
HAL Id: insu-03661396
https://insu.hal.science/insu-03661396

Submitted on 6 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Discovery of a silicate rock-boring organism and
macrobioerosion in fresh water

Ivan N. Bolotov, Olga V. Aksenova, Torkild Bakken, Christopher J. Glasby,
Mikhail Yu. Gofarov, Alexander V. Kondakov, Ekaterina S. Konopleva,

Manuel Lopes-Lima, Artyom A. Lyubas, Yu Wang, et al.

To cite this version:
Ivan N. Bolotov, Olga V. Aksenova, Torkild Bakken, Christopher J. Glasby, Mikhail Yu. Gofarov,
et al.. Discovery of a silicate rock-boring organism and macrobioerosion in fresh water. Nature
Communications, 2018, 9, 234, p. 1-23. �10.1038/s41467-018-05133-4�. �insu-03661396�

https://insu.hal.science/insu-03661396
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ARTICLE

Discovery of a silicate rock-boring organism and
macrobioerosion in fresh water
Ivan N. Bolotov 1,2, Olga V. Aksenova1,2, Torkild Bakken3, Christopher J. Glasby4, Mikhail Yu. Gofarov1,2,

Alexander V. Kondakov1,2, Ekaterina S. Konopleva1,2, Manuel Lopes-Lima 5,6, Artyom A. Lyubas1,2,

Yu Wang7,8, Andrey Yu. Bychkov9,10, Agniya M. Sokolova11,12, Kitti Tanmuangpak13,

Sakboworn Tumpeesuwan14, Ilya V. Vikhrev1,2, J. Bruce H. Shyu8, Than Win 15 & Oleg S. Pokrovsky 16,17

Macrobioerosion is a common process in marine ecosystems. Many types of rock-boring

organisms break down hard substrates, particularly carbonate rocks and calcareous struc-

tures such as dead corals and shells. In paleontology, the presence of rocks with boreholes

and fossil macroboring assemblage members is one of the primary diagnostic features of

shallow marine paleo-environments. Here we describe a silicate rock-boring organism and an

associated community in submerged siltstone rock outcrops in Kaladan River, Myanmar. The

rock-boring mussel Lignopholas fluminalis is a close relative of the marine piddocks, and its

borings belong to the ichnospecies Gastrochaenolites anauchen. The neotectonic uplift of the

area leading to gradual decrease of the sea level with subsequent shift from estuarine to

freshwater environment was the most likely driver for the origin of this community. Our

findings highlight that rocks with macroborings are not an exclusive indicator of marine

paleo-ecosystems, but may also reflect freshwater habitats.
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B ioerosion is a process by which a living organism incises or
bores different hard substrates (e.g. rocks, shells, corals, and
bones) by mechanical disruption and/or chemical decom-

position1. The eroding activities of living organisms are important
factors in marine sedimentation and benthic ecology2. Bioerosion
increases species diversity of marine hard substrate communities
by increasing habitat complexity or as a result of the increase in
accessible surface area for colonization3. Additionally, this process
influences the evolution of coastal profiles over long timescales4,5.
With respect to their environmental impact, erosional organisms
represent an important group of ecosystem engineers6,7.

The investigation of bioerosion patterns supplies significant
background information to other research areas (e.g., zoology,
paleoecology, biogeochemistry, sedimentology, and biostrati-
graphy)1,8. Macrobioerosion trace fossils are important indicators
of intertidal and shallow subtidal marine paleo-environments9–11,
e.g., boring bivalves may be used as biological sea level indicators
marking ancient shorelines2,11,12. Boring organisms have a great
economic impact because they damage ships, fishing equipment,
archeological heritage, various infrastructures in marine envir-
onments, and the shells of aquaculture molluscs12–14.

Rock borers occur in a broad range of taxonomic groups,
including bivalves, gastropods, polychaetes and sipunculans
(Annelida), sea urchins, sponges, and others8–10,15. The piddocks,
or rock-boring mussels (Mollusca: Bivalvia: Pholadidae), are
predominantly marine animals specialized for boring into a ple-
thora of available substrates such as soft silicate and carbonate
rocks, clay, corals, wood, and peat3,14,16. The genera Lignopholas
Turner, 1955 and Martesia Sowerby 1824 contain several
estuarine and marine wood-boring bivalve species, including a
single species that can bore into living mangrove trees17. There is
a unique record of clavate borings and fossil specimens of Mar-
tesia sp. from Cretaceous Burmese amber11. However, Lignopholas
fluminalis was also collected from soft argillite rocks and brick-
works in brackish sections of rivers in India and Myanmar17–19.
The piddocks have developed a variety of adaptations to
accommodate their rock-boring behavior and make their borings
mechanically, by scraping at the substratum20.

In the marine environment, almost all macroborings are
recorded in calcareous substrates, e.g., corals, shells, and carbo-
nate rocks10,21. There are far fewer examples of fossil and recent
marine borings found in non-calcareous rocks and minerals such
as siltstones, quartzites, basalts, andesites, dolerites, gneisses, and
others17,21,22. From an ichnological point of view, clavate mac-
roborings in hardgrounds and in fossil wood belong to two ich-
nogenera, i.e., Gastrochaenolites Leymerie 1842 and Teredolites
Leymerie 1842 for borings in lithic and lignic substrates,
respectively23. The Gastrochaenolites borings are known from the
Early Ordovician to Recent and they are mainly produced by
marine endolithic bivalves8,9. However, several recent gastropods
and sipunculan worms may also produce Gastrochaenolites9.

In general, macrobioerosion was considered an exclusively
marine and, to a lesser degree, an estuarine process8,10. However,
we discovered the macrobioerosion of silicate siltstone rocks
caused by a rock-boring mussel species in a freshwater section
of the Kaladan River, Myanmar, which greatly expands our
knowledge of bioerosion. Our phylogenetic and biogeographic
modeling shows that at least three members of this rock-boring
assemblage are relict marine-derived lineages, which emphasizes
a broad-scale expansion of saltwater taxa into freshwater envir-
onment in Southeast Asia.

Results
Discovery of freshwater macrobioerosion. The site is located in
the middle reaches of Kaladan River: 21.0094° N, 92.9813° E,
altitude of 11 m a.s.l., Rakhine State, western Myanmar (Fig. 1a, b).

The rock-boring assemblage is associated with submerged black
siltstone rocks located in the lower part and bottom of the river
valley, with an above-water outcrop near the bioerosion site
(Fig. 1b–d). The submerged rocks are located within a riverine
section of ~500 m in length and of ~300 m in width, with depth
values of 1–2 m and more.

Freshwater environment. The model of tidal influence reveals
that the distance between the rock-borer’s site and the upper
level of the Kaladan estuary is 71 km (Fig. 2). Dating of the shift
from estuarine to freshwater environment at the site suggests
that it was approximately 3.5–14Kyr ago, i.e., not earlier than the
Late Pleistocene (Fig. 2). The analysis of a water sample confirms
that it is a freshwater section of the river, with a chloride ion
concentration of 2.7 mg/L, sodium ion concentration of 11.6mg/L,
and a total salinity of 0.16‰ (Supplementary Table 1).

Rock substrate. According to our grain-size analyses (Supple-
mentary Fig. 1), the substrate belongs to siltstone (aleurolite)
rocks due to a primary grain size of 2–62 µm. The backscattered
electron (BSE) images and X-ray diffraction (XRD) analyses
indicate that the rock consists of quartz, feldspar, clay minerals,
chlorite, and mica grains (Supplementary Table 2 and Supple-
mentary Fig. 1). The X-ray fluorescence (XRF) analysis reveals the
dominance of silicon dioxide (56.9 ± 0.5%) and aluminum oxide
(17.0 ± 0.4%) (Supplementary Table 3). A mean microindentation
hardness (Vickers test) value of the substrate rock is 0.62 GPa with
a range of 0.50–0.72 GPa (mean HV value= 61.9 kgf × mm−2,
range= 52.1–73.5 kgf × mm−2).

Ichnotaxonomy. The macroborings from the Kaladan River are
clavate, circular in cross-section throughout the length, expanded
gradually below the aperture, with a greatest diameter about
three-fourths of the depth; bases are rounded; sides are smooth,
without clear circular or spiral bioglyph; a distinguishable neck is
lacking (Fig. 3f). With respect to the lithic substrate and mor-
phological features24, these borings correspond well to the ich-
nospecies Gastrochaenolites anauchen Wilson & Palmer, 1998.

Rock-boring species. Freshwater rock borers heavily invaded the
submerged section of siltstone rocks that have numerous piddock-
like boreholes (Fig. 3a–f). Empty borings are sometimes filled with
clay (Fig. 3c). This boring species was determined as Lignopholas
fluminalis on the basis of morphological characters (Table 1,
Fig. 4a and Supplementary Note 1). The COI gene sequences
indicates that it is related to the marine piddock species Barnea
davidi but with low similarity (81.4%), while the nuclear 18S
rRNA gene sequences show a very close relationship with several
other marine Barnea spp. (similarity of 98–99%) (Supplementary
Table 4). The Bayesian and maximum likelihood phylogenies
reveal that this species is a sister lineage of Barnea spp. The
ancestral area reconstruction models suggest that the most recent
common ancestor (MRCA) of the Lignopholas+ Barnea clade was
a marine mussel (Fig. 5a and Table 2). The boring mechanism of
L. fluminalis is not known, but their boreholes should be made
mechanically as do its marine relatives20.

Associated nestling species. We recorded six species of nestling
macroinvertebrates that appear to be associated with this rock-
borer’s ecosystem (Table 1, Supplementary Table 4, and Supple-
mentary Note 1). An integrative study of the species using
morphological and molecular approaches indicates that they
include two clams, Scaphula deltae (Arcidae) and Novaculina
gangetica (Pharidae), a gastropod, Clithon cf. reticularis (Ner-
itidae), two polychaetes, Namalycastis indica and Neanthes
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Fig. 1 Freshwater bioerosion site, Kaladan River, Myanmar. a Map of Myanmar with location of the downstream area of Kaladan River (red frame). b Map
of the study site. The violet asterisk indicates the freshwater rock-borer’s site, and white circles indicate the levels of river water above sea level. The yellow
circles indicate main towns. The maps were created using ESRI ArcGIS 10 software (www.esri.com/arcgis); the topographic base of the maps was created
with Natural Earth Free Vector and Raster Map Data (www.naturalearthdata.com), Vector Map (VMap) Level 0 (http://earth-info.nga.mil/publications/
vmap0.html), and ASTER GDEM (https://lpdaac.usgs.gov/node/1079) (Maps: Mikhail Yu. Gofarov). c River site with freshwater rock-borer’s ecosystem.
The red arrow indicates siltstone rocks, a substrate of rock-boring bivalves. d Fragment of the black siltstone outcrop, the submerged part of which forms
the basis of freshwater rock-borer ecosystem. (Photos: Olga V. Aksenova)
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meggitti (Nereididae), and a sponge, Corvospongilla ultima
(Spongillidae) (Fig. 4b–g). The results of phylogenetic and bio-
geographic modeling reveal that both clam taxa, S. deltae and
N. gangetica, most likely represent the relict marine-derived
freshwater lineages (Fig. 5b, c and Table 2). N. gangetica is a
close relative of the Sinonovacula+ Pharella clade (Fig. 5b and
Supplementary Table 4). S. deltae clusters together with several
members of the Noetiidae but not with the Arcidae (Fig. 5c,
Supplementary Fig. 2, and Supplementary Table 4).

Discussion
Here we present the discovery of a rock-boring bivalve species
and associated hard substrate community in fresh water. Our
record is of exceptional paleontological, archeological, and
environmental importance, because, to our knowledge, until now
rock-borers were known only among marine and estuarine
groups of macroinvertebrates8–11,14,15. From freshwater habitats,
only a few records of carbonate microbioerosion structures
have been described, i.e., micro-borings in mollusc shells asso-
ciated with a group of minute shell-boring polychaetes25,26.
To the best of our knowledge, silicate macrobioerosion in fresh
water was previously unknown.

Our findings highlight that rocks with boreholes and fossil
members of rock-borer’s assemblages are not necessarily an
absolute indicator of shallow marine paleo-environments, but
may also reflect past freshwater riverine ecosystems. Additionally,
we found that the three most important members of the
assemblage, i.e., L. fluminalis, S. deltae, and N. gangetica, are
marine-derived, secondary freshwater taxa. This finding is in
full agreement with the hypothesis of Annandale27, who assumed
that Scaphula and Novaculina are freshwater genera of relict
marine origin. In contrast, at least one member of the rock-
borer’s assemblage, the sponge C. ultima, is an entirely freshwater
species that is not known from brackish water bodies28.
The freshwater fauna of the lower and middle reaches of

the Kaladan and Lemro River systems appears to be rather
a derivative of the Indian fauna (e.g., indicator taxa such as
N. gangetica29,30, Lamellidens aff. marginalis31,32, and
C. ultima28), but the lack of comparable molecular data from
India precludes any final biogeographic conclusion. Our model-
ing suggests that the shift from an estuarine to a freshwater
environment at the rock-borer’s site was a relatively recent event
that occurred after the Late Pleistocene. These results support
the hypothesis that a few marine or brackish species appear to
have the unusual ability to invade freshwater over rapid time
scales33. However, we show that the invasion of a rock-boring
species to a freshwater environment may lead to the origin of
an associated hard substrate community representing a mix
of primary estuarine and freshwater taxa.

The Gastrochaenolites has been considered a marine ichno-
taxon produced by endolithic bivalves8,23 and, to a lesser degree,
by gastropods and sipunculan worms9. Our discovery of a
freshwater silicate rock-boring organism indicates that fossil
macroborings in non-calcareous substrates may have been pro-
duced not only by marine invertebrates but also by freshwater
lineages of endolithic bivalves. From this perspective, the dis-
covery of fossil pholadid bivalves in Cretaceous Burmese amber
may also indicate rather a freshwater paleo-environment than
the proximity of resin-producing forests to brackish waters11.
The ichnospecies G. anauchen was described from the Early
Pennsylvanian deposits of the USA24. Our new record supports
the hypothesis of Wilson and Palmer24 that the Pennsylvanian
borings were formed by endolithic bivalves, because the recent
Kaladan borings are morphologically identical to those from
the Paleozoic coarse grainstone cobbles. Wilson and Palmer24

associated such smooth-sided clavate borings with lithophagid
bivalves, but the borings of the pholadid species L. fluminalis
are also characterized by smooth sides. The empty borings in
the freshwater rock-boring site at the Kaladan River are often
inhabited by nestling bivalve species, i.e., S. deltae and N. gang-
etica. This observation is in agreement with paleontological
records that fossil bivalve associations are complicated by
frequent records of nestling bivalves, e.g., mytilids and Hiatella
sp. (Hiatellidae), in the vacated borings34.

Human-mediated biological invasions of various species out-
side their native ranges are a global-scale process35, which are
accompanied by climatic niche shifts36 and rapid evolution of
dispersal ability37 in invaders. Among the piddocks, alien popu-
lations of Martesia striata were recorded from the Mediterranean
Sea, Hawaii, Islands of the British Isles, and Florida38. There is
a possibility of further invasion of the freshwater rock-borer’s
lineage outside the Kaladan River, because of the Kaladan Multi-
Modal Transit Transport Project that is being implemented
by the Government of India and the Government of Myanmar.
The project involves the development of the transit transport
system to Mizoram through Myanmar, with a 158 km inland
water transport segment via the Kaladan River39, which may
facilitate a broad expansion of the rock-borer. The larval devel-
opment of L. fluminalis is unknown, but it is most likely that this
species has a planktonic larva as the marine pholadids, e.g.,
Barnea and Martesia (Supplementary Note 1). A successful
invasion of this freshwater lineage into surrounding larger Asian
river basins, including the Ganges, Salween, and Mekong, can
lead to unpredictable consequences for native ecosystems that
can be comparable to those from other invaders with planktonic
larvae40,41. In contrast, a freshwater population of the rock-
boring mussel is of exceptional importance for scientific research,
as it probably represents a lineage with unique physiological
adaptations to survive in freshwater environments. Taking into
account its possible local range and ancient origin, this lineage
should be a focus of special research and conservation efforts.
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species Lignopholas fluminalis to freshwater habitat. (Model: Ivan N. Bolotov,
Mikhail Yu. Gofarov, Yu Wang, & J. Bruce H. Shyu)
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Our discovery of a freshwater rock-boring assemblage in the
Kaladan is in agreement with numerous occurrences of marine-
derived groups in rivers of the Oriental Region, which have
attracted the attention of scientists for many decades27,30,42–45.
Fossil freshwater shark assemblages were discovered from the
Late Jurassic and Early Cretaceous deposits of the Khorat
Plateau in Thailand46,47 indicating that the colonization of
Asian river systems by marine animals started as early as the
mid-Mesozoic. Molecular studies generally support the primary
marine origin of most recent marine-derived taxa in tropical
fresh waters. There were at least three separate freshwater
expansions by stingrays in Southeast Asia, and brackish water
habitats may have played an important role for these events
as evolutionary bottlenecks48. Two freshwater colonization
events were recorded in ariid catfishes49 and at least one
event occurs in Southeast Asian freshwater pufferfishes50.
The phylogeography of a killifish species, Aplocheilus panchax,
indicates multiple freshwater colonization events during the
Pleistocene51. Freshwater prawns of the genus Macrobrachium
independently colonized fresh waters at least five times52 and
freshwater polychaetes of the genus Namanereis show two dis-
tinct invasions53.

In summary, Southeast Asia seems to be a long-term arena for
wide-scale expansion of marine taxa into fresh water, examples of
which are known within different animal families. This pattern
may be associated with the presence of a plethora of huge
estuarine areas, which may facilitate the adaptation of saltwater
organisms into freshwater environments. The land-level change
resulting in the combination of progressive tectonic uplift of
the mainland54 and a gradual decrease of the sea level55 may also
have contributed to this process through a slow rise of river
catchment elevation with a subsequent decrease in the level of
tidal saltwater influence in the lower sections of the rivers (Fig. 2).
Such a neotectonic evolutionary model seems to be the most
appropriate explanation for origin of the freshwater rock-borer’s
community in Kaladan River. Several more ancient freshwater
colonization events are consistent with the collision of the
Asian and Indian plates and the subsequent Tethyan regression,
which advanced the cohesive zone shift from shoal sea waters to
freshwater environments44.

The freshwater lineage of L. fluminalis from the Kaladan River
is an example of a rock-boring freshwater organism that provides
the reliable evidence for freshwater macrobioerosion in silicate
rock. Phylogenetically, the rock-boring species is a close relative

Fig. 3 Blocks of siltstone rocks with borings and living macroinvertebrates from the freshwater bioerosion site at the Kaladan River, Myanmar. a, b Rock-
boring mussels, Lignopholas fluminalis, in their clavate borings (ichnospecies: Gastrochaenolites anauchen). c Arc clams, Scaphula deltae, and empty borings
filled with clay, a habitat of polychaetes Neanthes meggitti and Namalycastis indica (Nereididae). d Arc clam, Scaphula deltae, in an empty boring. e Jackknife
clam, Novaculina gangetica, and sponge, Corvospongilla ultima. Scale bars= 10mm (Photos: Olga V. Aksenova). f Longitudinal cross-section of the boring,
Gastrochaenolites anauchen. Scale bar= 5mm. (Photo: Ilya V. Vikhrev)
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of the marine piddocks Barnea spp. The borings of this species in
siltstones belong to the ichnospecies G. anauchen which expands
the putative range of the saltwater Gastrochaenolites into fresh
water.

The freshwater rock-borer community in Myanmar includes
several nestling macroinvertebrate species, including the arc clam
S. deltae and the jackknife clam N. gangetica which belong to
relict marine-derived genera with brackish and freshwater species.
Our tectonic modeling indicates that this unusual invertebrate
community most likely originated approximately 3.5–14 Kyr ago
via the neotectonic uplift of the area leading to a gradual lowering
of the sea level and a subsequent shift from an estuarine to a
freshwater environment. This example corresponds well to the
modern data on multiple and wide-scale expansions of marine
taxa into fresh water in Southeast Asia which began as early as the
mid-Mesozoic. We assume that such a general biogeographic
pattern may be associated with the combination of the pro-
gressive tectonic uplift of the mainland and with the subsequent
decrease in the level of tidal saltwater influence in the lower
sections of the rivers occurring in huge estuarine areas around the
mainland. This neotectonic evolutionary model predicts the
gradual shift in adaptive zone from shallow marine and brackish
waters to freshwater habitats.

Our findings highlight that the rocks with macroborings and
fossilized members of rock-boring communities are not a direct
indicator of shallow marine paleo-environments, but may also
reflect freshwater habitats. A rock-borer lineage from Kaladan
River adapted to life in a freshwater environment and having
putative planktonic larvae represents a potential international

threat in the case it manages to invade the surrounding larger
Asian river basins, including the Ganges, Mekong, and Salween
Rivers.

Methods
Data sampling. The samples were collected from a site in the middle reach of
Kaladan River. Several blocks with numerous borings and live representatives of
the rock-boring community were obtained from submerged siltstone rocks at
depths between 1.0–1.5 m using a large tommy-bar. A water sample was collected
with a plastic bottle, filtered (0.45 µm) and stored in the dark before analysis by
atomic absorption spectroscopy and ionic chromatography. Macroinvertebrate
specimens were collected using forceps and immediately preserved in 96% ethanol.
Additionally, four samples of siltstone fragments with rock-boring mussels and
accessory taxa were conserved in containers with 96% ethanol.

Geographic and tectonic modeling. The model of the estuarine and freshwater
sections of the Kaladan River was created using ESRI ArcGIS 10 software
(www.esri.com/arcgis). The topographic base of the map was created with Natural
Earth Free Vector and Raster Map Data (www.naturalearthdata.com), Vector Map
(VMap) Level 0 (http://earth-info.nga.mil/publications/vmap0.html), and ASTER
GDEM (https://lpdaac.usgs.gov/node/1079). The water levels were obtained from a
topographic map (scale 1:500,000; The General Staff of the USSR, map nos. F46–3
and F46–4). The water level at the rock-borer’s site was estimated using linear
interpolation. We calculated the length of brackish section of the river based on the
maximum tide height that was obtained from the Joint Archive for Sea Level56.
The land-level change rate (i.e. uplift and sea-level change rate) is needed to
reconstruct neotectonic evolution of the lower course of the Kaladan River during
the Late Holocene. Unfortunately, data for this part of Myanmar are extremely
scarce and uneven. South of our research location, Than Tin Aung et al.57,58

and Wang et al.59 have attempted to obtain such rates on the basis of field surveys
of uplifted sea-level indicators. Their observations pointed out that the long-term
land-level change rates in this area contain significant spatial variations. For
example, late Holocene average uplift rates at southwestern Cheduba Island
can be as high as 3.5–5.2 mm/year, whereas the land-level change rate landward

Table 1 Taxonomy, ecology, and reference sequences of freshwater rock-borer community’s members from Kaladan River,
western Myanmar

Phylum: Class:
Family

Species Role in the
community,
preferred
environment

Origin of
the family

Acc. numbers of reference sequences

COI 16S rRNA 28S rRNA 18S rRNA

Mollusca: Bivalvia:
Pholadidae

Lignopholas fluminalis
(Blanford, 1867)

Rock-boring
species, brackish

Marine14 MF958974 n/a n/a n/a
MF958975 n/a n/a MF959022
MF958976 n/a n/a MF959023
MF958977 n/a n/a MF959024
MF958978 n/a n/a MF959025
MF958979 n/a n/a MF959026

Mollusca: Bivalvia:
Arcidae

Scaphula deltae
(Blanford, 1867)

Nestling species,
from brackish to
freshwater

Marine73 MF958980 n/a n/a n/a
MF958981 n/a MF959007 n/a
MF958982 n/a n/a n/a
MF958983 n/a MF959008 n/a
MF958984 n/a MF959009 n/a
MF958985 n/a MF959010 n/a

Mollusca: Bivalvia:
Pharidae

Novaculina gangetica
(Benson, 1830)

Nestling species,
from brackish to
freshwater

Marine74 MF958986 * MF958997 * MF959011 * n/a
MF958987 * MF958998 * MF959012 * n/a
MF958988 * MF958999 * MF959013 * n/a
MF958989 MF959000 MF959000x n/a
MF958990 MF959001 MF959015 n/a
MF958991 MF959002 MF959016 n/a

Mollusca: Gastropoda:
Neritidae

Clithon cf. reticularis
(Sowerby, 1838)

Nestling species,
probably brackish

Marine75 MF958992 MF959003 MF959017 n/a
MF958993 MF959004 MF959018 n/a

Annelida: Phyllodocida:
Nereididae

Neanthes meggitti
(Monro, 1931)

Nestling species,
brackish

Marine76 MF958994 MF959006 MF959020 n/a

Annelida: Phyllodocida:
Nereididae

Namalycastis indica
(Southern, 1921)

Nestling species,
freshwater

Marine76 MF958995 MF959005 MF959019 n/a
MG759522 MG759523 MG759524 n/a

Porifera:
Demospongiae:
Spongillidae

Corvospongilla ultima
(Annandale, 1910)

Nestling species,
freshwater

Freshwater77 MF958996 n/a MF959021 n/a

n/a—not available
*Specimens that were collected outside the rock-borer site, from another river (Myanmar: Lemro River, 20.6150° N, 93.2481° E)
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http://www.esri.com/arcgis
http://www.naturalearthdata.com
http://earth-info.nga.mil/publications/vmap0.html
https://lpdaac.usgs.gov/node/1079
https://www.ncbi.nlm.nih.gov/nuccore/MF958974.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958975.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959022.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958976.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959023.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958977.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959024.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958978.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959025.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958979.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959026.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958980.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958981.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959007.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958982.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958983.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959008.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958984.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959009.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958985.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959010.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958986.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958997.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959011.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958987.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958998.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959012.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958988.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958999.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959013.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958989.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959000.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959000.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958990.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959001.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959015.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958991.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959002.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959016.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958992.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959003.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959017.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958993.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959004.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959018.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958994.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959006.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959020.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958995.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959005.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959019.1
https://www.ncbi.nlm.nih.gov/nuccore/MG759522.1
https://www.ncbi.nlm.nih.gov/nuccore/MG759523.1
https://www.ncbi.nlm.nih.gov/nuccore/MG759524.1
https://www.ncbi.nlm.nih.gov/nuccore/MF958996.1
https://www.ncbi.nlm.nih.gov/nuccore/MF959021.1
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Fig. 4 Rock-boring and nestling macroinvertebrates associated with freshwater bioerosion site at the Kaladan River, western Myanmar. a Lignopholas
fluminalis, a rock-boring species: (a1) Lateral view of an adult specimen with fully developed callum, (a2) Ventral view of apposed valves, (a3) Dorsal view
of apposed valves, (a4) Anterior view, (a5) Frontal view of siphons, (a6) Lateral view of siphons, (a7) Lateral view of a young specimen, (a8) Ventral view
of the anterior end, (a9) Dorsal view, (a10) Internal morphology of soft body, (a11) Frontal view of siphons (scale bars= 2mm). b Scaphula deltae, an
ark clam species: (b1) Lateral and (b2) dorsal view of a young specimen, (b3) Live clam attached by byssus in borehole, (b4) Lateral and (b5) frontal
view of an adult specimen, (b6) Dorsal and (b7) ventral view of an adult specimen, (b8) Cardinal teeth of left valve, (b9) Cardinal teeth of right valve
(scale bars= 2mm). c Novaculina gangetica, a jackknife clam species: (c1) Lateral view of right and left shell valves (outside), (c2) Lateral view of right
and left shell valves (inside), (c3) Shell variability, (c4) Live specimen with protruding foot and siphons (scale bars= 10mm). d Clithon cf. reticularis, a
gastropod species: (d1) Apertural view, (d2) Dorsal view, (d3) Apical view (scale bars= 2 mm). (e) Corvospongilla ultima, a sponge species: (e1) General
view of a sponge body fragment (scale bar= 2 mm), (e2) Three adherent gemmules; gemmular cage covering the left gemmule is removed (scale
bar= 500 µm). f Neanthes meggitti, a polychaete species: (f1) Dorsal view of complete specimen (scale bar= 2mm), (f2) Dorsal view of the anterior end
(scale bar= 0.5 mm), (f3) Ventral view of the anterior end (scale bar= 0.5 mm). g Namalycastis indica, a polychaete species: (g1) Dorsal view of animal
(scale bar= 2mm), (g2) Dorsal view of the anterior end (scale bar= 0.5 mm). (Photos: Olga V. Aksenova [a, b, d, e1, f, and g], Ekaterina S. Konopleva and
Ilya V. Vikhrev [c], and Agniya M. Sokolova [e2])
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along the eastern coast of Ramree Island may be less than 0.5 mm/year59. These
two islands are located further south of the Kaladan River, but within a ~500-km-
long seismic patch that includes the downstream section of the Kaladan River60.
Closer to the Kaladan River, Than Tin Aung et al.58 also reports similar variations
just south of the town of Sittwe, where the land-level change rate changes from
more than 4.5 mm/year at the seaward sites to ~2mm/year at the landward sites.
Since the Kaladan River is located near the landward sites in these studies, we
conservatively applied a long-term land-level change rate R of 0.5–2 mm/year in
our tectonic modeling.

Mineralogical analyses of rock substrate. The grain size analysis was carried out
on an Analysette 22 MicroTec Plus Laser Particle Sizer (Fritsch GmbH—Milling
and Sizing, Germany) using a rock sample dispersed in distilled water. An XRD
approach was applied to estimate the mineral composition of the substrate using a
DRON-3M diffractometer (Bourevestnik Inc., Russia). The BSE images were
obtained on an electronic scanning microscope Jeol JSM-6480LV (Jeol Ltd., Japan)
with energy-dispersive Oxford X-MaxN Silicon Drift Detector and crystal-
diffractive INCA Wave-500 WDS spectrometer (Oxford Instrument Ltd., UK). The
chemical composition of the rock samples was determined by an XRF analysis
using a wavelength-dispersive XRF spectrometer PW 2400 (Philips Analytical, the
Netherlands). The microindentation hardness (Vickers test) of the rocks was
measured using a PMT-3M Vickers Microhardness Tester (LOMO, Russia) with
100 g load. The tester was calibrated using NaCl crystal with 10 g load. Several
fragments of the substrate were placed into briquette and were fixed with epoxy
glue with subsequent polishing of the surface. Five indentations were performed on
each rock fragment, and both diagonals of indentation mark were measured. A
mean microhardness value was calculated based on 20 measurements.

Ichnological identification of borings. The bivalve borings were identified based
on morphological patterns and the type of substrate using the appropriate ich-
notaxonomic works23,24. Longitudinal cross-sections of the borings were used for
morphological investigation.

Morphological identification of invertebrates. For the morphological study of
invertebrate specimens, we used a stereomicroscope (Leica M165C, Leica Micro-
systems, Germany). The comparative analysis of bivalve taxa was carried out
according to the shell shape, structure of the hinge, muscle attachment scars, and
umbo position. A gastropod species was identified based on shell shape and marking
patterns. The polychaete taxa were identified in accordance with morphology of the
external body, everted pharynx, and structures of the parapodia and chaetae. Iden-
tification of the sponge species was carried out through analysis of skeleton elements
using a light microscope (Olympus CX21, Olympus Corporation, Japan) and scan-
ning electron microscope, SEM (Tescan Vega TS5130MM, Tescan Orsay Holding,
Czech Republic). Spicules of each type were purified with potassium dichromate
solution (2.5% CrO3 in 50% H2S), washed and mounted on a slide and specimen stub
according to standard methods61. Measurements (n= 25) were performed under light
microscope using an ocular micrometer; spine size was measured under SEM; spicule
size is presented as minimum-mean-maximum dimensions.

DNA extraction and molecular analyses. New sequences were obtained from 24
invertebrate specimens belonging to seven species that were collected from the
Kaladan and Lemro rivers, western Myanmar (Table 1). Total genomic DNA was
extracted from 96% ethanol-preserved tissue samples using the NucleoSpin® Tissue
Kit (Macherey-Nagel GmbH & Co. KG, Germany), according to the
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Fig. 5 Ultrametric Bayesian (BEAST 2) phylogenies showing the primary marine origin of rock-boring and nestling bivalve species from the bioerosion site
in the Kaladan River, including a Lignopholas fluminalis, Pholadidae (18S rRNA+ 28S rRNA, 3033 bp), b Novaculina gangetica, Pharidae (COI+ 16S rRNA+ 28S
rRNA, 2602 bp), and b Scaphula deltae, Arcidae (28S rRNA+ 18S rRNA, 2450 bp, full tree includes 44 taxa but the other clade of Arcidae is not shown here:
see Supplementary Fig. 2). Black numbers near nodes are BPP values inferred from BEAST/BPP values inferred from MrBayes/BS values inferred from
RAxML (“—” indicates a topological difference). Pie chaps on the nodes indicate the probabilities of certain ancestral areas with respect to combined
results under three different models (S-DIVA, DEC, and S-DEC) inferred from RASP v. 3.2
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manufacturer’s protocol. For molecular analyses, we obtained partial sequences of
the following markers: the mitochondrial cytochrome c oxidase subunit I gene (COI)
and 16S ribosomal RNA (16S rRNA), and the nuclear 28S ribosomal RNA (28S
rRNA). We were unable to obtain the 28S rRNA gene sequences from the rock-
boring species, and we therefore sequenced another nuclear marker, i.e., the 18S
ribosomal RNA (18S rRNA). Additionally, sequencing of the 16S rRNA gene from
samples of L. fluminalis and S. deltae was also unsuccessful (Table 1).

PCR primers are shown in Supplementary Table 5. We applied four marker-
specific PCR algorithms as follows: (i) COI: 95 °C (4 min), 94 °C (35–37 repeats, 50
s), 50 °C (50 s), 72 °C (50 s), and 72 °C (5 min); (ii) 16S rRNA: 95 °C (4 min), 94 °C
(35–37 repeats, 50 s), 50 °C (50 s), 72 °C (50 s), and 72 °C (5 min); (iii) 28S rRNA:
95 °C (4 min), 94 °C (36 repeats, 50 s), 62 °C (50 s), 72 °C (50 s), and 72 °C (5 min);
and (iv) 18S rRNA: 95 °C (4 min), 94 °C (32 repeats, 50 s), 58 °C (50 s), 72 °C (50 s),
and 72 °C (5 min). Forward and reverse reactions were executed on an ABI
PRISM® 3730 DNA analyzer (Thermo Fisher Scientific Inc., Waltham, MA, USA)
with the ABI PRISM® BigDye™ Terminator v. 3.1 reagents kit. The sequences were
inspected visually with BioEdit v. 7.2.562.

Searching for the nearest neighbors. Each molecular sequence was checked via
the basic local alignment search tool (BLAST; blast.ncbi.nlm.nih.gov) to search for
the most similar sequences in NCBI GenBank. Additionally, we used the nearest-
neighbor search algorithm implemented in the Barcoding of Life Data System
(BOLD; www.boldsystems.org) with COI gene sequences of our specimens.

Sequence alignment. To estimate the phylogenetic position of three bivalve species,
i.e., L. fluminalis, S. deltae, and N. gangetica, we sampled three sequence data sets,
namely, “Pholadidae & relatives” (two partitions: 18S rRNA+ 28S rRNA), “Arcidae &
Noetiidae” (two partitions: 28S rRNA+ 18S rRNA), and “Pharidae” (five partitions: 3
codons of COI+ 16S rRNA+ 28S rRNA), respectively (see Supplementary Table 6 for
additional sequences obtained from GenBank). Sequences of the marine clam
Cavatidens omissa Iredale, 1930 (Lucinidae) were used as an outgroup (Supplemen-
tary Table 6). The number of partitions in each data set was selected in accordance
with the presence of available sequences for most closely related taxa in GenBank. The
multiple sequence alignment was produced for each gene in each data set separately in
MEGA663, with the Muscle (“Arcidae & Noetiidae” and “Pholadidae & relatives” data
sets) and ClustalW (“Pharidae” data set) algorithms. The aligned sequence data sets
were inspected with GBlocks v. 0.91b (Supplementary Table 7) to exclude gaps and
variable sections from the alignments using a less strict set of options. Lacking sites
were coded as missing positions.

Saturation analyses and congruence of phylogenetic signals. To estimate each
partition in each data set for evidence of substitution saturation, we used the test of
Xia et al. with DAMBE v. 5.3.10864. The test revealed very little saturation even
under the hypothesis of an asymmetrical tree. A partition homogeneity test was
calculated in PAUP* v. 4.0a150 to check the congruence of phylogenetic signals
among sequence partitions65. This test returned the conformity of the phylogenetic
signals among the partitions in the “Arcidae & Noetiidae” data set (P= 0.99). For
the “Pharidae” data set, signals were also congruent (P > 0.3), with exception of
those between the COI and 28S rRNA genes (P= 0.01) although there was no
significant discordance between the 16S rRNA and 28S rRNA genes (P= 0.34). We
concluded that the incongruence between these data partitions does not affect the
model because it appears to be the effect of copious homoplasy31. We therefore
used the combined data set (3 codons of COI+ 16S rRNA+ 28S rRNA) in phy-
logenetic analyses. In contrast, the test indicated significant incongruence between
the 18S and 28S rRNA genes in the “Pholadidae & relatives” data set (P= 0.01).
However, testing of a restricted data set, which includes only the members of this
family and an outgroup taxon, returned no conflicts among partitions (P= 1.00).
We therefore used this “Pholadidae” data set in subsequent reconstructions.

Phylogenetic analyses. Phylogenetic analyses were carried out with RAxML v.
8.2.6 HPC Black Box66 and MrBayes v. 3.2.667 at the San Diego Supercomputer
Center through the CIPRES Science Gateway68. In the RAxML analyses, a GTR+G
model was selected for each partition. Nodal support values were calculated with a
standard bootstrapping approach66. The evolutionary models for each partition
according to the corrected Akaike Information Criterion (AICc) of MEGA663 that
were used under Bayesian inference framework are presented in Supplementary

Table 8. The MrBayes analyses were carried out for 25,000,000 generations with the
following options: two runs, four Markov chains (three cold and one heated with
temperature of 0.1), and sampling every 1000th cycle; 10% of the samples were
excluded as an appropriate burn-in, and the convergence of the Markov chains was
inspected with Tracer v. 1.669.

Ancestral area reconstructions. To estimate the ancestral area patterns, we cal-
culated the sets of uncalibrated phylogenetic trees for each data set, i.e., “Pholadidae”,
“Arcidae & Noetiidae”, and “Pharidae”, using BEAST 2 v. 2.4.6 with a lognormal
relaxed clock algorithm and the Yule speciation process as the tree prior70. Models
were calculated at the San Diego Supercomputer Center through the CIPRES Science
Gateway68. We applied the same options to the data sets as in the MrBayes analyses
(see above). However, we selected simplified substitution models (see Supplementary
Table 8). In each case, two independent runs with 25,000,000 generations were carried
out. The phylogenies were reconstructed every 1000th cycle. The primary log data sets
were inspected visually with Tracer v. 1.6 for the congruence of the Markov chains
and the effective sample size of parameters (ESS)69. The ESS values for all parameters
were found as >350, and the posterior and prior distributions were congruent. For
each data set, the phylogenies from two separate runs were joined with LogCombiner
v. 1.8.3 (burn-in= 10%), and the maximum clade credibility tree was reconstructed
with TreeAnnotator v. 1.8.371.

For each sequence data set, a sample of post-burn-in binary trees (N= 45,002)
and a user-specified consensus tree obtained from BEAST runs were used to
calculate ancestral area patterns on the basis of three algorithms, i.e., Statistical
Dispersal-Vicariance Analysis (S-DIVA), Dispersal-Extinction Cladogenesis
(DEC), and Statistical Dispersal-Extinction Cladogenesis (S-DEC) implemented in
RASP v. 3.272. The out-group taxa were discarded from the phylogenies with RASP
v. 3.2. Additionally, only one representative of each species was used in RASP
analyses to avoid uncertainty of the biogeographic models. We assigned two
possible ancestral areas of the in-group species, i.e., (a) marine and (ab) estuarine to
freshwater. The S-DIVA scenarios were computed with two allowed areas, allowing
100 reconstructions with maximum reconstruction for final tree= 1000, and
allowing extinctions. The DEC and S-DEC scenarios were reconstructed with
default options and two allowed areas. Additionally, we calculated a combined
model (S-DEC + DEC+ S-DIVA) joining the independent scenarios inferred from
three different algorithms in RASP v. 3.2.

Data availability. The sequences generated under this study are available from
GenBank. Accession numbers for each specimen are presented in Table 1. The
voucher specimens and samples of siltstone blocks with boreholes are available in
the RMBH, Russian Museum of Biodiversity Hotspots, the Federal Center for
Integrated Arctic Research, Russian Academy of Sciences (Arkhangelsk, Russia).
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