concentration (pg m−3), gaseous
oxidized Hg(II) compounds have only been identified as HgCl2
and HgBr2 in urban and indoor air3 and as HgCl2 in power plant
plumes4. The atmospheric Hg(0) and Hg(II) forms have mark-
edly different water solubility, chemical reactivity and lifetime
against deposition. The lifetime of Hg(0) against deposition is in
the range of several months to over a year, whereas that of Hg(II)
compounds is on the order of days to weeks5. Eventually, Hg(0) is
oxidized to Hg(II) compounds, which are soluble, partition into
aerosol, and deposit readily both by dry and wet mechanisms.
Direct assimilation of Hg(0) by plants and oceans is also thought
to be important6,7. The long lifetime of Hg(0) leads to Hg
deposition far from its emission sources to remote ecosystems,
including the open oceans and polar regions. In aquatic ecosys-
tems, Hg(II) is methylated and may be biomagnified up the food
chain to levels that induce toxic effects in wildlife and humans8.

The development of atmospheric chemistry and transport
models (CTMs), an important tool for understanding global Hg
cycling and predicting future Hg exposure, has drawn much
attention to the mechanistic aspects of Hg(0) oxidation. While gas-
phase O3, OH, HO2, H2O2, and NO3 are all potential Hg(0)
oxidants6,9–11, the oxidation process under atmospheric conditions
is thought to be initiated primarily via photolytically produced
atomic bromine by a two-stage mechanism (Fig. 1)6,11–13. In the
first step, the dominant reaction to produce gaseous oxidized Hg(II)
compounds is thought to be the oxidation of Hg(0) by bromine
atoms, yielding the unstable intermediate HgBr. This radical can be
readily dissociated back to Hg(0), but HgBr can also be competi-
tively oxidized by other major radical oxidant species in the
atmosphere (e.g. OH, Br, I, Cl, NO2, HO2, BrO, IO, and ClO) to a
series of currently-assumed stable Hg(II) compounds, as shown in
Fig. 1:

Much less is known about the reduction of Hg(II) compounds
to Hg(0) in the atmosphere. Global Hg CTMs, based on Hg(0)
oxidation alone, predict an unrealistically short residence time of
Hg(0), and the simulated spatiotemporal Hg(0) variations would
not match observations6. To reconcile such differences, these
models need to include an adjustable term to account for Hg(II)
reduction in the atmosphere. Such reduction has been presumed
to occur in the aqueous phase of clouds6,10,14. Faster gas-phase
Hg(0) oxidation kinetics has led to the need of these models to
employ ever faster in-cloud Hg(II) reduction6, with maximum
rate constants > ~ 1–3 h−1, corresponding to in-cloud Hg(II)
lifetimes <1 h on a global mean basis (see SI). Although aqueous
Hg(II) photoreduction in Earth’s surface waters is a well-
documented process15, little experimental or observational evi-
dence exists in the case of atmospheric liquid water16. Earlier

studies suggested that Hg(II) reduction could proceed via aqueous
SO3 and HO2 reaction pathways16,17, but these pathways are now
considered irrelevant at the global scale6. Therefore, the sig-
nificance of atmospheric aqueous Hg(II) reduction and the
validity of their inclusion in the global mercury CTMs has been
questioned6,17,18.

None of the global mercury models has been used to test the
possibility of an alternative explicit gas-phase photoreduction of
Hg(II) compounds, due to the poor understanding of its
mechanism and reaction rates6. The most recent studies—albeit
27 years ago—suggested the absence of gas-phase photoreduction
for HgCl2 and Hg(CN)2 and slow photoreduction rates19,20 for
Hg(OH)2 and Hg(SH)2, despite an earlier study of the UV
absorption cross sections which suggested that HgBr2 and HgI2
could undergo relatively fast photolysis21,22. As far as we are
aware there have been no further experimental or theoretical
studies on the photolytic properties of Hg(II) compounds of
atmospheric relevance.

Here, we revisit the photoreduction pathways of atmospheric
Hg(II) compounds. First, we show that irradiation experiments
with boundary layer and free tropospheric rainwater do not
support fast aqueous-phase Hg(II) photoreduction. We then
compute the UV-VIS absorption cross sections of the following
Hg(II) compounds: HgCl2, HgBr2, HgBrOCl, HgBrI, HgBrOBr,
HgBrOI, HgBrNO2, HgBrONO, HgBrOH, HgBrOOH, and HgO,
using high-level quantum chemical methods, and infer the cor-
responding atmospheric photoreduction rates. Our results
show for the first time that gas-phase Hg(II) photoreduction
can proceed at relevant timescales, and is more important than
in-cloud Hg(II) photoreduction. The inclusion of this new
gaseous-phase Hg(II) photoreduction mechanism in two state-of-
the-art global Hg models reveals major implications for our
understanding of Hg cycling in the atmosphere, and its deposi-
tion to the surface environment.

Results
Laboratory rainfall Hg(II) photoreduction experiments. To
study aqueous phase Hg(II) photoreduction, ten rainfall events
were sampled in suburban Toulouse and at the high altitude
(2877 m) Pic du Midi Observatory (PDM, France) in the summer
of 2017. Rainfall samples were irradiated in a quartz reactor with
natural sunlight or with a solar simulator (see Methods). We
observe (Supplementary Figure 1a and 1b, Supplementary Data 1
and Supplementary Table 1) no statistically significant differences
between rainfall Hg(II) reduction rates under natural (0.063 ±
0.013 h−1) and simulated sunlight (0.037 ± 0.016 h−1), and for
filtered (0.058 ± 0.011 h−1) and unfiltered (0.039 ± 0.020 h−1)
suburban rainwater (t-test, all p > 0.05). The mean photochemical
reduction rate of suburban rainfall was 0.051 ± 0.019 h−1 (σ, n=
10). The mean rate at the remote PDM samples was two-fold
higher, 0.15 ± 0.01 h−1 (σ, n= 3), than that of the suburban
Toulouse samples, and three times slower than the median
photoreduction rate of 0.41 h−1 (n= 24) for inland and marine
waters15. Our experimental rainwater photoreduction rates,
under fully sunlit conditions, are an order of magnitude slower
than the optimized maximum in-cloud photoreduction rate6,23 of
> 1.0 h−1 in global Hg CTMs.

Quantum chemical computation of gaseous Hg(II) absorption
cross sections. We now turn to the computation of electronic
spectra and absorption cross sections of gas-phase Hg(II) com-
pounds which are required to estimate the corresponding pho-
toreduction rates. A summary of the UV-VIS spectra and
absorption cross sections, computed at the CASSCF/
MS–CASPT2/SO–RASSI level of theory (Methods), is presented

Hg + Br

Hg + Cl2 HgCl2

HgBr
+ X

HgBrX

X = OH, Cl, Br, I, NO2, HO2, ClO, BrO, IO

Fig. 1 Current understanding of the formation of oxidized Hg(II) compounds
from atmospheric gaseous elemental mercury initiated by different oxidant
species. This figure also includes other secondary oxidation mechanisms
involving single-step reactions with Cl2, O3, BrO, and ClO
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in Fig. 2 for the 170–600 nm wavelength range. The calculated
spectra of HgCl2 and HgBr2 are in very good agreement with
previous experimental22,24–26 and computed spectra21 (Fig. 3),
thus providing strong support for the theoretical method applied
here. The majority of the spectra consist of well-defined
absorption bands in the 200–350 nm range, which are red-
shifted when Cl is replaced with Br and I atoms. Note that three
different isomers could form from the reaction of HgBr with
NO2: HgBrNO2, and syn- and anti-HgBrONO. However, high-

level quantum chemical computations27 indicate that syn-
HgBrONO is the most thermodynamically stable species.

Computation of photolysis rates and atmospheric lifetime of
Hg(II) compounds. The annually averaged atmospheric lifetimes
against photolysis in the troposphere for the Hg(II) compounds
studied here are presented in Fig. 4 (see also Supplementary
Table 2 and Supplementary Figure 2 for zonal-averaged atmo-
spheric lifetimes). The species with the longest lifetime is HgCl2
(48 years), and the species with the shortest lifetime is HgBrOBr
(<1 s). These lifetimes were calculated assuming a complete UV-
VIS photodissociation under atmospheric conditions. In the case
of the parent HgBr2 compound, it is well known that irradiation
with ~ 200 nm UV light yields the monohalide (HgBr) with
nearly 100% efficiency25,28–30. Moreover, detailed quantum-
chemical computations of the Cl- and Br-dihalides predict fur-
ther efficient photodissociation at wavelengths21 longer than 200
nm. There are no comparable experimental or calculated pho-
tolysis data for the other HgBr-X compounds studied here.
Nevertheless, a similar very efficient photodissociation step is to
be expected for these mercury halides considering the even lower
dissociation energies of the HgBr-X bond, as compared with that
of the parent HgBr-Br dihalide (Supplementary Table 3)9,27. In
addition to this primary photolysis reaction to HgBr, it has been
shown that Hg(0) is also generated in the HgBr2 photodissocia-
tion through direct or secondary channels, although to a much
lesser extent31,32. Based on this evidence, we consider in the
atmospheric modelling below that HgBr is the main product of
HgBrX photodissociation, although we also ran one scenario
where HgBrX photodissociation results in Hg(0) production.

Discussion
The absorption cross sections of syn-HgBrONO, HgBrOOH,
HgBrOH, HgBr2, HgBrOCl, and HgBrOBr were implemented
into the GEOS-Chem6 and GLEMOS33,34 global Hg chemistry
and transport models (Methods), since these Hg(II) species are
the most likely to be formed in the atmosphere6,11,27. GEOS-
Chem simulates Hg(II) as a single tracer, whereas GLEMOS
simulates Hg(II) species individually. In GEOS-Chem the rapidly
photolyzing Hg(II) species (HgBr-[ONO, OOH, OCl, OBr]) are
calculated to be at pseudo-steady-state with HgBr. GLEMOS does
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not include the highly uncertain reduction reaction6 HgBr+
NO2 →Hg(0)+ BrNO2. Omitting this reaction in GEOS-Chem
lowers the Hg lifetime from 13 to 8 months in model Run#4 (The
different model simulated scenarios for atmospheric Hg(II)
reduction are shown in Table 1). syn-HgBrONO and HgBrOOH
generally dominate the production of Hg(II) in both models
(Supplementary Figure 3), whilst HgBr2 becomes the prevalent
Hg(II) species in the troposphere (Supplementary Figure 4) due
to its longer lifetime against photolysis. Note that direct photo-
reduction to Hg(0) produces unrealistically long Hg lifetimes
>19 months in both models. Therefore, photoreduction was
considered to produce HgBr in all cases. Indeed, intensive pho-
tolysis of syn-HgBrONO and HgBrOOH causes HgBr to be a
relevant species in the free troposphere (Supplementary Figure 5
and Fig. 5). HgBr can then be re-oxidized to gaseous Hg(II), or
decay to Hg(0) by thermal dissociation, which is strongly
dependent on pressure and temperature6,9. Atmospheric aqueous
Hg(II) reduction parameterizations in both models were capped
with an upper limit that corresponds to our observed rainfall
photoreduction rate constant, kred= 0.15 (h−1), leading to a 6%
decrease in modelled atmospheric lifetime. Published model runs
with capped aqueous phase Hg(II) reduction and without the gas-
phase photoreduction6,33,34 yield total atmospheric Hg lifetimes
of 4.9 and 4.6 months against deposition. Our new results show
that gaseous Hg(II) photoreduction increases the Hg lifetime to
13 and 10 months in GEOS-Chem and GLEMOS model Run#4,
respectively. We find that gas-phase photoreduction is the
dominant reduction pathway.

We further examined the global atmospheric Hg(0) and Hg(II)
distribution in GLEMOS. Figures 6 and 7 show the effect of the
new photoreduction scheme on the global distribution of Hg(0)
surface concentration. All these simulations were made with the
previously assumed aqueous photoreduction mechanism
removed. We find that simulations without the gaseous photo-
reduction lead to 35−40% underestimation of observed Hg(0)
(Runs #1 and #2). The gas-phase Hg(II) photoreduction to Hg(0)
(Run #3) results in unrealistically high Hg(0) concentrations with
almost two-fold overestimation of the observations and strong
underestimation of wet deposition. The model run with the
incorporation of the gas phase photoreduction to HgBr (Run #4)
shows that Hg(0) levels are 18% overestimated, and model Hg(II)
wet deposition 20% underestimated with respect to observations
(Fig. 7, Supplementary Table 4). The results of test Run#4 are
closest to the observations which suggest that gas-phase reduction
processes are important but also that re-oxidation via the HgBr
intermediate is important. An additional step in the evaluation of
model results can be made by examining the variability of
modelled and observed Hg concentrations. Previous studies
indicated that longer Hg(0) lifetimes lead to lower simulated Hg
(0) variability, as represented by the standard deviation (1σ) of
mean Hg(0) concentrations6,34. Here, gas-phase photoreduction
leads to simulated Hg(0) levels at the measurement sites (1.62 ±
0.36 ng/m3, 1σ, STP) that have a larger standard deviation than
observed Hg(0) (1.38 ± 0.25 ng/m3, 1σ, STP). This indicates that
the longer Hg(0) lifetime estimates of 8–13 months resulting from
model Run#4 are broadly compatible with observed Hg(0)
variability (1σ). The resulting global zonal distribution of Hg(0)
and speciated Hg(II) (syn-HgBrONO, HgBrOOH, HgBrOH,
HgBr, HgBr2) reveals the major effects of gas-phase Hg(II)
photoreduction in the global budget of atmospheric oxidized
mercury (Supplementary Figures 4–9) and in the global patterns
of mercury surface deposition (Fig. 8 and Supplementary Fig-
ure 10). In particular, it leads to a strong decrease of free tro-
pospheric concentrations of syn-HgBrONO and HgBrOOH,
which were previously considered as dominant Hg(II) species. In
contrast, concentrations of HgBrOH and HgBr2 increase due to
the lower photolysis rates. The incorporation of gas-phase pho-
toreduction leads to an increase in global Hg(0) deposition from
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Table 1 Model test runs for different atmospheric Hg(II)
reduction scenarios in the GLEMOS model

Run ID Scenario

Run #1 No Hg(II) reduction
Run #2 Hg(II) reduction in aqueous phase using the experimentally

derived rate constant (0.15 h−1) in this study
Run #3 Gas phase Hg(II) photoreduction to Hg(0)
Run #4 Gas phase Hg(II) photoreduction to HgBr
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11% (Run#1) to 24% (Run#4) at the expense of Hg(II) deposition
(down by 13%, Fig. 8 and Supplementary Figure 10). We further
observe a reduction of Hg deposition (dry and wet) to the ocean
(down by 15%, Fig. 8 and Supplementary Figure 10), and an
increase of Hg(0) dry deposition to the land surface (22%), par-
ticularly to vegetation in line with the recent findings that foliar
uptake by vegetation drives continental Hg(0) seasonality7.

Global chemical budget diagrams (Fig. 5) summarize the Hg(0),
Hg(I) and Hg(II) cycling in different model runs.

This work shows that the presence of an efficient gas-phase Hg
(II) photoreduction challenges the current understanding of Hg
cycling in the atmosphere and its deposition to the surface
environment. We show that the new gas-phase Hg(II) photo-
reduction mechanism is likely the dominant reduction pathway
for atmospheric mercury which can change the concept of the
speciation of Hg(II) in the atmosphere. Its inclusion in state-of-
the-art global models leads to significant modifications in the
local scale deposition of Hg to the Earth’s surface. As a result,
enhanced deposition to land surfaces may prolong recovery of
aquatic ecosystems long after Hg emissions are curbed, due to the
longer residence time of Hg in soils than in oceans35.

Methods
Computation of UV-Vis absorption spectra and cross sections. A theoretical
methodology previously calibrated36 was used for calculating the electronic
absorption spectra and cross-sections of HgCl2, HgBr2, HgBrI, HgBrOBr, HgBrOI,
HgBrOCl, HgBrNO2, HgBrONO, HgBrOH, HgBrOOH, and HgO (The absorption
cross sections are reported in Supplementary Data 2). Specifically, vertical transi-
tions energies from the ground to electronically excited states and the corre-
sponding oscillator strengths were computed with the highly accurate
multireference complete-active-space self-consistent field/multistate complete-
active-space second-order perturbation theory (CASSCF/MS-CASPT2) method37,
and the atomic-natural-orbital relativistic correlation-consistent valence triple-ζ
plus polarization (the ANO-RCC-VTZP) basis set38, taking into account scalar
relativistic and spin-orbit coupling (SOC) effects (see below and Supplementary
Table 5 for further details). Scalar relativistic effects were included by means of the
third-order Douglas-Kroll and Hess (DKH3) Hamiltonian, and the spin-orbit
coupling (SOC) was computed using the restricted active space state interaction
(RASSI) method, as implemented in the MOLCAS 8 program39.

The atmospheric modelling methods used in the present work require as input
data the absorption cross sections of any compound that may undergo photolysis
in the UV-VIS range under atmospheric conditions. To estimate the vibrational
resolution and determine the band shapes, absorption spectra were generated for
all the compounds studied here by sampling the nuclear coordinates of the ground-
state equilibrium structure and frequencies according to a Wigner distribution, as
described in refs 40,41 and subsequently computing the vertical transition energies
and oscillator strengths at each structure. The Wigner distribution of geometries
was obtained with the Newton-X 1.4 program42,43, and an in-house program was
used to compute the cross sections from the energies and oscillator strengths
generated by the MOLCAS program. The ground-state structures and frequencies
needed to generate the Wigner distribution were obtained by using the PBE0
functional44 with the Def2QZVP basis set45–47 as implemented in the Gaussian 09
package48. The minor differences observed in the simulated spectra due to ground-
state geometries generated using either CASPT2, CCSD, or DFT methods are
presented in Supplementary Figure 11.

For the di- and triatomic systems, appropriate symmetry point groups available
in the MOLCAS program and which enabled for every possible displacement of
atoms, were used in the calculations—C2v in HgO and Cs in HgCl2, HgBr2, and
HgBrI. For other studied systems, no symmetry was adopted (C1 group). For each
particular system, the number of spin-free states to account for in the CASSCF/MS-
CASPT2 calculations were selected according to the energy criteria in such way to
include all relevant electronic transitions up to 170 nm (and later apply SOC
effects). All the parameters of the carried simulations of the spectra, such as the
number of sampled geometries Np, broadening of the Gaussian shape functions δ,
and the numbers of included states per symmetry, are presented in detail in
Supplementary Table 5.

By using the Wigner distribution of geometries for estimating the vibrational
structure of the spectra and the CASSCF/MS-CASPT2/SO-RASSI methodology for
determining the electronic structure, the agreement between computed and
experimental transition energies was in the range of 5-10%, for those few cases in
which gas-phase experimental data were available, namely for mercury compounds
HgCl2 and HgBr2 (Fig. 3). The corresponding uncertainty in the calculated cross-
section values is ± 25% for the most intense transitions (see Fig. 3), similar to the
actual dispersion of the experimental values22,24–26.

The selected active spaces for the CASSCF/MS-CASPT2 computations are
briefly discussed here. First general details are given and next we discuss those
aspects which refer to each group of compounds.

According to our previous work on benchmarking the methodology for the
representative HgBr2 molecule36 and on the basis of several test CASSCF
computations with distinct active spaces for the whole set of molecules, some rules
regarding the selection of the active spaces could be established.

First, for all the systems, s-subshell orbitals (and electrons) are not relevant in
the studied energy range (up to 170 nm) and therefore were kept inactive and
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doubly occupied, except for the 6s orbital of Hg, which has a key role in the
transitions.

Second, the 5d orbitals of Hg are not involved in the transitions within the
energy region of our interest, and therefore were not correlated in the CASSCF/
MS-CASPT2 simulations for any system with the exception of the 11Σ and 13Π
states of HgO. For this system, tests showed a small contribution of the 5d orbitals
for high-energy transitions close to 170 nm.

Third, the 6p orbitals of Hg, especially those perpendicular to σ orbitals of Hg-
X, namely 6px and 6py, should be correlated at the CASSCF level. On the other
hand, test calculations have shown that the Hg atomic orbital of 6pz-type, colinear
with mercury covalent bonds, has no weight in the transitions relevant for this
study, and was not included in the active spaces for the larger-size systems.

Finally, the two last natural orbitals (NOs) of non-bonding character, consisting
on Br 4dxz/yz+ Br 4dxz/yz atomic orbitals (AOs) and used in our first benchmark
study on HgBr236, were not necessary for the computations and were omitted in
the di- and triatomic systems, in order to reduce computational effort.

For each particular compound, the following criteria were adopted:
For HgCl2 HgBr2 and HgBrI, the optimal active spaces consisted of 12 electrons

distributed in 10 NOs of the following character: σ/σ*-type(Hg 6s ± Cl 3pz/ Br 4pz/
I 5pz and Hg 6pz ± Cl 3pz/Br 4pz/I 5pz), σnb-type (Cl 3pz/Br 4pz/I 5pz), and πnb-
type (Cl 3px/y/Br 4px/y/I 5px/y and Hg 6px/y). Although included in the active space,
the σ* orbital, Hg 6pz ± Cl 3pz / Br 4pz / I 5pz was not significantly occupied in the
electronic configurations.

For 1Σ HgO and 3Π HgO the optimal active spaces consisted of 16 electrons
distributed in 12 NOs. For these systems only, the active space additionally had to
include 10 electrons belonging to the Hg 5d-subshell, and the remaining NOs were
of the following type: σ/σ*-type (Hg 6s ± O 2pz and Hg 6pz ± O 2pz), and πnb-type
(O 2px/y and Hg 6px/y). In contrast to the other systems studied, σ* Hg 6pz+O 2pz
had an observable contribution in the configuration characterizing the excited
states.

For HgBrOBr and HgBrOI the optimal active spaces consisted of 16 electrons
distributed over 12 NOs. They correspond to the NOs formed by Hg 6s and AOs of
p-type: O 2px/y/z, Br 4px/y/z/I 5px/y/z and Hg 6px/y. Tests have shown that for the
energy region of interest in the UV-VIS range, there are no relevant transitions to
the Hg 6pz orbital, and therefore it was not included in the active space to speed up
the calculations.

For syn-HgBrONO and anti-HgBrONO and HgBrNO2. isomers, the
optimal active spaces consisted of 16 electrons distributed in 12 NOs. They
correspond to NOs formed by Hg 6 s and the AOs of p-type: O 2px/y/z, Br 4px/
y/ and Hg 6px/y. Some orbitals from the valence space of the ONO and NO2

groups had to be omitted due to the computational limitations. Tests have
shown that for the relevant wavelength region in the UV-VIS, one σ-type
bonding NO at the O-N-O and NO2 groups of atoms remains doubly occupied
and it was moved to the inactive space, whereas the Hg 6pz orbital and higher
σ*-type virtual orbitals do not contribute significantly and therefore were kept
in the secondary space.
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Fig. 6 Spatial distribution of Hg(0) surface concentration for different atmospheric Hg(II) reduction simulations in the GLEMOS model: a Run #1; b Run #2;
c Run #3; d Run #4. Circles show observed values in the same colour scale. The measurement dataset is the same as in ref. 35
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In the case of HgBrOOH, the optimal active space was similar to those of
HgBrOBr and HgBrOI. It consisted of 16 electrons distributed in 12 NOs formed
by Hg 6 s and AOs of p-type: O 2px/y/z, Br 4px/y/ and Hg 6px/y. As for in previous
cases, the Hg 6pz orbital was kept inactive since it was not relevant. In the case of
HgBrOH, the appropriate active space was 12 electron distributed in 11 NOs.

To test the effect of the geometries used in the Wigner distribution on the
simulated UV-VIS spectra, the optimization of the geometry of the ground state
and the frequencies of normal modes were obtained using three different quantum-
chemical methods for the representative HgBr2 molecule:

● DFT/PBE0/Def2QZVP,
● CCSD/Def2QZVP, and
● SS-CASPT2(12,10)/ANO-RCC-VTZP.

Next, the computations of the electronic structure of the excited states were
done for each set of geometries at the same level of theory: SOC-DKH3-MS-
CASPT2(12,10)/ANO-RCC-VTZP. The same number of sampled geometries Np

and broadening of the Gaussian shape functions δ, were also chosen for the three
sets of calculations: Np= 100 and δ= 0.05 eV, as shown in Supplementary Table 5.

The UV-VIS absorption spectra obtained when using the differently generated
sets of geometries is presented in Supplementary Figure 11 for HgBr2. As can be
seen, no significant differences are obtained, which validates the use of the less
computationally costly method (DFT) for the simulations in the other molecules.

Computation of the photolysis rates. In this study we employ the global 3D
chemistry-climate model CAM-Chem (Community Atmospheric Model with
chemistry, version 4.0), to estimate the photolysis rate (J), and therefore the
atmospheric lifetime (τ= 1/J), of the different Hg(II) species according to their
computed absorption cross section. The model includes a comprehensive chem-
istry scheme to simulate the evolution of trace gases and aerosols in the tropo-
sphere and the stratosphere49. The model runs with the chlorine, iodine and
bromine chemistry schemes from previous studies50–52, including the photo-
chemical breakdown of bromo- and iodo-carbons emitted from the oceans49 and
abiotic oceanic sources53 of HOI and I2. We have included all the Hg(II) species
(HgCl2, HgBr2, HgBrI, HgBrOCl, HgBrOBr, HgBrOI, HgBrNO2, HgBrONO (syn
and anti), HgBrOH, HgBrOOH, and HgO) and their computed absorption cross
sections. CAM-Chem has been configured in this work with a horizontal resolution
of 1.9° latitude by 2.5° longitude and 26 vertical levels, from the surface to ∼ 40 km
altitude. The model run in this study was performed in the specified dynamics
mode49 using offline meteorological fields instead of an online calculation. This
offline meteorology consists of a high-frequency meteorological input from a
previous free running climatic simulation54.

Description of the GEOS-Chem model. In this study, we use the GEOS-Chem Hg
simulation from ref. 6 using the surface slab ocean boundary parametrization55.
The model calculates the transport and chemistry of tracer species Hg(0) and Hg
(II). The parametrization of gas-particle partitioning of Hg(II) is from ref. 56, and

the mercury redox chemistry (described in detail in Supplementary Table 6)
includes Br- and Cl-initiated oxidation. Radical concentrations for Hg redox
chemistry are from ref. 57 with a diurnal cycle based on solar zenith angle imposed
on top of monthly averages. Photolysis of HgBr-X species is calculated using the
GEOS-Chem implementation58 of the Fast-JX code59.

Description of the GLEMOS model. For evaluation of the new Hg chemical
mechanisms under the atmospheric conditions we apply the 3D multi-scale che-
mical transport model GLEMOS (Global EMEP Multi-media Modelling System).
The model simulates atmospheric transport, chemical transformations and
deposition of Hg species33,34,60. In this study the model grid has a horizontal
resolution 3° × 3° and covers troposphere and lower stratosphere up to 10 hPa (ca.
30 km) with 20 irregular terrain-following sigma layers. The atmospheric transport
of the tracers is driven by meteorological fields generated by the Weather Research
and Forecast modelling system (WRF)61 fed by the operational analysis data from
the European Centre for Medium-Range Weather Forecasts (ECMWF) (ECMWF,
2018)62. In the current version the model transports Hg(0) and four Hg(II) species
(HgBr2, HgBrOH, HgBrOOH, HgBrNO2) as separate species. Gas-particle parti-
tioning of Hg(II) is parameterized following ref. 56. A two-step mechanism of Hg
(0) oxidation by Br in gas phase is included (ref. 63):

Hg 0ð Þ þ XþM ! HgIXþM ð1Þ

HgIXþM ! Hg 0ð Þ þ XþM ð2Þ

HgIXþ Y ! Hg 0ð Þ þ XY ð3Þ

HgIXþ YþM ! Hg IIð ÞXYþM; ð4Þ

The full reaction scheme is listed in Supplementary Table 6. Briefly, X≡ Br is
the first-step Hg(0) oxidant, Y is the second-step Hg(I) oxidant, and M is a
molecule of air. The reaction rate constants are from: ref. 64 for R1; ref. 9 for R2;
ref. 63 for Y≡ Br in R3; ref. 12 for Y≡ Br and OH in R4; ref. 27 for Y≡HO2 and
NO2 in R4. Six-hourly concentration fields of Br are archived from a GEOS-Chem
simulation65, whereas OH, HO2, NO2, and particulate matter (PM2.5) fields are
imported from MOZART66. The aqueous-phase chemistry includes
oxidation10,67,68 of Hg(0) by dissolved O3, OH and Cl(I)I. We have included the
gas-phase photoreduction of HgBr2, HgBrOH, HgBrOOH, syn-HgBrONO using
the rates calculated by CAM-Chem and the aqueous-phase photoreduction in
cloud droplets with the photolysis rate constant 0.15 h−1 estimated in this study.
We perform simulations for the period 2007–2013 using anthropogenic emissions
for 2010 (AMAP/UNEP, 2013)69. Prescribed fluxes of Hg natural and secondary
emissions from soil and seawater are generated depending on Hg concentration in
soil, soil temperature and solar radiation for emissions from land and proportional
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Fig. 8 Spatial distribution of total Hg (i.e. Hg(0)+Hg(II)) deposition for different tests in GLEMOS: a—Run #1; b—Run #2; c—Run #3; d—Run #4
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to the primary production of organic carbon in seawater for emissions from the
ocean60. The first 6 years of the period are used for the model spin up to achieve
the steady-state Hg concentrations in the troposphere. The model results are
presented as annual averages for 2013.

Description of rainfall Hg(II) gross reduction rate experiments. Ten rainfall
events were sampled in suburban Toulouse and at the high mountaintop Pic du
Midi Observatory (France) in the summer of 2017 using ultra-clean methods70.
Rainfall samples were transferred to a 0.5 L quartz reactor and illuminated with
natural sunlight outdoors (up to 8 h), or with a solar simulator indoors (up to 48
h). Filtered samples were passed through a 0.45 micro-m quartz filter membrane to
remove particles, in unfiltered samples this step was left out. Total Hg con-
centration of selected rainfall samples was augmented 10× with a NIST
3133 standard Hg solution, and equilibrated 24 h before light exposure. During
light exposure, the quartz reactor was purged with Hg-free argon gas to remove
product Hg(0). Reactant Hg(II) concentrations were measured in duplicate by cold
vapour atomic fluorescence spectroscopy (CV-AFS) in 5 mL aliquots recovered
from the reactor at fixed time steps and acidified to 0.04 M HCl, and 0.1 M BrCl.
CV-AFS analysis accuracy was evaluated by regular analysis of the NRC ORMS-6
certified (25.6 ng L−1) reference material with good results (24.8 ± 1.6 ng L−1, 1σ,
n= 33). Five out of twelve experiments showed increasing or constant reactant Hg
(II) levels during the initial 2–4 hours, followed by a gradual decreasing in the final
24 h (Supplementary Data 1). These initial observations, tentatively explained by
Hg(II)-DOM interaction with the quartz reactor wall, were not included in the rate
constant calculation. This simplification did not affect the main outcome of this
study. For further discussion on in-cloud Hg photoreduction see Supplementary
Note.

Code availability. The code used in this study is available upon request.

Data availability
The data that supports the findings of this study is available upon request.
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