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Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical
feedback implications for global climate. Stable isotopes (δ18O, δ2H, d-excess) are
valuable tracers for constraining water cycle and climate processes through space and
time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived
understanding of the hydrologic changes occurring today, in the deep (geologic) past,
and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope
Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19
stations across key tundra, subarctic, maritime, and continental climate zones. Here,
we present a first assessment of rainfall samples collected in summer 2018 (n = 281)
and combine new isotope and meteorological data with sea ice observations, reanalysis
data, and model simulations. Data collectively establish a summer Arctic Meteoric Water
Line where δ2H = 7.6·δ18O–1.8 (r2 = 0.96, p < 0.01). Mean amount-weighted δ18O,
δ2H, and d-excess values were −12.3, −93.5, and 4.9h, respectively, with the lowest
summer mean δ18O value observed in northwest Greenland (−19.9h) and the highest
in Iceland (−7.3h). Southern Alaska recorded the lowest mean d-excess (−8.2%)
and northern Russia the highest (9.9h). We identify a range of δ18O-temperature
coefficients from 0.31h/◦C (Alaska) to 0.93h/◦C (Russia). The steepest regression
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slopes (>0.75h/◦C) were observed at continental sites, while statistically significant
temperature relations were generally absent at coastal stations. Model outputs indicate
that 68% of the summer precipitating air masses were transported into the Arctic
from mid-latitudes and were characterized by relatively high δ18O values. Yet 32% of
precipitation events, characterized by lower δ18O and high d-excess values, derived
from northerly air masses transported from the Arctic Ocean and/or its marginal seas,
highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving
these processes across broader spatial-temporal scales is an ongoing research priority,
and will be key to quantifying the past, present, and future feedbacks of an amplified
Arctic water cycle on the global climate system.

Keywords: Arctic, precipitation, sea ice, stable isotopes, atmospheric circulation, water cycle

INTRODUCTION

Over the past two decades Arctic surface air temperature
(SAT) has increased by +1.7◦C relative to the long-term mean
(1981–2010) (Overland et al., 2019). This rapid warming
has occurred at twice the global mean rate (i.e., Arctic
amplification), and coincides with pronounced changes in
the Arctic hydrologic cycle including marine and terrestrial
ice loss, increased atmospheric humidity, shifting ocean
circulation regimes, and changes in the magnitude and
frequency of extreme weather events (Stroeve and Notz,
2018; Huang et al., 2019; Kapsch et al., 2019; Smith and
Sheridan, 2020; Bailey et al., 2021). Understanding and
tracing these complex interactions in the coupled ocean-
atmosphere-cryosphere system is key to resolving pan-Arctic
moisture budgets and feedbacks into the global climate system
over the coming decades (Vihma et al., 2016), particularly
considering the forecast ice-free Arctic Ocean by summer 2050
(SIMIP Community, 2020).

Stable isotopes (18O/16O and 2H/1H) and the secondary
parameter deuterium (d)-excess are valuable hydrological tracers
(Galewsky et al., 2016; Bowen et al., 2019). Six decades
after the pioneering work of Dansgaard (1964) and facilitated
by the Global Network of Isotopes in Precipitation (GNIP:
IAEA/WMO, 2019) and regional sampling efforts such as the
U.S. Network for Isotopes in Precipitation (USNIP: Welker, 2000,
2012), the research community has established and applied a
deep understanding of stable isotope geochemistry to constrain
complex environmental processes through space and time
(Rozanski et al., 1992; Galewsky et al., 2016; Bowen et al., 2019).
For example, existing Arctic studies have used localized water
isotope measurements to: understand dynamic processes related
to atmospheric humidity, wind, and sea surface temperatures
(SST) (Klein and Welker, 2016; Bonne et al., 2019); to explore
how shifts in the stratospheric polar vortex and transient cyclones
transport moisture from the Arctic to North America (Klein
et al., 2015; Puntsag et al., 2016); to partition hydro- and
biogeochemical fluxes and regimes in high latitude freshwater
systems (Bhatia et al., 2011; Fransson et al., 2020; Juhls et al.,
2020); and to quantify how these processes manifest in water
isotopologues past and present (Steen-Larsen et al., 2011; Bailey
et al., 2014; Klein et al., 2016; Biskaborn et al., 2019; Kostrova

et al., 2019). Whereas traditional applications have focused on
the temperature-dependency of stable isotope fractionation in
precipitation (Dansgaard, 1964), these contemporary studies
highlight the multitude of natural processes influencing stable
isotope geochemistry across variable spatial domains. Hence, our
ability to fully utilize stable isotope data across the Arctic is
dependent on a contemporary, dense observational network of
accurate event-based δ18O/δ2H measurements. Yet, of the 78
GNIP stations located in the Arctic (north of 60◦N), just seven
(9%) are active in 2020 and all comprise monthly composited
data, thus limiting our ability to quantify and apply local- to
regionally resolved climate-isotope relations across the Arctic at
the event scale.

To address this knowledge gap and provide a community-
driven data infrastructure and resource, the Pan-Arctic
Precipitation Isotope Network (PAPIN) was established in
2018 and today comprises 28 sampling stations across the Arctic
spanning key tundra, subarctic, maritime, and continental
climate zones (Figure 1). Here, we present a first assessment
of precipitation isotope data from rainfall events collected in
summer 2018 when 19 sites were operational. These novel data
represent a new empirical network for monitoring hydrological
changes across the northern high latitudes, and provide valuable
baseline information for: (1) quantifying the spatial-temporal
variability in mean δ18O, δ2H, and d-excess values across the
Arctic; (2) constraining the meteorological and geographical
controls on δ18O, δ2H, and d-excess values across contrasting
climate zones of the Arctic, simultaneously; (3) assessing the
dynamic drivers influencing moisture transport processes in
the Arctic; and (4) a new empirical framework for interpreting
modern and paleo- water isotope data in context of pan-Arctic
environmental processes and change.

MATERIALS AND METHODS

Precipitation Collection and Isotope
Analysis
Precipitation samples were collected at 19 research stations
across the Arctic between 1 June and 31 August 2018 (i.e.,
“summer”) (Figure 1 and Supplementary Table 1). The network
of stations spans seven countries and a latitudinal range from
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FIGURE 1 | Pan-Arctic Precipitation Isotope Network (PAPIN) research stations (solid circles) participating in sample collection during summer 2018 and categorized
by Arctic sector: North American (orange), Atlantic (blue), and Eurasian (red). Open circles indicate new participating stations from 2020. The dashed circle indicates
the 66◦ N latitude band encompassing the Arctic Circle.

57◦N in subarctic Russia to 79◦N in the High Arctic Svalbard
archipelago. To focus our analyses, stations are categorized
into three Arctic sectors: North American (United States and
Canadian stations), Atlantic (Greenland, Iceland, and Svalbard),
and Eurasian (Finland and Russia; Figure 1 and Table 1).

A total of 281 rainfall event samples were collected during
summer 2018 using a standard established protocol (Bailey et al.,
2019). At each station, a precipitation gauge was installed in
an open location between 0.5 and 1.5 m above ground level
(to assure no contamination from windblown snow). Samples
were retrieved at the end of each rainfall event to minimize
evaporation, and in some instances an event lasted several days.
Samples were poured directly from the gauge into 50 ml screw-
cap vials and sealed before the gauge was dried and reinstalled.
For each event, the sampling date, time of day, SAT, and rainfall
amount were recorded manually or from the on-site automated
weather station (Supplementary Table 1). All Russian samples
(n = 20) were transported to the Laboratory of Biogeochemical
Cycles in Forest Ecosystems at the V.N. Sukachev Institute of
Forest SB RAS (St. Petersburg, Russia), and all remaining samples
(n = 261) were shipped to the Stable Isotope Laboratory at the
University of Oulu (Finland). Prior to analysis, all samples were
individually pipetted into 2 ml septa-capped glass vials and stored
refrigerated at 4◦C. The remaining precipitation samples were
archived frozen.

Stable isotope ratios (δ18O and δ2H) were measured using
a Picarro L2130-i isotope and gas concentration analyzer fitted
with an autosampler (A0325) and vaporizer unit (A0211). Both
laboratories followed the same analytical protocol, whereby each
sample was measured seven times and data from the first three
measurements were discarded to limit potential memory effects.
Samples were reanalyzed if the standard deviation exceeded
0.3h for δ18O and/or 3.0h for δ2H, or if the reference
standard used in the run differed from the known isotope
value by greater than ±0.2 or ±2.0h, respectively. Reference
standards were used within each analytical run to monitor for
and correct instrumental drift, and included: USGS-45 (δ18O:
−2.2h, δ2H: −10.3h) and USGS-46 (δ18O: −29.8h, δ2H:
−235.8h) distributed by the U.S. Geological Survey, and SPB-
2 (δ18O: −9.7h, δ2H: −74.1h), VSPB-2 (δ18O: −26.7h,
δ2H: −207.0h), and Vostok (δ18O: −52.2h, δ2H: −406.3h)
distributed by the Arctic and Antarctic Research Institute.
These standards span the full isotopic range of precipitation
measurements during Summer 2018. Based on within-run
replicate analyses of standard waters, mean analytical precision
was ±0.2h for δ18O and ±2.0h for δ2H. Reference standards
were used to normalize all data to the international Vienna
Standard Mean Ocean Water (VSMOW) isotopic scale, and
results are expressed as δ-values in parts per thousand difference
(per mil; h).
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TABLE 1 | Summary of PAPIN station details and summer 2018 meteorological and precipitation-weighted isotope data.

Sector Station Lat (◦) Lon (◦) Elevation (m asl) Precipitation (mm) Mean SAT (◦C) δ18O (h) δ2H (h) d-excess (h) N

Mean Range SD Mean Range SD Mean Range SD

North American Anchorage 61.07 −149.80 36.6 65.0 14.9 −11.8 −17.6 −9.2 2.4 −102.6 −139.2 −77.6 17.9 −8.2 −14.3 4.3 5.1 13

Toolik Lake 68.63 −149.59 719.0 108.7 6.9 −17.5 −28.5 −10.4 3.7 −138.2 −218.2 −92.6 26.4 1.8 −15.0 11.2 6.5 36

Cambridge Bay 69.12 −105.05 20.0 37.1 5.8 −19.8 −24.2 −14.6 3.2 −154.2 −189.4 −115.9 23.7 4.2 −4.6 7.0 3.6 7

Atlantic Thule 76.53 −68.70 79.0 33.5 3.0 −19.9 −29.3 −17.3 3.4 −157.3 −223.9 −132.8 25.4 1.9 −4.1 10.7 4.7 9

Nuuk 64.18 −51.68 50.0 154.2 3.5 −12.5 −20.2 −5.3 3.7 −94.8 −151.7 −41.1 27.0 5.2 −9.8 9.8 4.6 16

Disko 69.25 −53.57 20.0 145.8 6.9 −13.9 −18.3 −10.5 2.0 −103.8 −141.5 −82.0 14.8 7.4 1.7 12.8 3.3 16

Sudurnes 64.03 −22.70 3.0 754.4 12.0 −7.3 −10.5 −2.2 2.2 −51.9 −76.0 −15.9 17.2 6.5 −3.9 9.8 3.2 32

Ny-Ålesund 78.92 11.93 5.0 148.2 5.7 −9.9 −14.9 −4.2 3.0 −79.3 −123.4 −40.4 23.2 −0.1 −11.0 12.8 6.5 15

Eurasian Pallas 67.97 24.12 342.0 108.2 10.0 −10.9 −15.4 −5.1 3.0 −84.4 −119.0 −40.8 19.3 2.8 −31.0 11.3 9.5 22

Oulanka 66.37 29.32 222.0 28.3 12.3 −10.2 −15.2 −6.8 2.9 −74.7 −112.6 −46.7 22.0 6.9 1.7 14.3 3.7 13

Kevo 69.75 27.02 80.0 137.8 10.7 −11.2 −17.2 −4.2 2.9 −79.9 −130.3 −30.8 20.5 9.7 −6.6 13.5 5.5 22

Khanymey 63.72 75.95 71.0 25.8 12.6 −13.8 −16.0 −6.1 3.5 −101.4 −117.8 −52.5 23.6 9 −4.1 10.3 5.9 4

Arkhangelsk 64.55 40.56 1.0 65.8 13.1 −11.9 −13.9 −6.4 2.4 −85.5 −102.4 −48.0 17.3 9.7 3.6 11.4 2.6 5

Narian Mar 67.63 53.05 3.0 74.7 14.6 −10.2 −12.3 −7.3 1.5 −72.1 −90.4 −50.9 11.3 9.5 5.2 12.7 2.5 8

Mukhrino 60.89 68.70 30.0 32.0 20.9 −9.3 −12.7 −5.1 2.1 −67.1 −94.1 −38.8 15.8 7.3 1.9 11.1 3.2 8

Labytnangi 66.66 66.41 26.0 42.6 11.0 −12.7 −19.4 −6.8 3.5 −91.7 −141.8 −56.9 25.5 9.9 −3.3 16.3 5.0 23

Kajbasovo 57.23 84.18 65.0 23.1 14.8 −7.4 −9.5 −2.8 2.0 −59.5 −73.0 −44.1 10.3 −0.3 −28.7 9.3 10.1 12

Zotino 61.60 90.02 113.0 30.8 15.3 −11.9 −13.6 −9.3 1.4 −86.3 −95.9 −72.0 7.8 8.9 0.8 12.8 4.5 6

Tura 64.27 100.23 356.0 40.4 16.4 −11.6 −13.5 −5.4 2.7 −91.7 −102.0 −53.7 14.2 1.1 −28.8 7.7 11.4 14

N is the number of events collected at each site.
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The secondary parameter d-excess was calculated as:

d − ecxcess = δ2H − 8 · δ18O (1)

(Craig, 1961), and mean isotope values at each station were
converted to precipitation amount-weighted values using the
equation:

precipitation weighted δ =

∑n
i=1 Piδi∑n

i=1 Pi
(2)

where δ is either δ18O or δ2H, Pi and δi denote the amount (mm)
of precipitation per event and its measured isotope composition,
respectively, and n represents the number of precipitation events
at each station.

Simple linear regression models were used to quantify the
relationships between δ18O and local air temperatures, and
between δ18O and precipitation amounts. A threshold of p< 0.05
was considered for significant relationships.

Back-Trajectory and Geospatial Data
Analyses
To evaluate the influence of air mass transport history on
precipitation geochemistry we used the HYbrid Single-Particle
Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al.,
2015; Rolph et al., 2017). The model was coupled with NOAA’s
0.5◦ three-dimensional Global Data Assimilation (GDAS) dataset
(temperature, altitude, zonal and meridional horizontal wind
components, and surface pressure) to calculate air parcel back-
trajectories from each station. The GDAS reanalysis package was
selected for our analyses because (1) it integrates the shortest
possible time step (1 h) when calculating trajectories, thereby
minimizing any integration error, and (2) it offers highly resolved
pan-Arctic coverage, thereby enabling the model to assimilate
complex topographic features. Trajectories were initiated at a
starting height of 1,500 m above sea level (asl) and traced back
in time 120 h (5 days) (Kurita, 2011; Klein et al., 2015) to
encompass the typical time taken for an air mass to cross the
Arctic Ocean (Woods and Caballero, 2016; Ali and Pithan, 2020).
Additionally, the residence time for meteoric vapor (i.e., the time
between evaporation and precipitation) is 3–4 days in the eastern
Arctic Ocean region (Trenberth, 1998; Läderach and Sodemann,
2016). The atmospheric flow attenuation by surface friction was
diminished by choosing 1,500 m altitude as an initiation point
(Bailey et al., 2019). On-site meteorological data were used to
select the trajectory starting times to coincide with the end of
each precipitation event, and data were further used to classify
the prevailing air mass trajectory to each station. Back trajectory
errors are an estimated 15–30% of the trajectory length and relate
to how well the numerical fields estimate the true flow field in
space and time (Stein et al., 2015; Rolph et al., 2017).

For geospatial data analyses, mean monthly sea ice extent
and daily sea ice concentration grids (25 km2 resolution) were
obtained from the National Snow and Ice Data Center (NSIDC)
(NSIDC, 2019). A sea ice concentration threshold of 15% was
used to define mean sea ice extent. Daily mean sea level pressure
(SLP) and monthly mean 850 hPa geopotential heights (z850)
were obtained from the NCEP/NCAR reanalysis dataset (Kalnay

et al., 1996). Daily North Atlantic Oscillation (NAO) index data
were obtained from the National Centers for Environmental
Information (NOAA, 2019).

RESULTS AND DISCUSSION

Pan-Arctic Precipitation Isotopes
PAPIN observations from summer 2018 yield mean
precipitation-weighted δ18O, δ2H, and d-excess values of −12.3,
−93.5, and 4.9h, respectively (Table 1 and Supplementary
Data 1). Values ranged from −2.2 to −29.3h for δ18O, and
−15.9 to −223.9h for δ2H. d-excess values ranged between
−31.0 and 16.3h. Mean maximum δ18O values were observed
at Sudurnes in Iceland (−7.3h) and mean minimum values
in northwest Greenland at Thule (−19.9h). Conversely, mean
maximum d-excess values were observed at Labytnangi in
northern Russia (9.9h), and mean minimum at Anchorage,
Alaska (−8.2h) (Figure 2).

At the regional scale, δ18O values in the North American
sector ranged from −9.2 to −28.5h (mean, −16.4h). The
highest mean δ18O values were observed at Anchorage and lowest
at Cambridge Bay, and the contrary for d-excess (Figure 2).
At all three North American stations the lowest δ18O and δ2H
values were typically recorded in August. In the Eurasian sector,
the range of precipitation δ-values across all stations was quite
small (δ18O =±0.4h, δ2H =±9.2h), whereas d-excess exhibited
a larger range (±5.9h, Table 1) that suggests more variable
moisture source regions (Kurita et al., 2004; Kostrova et al.,
2020). Kajbasovo, the most southerly PAPIN station, recorded
the highest mean δ18O value (−7.4h) in this sector of the
Arctic, while the lowest mean δ18O was measured at Khanymey
(−13.8h) (Table 1 and Figure 2). Conversely, Kajbasovo
precipitation recorded the lowest mean d-excess (−0.3h) and
Labytnangi in northern Russia the highest d-excess (9.9h). In
the Atlantic sector, the highest mean δ18O values were recorded
in Iceland (−7.3h) and the lowest at Thule (−19.9h). Mean
d-excess values ranged from −0.1h in Ny-Ålesund to 7.4h at
Disko (Table 2).

Collectively, the data establish a summer Arctic meteoric
water line (AMWL) where:

δ2H = 7.6 · δ18O− 1.8 (3)

(r2 = 0.96, p < 0.01, n = 281; Figure 3). The AMWL slope
and intercept are slightly lower than the global meteoric water
line (GMWL) where δ2H = 8.0 · δ18O + 10.0 (Craig, 1961),
and this is somewhat expected considering the summer focus
of our study. On a regional scale, rainfall events in the Atlantic
sector plot closer to the GMWL compared to the North American
and Eurasian, which plot below (Figure 3). The low slope of
the Eurasian MWL (6.4) is primarily driven by precipitation
events at the three most easterly Russian stations: Kajbasovo
(4.1), Tura (4.6), and Zotino (5.2) (Supplementary Figure 1) and
may reflect non-equilibrium conditions associated with summer
rainfall (i.e., sub-cloud secondary evaporation and/or post-
condensation exchange) (Dansgaard, 1964)—a phenomenon
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FIGURE 2 | Amount-weighted summer 2018 mean precipitation (A) δ18O, (B) δ2H, and (C) d-excess.

previously observed in summer precipitation across Russia
(Kurita et al., 2004).

The spatial distribution of mean summer δ18O across
the Arctic broadly conforms to theoretical and observed
understanding: (1) decreasing δ18O with increasing latitude
(Dansgaard, 1964), and (2) decreasing δ18O with increasing

continentality (Rozanski et al., 1992; Figure 2). Yet the network
also reveals marked spatial variability and particularly among
values of d-excess (Figure 2). In general, the North American
(/Eurasian) sector in the western (/eastern) Arctic is characterized
by precipitation with lower (/higher) d-excess values (Figure 2).
More broadly, the Eurasian sector also encompasses a wider

TABLE 2 | Summer 2018 linear regression results between precipitation isotope and meteorological data.

Station δ18O vs. temperature δ18O vs. precipitation d-excess vs. temperature d-excess vs. precipitation

slope p-value r2 slope p-value r2 slope p-value r2 slope p-value r2

Anchorage 0.35 0.32 0.09 0.11 0.42 0.06 −0.14 0.86 0.01 −0.44 0.12 0.2

Toolik Lake 0.31 0.02 0.14 −0.05 0.81 0 −0.65 0.01 0.19 −0.34 0.38 0.02

Cambridge Bay −0.25 0.62 0.05 −0.53 0.07 0.5 0.14 0.8 0.01 0.45 0.21 0.29

Thule 0.51 0.58 0.04 −0.37 0.41 0.75 −1.15 0.37 0.1 −0.17 0.79 0.01

Disko 0.49 0.03 0.22 0.02 0.34 0.05 −0.46 0.25 0.07 0.01 0.76 0

Nuuk −0.13 0.64 0.02 −0.07 0.48 0.04 0.03 0.92 0 0.2 0.08 0.2

Sudurnes −0.04 0.54 0.01 −0.58 0.05 0.11 0.22 0.02 0.18 1.02 0.02 0.17

Ny-Ålesund 1.25 0.06 0.21 −0.05 0.53 0.03 −2.25 0.13 0.15 0.07 0.71 0.01

Pallas 0.12 0.42 0.03 −0.05 0.53 0.02 0.15 0.76 0 0.15 0.59 0.02

Oulanka 0.75 0.01 0.49 −0.17 0.69 0.01 −0.78 0.04 0.34 −0.12 0.82 0

Kevo 0.04 0.7 0.01 −0.14 0.14 0.11 0.28 0.14 0.1 0.48 0 0.35

Khanymey 0.92 0.08 0.85 −0.47 0.15 0.71 −1.61 0.3 0.94 0.41 0.55 0.2

Arkhangelsk 0.93 0.01 0.93 −0.24 0.05 0.76 −0.73 0.2 0.47 0.17 0.3 0.35

Narian Mar 0.17 0.4 0.12 −0.21 0.1 0.38 −0.35 0.29 0.19 0.31 0.13 0.34

Mukhrino 0.01 0.95 0 −0.41 0.86 0 0.17 0.56 0.06 −0.02 0.94 0

Labytnangi 0.58 0 0.62 −0.29 0.37 0.04 −0.35 0.12 0.11 0.98 0.03 0.21

Kajbasovo 0.26 0.23 0.14 −0.54 0.57 0.31 −1.14 0.3 0.11 3.13 0.02 0.42

Zotino −0.1 0.98 0 −0.21 0.93 0.55 −0.1 0.84 0.11 0.81 0.01 0.81

Tura 0.53 0 0.57 −0.55 0.04 0.31 −2 0.01 0.47 1.7 0.15 0.16

Significant relationships (p < 0.05) are presented in bold.
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FIGURE 3 | Relationship between event-based precipitation δ18O and δ2H
during summer 2018 across the Arctic and in individual sectors, compared to
the global meteoric water line (GMWL). Collectively the PAPIN data derive a
summer Arctic Meteoric Water Line (AMWL).

range of δ18O and d-excess values, yet this may partly reflect
the regional sampling bias that includes a higher number of
stations (and thus a wider data range) in the Eurasian sector
compared to the North American. Previous studies based on
GNIP monthly composite precipitation samples have identified a
latitude-δ18O relationship of around −0.60h/degree of latitude
in Europe and the United States, and up to −2.0h/degree of
latitude in Antarctica (Gat et al., 2001). Across the Arctic we find
an overall weak and insignificant relationship of−0.30h/degree
of latitude (r2 = 0.16, p < 0.12; Figure 4A), yet this is primarily
due to anomalously high δ18O values recorded at Ny-Ålesund—
the most northerly station in the network. Conversely, the North
American sector exhibits a latitude effect similar to the global
trend where 1δ18

≈ −0.66h/degree of latitude (r2 = 0.28,
p < 0.05; Figure 4A). In the Atlantic sector, there is also
a clear decreasing δ18O signal with increasing latitude from
the most southern site Nuuk, to Disko and Thule station in

northwest Greenland, where 1δ18
≈ −0.61h/degree of latitude

(r2 = 0.94, p < 0.05; Figure 2 and Table 1). However, the
overall latitude-δ18O relationship for the Atlantic sector is weaker
(1δ18

≈ −0.34h/degree of latitude, r2 = 0.15, p < 0.05) due
to the relatively high δ18O values recorded at Ny-Ålesund. In
Eurasia we find no evidence of a latitude effect in our summer
data (1δ18

≈ −0.05h/degree of latitude, r2 = 0.01, p < 0.68),
though this may reflect the relatively small latitudinal range
of sites across this region. Similarly, across all PAPIN summer
data there is no significant relationship between mean δ18O and
station elevation.

Meteorological Factors
Temperature and the isotopic composition of precipitation are
significantly correlated on global and seasonal scales (Craig, 1961;
Dansgaard, 1964). Previous studies using monthly composited
GNIP samples have identified a mean temperature-δ18O relation
of ∼0.60h/◦C in the mid- to high-latitudes (Rozanski et al.,
1992). Across the Arctic the δ18O-temperature regression ranges
from 0.31h/◦C (Toolik Lake) to 0.93h/◦C (Arkhangelsk)
(Table 2). Significant relationships were observed at six stations
where slopes were generally lower than the global mean, yet
collectively the data show a significant but weak positive
relation (r2 = 0.05, p < 0.05, n = 281; Figure 4B). The
steepest temperature-δ18O slope was observed at Arkhangelsk
in Russia (0.93h/◦C, r2 = 0.93) and resembles slopes reported
in Antarctica (Peel et al., 1988). However, Arkhangelsk was
also the second driest station during summer 2018 with only
five precipitation events recorded, and hence our ability to
fully constrain the temperature-δ18O relationship at this site
is limited. Significant positive relations were also observed
in Russia at Labytnangi (0.58h/◦C, r2 = 0.62) and Tura
(0.53h/◦C, r2 = 0.57), and are similar to a regional Siberian
slope of 0.50h/◦C that was proposed by Kostrova et al. (2020).
Toolik Lake in Alaska (0.31h/◦C) and Disko in Greenland
(0.49h/◦C) also exhibit significant positive temperature-δ18O

FIGURE 4 | Graphs show the linear trend (blue line) between precipitation event δ18O and (A) station latitude, and (B) local surface air temperature, during summer
2018. The vertical dashed lines in (A) depict the latitude for individual stations marked; A, Kajbasovo; B, Mukhrino; C, Anchorage; D, Zotino; E, Khanymey; F,
Sudurnes; G, Nuuk; H, Tura; I, Arkhangelsk; J, Oulanka; K, Labytnangi; L, Narian Mar; M, Pallas; N, Toolik Lake; O, Cambridge Bay; P, Disko; Q, Kevo; R, Thule;
S, Ny-Ålesund.
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FIGURE 5 | Maps indicate the prevailing trajectory (arrow) of all precipitating air masses sampled at PAPIN stations in summer 2018, based on 5-day HYSPLIT
back-trajectory output. Arrow colors reflect the corresponding mean precipitation δ18O (left) and d-excess (right) anomaly for the prevailing track direction, relative to
the stations summer mean isotope value. Contour lines depict mean 850 hPa geopotential heights (m) during summer 2018 from NCEP/NCAR (Kalnay et al., 1996),
with the corresponding high (H) and low (L) pressure centers. Monthly mean sea ice area (white shaded) and extent (colored lines) are shown for June (black), July
(pink), and August (green) 2018 (NSIDC, 2019).

relationships, albeit relatively weak, and these slopes are similar
to previously reported regional values for Alaska and Greenland
(Klein et al., 2016; Bailey et al., 2018; Akers et al., 2020). Across
all sites, the steepest temperature-δ18O slopes (between 0.93
and 0.75h/◦C) were observed at the continental stations—a
pattern also observed across the United States (Vachon et al.,
2010; Akers et al., 2017), Europe (Rozanski et al., 1982),
and Antarctica (Peel and Mulvaney, 1992). Conversely, aside
from Disko station, there are no significant temperature-δ18O
relationships at any of the coastal PAPIN stations (Table 2),
indicating that summer δ18O variability at the event-scale is not
readily explained by condensation temperature as the primary
driver of isotopic variability.

Precipitation varied markedly in the Arctic during summer
2018 and was characterized by severe drought across Eurasia and
wetter-than-average conditions in the Atlantic sector (Blunden
and Arndt, 2019). These contrasting regimes were due to the
spatial configuration of SLP anomalies: a deep low-pressure
system over the Atlantic sector that steered storms poleward
to Iceland and Svalbard, while a blocking high pressure system
anchored over Eurasia. This spatial pattern of SLP anomalies
was well-reflected in the NAO index that exhibited the highest
mean summer NAO value (+1.48 σ) since records began in 1950
(NOAA, 2019). Accordingly, of the events sampled, Sudurnes
in Iceland recorded the highest total precipitation (754 mm)
and Kajbasovo in Russia the lowest (23 mm) (Table 1). In total,
June was the driest month at all PAPIN stations and August the

wettest (Supplementary Data 1). At Toolik, Thule, Labytnangi,
and Khanymey this likely reflected the more extensive local sea
ice coverage in June (e.g., in the Chukchi and Kara Seas, Baffin
Bay) that may have limited atmospheric moisture availability
(Ala-aho et al., 2021; Bailey et al., 2021; Figure 5).

We identify significant negative relationships between
precipitation amount and δ18O at three PAPIN stations:
Arkhangelsk (−0.24h/mm, r2 = 0.76), Tura (−0.55h/mm,
r2 = 0.31), and Sudurnes (−0.58h/mm, r2 = 0.11; Table 2).
However, the strong negative relation observed at Arkhangelsk
is again constrained by the relatively small sample number.
Considering the very low MWL slope for this station and a mean
negative d-excess value of−0.04h, these findings further suggest
a strong influence of sub-cloud processes affecting isotopic
variability at this continental site (Kurita et al., 2004).

Summer Moisture Transport Regimes
In addition to local meteorological controls, recent work
has highlighted how precipitation isotope variability also
reflects synoptic-scale atmospheric circulation patterns that
drive changes in air mass trajectories with varying moisture
sources, transport, and rainout histories (Kurita, 2011; Welker,
2012; Bonne et al., 2014; Bailey et al., 2019, 2021; Kostrova
et al., 2020). To constrain these processes across the Arctic
we use our 5-day back-trajectories to identify the air mass
“source” (at 120 h) and transport history for each precipitation
event. Although the evaporative uptake points along individual
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trajectories are not additionally modeled, this method provides
key information on the broad vapor source regions and specific
transport pathways of precipitating air masses, and has been
widely applied in Arctic studies (Klein et al., 2015; Puntsag
et al., 2016; Kostrova et al., 2020). All individual back-trajectories
are presented in Supplementary Figures 2–6, and for clarity
only the prevailing trajectories at each site are presented in
Figure 5.

Summer 2018 trajectories span a wide latitudinal range
from 35 to 90◦N (Supplementary Figures 2–6). Model output
indicates that 72% of all trajectories had an oceanic origin
(at 120 h), while 28% a continental origin. In the North
American sector, precipitating air masses derived from the North
Pacific region (64.3%) or Arctic Ocean (35.7%) (Figure 5).
Conversely, prevailing westerlies dominated the atmospheric
transport regime in the Atlantic and Eurasian sectors (Figure 5).
Collectively, we identify three broad pan-Arctic summer
moisture transport regimes: into, within, and out of the Arctic
(broadly defined as the region north of 60◦N). Herein we describe
these regimes and utilize individual precipitation events as case
studies of the divergent mechanisms influencing summer pan-
Arctic isotope composition (Figure 6 and Table 3).

Into the Arctic
Our analyses reveal that 68% of the precipitating air masses
sampled in summer 2018 were transported into the Arctic from
mid-latitudes (as south as 35◦N) (Figure 5 and Supplementary
Figures 2–6). These findings support earlier studies suggesting
that the Arctic atmospheric moisture budget is dominated by the
meridional moisture flux from lower latitudes (Gimeno et al.,
2019 and references therein). In summer 2018 this poleward
transport regime was intensified in the Atlantic sector due
to deep Icelandic Low circulation that advected storms north
to Iceland and Svalbard, in association with the anomalous
NAO+ (Kopec et al., 2016; Figures 5, 6 and Table 1).
Rainfall associated with these trajectories have the highest δ18O
values, reflecting the meridional transport, entrainment, and
continuous isotopic exchange of relatively warm, moist, mid-
latitude vapor enriched in 18O (Figures 2, 5; Aggarwal et al.,
2005; Bailey et al., 2015). Characteristic examples include Ny-
Ålesund and Iceland where poleward tracks are associated with
positive precipitation δ18O anomalies (Figure 5). Conversely,
precipitation d-excess values from meridional flow patterns were
more variable (Figure 5). This phenomenon may partly reflect
divergent relative humidity (RH) conditions over the North
Atlantic (lower RH, higher d-excess) compared to the North
Pacific (higher RH, lower d-excess) (Supplementary Figure 7)
that drive variable surface evaporation and non-equilibrium
fractionation conditions (Pfahl and Sodemann, 2014).

Poleward transport patterns also dominated rainfall events in
the Eurasian sector and were typically characterized by positive
δ18O anomalies, particularly in the west due to the stronger
maritime Atlantic influence (Figure 5). For instance, in early
August 2018 the synoptic configuration drove south-westerly
air masses to Finland carrying enriched 18O moisture to
Oulanka (9 Aug) and subsequently Kevo (11 Aug) (Figure 6C).
We captured a gradual decrease (/increase) of 2.5h (/8.7h)

in precipitation δ18O (/d-excess) from Oulanka to Kevo
(∼390 km site-to-site distance), confirming that as moisture
was gradually removed from the air mass as it progressed north
and cooled, the δ18O (d-excess) of residual vapor decreased
(/increased) with decreasing water vapor content (Rozanski
et al., 1992; Table 3). We observe this poleward pattern to
dominate moisture transport to Finland during the summer,
with Oulanka precipitation exhibiting the highest mean δ18O
values followed by Pallas and Kevo, respectively, and the
contrary trend for d-excess (Figure 2 and Table 1). An identical
pattern was also observed in eastern Russia, with mean summer
d-excess (/δ18O) progressively increasing (/decreasing) with
increasing latitude between Kajbasovo and Zotino stations
due to prevailing southerly flow (Figure 5). In total, southerly
trajectories accounted for 73.7% of Eurasian transport regimes
in summer 2018. In Russia these trajectories do not pass
over any marine reservoirs (Supplementary Figures 3–6),
hence δ-values are representative of recycled continental
moisture (i.e., evaporation/evapotranspiration) rather than
oceanic (Kurita et al., 2004). In summer 2018, these processes
were likely augmented due to the relatively high SATs across
Russia (Table 1).

Meridional moisture transport patterns were also observed
in the North American sector, particularly at Anchorage where
all summer 2018 trajectories derived from the North Pacific
region due to the dominance of the North Pacific High
(Figure 6 and Supplementary Figure 2A). This prevailing
flow pattern was also previously identified by Bailey et al.
(2019), yet we find that summer mean Anchorage δ18O values
are typically lower than in the maritime Atlantic sector from
similar meridional flow patterns (e.g., at Sudurnes, Ny-Ålesund)
(Figure 5). These nuances likely reflect the topographic barriers
in coastal southern Alaska that induce an isotopic rain shadow
effect and depletion of 18O in moist air masses converging
in Anchorage. Meridional air masses sourced from the North
Pacific delivered lower rainfall δ18O values at Toolik compared
to Anchorage, reflecting rainout processes and isotopic depletion
over the Alaska and Brooks Mountain Ranges (Klein et al.,
2016). Yet we also observed complex cases where atmospheric
moisture was advected from the North Pacific across the Bering
Sea into Alaska, such as in early August 2018 (Figure 6).
Consecutive daily precipitation events were collected at Toolik
between 1 and 3 August, while precipitation was simultaneously
collected at Anchorage on 3 August and reflected the tail end
of this system (Figure 6A). The highest δ18O value at Toolik
was recorded on the first day of the event (−12.7h) yet is
analogous to Anchorage δ18O on the third day (−12.9h).
Considering Toolik’s higher latitude, we propose these relatively
high δ18O values reflect the supplemental injection of water
vapor from the Alaskan interior as the air mass transited
north, for instance due to evapotranspiration and/or evaporation
from terrestrial open water sources such as lakes, rivers, and
tundra wetlands (Klein et al., 2016). Precipitation δ18O (/d-
excess) values at Toolik gradually decreased (/increased) during
the subsequent 2 days in concert with a SAT decrease of
9.2◦C between 1 and 3 August (Table 3). Our model output
reveals that these trends reflect the gradual northerly shift of
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FIGURE 6 | Five-day (120 h) HYSPLIT back-trajectory case examples to (A) Alaska, (B) Greenland, and (C,D) Finland during August 2018. Trajectory colors
represent the δ18O value of the corresponding precipitation event. Black contour lines depict mean daily composited sea level pressure (mb) during the
corresponding interval from NCEP/NCAR reanalysis (Kalnay et al., 1996), with low- and high-pressure systems indicated by L and H, respectively. Shaded contours
depict daily mean sea ice concentration on the date of the last event on each map (NSIDC, 2019). Black circles indicate PAPIN sampling stations.

trajectories to Toolik, with precipitation on 3 August derived
from an air mass that passed over the Chukchi Sea where it
entrained ocean evaporate relatively depleted in 18O (Figure 6A).
Additionally, the anomalously high Toolik d-excess on 3 August
(8.1h) likely reflects the large-humidity gradients between the
Chukchi Sea surface and relatively dry atmosphere, leading to
strong non-equilibrium (kinetic) fractionation and an evaporate
characterized by relatively high d-excess and low δ18O that was

injected south out of the Arctic (Kurita, 2011; Klein et al., 2015;
Putman et al., 2017).

Out of the Arctic
The second most dominant atmospheric regime in summer 2018
encompassed northerly air mass transport from the Arctic toward
lower latitudes (32% of all trajectories). Previous studies have
suggested that the northerly moisture flux out of the Arctic is a
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TABLE 3 | Summary of precipitation event data presented in Figure 6.

Date δ18O (h) δ2H (h) d-excess (h) SAT (◦C)

Toolik Lake 01/08/2018 −12.7 −103.7 −2.1 12.8

02/08/2018 −14.1 −112.3 0.5 4.4

03/08/2018 −19.2 −145.6 8 3.6

Anchorage 03/08/2018 −12.9 −107.1 −3.9 13.9

Nuuk 03/08/2018 −16.0 −122.2 5.8 10.0

Disko 03/08/2018 −14.5 −106.6 9.4 8.1

Thule 03/08/2018 −21.1 −171.8 −3 4.5

Oulanka 09/08/2018 −7.4 −57.9 1.3 18.7

14/08/2018 −12.8 −93.9 8.5 8.9

Kevo 11/08/2018 −9.9 −68.9 10.3 12.4

13/08/2018 −13.9 −100.4 10.8 17.7

winter phenomenon typically associated with cold air outbreak
events (Puntsag et al., 2016; Nygård et al., 2020). Yet to the
contrary, our model output indicates the central Arctic Ocean,
as well as the Beaufort, Chukchi, East Siberian, Laptev, Barents,
Kara, and Lincoln Seas to be key regions over which northerly
trajectories passed and entrained moisture in summer 2018
(Supplementary Figure 2).

The Atlantic sector was associated with the highest frequency
of northerly trajectories (38.6%), followed by the North American
(35.7%) and Eurasian (26.3%). This pattern in the Atlantic
sector primarily reflected the strong NAO+ circulation regime
characterized by deep cyclonic activity (Figures 5, 6). Our
data indicate that precipitation associated with these north-
northwesterly air flows were characterized by anomalously
low δ18O and high d-excess values, such as at Thule in
northwest Greenland (Figure 2). A recent study also observed
a similar relation between the NAO and atmospheric water
vapor isotopes measured at Thule between 2017 and 2019,
whereby NAO+ circulation phases suppressed southerly flow
into Thule, leading to cooler SATs and lower δ-values and higher
d-excess (Akers et al., 2020). Additionally, approximately 61%
of Toolik trajectories started from central Arctic regions, with
precipitation characterized by anomalously low δ18O and high d-
excess (Figure 5), with the lowest measured δ18O value reaching
−28.5h (28 Aug) that derived from the central Arctic basin and
passed over the Chukchi Sea.

In the Eurasian sector ∼26.3% of summer trajectories derived
from the Arctic Ocean and Barents-Kara region. These tracks
were associated with precipitation characterized by considerably
higher mean summer δ18O values, between −7 and −14h,
compared to the North American sector (−15 to −20h;
Figure 2). The rate of surface warming and sea ice loss has
been the highest in this region of Arctic in recent decades (Lind
et al., 2018; Stroeve and Notz, 2018). This “Atlantification” of
the Barents-Kara region reflects the increased inflow of warmer
Atlantic water to the region (Faber et al., 2017; Årthun et al.,
2019) and is a potential source of the observed precipitation
δ18O variability in the east and western Arctic. For instance,
precipitation in the Eurasian sector from northerly air masses
are comparatively enriched in Atlantified 18O evaporate from
the Barents-Kara Seas, contrary to the more depleted North

American precipitation derived from the central Arctic basin
where sea ice concentration was higher (Figure 6). Labytnangi
in northern Russia is a characteristic example where northerly
Barents-derived trajectories were characterized by high δ18O and
low d-excess anomalies during summer 2018 (Figure 5).

A key driving mechanism of sea ice variability in the
Barents-Kara Region relates to summer cyclone activity, that in
turn can influence meteoric isotope composition (Klein et al.,
2015). This process was well-captured in Finland on 13 and
14 August 2018 at Kevo and Oulanka, respectively. While
southerly air flow prevailed during the preceding 2 days (Aug
9–11) (Figure 6C; section “Out of the Arctic”), a deepening
low-pressure system over the Kara Sea (993 hPa) subsequently
induced a rapid transition to northerly air flow in Finland on
13 August (Figure 6D). At Kevo and Oulanka these northerly
trajectories delivered precipitation from the Barents Sea that was
relatively enriched in 18O (−12.8h) compared to Chukchi Sea-
derived moisture to Toolik (−19.2h). Yet, precipitation isotope
composition was characterized by overall lower (/higher) δ18O
(/d-excess) compared to the southerly trajectory precipitation
at Kevo/Oulanka during the preceding days (Figure 6C and
Table 3). Additionally, although Oulanka is located ∼400 km
south of Kevo and the Barents air mass was subject to rainout
and isotopic depletion during transit south; precipitation δ18O
values on 13 and 14 August were remarkably similar among the
two sites (±1.1h, Table 3), likely reflecting the 8.8◦C warmer
SATs at Kevo during the event (Table 3) and highlighting the
multitude of environmental factors influencing precipitation
isotope variability at any individual site.

Within the Arctic
Our model output identifies a third atmospheric transport
regime that broadly reflects precipitation events distinguished
by back-trajectory pathways that remain within the Arctic
(Supplementary Figures 2–6), although we acknowledge overlap
with the flow regime described previously (section “Out of
the Arctic”). Characteristic examples include at Cambridge
Bay, where ∼62% of precipitation derived from zonal westerly
trajectories originating over the Chukchi Sea and Alaska that
induced anomalously low (/high) mean δ18O (/d-excess) values
relative to the summer mean (Figure 5 and Supplementary
Figure 2C). Additionally, summer precipitation in western
Greenland was primarily charged by moisture sourced from
Baffin Bay and the Canadian Archipelago that followed WNW
trajectories, and was characterized by anomalously low δ18O
and high d-excess relatively to the summer mean (Figure 5
and Supplementary Figures 2, 3). In summer 2018, these flow
regimes to Greenland were amplified due to the prevailing
NAO+ pattern and enhanced cyclonic circulation over the
western Arctic. For example, simultaneous precipitation events
sampled on 3 August at all Greenland sites were delivered by
trajectories centered around a low-pressure system anchored
over the Canadian Archipelago (Figure 6B). In accordance
with our observed pan-Arctic δ18O-latitude/temperature trends,
precipitation at Thule—the most northerly Greenland station—
was characterized by the lowest δ18O (−21.1h; Table 3).
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Precipitation δ18O at Disko was +1.5h higher than at Nuuk
despite the former’s higher latitude (Figure 6) and may instead
reflect the higher topography surrounding Nuuk that induced
isotopic depletion of 18O within the precipitating air mass.

CONCLUSION AND FUTURE OUTLOOK

PAPIN is the first coordinated event-based sampling network
used to quantify the spatial-temporal patterns of precipitation
isotopes, simultaneously, across the Arctic. While this initial
assessment of summer 2018 data indicates the myriad processes
influencing precipitation isotope geochemistry at any one site,
we also observe key emergent trends that provide new insight
into the controls on pan-Arctic isotope variability, as well
as an empirical framework for interpreting summer paleo-
precipitation isotope data in climate archives (Biskaborn et al.,
2019; Kostrova et al., 2019). Our modeled back-trajectories depict
two dominant, yet divergent, summer moisture transport regimes
operating in the Arctic today: (1) a prevailing poleward moisture
flux characterized by precipitation with relatively high δ18O, and
(2) moist northerly Arctic incursions characterized by relatively
lower δ18O and higher d-excess. Notably, whereas previous
studies have suggested that a northerly moisture flux out of the
Arctic is primarily a winter phenomenon typically associated with
cold air outbreak events (Puntsag et al., 2016; Nygård et al.,
2020); to the contrary, our analyses indicate that the central
Arctic Ocean, as well as the Beaufort, Chukchi, East Siberian,
Laptev, Barents, Kara, and Lincoln Seas are key regions over
which northerly air masses entrained moisture in summer 2018.

Considering the forecast strengthening and poleward shift
of the mid-latitude storm track (Bintanja et al., 2020), our
data suggest this increased flux of warm, mid-latitude vapor
may contribute an overall isotopic enriching trend in Arctic
precipitation δ18O values in the future. Yet the data also implicate
that with continued Arctic sea ice decline, this isotope trend may
be offset by new emergent oceanic moisture sources (Klein and
Welker, 2016; Sime et al., 2019; Bailey et al., 2021), potentially
leading to precipitation and continental freshwaters that are
increasingly higher (lower) in d-excess (δ-values) relative to the
long-term mean, as per trends observed in northeast North
America in recent decades (Puntsag et al., 2016). Resolving
these processes at sub-/diurnal, monthly, seasonal, and annual
timescales using a spatially dense monitoring network is an
ongoing research priority, and will be key to quantifying past,
present, and future feedbacks of an amplified Arctic water cycle
on the global climate system.
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