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Abstract. Contamination of surface waters with microbi-
ological pollutants is a major concern to public health.
Although long-term and high-frequency Escherichia coli
(E. coli) monitoring can help prevent diseases from fe-
cal pathogenic microorganisms, such monitoring is time-
consuming and expensive. Process-driven models are an
alternative means for estimating concentrations of fecal
pathogens. However, process-based modeling still has lim-
itations in improving the model accuracy because of the
complexity of relationships among hydrological and envi-
ronmental variables. With the rise of data availability and
computation power, the use of data-driven models is in-
creasing. In this study, we simulated fate and transport of
E. coli in a 0.6 km2 tropical headwater catchment located
in the Lao People’s Democratic Republic (Lao PDR) us-
ing a deep-learning model and a process-based model. The
deep learning model was built using the long short-term
memory (LSTM) methodology, whereas the process-based
model was constructed using the Hydrological Simulation
Program–FORTRAN (HSPF). First, we calibrated both mod-
els for surface as well as for subsurface flow. Then, we sim-
ulated the E. coli transport with 6 min time steps with both
the HSPF and LSTM models. The LSTM provided accurate
results for surface and subsurface flow with 0.51 and 0.64
of the Nash–Sutcliffe efficiency (NSE) values, respectively.
In contrast, the NSE values yielded by the HSPF were −0.7

and 0.59 for surface and subsurface flow. The simulated E.
coli concentrations from LSTM provided the NSE of 0.35,
whereas the HSPF gave an unacceptable performance with
an NSE value of −3.01 due to the limitations of HSPF in
capturing the dynamics of E. coli with land-use change. The
simulated E. coli concentration showed the rise and drop pat-
terns corresponding to annual changes in land use. This study
showcases the application of deep-learning-based models as
an efficient alternative to process-based models for E. coli
fate and transport simulation at the catchment scale.

1 Introduction

Contamination of surface waters through microbiological
pollutants is a major public health concern (Bain et al., 2014).
Worldwide, pathogens tend to wreak havoc on human health
because of the diseases they cause, such as diarrhea, result-
ing in infant mortality. In particular, developing countries are
vulnerable to pathogen-related diseases due to the deficit of
sanitation facilities (Boithias et al., 2016). Escherichia coli
(E. coli) has been frequently used as an indicator of fecal
bacteria because it is easy to culture (Rochelle-Newall et al.,
2015). Higher concentrations of E. coli in water tend to be
linked to fecal pathogenic microorganisms, harmful to hu-
man health. Although long-term and high-frequency E. coli
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monitoring can help prevent waterborne diseases from fe-
cal pathogenic microorganisms, monitoring E. coli concen-
trations is time-consuming and expensive (Cho et al., 2016;
Frolich et al., 2017; Kim et al., 2017). Furthermore, high-
frequency datasets of E. coli concentration are scarce, and
available long-term datasets are often inadequate to yield a
continuous time series of fecal pathogenic microorganisms
(van der Leeuw, 2004). Modeling approaches can overcome
this drawback in monitoring. Thus, they can be a means
to determine the fate and transport of fecal pathogenic mi-
croorganisms at the catchment scale by simulating E. coli
in environmental compartments, such as the soil surface and
streams (Ligaray et al., 2016; Pachepsky and Shelton, 2011).

Several process-based models have been developed to sim-
ulate stream water contamination by E. coli. Popular mod-
els to simulate E. coli are the Soil and Water Assessment
Tool (SWAT) (Neitsch et al., 2011), Hydrological Simulation
Program–FORTRAN (HSPF) (Bicknell et al., 1997), INCA-
Pathogens (Whitehead et al., 2016), and pathogen catchment
budget (PCB) (Ferguson et al., 2007). The fate and transport
of E. coli are a complex phenomenon with several drivers
(Pachepsky et al., 2018), such as the hydrological regime
(Boithias et al., 2016; Pachepsky et al., 2017), contributions
of both surface runoff and subsurface flow to the overall in-
stream discharge (Boithias et al., 2021b), concentration and
sources of suspended sediment (Ribolzi et al., 2016; Nguyen
et al., 2016), land use (Causse et al., 2015; Nakhle et al.,
2021), intrinsic properties of the bacterium (Pachepsky et
al., 2014), and economic conditions (Iqbal et al., 2019). Re-
cently, Sowah et al. (2020) applied the SWAT model to re-
search the sources and drivers of E. coli in the Clouds Creek
watershed, USA. However, the process-based models still
have limitations to accuracy due to the complexity of rela-
tionships among hydrological and environmental variables
(Abimbola et al., 2020). In addition, the simplified equa-
tions of these models can increase the inherent uncertain-
ties, resulting in simulation errors. To overcome these lim-
itations, several modifications of the E. coli module of the
SWAT model have been proposed to incorporate the impacts
of the multiple drivers of E. coli fate and transport (Kim et
al., 2018; Meshesha et al., 2020). The E. coli concentration
in surface water varies significantly within a very short time
period (Chen et al., 2014; Boithias et al., 2021b). Daily sim-
ulations cannot capture the dynamics of E. coli in a short
duration. In particular, the simulation with high temporal res-
olution is important in small headwater catchments because
the duration of flood events might be less than 1 d (Gassman
et al., 2007). Therefore, an E. coli concentration simulation
with high temporal resolution should be conducted to deter-
mine the temporal distribution of E. coli.

Recently, deep learning (DL) has become a promising
alternative approach for estimating water quality by using
features of water constituent dynamics (Pyo et al., 2021).
Deep-learning-based models are superior to their process-
based counterparts due to their high accuracy, faster pre-

diction time, and ability to model complex physical phe-
nomena (Sze et al., 2017). Deep-learning models can ex-
ploit a particular compositionality in the input features by
finding more abstract features in them (Bengio et al., 2021).
Long short-term memory (LSTM) networks have an advan-
tage over other deep-learning-based models in that they can
extract complex patterns from sequence data (Schmidthu-
ber and Hochreiter, 1997). Several studies have applied deep
learning to water quality modeling and prediction (Peterson
et al., 2020; Isikdogan et al., 2017; Solanki et al., 2015).
Dong et al. (2019) used LSTM to predict dissolved oxy-
gen concentrations and showed that LSTM performs better
than other machine-learning methods, such as autoregressive
integrated moving average or artificial neural networks. Al-
though LSTM has been used extensively for building hydro-
logical models (Abbas et al., 2020), its potential has not yet
been explored to estimate E. coli concentration in stream wa-
ters. Deep-learning-based models have also not been devel-
oped for the simulation of water quality with high temporal
resolution.

This study aims to evaluate the applicability of LSTM to
simulate in-stream E. coli concentrations with high tempo-
ral resolution. In addition, the process-based model HSPF
was used as a benchmark to compare and assess the per-
formance of LSTM. Both models were applied to a 0.6 km2

tropical headwater catchment from the northern Lao People’s
Democratic Republic (PDR). The temporal resolution of the
simulations was 6 min in both models. Thus, the specific ob-
jectives of this study were to compare the performance of a
process-based model and a deep-learning model (1) to simu-
late both surface and subsurface flow, (2) to simulate E. coli
concentration, and (3) to analyze the response of E. coli to
changing land use.

2 Materials and methods

2.1 Study site and data acquisition

The study area is the 0.6 km2 Houay Pano headwater catch-
ment, located 10 km south of the city of Luang Prabang,
Lao PDR (Boithias et al., 2021a) (Fig. 1). This catchment
is representative of montane agroecosystems in Southeast
Asia and is part of the long-term critical zone observa-
tory network called multiscale TROPIcal CatchmentS (M-
TROPICS), which is affiliated with the French research
infrastructure OZCAR (Gaillardet et al., 2018). This site
had undergone rapid land-use changes from 2011 to 2018
(Fig. S1a). The characteristics of this area, including land-use
information, are provided in the Supplement (Sect. S1). We
collected weather, hydrological, E. coli concentration, and
electrical conductivity data at 6 min time steps from 2011
to 2018. Rainfall, relative humidity, solar radiation, wind
speed, and air temperature were measured with an automatic
weather station Campbell Scientific BWS200, which was
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Figure 1. Location of the study area. The study area is located near
Luang Prabang in the northern Lao PDR. The gauging and moni-
toring station is located at the outlet of the catchment, where water
level is recorded and where water samples are collected for E. coli
concentration measurement. Climate data were measured at the me-
teorological station.

equipped with ARG100 (a 0.2 mm capacity tipping bucket).
The potential evapotranspiration was calculated using the
Penman–Monteith method. We measured the stream water
level at the monitoring station using a V-notch and water-
level recorder (OTT Thalimedes). The discharge was esti-
mated based on the rating curve relating discharge to wa-
ter levels. The surface flow and subsurface flow were calcu-
lated using the electrical conductivity method (Ribolzi et al.,
2018). A detailed description of this method is provided in
the Supplement (Sect. S2). E. coli concentration was mea-
sured based on the standardized microplate method (ISO
9308–3). A detailed explanation of the E. coli experiment
can be found in the Supplement (Sect. S3). In this study,
we carried out biweekly grab sampling of E. coli from 2011
to 2018. Over the same period, we also monitored 11 flood
events to assess E. coli dynamics during flood events using an
automated sampler (ICRISAT) triggered by the water-level
recorder to collect water after every 2 cm water-level change
during flood rising and every 5 cm water-level change dur-
ing flood recession. The total number of E. coli samples col-
lected over the 2011–2018 period was 255. In addition, we
collected the monthly numbers of poultry, swine, goats, and
the number of people who visited the study area. These data
were used to quantify the source of E. coli in this catchment
(Rochelle-Newall et al., 2016) (Fig. S1b).

2.2 Flow and E. coli concentration simulation

HSPF and LSTM models were used to simulate in-stream
surface flow, subsurface flow, and E. coli concentration.
HSPF and LSTM are popular models (Bicknell et al., 1997;
Ahmadisharaf and Benham, 2020; Kratzert et al., 2019).
Both models have been used for hydrological and water qual-
ity simulations (Peterson et al., 2020; Isikdogan et al., 2017;
Ahmed et al., 2014). In the HSPF, the simulation of surface
and subsurface flow and of E. coli concentration was car-
ried out in three steps: (1) building the model, (2) conduct-
ing sensitivity analysis based on Latin hypercube–one factor

at a time (LH-OAT), and (3) calibrating the model using the
Newton algorithm (Nash, 1984). The schematic of the LSTM
simulation is shown in Fig. 2. The first step in building this
model was data preparation (Fig. 2a). LSTM then simulated
surface and subsurface flow with weather data (Fig. 2b). Fi-
nally, we estimated the E. coli concentration at 6 min inter-
vals using rainfall, bacteria source, land-use change, and sur-
face and subsurface flow (Fig. 2c). The fecal matter from the
E. coli sources was assumed to be evenly distributed in the
catchment. The monthly E. coli source data are presented in
Fig. S1b. The time-series data of the E. coli source were used
as input for the E. coli simulation.

2.2.1 HSPF

The HPSF model is a process-driven model that simulates
processes at the catchment scale (Bicknell et al., 1997). It has
been extensively used to model the fate and transport of E.
coli in catchments (Ahmadisharaf and Benham, 2020; Chin
et al., 2009) and to develop total maximum daily loads of E.
coli at various locations (Mishra et al., 2018; Yagow et al.,
1998). The original software was written in the FORTRAN
programming language. The Hydrological Simulation Pro-
gram Python (HSP2) was recently developed based on the
Python programming language (van Rossum, 2007). HSP2
is a platform-independent software that extends the function-
ality of HSPF by allowing the use of dynamic variables and
easier management of input and output files (Heaphy et al.,
2015). The HSPF simulates the hydrological regimes by dis-
cretizing the catchment into pervious and impervious hydro-
logical response units (HRUs). Evapotranspiration, surface
retention, surface infiltration, interflow, baseflow, and deep
percolation are simulated at pervious HRUs, whereas sur-
face retention and surface flow are simulated at impervious
HRUs (Bicknell et al., 1997). The simulation of in-stream E.
coli concentration in HSPF is based on a first-order kinetics
approach, considering the decay rate (Fonseca et al., 2014).
Detailed descriptions of hydrological and E. coli simulations
can be found in Bicknell et al. (1997). For this study, we con-
verted the original FORTRAN code of the E. coli module of
HSPF into the Python programming language. This allowed
us to incorporate more efficient use of input data, such as the
annual change in land use and the monthly bacterial source.

In our study, HRUs were divided into four groups based
on land use: “Forest”, “Fallow”, “Teak”, and “Annual” crops.
Among land uses, we did not consider any imperviousness in
Forest and Fallow. We considered 2 % and 1 % impervious-
ness for the Teak and Annual crop land uses (Patin et al.,
2018). We selected 13 and 4 parameters for each land use
for the sensitivity analysis of hydrological and E. coli sim-
ulations, respectively (Tables 1 and S1). The total number
of parameters for hydrological and E. coli simulation were
52 and 18, respectively. In model calibration, we selected the
25 most sensitive parameters of the hydrological simulation
and all parameters of the E. coli simulation. Sensitivity anal-
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Figure 2. Structure of the LSTM model. Environmental data are used to predict surface flow and subsurface flow. Simulated flows along
with bacteria source, land-use information, and rainfall are used to simulate E. coli concentration. The “n” represents the length of input data
used by LSTM.

ysis and model calibration were conducted based on the LH-
OAT and the Newton algorithm, respectively. A detailed ex-
planation of the LH-OAT and the Newton algorithm can be
found in the Supplement (Sect. S4).

2.2.2 LSTM

In the data preparation step (Fig. 2a), our data were converted
to the 6 min frequency. This was carried out by interpolating
the hourly weather data. Rainfall data were already available
at 6 min for 2011 and 2012, while for 2013 to 2018 they were
available at 1 min frequency and were aggregated into a 6 min
time series. For E. coli concentration, the values nearest to a
6 min step were used as representative of that time step. We
then built the LSTM model to simulate surface and subsur-
face flow using the validated model structure (Abbas et al.,
2020) (Fig. 2b). It uses historical data of rainfall, solar ra-
diation, air temperature, and potential evapotranspiration to
simulate surface and subsurface flow. To simulate the output
at a time step “t”, LSTM uses the data of previous “n” time
steps as inputs (Chollet, 2017). The inputs from previous “n”
time steps are used by LSTM to predict the output at the next
time step “(t + 1)”. These time steps are called “lookback”
steps (Chollet, 2017). The simulated surface and subsurface
flows from the LSTM were applied to simulate the E. coli
concentration (Fig. 2c). We adopted a bacterial source and

land-use information as an input for the LSTM. The prepro-
cessing of the data before feeding the neural network can
have a significant impact on the performance (Banhatti and
Deka, 2016). Therefore, we compared the performance of
the model by transforming the E. coli concentration using
the min–max transformation and the logarithmic transforma-
tion. The min–max transformation results in data between 0
and 1, while logarithmic transformation transforms the data
on a logarithmic scale. To investigate the impact of land-use
change on in-stream E. coli concentrations, we conducted E.
coli simulations in two scenarios. In scenario 1, we used the
land-use change and E. coli source information separately. In
scenario 2, the number of input features was reduced by mul-
tiplying the E. coli source by land-use change. In this way,
we calculated the E. coli source per area for each land use
and used this as input instead of using land use and E. coli
information as separate input features.

LSTM is a special recurrent neural network designed to
extract temporal features from sequence data (Hochreiter and
Schmidhuber, 1997). An LSTM cell is the basic building
block of the LSTM (Fig. S2). It consists of three “gates” and
two “states”. The gates are “forget”, “update”, and “output”,
which decide what information to forget, allow in, and allow
out from the LSTM “memory”, respectively. The states act as
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Table 1. Optimal values and range of HSPF parameters for surface and subsurface flows and E. coli concentration. Bold parameters were
optimized during the flow calibration process. All parameters related to E. coli were optimized during model calibration.

Parameters Land use

Forest Teak Fallow Annual Lower Upper
Crop Limit Limit

Surface and INFILT 0.31 0.39 0.39 0.36 0.001 0.5
subsurface INFILD 2.0 1.94 1.95 1.55 1.0 3.0
flow INTFW 2.60 7.01 7.01 5.64 1.0 10.0

UZSN 1.36 1.47 0.84 1.24 0.05 2.0
LZSN 8.88 9.43 4.18 8.66 2.0 10.0
AGWETP 0.02 0.007 0.02 0.06 0.0 0.2
NSUR 0.18 0.39 0.15 0.43 0.05 0.5
BASETP 0.05 0.09 0.095 0.003 0.0 0.2
DEEPFR 0.28 0.16 0.21 0.20 0.0 0.5

E. coli SQOLIM MF 4.99 1.35 2.04 0.53 0.5 10
concentration WSQOP 9.12 9.31 8.87 9.38 0.1 10.0

IOQC 5367 8337 8380 8756 1000 10 000
AOQC 8672 7474 5465 8776 1000 10 000
FSTDEC 3.04 0.1 10.0
THFST 1.92 1.01 2.0

a memory or information carrier across time. The equations
describing the functions of gates and states are as follows:

C<t>c = tanh
(
Wc[h

<t−1>,x<t>] + bc

)
, (1)

0f = σ(Wf [c
<t−1>x<t>] + bf ), (2)

0o = σ(Wo[c
<t−1>x<t>] + bo), (3)

0u = σ(Wu[c
<t−1>x<t>] + bu), (4)

C<t> = 0u ∗C
<t>
c + 0f ∗ C

<t−1>, (5)
h<t> = 0o ∗ tanh C<t>. (6)

The symbol ∗ in the above equations represents element-
wise multiplication. The behavior of each gate is controlled
by the weights (W ) and biases (b) associated with them.
Gate output is further modified by a nonlinear function (σ ).
At each time step (t), the prospective cell state (C<t>

c ) is
calculated based on the output from the previous time step(
h<t−1>) and the input from the current time step (x<t>)

(Eq. 1). The notation Wc[h
<t−1>x<t>] represents point-

wise multiplication of new inputs and previous hidden state
with the weight matrix Wc and then adds their output. This
prospective cell state (C<t>c ), along with the output from the
“forget” and “update” gates, decides the current cell state
(c<t>) (Eq. 5). The current cell state and output gate control
the output values from LSTM (h<t>) forming the so-called
hidden state (Eq. 6). The hyperbolic tangent (tanh) is another
nonlinearity used in LSTM for the calculation of the cell state
(Eq. 1) and the output state (Eq. 6). Equations (1)–(6) are
used to calculate the LSTM output, which is then compared

with observed values to calculate the error. This study used
the mean square error (MSE) as the error metric.

We used the TensorFlow software v1.15 for building the
LSTM model (Abadi et al., 2016). We used an Intel® Core™
i7-9700 processor with a graphics card of NVIDIA GeForce
RTX 2080 with 12 GB of dedicated GPU memory, along
with 64 GB of random-access memory for simulating sur-
face, subsurface, and E. coli.

2.2.3 Hyperparameters of LSTM

The structure and performance of the LSTM were controlled
by hyperparameters, including the dropout rate, the number
of LSTM units, learning rate, lookback steps, and activation
functions for both LSTM and the fully connected layer (Ta-
ble 2). Dropout is a regularization technique that switches
off a certain number of nodes in the LSTM (Goodfellow et
al., 2016). This simple technique helps break the brittle coad-
aptation of weights, which hinders generalization to unseen
data. This way, dropout prevents overfitting (Srivastava et al.,
2014). In the case of overfitting, the model performs better on
calibration data, but its performance deteriorates on new un-
seen data. The number of LSTM units directly corresponds
to the learning capacity of LSTM, but it also accounts for
more memory and computation. This number determines the
size of the weight matrix of an LSTM. The learning rate de-
fines the change in the weights of the neural network during
calibration (Goodfellow et al., 2016). A higher number of
lookback steps allows LSTM to capture long-term patterns
at the cost of an increase in memory consumption and com-
putation. The activation function determines the nonlinearity
in the model.
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Table 2. Hyperparameters of LSTM for surface flow, subsurface flow, and E. coli concentration simulation.

Parameter Surface and subsurface flow E. coli

Activation function (LSTM layer) Rectified linear unit (ReLU) Rectified linear unit (ReLU)

Activation function (dense layer) Rectified linear unit (ReLU) Rectified linear unit (ReLU)

Batch size 128 16

Learning rate 1× 10−5 1× 10−6

lookback steps 5 h 5 h

Dropout 0.3 0.3

Hidden units 64 100

Input data Rainfall, solar radiation, air tempera-
ture, potential evapotranspiration

Rainfall, surface flow, subsurface flow,
land use, bacteria source

Calibration epochs 500 7000

Training samples 490 000 182

Test samples 210 000 73

2.3 Performance statistics

Evaluations to assess the performance of the HSPF and
LSTM were conducted using MSE, Nash–Sutcliffe effi-
ciency (NSE), and percent bias (PBIAS) (Nash and Sutcliffe,
1970; Gupta et al., 1999). NSE is useful for interpreting the
model performance by generating a dimensionless value as
the performance index (Lin et al., 2017). The PBIAS mea-
sures the average tendency of the simulated data to be over-
estimated or underestimated than observed values (Moriasi et
al., 2015). The MSE, NSE, and PBIAS were calculated using
the following equations:

MSE=

[∑m
i=1(oi −pi)

2]
m

, (7)

NSE= 1−
∑
(oi −pi)

2∑
(oi − o)2

, (8)

PBIAS= 1−
∑m
i=1 (oi −pi)∑m

i=1 oi
, (9)

where pi is the simulated data, oi is the observed data, and
m is the number of points in the data.

3 Results and discussion

3.1 Land-use change and E. coli source

The land-use change from 2011 to 2018 is shown in Fig. S1a.
The area of Fallow land use increased from 2011 to 2016,
whereas Annual crop area decreased. Teak tree plantations
were expanded until 2013 and were retained. Forest land
use accounted for about 10 % of the study area from 2011

Figure 3. Performance of the HSPF model with different objec-
tive functions (e.g., M-surface, N-surface, M-subsurface, and N-
subsurface). The color indicates the value of MSE and NSE. M-
surface is the objective function based on MSE and surface flow,
N-surface is the objective function based on NSE and surface flow,
M-subsurface is the objective function based on MSE and subsur-
face flow, and N-subsurface is the objective function based on NSE
and subsurface flow.

to 2018. In general, the land-use change was dynamic from
2011 to 2013, whereas its variation diminished from 2016
to 2018. Previous studies have demonstrated that the expan-
sion of Teak trees might increase the surface flow (Ribolzi
et al., 2017; Song et al., 2020). Higher runoff at the soil sur-
face may cause a higher inflow of E. coli with surface flow.
The monthly E. coli source in the catchment decreased from
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2×1015 in 2011 to 3×1014 in 2018 (Fig. S1b). This decrease
in the E. coli source is caused by the decrease in manpower
needed in Teak tree plantations and in Fallow plots compared
to the Annual crop (Fig. S1a) (Boithias et al., 2021b).

3.2 Sensitivity analysis and optimization result

The sensitivity results for the flow simulation are shown
in Fig. S3, and the most sensitive parameters are listed in
Table S2. The interflow and infiltration-related parameters
were the most sensitive parameters for surface and subsur-
face flows. Manning’s “n” value (NSUR) for Teak and Fal-
low land uses was among the 10 most sensitive parameters.
Kim et al. (2017) suggested that Manning’s coefficient value
is the most sensitive parameter in the hydrological simula-
tion of tropical headwater catchments, such as the Houay
Pano catchment in the northern Lao PDR. The groundwa-
ter recession rate (AGWRC) and soil infiltration capacity
(INFILD) were sensitive to subsurface flow. In Annual crop
land use, infiltration capacity (INFILT) and upper zone stor-
age (UZSN) were the most sensitive parameters. Abbas et
al. (2020) demonstrated that INFILT is the most sensitive pa-
rameter for subsurface flow in tropical subcatchments.

The sensitivity analysis results for E. coli are shown in
Fig. S4 and Table S3. The parameters related to the transport
of E. coli on the land surface (e.g., WSQOP, SQOLIM_MF)
were more sensitive than other parameters. IOQC and AOQC
were the least sensitive parameters. These parameters are re-
lated to E. coli transport in interflow and baseflow (Bicknell
et al., 1997). This implies that the in-stream E. coli con-
centration at the study site is mainly driven by surface flow
(Boithias et al., 2021b). A previous study also demonstrated
that 89 % of in-stream E. coli concentrations were driven
by surface flow (Boithias et al., 2021b). Figure 3 shows the
model performance dependent on different objective func-
tions. We found that the model performance was better when
the NSE was selected as the objective function. The NSE of
the surface and subsurface flow was positive by optimizing
with NSE. However, the NSE value for surface flow was neg-
ative when the objective function was MSE during the opti-
mization. Negative NSE indicated an “unsatisfactory” per-
formance range (Moriasi et al., 2015).

3.3 Flow simulation

The simulated surface and subsurface flows using the HSPF
are plotted in Fig. 4. We found that the simulated subsurface
flow was underestimated compared to the observations. Al-
though surface flow from the HSPF followed the trend and
peaks of observations, this model yielded a negative NSE
value, indicating that the model simulation was unacceptable
(Moriasi et al., 2015) (Table 3). The NSE values for subsur-
face flow from HSPF were 0.49 and 0.59 for calibration and
validation, respectively. Hence, the HSPF model was better
at simulating subsurface flow than surface flow. In particular,

Figure 4. Hydrological simulation from HSPF and LSTM: (a) sim-
ulated and observed surface flow from HSPF, (b) simulated and ob-
served subsurface flow from HSPF, (c) simulated and observed sur-
face flow from LSTM, and (d) simulated and observed subsurface
flow from LSTM.

the simulated surface flow was underestimated compared to
the observations. The average values of INFILT and UZSN
were 0.36 and 1.22, respectively, which were larger than
those reported in previous studies (Lee et al., 2020). INIFILT
controls the overall division of available moisture into the
surface and subsurface (Bicknell et al., 1997). The parameter
UZSN influences the evapotranspiration process (Bicknell et
al., 1997). This underestimation of surface flow using HSPF
is consistent with a previous study (Kim et al., 2017). We
also investigated the impact of underestimation and overesti-
mation of the flow by plotting flow duration curves (Fig. S5).
Although both flows can capture the peak flow, the simulated
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Table 3. Performance metrics of HSPF and the LSTM model for surface and subsurface flow.

Model Flow type Scenario MSE (m3 s−1) NSE PBIAS

HSPF Surface flow Calibration 6.4× 10−4
−0.02 −59

Validation 4.7× 10−5
−0.7 −28

Subsurface flow Calibration 2.7× 10−4 0.49 −51
Validation 5× 10−4 0.59 −22

LSTM Surface flow Calibration 1.4× 10−4 0.56 −48
Validation 1.9× 10−4 0.51 −63

Subsurface flow Calibration 5.4× 10−3 0.69 −42
Validation 5.9× 10−3 0.64 −46

subsurface flow was still underestimated compared to the ob-
served subsurface flow.

The simulated surface and subsurface flows using the
LSTM model are plotted in Fig. 4. The NSE values for
the calibration period were 0.56 and 0.69 for surface and
subsurface flow, respectively. The corresponding validation
NSE values of the surface and subsurface flows were 0.51
and 0.64, respectively. These results indicate that the LSTM
had a satisfactory performance for both the calibration and
validation periods according to the criteria of Moriasi et
al. (2015). LSTM overcame the problem of the HSPF model
underestimating subsurface flow. In addition, the peak sur-
face flows from the LSTM were similar to observations. The
observed and simulated flows in storm events are presented
in Figs. S6–S11. The simulated surface flow by HSPF fol-
lowed the rainfall events more closely as compared to that
of LSTM. The peaks in surface flow in Fig. S8 are com-
pletely missed by LSTM but captured by the HSPF model.
We also noted that LSTM can follow the observed trends
in surface and subsurface flow more closely than the HSPF
(Figs. S6, S9, S10). The falling limb from the predicted sub-
surface flow of LSTM is gentle and follows the observed pat-
tern (Figs. S9–S11). This leads to increased NSE values for
both surface flow as well as for subsurface flow. The hyper-
parameters of the LSTM are described in Table 2. The recti-
fied linear unit (ReLU) was chosen as the activation function
for the LSTM output. Because the simulated E. coli should
be positive, we chose ReLU, which cannot produce negative
values from the model (Nair and Hinton, 2010). The optimal
batch size and LSTM units were 128 and 64, respectively.
The optimal value of the lookback steps was 50, which is
equal to 5 h of input data.

We analyzed the model performance for surface and sub-
surface flows during storm events (Fig. 5). The events were
selected in which the peak flow exceeded 0.2 m3 s−1. The
performance of LSTM is considerably better than that of
HSPF for most storm events. In surface flow, the aver-
age MSE of LSTM and HSPF was 1.1× 10−4 and 6.1×
10−4 (m3 s−1), respectively. The NSE values from LSTM
varied from 0.2 to 0.6, whereas those of HSPF ranged

Table 4. Performance metrics of HSPF and LSTM for E. coli con-
centration simulation.

Model Scenario MSE (MPN NSE PBIAS
100 mL−1)

HSPF Calibration 1.4× 108
−0.29 −58

Validation 1.9× 108
−3.01 73.01

LSTM Calibration 7.1× 106 0.39 −1.49
Validation 3.0× 107 0.35 62.72

from −1.0 to 0.4. We found that the NSE values from the
HSPF vary considerably depending on storm events. On
11 June 2015, the NSE value of HSPF was as high as 0.4,
whereas for some other dates it was below 0. Although the
subsurface flow of the HSPF provided better model perfor-
mance than surface flow simulation, this model still pre-
sented an unacceptable result, with a negative NSE value.

3.4 E. coli simulation

Figure 6 shows the temporal distribution of E. coli concentra-
tion using HSPF and LSTM. The E. coli concentration from
HSPF was overestimated. The performance matrices of the
HSPF were also worse than those of the LSTM (Table 4).
In particular, the HSPF simulation presented a PBIAS value
of 73, indicating an overestimation of E. coli concentration
(Moriasi et al., 2015). Ackerman and Weisman (2014) re-
ported that the E. coli from HPSF was overestimated com-
pared to observation. The overestimation of simulated E. coli
at tropical sites has also been observed by Kim et al. (2017).
E. coli simulation from LSTM is satisfactory in both cali-
bration and validation periods according to the criteria set
by Moriasi et al. (2015). In contrast, the HSPF result can
be regarded as “unsatisfactory” in both the calibration and
validation periods. These results implied that LSTM could
generate acceptable performances and had good agreement
between the observed and simulated E. coli.
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Figure 5. Comparison of the hydrological simulation during storm events: (a) MSE value of the surface flow, (b) MSE value of the subsurface
flow, (c) NSE value of the surface flow, and (d) NSE value of the subsurface flow.

The simulation results during the storm events using both
the HSPF and LSTM models are shown in Figs. 7 and S6–
S11. Figure 8 shows two storm events from the validation
data during July and August 2017, whereas the other fig-
ures show the storm events from the calibration data. In gen-
eral, the simulated E. coli by HPSF and LSTM were over-
estimated and underestimated, respectively. This difference
might be caused by the fact that E. coli from HSPF is more
responsive to surface flow, whereas E. coli from LSTM is
more influenced by subsurface flow (Ackerman and Weis-
man, 2014). The sensitivity analysis of HSPF also demon-
strated that the influence of interflow and baseflow on E. coli
is weaker than that of surface flow because the parameters
IOQC and AOQC are the least sensitive parameters for E.
coli simulation. Both parameters affect the E. coli concen-
tration in interflow and baseflow (Bicknell et al., 1997). The
simulated E. coli of LSTM rose sharply and dropped slowly,
similarly to the observations, whereas that of the HSPF de-
creased steeply (Figs. S6–S11). Although both models sim-
ulated the peak time of the E. coli correctly, the HSPF was
limited in its ability to simulate the slope of the falling limb.
This performance difference between models was caused by
the extent of the influence from hydrological variables (e.g.,

rainfall, surface flow, and subsurface flow) on model output.
LSTM was effective in reflecting the response of the output
to hydrologic variables (Kratzert et al., 2019).

We observed that both HSPF and LSTM simulated peaks
even when the observed data did show corresponding peaks
(Figs. S8 and S11). The peaks predicted in Fig. S8 are solely
from HSPF, while the peak event in Fig. S11 is predicted
by both HSPF and LSTM models. This shows the efficacy
of both calibrated models. We could conclude from Fig. S11
that the lack of an observed peak is more likely because of
missing observation. However, a similar conclusion cannot
be drawn for all the predicted E. coli peaks in Fig. S8 because
of contradicting results of LSTM and HSPF.

The performance metrics for the LSTM and HSPF mod-
els during storm events are shown in Fig. 8. In general, we
observed better LSTM performance than HSPF in terms of
NSE and MSE values. The HSPF model performed better
than the LSTM for only two storm events: on 15 June 2014
and 11 June 2015. For the remaining storm events, the NSE
values from LSTM are higher than those of the HSPF – an
NSE range from 0.20 to 0.65. Similarly, for MSE values, the
LSTM was superior to the HSPF for all storm events except
for the storm events on 15 June 2014 and 11 June 2015.
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Figure 6. E. coli simulation from LSTM and HSPF: (a) measured rainfall, (b) observed surface and subsurface flow, (c) simulated and
observed E. coli concentration using HSPF, and (d) simulated and observed E. coli concentration using LSTM.

We observed the impact of logarithmic and min–max
transformations on the model performance (Fig. 9). The re-
sults of the logarithmic transformation were closer to the
observations than the min–max transformation by showing
an NSE of 0.57. A negative PBIAS value was obtained in
logarithmic transformation. This indicated that the simulated
E. coli from logarithmic transformation was underestimated,
whereas the result of the min–max transformation was over-
estimated. This behavior can be attributed to the ability of
min–max scaling to be more sensitive to outliers (Chuang
et al., 2010). As a result, if a better accuracy during storm
events is required, the target variable can be transformed
on a logarithmic scale prior to calibration. This is because
log transformation can reduce the effect of outliers (Singh
and Kingsbury, 2017). It has been reported that log transfor-
mation can improve the performance of data-driven models
when the data contain outliers (Zheng and Casari, 2018).

3.5 E. coli response to land-use change

We investigated the impact of land-use change and bacte-
rial sources on the in-stream E. coli concentration simula-
tion (Fig. 10). In scenario 1, we used land-use change time-
series information (Fig. S1a) and bacterial source informa-

tion (Fig. S1b). In scenario 2, we divided the bacterial source
by the fraction of each land use (Fig. S2c). In scenario 1,
we observed a larger variation in E. coli concentration from
2014 to 2018 (Fig. 10a), whereas in scenario 2, the variation
in E. coli was smaller than that in scenario 1 (Fig. 10b). This
variation in E. coli was due to land-use change in scenario
1. In particular, E. coli in 2016 was less than in other years
because the Annual crop land use decreased. On the other
hand, the variation in E. coli was not observed in scenario
2 from 2015 to 2017. Neither scenario showed a significant
response from 2011 to 2014. During these years, the rise in
Fallow land use was complemented by a decrease in Annual
crop land use.

3.6 Limitations and future research

Transport of soil particles by surface flow and suspended sed-
iments within the stream plays a crucial role in the fate and
transport of E. coli (Thupaki et al., 2013). Several studies
have emphasized the importance of particle size (Cho et al.,
2010), adsorption to soil and sediment particles (Palmateer et
al., 1993), and resuspension of E. coli (Kim et al., 2017) with
streambed sediments for modeling the fate and transport of E.
coli at the catchment scale. In this study, we considered nei-
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Figure 7. E. coli concentration simulated by HSPF and LSTM during 15–22 July (a) and 1–5 August 2017 (b). Both storm events were
affiliated in the validation period.

Figure 8. Comparison of the E. coli simulation during storm events: (a) MSE values and (b) NSE values.

ther sediment transport nor the attachment/detachment of E.
coli on/from soil particles and suspended sediments. Several
studies have been conducted on the monitoring and model-
ing of E. coli without considering sediment transport (Ah-
madisharaf and Benham, 2020; Mishra et al., 2018). How-

ever, the need for its inclusion has been indicated elsewhere
(Pandey and Soupir, 2013). To model sediment transport, ad-
ditional data on suspended sediment concentration are re-
quired to build both the HSPF and deep-learning-based mod-
els. Therefore, this modeling can be further improved by col-
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Figure 9. Comparison of E. coli concentration simulation with the transformation method: panels (a) and (c) indicate the E. coli simulation
using min–max transformation and logarithmic transformation, respectively. Panels (b) and (d) indicate the scatter plot of E. coli using
min–max transformation and logarithmic transformation, respectively.

Figure 10. Simulated E. coli concentration with changes in E. coli sources with land-use change scenarios. Scenario 1 used land-use change
and bacterial source information. Scenario 2 used the bacterial source by the fraction of each land use.
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lecting sediment-related data and modeling sediment trans-
port along with E. coli concentration.

The deep-learning-based approach can yield high model
performance, but it has the limitation in terms of explainabil-
ity and interpretability (Molnar, 2020). The neural networks
are generally considered black boxes, and the question of in-
terpreting them is still an open research problem (Mitchell,
2021; Tiddi, 2020). Several methods have been proposed
to interpret the behavior of neural networks (Molnar et al.,
2020). Explaining the output of neural networks can enhance
the confidence of decision makers (Lipton, 2018). Therefore,
we propose future research involving deep-learning models
will benefit if the questions of interpretability and explain-
ability are considered along with a model’s prediction per-
formance.

Deep-learning models are based upon the independent and
identically distributed (IID) assumption, which means that
the validation data are expected to have the same distribu-
tion as that of the training data (Kawaguchi et al., 2017).
However, this is not a realistic assumption, and it is consid-
ered one of the challenges for researchers in machine learn-
ing (Bengio et al., 2021). Thus, in order to build regional or
global hydrological models, the deep-learning model should
be trained on catchment data from diverse catchments. Sev-
eral researchers have adopted this approach to build regional
models for streamflow prediction (Anderson and Radic,
2021; Kratzert et al., 2019; Xiang et al., 2021). However, a
similar approach for building regional water quality models
will be more challenging due to the scarcity of water quality
data. We hope that the lessons from this study can be used as
a guideline to train neural networks on regional water quality
data.

4 Conclusions

In this study, we simulated the transport of bacteria in a head-
water catchment of the northern Lao PDR at 6 min time steps.
The main findings of this study are summarized as follows.

– Both the LSTM and HSPF models can accommo-
date land-use change and bacteria-source variation with
time.

– The performance of the surface and subsurface flow
simulation of LSTM was superior for both the calibra-
tion and validation steps when compared with the HSPF.
The LSTM provided accurate surface and subsurface
flow results by showing NSE values of 0.51 and 0.59,
respectively, whereas the HSPF showed −0.7 and 0.55
of NSE.

– Our LSTM model showed better performance compared
to HSPF for E. coli simulation. The NSE values of the
HSPF and LSTM were −3.01 and 0.35, respectively.
We found that the LSTM model can respond to changes
in land use.

This study shows that deep-learning-based models are an ef-
ficient alternative to process-based models to simulate E. coli
in a given catchment. Because LSTM can generate reason-
able E. coli simulations, it could be applied to provide ef-
fective strategies for thwarting diseases that wreak havoc on
human health. Therefore, a deep-learning approach can be
useful in developing better water sustainability and manage-
ment.
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