N

N

Al4Water v1.0: an open-source python package for
modeling hydrological time series using data-driven
methods
Ather Abbas, Laurie Boithias, Yakov Pachepsky, Kyunghyun Kim, Jong Ahn
Chun, Kyung Hwa Cho

» To cite this version:

Ather Abbas, Laurie Boithias, Yakov Pachepsky, Kyunghyun Kim, Jong Ahn Chun, et al.. Al4Water
v1.0: an open-source python package for modeling hydrological time series using data-driven meth-
ods. Geoscientific Model Development, 2022, 15, pp.3021-3039. 10.5194/gmd-15-3021-2022 . insu-
03661482

HAL Id: insu-03661482
https://insu.hal.science/insu-03661482

Submitted on 7 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://insu.hal.science/insu-03661482
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Geosci. Model Dev., 15, 3021-3039, 2022
https://doi.org/10.5194/gmd-15-3021-2022

© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Al4Water v1.0: an open-source python package for modeling
hydrological time series using data-driven methods

Ather Abbas!, Laurie Boithias?, Yakov Pachepsky’, Kyunghyun Kim*, Jong Ahn Chun’, and Kyung Hwa Cho'

'Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
2Géosciences Environnement Toulouse, Université de Toulouse, CN RS, IRD, UPS, 31400 Toulouse, France

3Environmental Microbial and Food Safety Laboratory, USDA-ARS, Beltsville, MD, USA

4Watershed and Total Load Management Research Division, National Institute of Environmental Research,

Hwangyeong-ro 42, Seogu, Incheon 22689, Republic of Korea

S5Climate Research Department, APEC Climate Center, Busan, Republic of Korea

Correspondence: Jong Ahn Chun (jachun@apcc21.org) and Kyung Hwa Cho (khcho@unist.ac.kr)

Received: 30 April 2021 — Discussion started: 17 June 2021

Revised: 24 January 2022 — Accepted: 11 February 2022 — Published: 8 April 2022

Abstract. Machine learning has shown great promise for
simulating hydrological phenomena. However, the devel-
opment of machine-learning-based hydrological models re-
quires advanced skills from diverse fields, such as program-
ming and hydrological modeling. Additionally, data pre-
processing and post-processing when training and testing
machine learning models are a time-intensive process. In
this study, we developed a python-based framework that
simplifies the process of building and training machine-
learning-based hydrological models and automates the pro-
cess of pre-processing hydrological data and post-processing
model results. Pre-processing utilities assist in incorporat-
ing domain knowledge of hydrology in the machine learn-
ing model, such as the distribution of weather data into hy-
drologic response units (HRUs) based on different HRU dis-
cretization definitions. The post-processing utilities help in
interpreting the model’s results from a hydrological point of
view. This framework will help increase the application of
machine-learning-based modeling approaches in hydrologi-
cal sciences.

1 Introduction

Theory-driven modeling approaches have been traditionally
applied to simulate hydrological processes (Remesan and
Mathew, 2016). However, with advancements in computa-
tion power and data availability, there has been a surge in

the application of data-driven approaches to model hydro-
logical processes (Lange and Sippel, 2020). Data-driven ap-
proaches that involve time series input data can be used to
build several types of hydrological models. Various machine
learning approaches have been successfully applied to pre-
dict surface water quality (K. Chen et al., 2020), estimate
stream flow (Shortridge et al., 2016), simulate surface and
sub-surface flow (Abbas et al., 2020), forecast evapotranspi-
ration (Ferreira and Da Cunha, 2020), and model ground-
water flow and transport (Chakraborty et al., 2020). Deep
learning, which includes the application of large neural net-
works, has shown promising results for hydrological model-
ing (Moshe et al., 2020). A typical workflow of data-driven
modeling comprises data collection, pre-processing, model
selection, training of the algorithm with optimized hyperpa-
rameters, and deployment.

Recent advances in the field of data science have resulted
in the growth of Python packages which assist in accom-
plishing machine learning and deep learning tasks. Accord-
ing to the latest survey on Kaggle, an online platform for
machine learning competitions, the most popular libraries
among data scientists are TensorFlow (Abadi et al., 2016),
PyTorch (Paszke et al., 2019), scikit-learn (Pedregosa et al.,
2011), and XGBoost (Chen and Guestrin, 2016). These li-
braries have accelerated research in the field of machine
learning owing to their simple user interface and robust im-
plementation of difficult algorithms such as back propaga-
tion (Chollet, 2018). However, feature engineering, data pre-
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processing, and post-processing of results are still the most
time-consuming tasks in building and testing machine learn-
ing models (Cheng et al., 2019). Feature engineering in-
cludes modifying existing input data and generating new fea-
tures based on existing data such that it improves learning
using data-driven algorithms. This also incorporates back-
ground knowledge and context of the model in order to assist
the algorithm in learning the underlying function. Infusion of
background knowledge, such as basin architecture (Moshe et
al., 2020) and land use (Abbas et al., 2020), in data-driven
hydrological modeling leverages the algorithm and enhances
its performance (Karpatne et al., 2017). The pre-processing
step involves modifying the available data in a form suitable
for feeding into the learning algorithm. Nourani et al. (2020)
showed how different smoothing and de-noising functions
affect the performance of artificial neural networks for fore-
casting evaporation. The post-processing step includes the
calculation of performance metrics, visualization of results,
and interpretation.

Recently, several frameworks have been developed to ac-
celerate the process of building and testing machine learning
models, such as Ludwig (Molino et al., 2019) and MLflow
(Zaharia et al., 2018). However, these frameworks are too
general and do not deal with the intricacies of time series and
hydrological modeling. Several studies have looked at pre-
processing, building, training, and post-processing of ma-
chine learning models with time series data. These include li-
braries such as sktime (Loning et al., 2019), seglearn (Burns
and Whyne, 2018), tslearn (Tavenard et al., 2020), tsfresh
(Christ et al., 2018), and pyts (Faouzi and Janati, 2020).
Some libraries have also been developed with a focus on
hydrological issues. Pastas (Collenteur et al., 2019) is a li-
brary dedicated to analyzing groundwater time series data.
The neuralhydrology library (Kratzert et al., 2019) allows
the application of several long short-term memory (LSTM)-
based models for rainfall-runoff modeling. However, most
of these libraries focus either on the processing of data and
feature extraction from time series or on building and train-
ing the model. A framework that combines pre-processing,
feature extraction, building and training, post-processing of
model results, and interpretation of data-driven models, par-
ticularly for solving hydrological problems, is missing.

For the advancement of machine learning in the field of
hydrology, experimentation with readily available and fully
documented benchmark datasets is required (Leufen et al.,
2021). The collection of hydrological data is usually expen-
sive and time-consuming. Several hydrological datasets are
publicly available on different online platforms (Coxon et
al., 2020). Although these datasets are documented and orga-
nized, they are not usually in a form that can be directly used
in machine learning algorithms. Therefore, there is a need for
a uniform and simplified interface to access and feed hydro-
logical data to machine learning algorithms.

In this study, we developed a new framework for fast
and rapid experimentation to develop data-driven hydrolog-

Geosci. Model Dev., 15, 3021-3039, 2022

A. Abbas et al.: Al4Water v1.0

ical models. In this study, we present Al4Water, a Python-
based framework that assists in machine-learning- and deep-
learning-based modeling with a focus on hydrology. The
specific objectives of Al4Water were to provide a uniform
and simplified interface for (1) accessing and streaming of
freely available datasets to data-driven algorithms, (2) pre-
processing hydrological data, (3) automatic feature extrac-
tion from hydrological data, (4) automatic model selection
and its hyperparameter optimization, and (5) post-processing
results for visualization and interpretation of models.

2  Workflow

The core of Al4Water is the “Model” class, which imple-
ments data preparation, building, and training of the model,
and makes predictions from the model (Fig. 1). However,
Al4Water includes several utilities for data pre-processing,
feature generation, post-processing and visualization of re-
sults, hyperparameter optimization, and model comparison.
All of these utilities can be used with Al4Water, as well
as independently. The “Datasets” utility helps in fetching
and pre-processing several open-source datasets to be used
in machine learning models. The “SpatialProcessing” util-
ity allows the distribution of weather data among hydro-
logic response units (HRUs) using different HRU discretiza-
tion schemes. The “et” sub-module helps calculate potential
evapotranspiration using various theoretical methods. The
“SeqMetrics” sub-module calculates several time series per-
formance metrics for regression and classification problems.
“HyperOpt” assists in the implementation of various hyper-
parameter optimization algorithms. The “Experiment” class
can be used to compare different machine learning models.
Finally, Al4Water has an “Interpret” utility that can be used
to interpret the model’s results.

The Model class of Al4Water has two implementations
and can have three back ends. The two implementations are
“model-subclassing” and “functional.” The back ends are ei-
ther TensorFlow, PyTorch, or neither of them. The back ends,
together with the implementations, determine the attributes
that the Model class will inherit upon its creation. In the
model-subclassing implementation, the Model class inherits
from either the TensorFlow’s Model class or the nn.module
of PyTorch. This implementation allows all the attributes
from the corresponding back end to be also available from
Al4Water’s Model class. For example, the “count_params”
attribute of TensorFlow’s Model class can also be obtained
from the Al4Water’s Model class. In functional implemen-
tation, the Model class of Al4Water does not inherit from
the parent modules of TensorFlow/PyTorch. In this case, the
built TensorFlow/PyTorch model object is displayed to the
user as a “_model” attribute of the Model class. This is sim-
ilar to TensorFlow and PyTorch libraries, both of which also
have model-subclassing and functional implementations. For
models other than TensorFlow or PyTorch, the Model class

https://doi.org/10.5194/gmd-15-3021-2022
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Figure 1. Conceptual framework of hydrological modeling using Al4Water. Al4Water consists of modules for pre-processing and post-
processing. The names of the modules are written in italics. The pre-processing steps involve collecting data, conducting exploratory data
analysis on data, and generating new features from the data. The core of the model consists of building, training, and predicting. After this
step, the predicted steps are used for visualization, performance comparison, and model interpretation.

does not have any back end. In these cases, the machine
learning models are built using libraries such as scikit-learn,
XGBoost, CatBoost, or LightGBM. The built model object is
exposed to the user as “_Model” attribute of the Model class.

The success of machine learning is proportional to testing
various hypotheses by training and testing machine learning
models and analyzing the results (Zaharia et al., 2018). This
can quickly lead to a large number of output files. Al4Water
handles this by automatically saving all the model-related
files starting from model creation to pre-processing until the
post-processing of each output in the respective folders. A
detailed output directory structure is shown in Fig. 2. Upon
every model run, a directory is created whose name is the
date and time when the model is created. This naming con-
vention allows for a simple and distinct directory structure
for every new model. This parent directory is called “model
path” and contains several sub-folders and files which are
related to model configuration, model training, and the post-
processing of results (Fig. 2a). The results for each target
variable are saved in a separate folder. Additionally, the files
related to the model’s optimized parameters and interpreta-
tions are saved in a separate directory. The saved configura-
tion file along with the weights can later be used to reproduce
the model’s results. In the case of hyperparameter optimiza-
tion, a directory named “hpo path” is created, which con-
sists of several “model paths”. Each of these “model paths”
correspond to each iteration of the optimization algorithm
(Fig. 2b). In the case of experiments, when different models
are compared, a separate “hpo path” is created for each of
the models being compared. Figure 2c shows the output file
structure for an experiment when different machine learn-
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ing algorithms are compared. This ordered arrangement of
results facilitates the fast comparison and analysis of the re-
sults.

3 Sub-modules and code structure

The code architecture of Al4Water, that is, its sub-
submodules, their available classes, and third-party libraries,
are illustrated in Fig. 3. Al4Water comprises 11 sub-
modules, among which 10 are task-based, and one is a
general-purpose module named “utils”. These sub-modules
can be divided into two categories. The sub-modules on the
left-hand side of Fig. 3 are designed for model building, hy-
perparameter optimization, and model comparison, whereas
those on the right-hand side perform pre-processing and post-
processing. Each sub-module exposes one or more classes
to the user. For example, the HyperOpt sub-module presents
the “Real”, “Categorical”, “Integer”, and HyperOpt classes.
The third-party libraries required for each sub-module are
annotated inside them. There are five “generic” third-party
libraries that are required in all sub-modules (lower part
of Fig. 3). The “et” and utils sub-modules do not require
specific third-party libraries and depend only on generic li-
braries. The arrows in Fig. 3 indicate interaction between
the sub-modules. The origin of the arrow denotes the caller
sub-module, whereas their end points denote the sub-module
that is being called. The Model class interacts with the pre-
processing and post-processing modules using its functions,
the names of which are shown in green in Fig. 3. For ex-
ample, the “DataHandler” class in the pre-processing sub-
module is responsible for data preparation. The Model class

Geosci. Model Dev., 15, 3021-3039, 2022
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Figure 2. Output directory structure of Al4Water. A “model path”
(a) is created upon creation of a new model. An “hpo path” (b)
is created during hyperparameter optimization. An “exp path” (c)
is created when several models are compared during an experiment.
The “hpo path” consists of several “model paths”, and an “exp path”
consists of several “hpo paths”.

interacts with DataHandler using “training_data”, “valida-
tion_data”, and “test_data” methods. These methods are re-
sponsible for fetching training, validation, and test data from
the DataHandler class, respectively.

The large number of utilities in AIl4Water increases the
number of underlying libraries. The Model class is built
on top of the scikit-learn, CatBoost, XGBoost, and Light-
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GBM libraries to build classical machine learning models.
These models have been used in several hydrological stud-
ies (Huang et al., 2019; Ni et al., 2020; Shahhosseini et al.,
2021). To build deep learning models using neural networks,
Al4Water uses popular deep learning platforms, such as Ten-
sorFlow (Abadi et al., 2016) and PyTorch. A complete list
of the dependencies for Al4Water is presented in Table 1. It
is divided into two parts. The first half shows the minimal
requirements for running the basic utilities, which include
building and training the model and making predictions from
it. The second part of Table 1 comprises an exhaustive list
of dependencies. These dependencies are required to utilize
all functionalities of Al4Water. However, these utilities are
optional and do not hamper the basic package functionality.
Moreover, the modular structure of AI4Water allows the user
to install libraries corresponding to a particular sub-module
while ignoring the others which are not required. For exam-
ple, in order to use the HyperOpt class for hyperparameter
optimization, libraries related to post-processing are not re-
quired. Table 1 also presents the exact version of the un-
derlying libraries which were used to test the 1.0 version
of Al4Water. Al4Water handles the version conflicts of the
underlying libraries, thereby making it version-independent.
This implies that the user can use any version greater than
the version number provided in Table 1.

3.1 Datasets

The first step in building a data-driven hydrological model
is to obtain the data. There have been several efforts by
the hydrological science community to build hydrological
datasets that are publicly available. For example, for rainfall-
runoff modeling, there exists the CAMELS dataset for sev-
eral countries (Addor et al., 2017). The CAMELS dataset
consists of daily weather data and streamflow records for
multiple catchments. Another large rainfall-runoff dataset
is LamaH (Klingler et al., 2021), which consists of obser-
vations from 859 catchments in Europe. While the number
of such open-source datasets is large, the use of these data
sources is slow as each database is available on different plat-
forms and implements a different application programming
interface (API). A core function of AI4Water is to provide a
simple and homogeneous API to feed these datasets directly
into machine learning models. Figure 4 shows the usage of
the CAMELS_AUS dataset, in which the user needs to define
only the name of the dataset and the input and output vari-
ables. This simple interface will help exploit the use of these
datasets. Furthermore, benchmarking open-source datasets
will likely accelerate the progress of machine learning in hy-
drological science. A brief summary of the rainfall-runoff
datasets available in Al4Water is given in Table 2.

https://doi.org/10.5194/gmd-15-3021-2022
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Figure 3. Framework architecture, sub-modules, classes, and third-party libraries used by Al4Water. Each box represents a sub-module.

The names of classes in each sub-module are written along with the

corresponding box. The third-party libraries upon which the sub-module

depends are written inside the box. Empty boxes show that these sub-modules do not depend on a specific third-party library. The five generic
libraries written at the bottom are used in all sub-modules. Arrows represent the caller sub-module and the sub-module being called. The
sub-modules on the right-hand side are related to pre-processing and post-processing. The Model class interacts with pre-processing and
post-processing sub-modules using its methods which are written in the green color.

3.2 Exploratory data analysis

A crucial step in data-driven hydrological modeling work-
flow is the visualization of the data. This step assists in under-
standing the data, finding outliers, selecting relevant features,
and guiding the machine-learning-based modeling process.
Al4Water provides an “eda” sub-module which can be em-
ployed to conduct a comprehensive analysis of input and out-
put data. For example, the correlation plots illustrate the in-
put variables which are more correlated with each other. Heat
maps show the amount and position of the missing values.
Histogram and box—whisker plots depict the distributions of
both the input and output variables. This sub-module can also
perform a principal component analysis of the input data and
plot the principal components. This helps in understanding

https://doi.org/10.5194/gmd-15-3021-2022

the dynamics of the input data and filtering the relevant fea-
tures.

3.3 Pre-processing
3.3.1 Transformations

Data transformation includes standardizing and transform-
ing the data onto a different scale. Transforming the data
can significantly affect the performance of a data-driven
model. The scikit-learn library provides several transforma-
tion functions such as “minmax”, “standardscaler”, “robust”,
and “quantile”. Additionally, several decomposition meth-
ods such as empirical mode transformation (EMD), ensem-
ble EMD (EEMD), wavelet transform (Sang, 2013), and fast

Fourier transform (Sang et al., 2009) were found to improve

Geosci. Model Dev., 15, 3021-3039, 2022
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Table 1. Complete list of third-party Python libraries which are used by Al4Water. The first half the table enlists those libraries which are
required, while the second half consists of those libraries which are optional.

Library name Version  Usage
numpy 1.19.2 Array processing
pandas 1.2.4 Array processing
matplotlib 342 Visualization
h5py 2.10 Storage
plotly 5.0 Extended visualization
tensorflow 1.15,2.1 Building layers of neural networks
scikit-learn 0.24.2 Building classical machine learning models
xgboost 1.4.2 Implementing XGBoost-based algorithms
catboost 0.26 Implementing CatBoost-based algorithms
lightgbm 3.2.1 Implementing light-gradient-boost-based algorithms
PySpark 3.1.2 Building classical machine learning models
tpot 0.11.7 Optimizing machine learning pipeline
imageio 29.0 Spatial processing of shape files
shapely 1.7.1 Spatial processing of shape files
pyshp 0.45 Spatial processing of shape files
scikit-optimize  0.8.1 Hyperparameter optimization using Bayesian
optuna 2.8.0 Hyperparameter optimization
hyperopt 0.2.5 Hyperparameter optimization
shap 0.39.0 Model-agnostic interpretation
lime 0.2.0.1 Model interpretation
seaborn 0.11.1 Visualization
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et al., 2021) and XGBoost (Chen and Guestrin, 2016) for rainfall-runoff modeling using CAMELS_AUS data, respectively.
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Table 2. Name and attributes of open-source datasets included in Al4Water.

Dataset Number of  Number of Number of  Location

name catchments variables  observations

CAMELS_AUS 222 23 21184  Australia

CAMELS_BR 593 17 14245  Brazil

CAMELS_CL 516 12 38374 Chile

CAMELS_GB 671 10 16436  Britain

CAMELS_US 877 33 12784  United States of America

LamaH 859 5 12775  Europe
the performance of hydrological models. Al4Water provides 0.0 02 Train % Reference
a uniform interface for all of these transformation methods 27000 | ¥ logn
under the sub-module “Transformations”. The user can ap- 24000 | : 'r‘(’)itgt
ply any of the available transformations to any of the input 5 210001 A zscore
features by using a simplified and uniform interface. The pre- B L minmax
dicted features are transformed back after the prediction. Fig- 3 18000 quantile
ure 5 shows a comparison of different transformations using g 15000
a Taylor plot (Taylor, 2001). These results were generated by 45 120001 o
modeling in-stream E. coli concentrations in a small Laotian § 9000 4 9
catchment (Boithias et al., 2021) using LSTM (Hochreiter " 6000 °
and Schmidhuber, 1997). The input data were precipitation, 3000 | 8
relative humidity, air temperature, wind speed, and solar ra- = ‘ =
diation. 3000 9000 15000 21000 27000°

Standard deviation
3.3.2 Imputation 00 o> Test
9000 1

Missing values are often found in real-world datasets. How- 8000 1
ever, missing data cannot be fed to machine learning al- _5 7000 {
gorithms. Al4Water provides various solutions for handling § 6000
missing data that can be used using the “impute” method. 3 50004
These include using either the (1) pandas library (Mckinney, g 40001
2011), (2) scikit-learn library-based methods, or (3) dedi- o o
cated algorithms to fill the missing input data. The pandas g 30001 5
library allows the handling of missing values either by fill- 2000,
ing the missing values using the “fillna” method or inter- 10004

polating the missing values using the “interpolate” method.
Both these methods can be seamlessly used with the impute
method in Al4Water. Several imputation methods for fill-
ing missing values are available in the scikit-learn library.
These methods include “KNNImputer”, “Iterativelmputer”,
and “SimpleImputer”. Al4Water provides a uniform inter-
face for all imputation methods without hindering their func-
tionality.

Several other libraries have been developed that have dedi-
cated algorithms for imputing missing time series data. These
include “fancyimpute” (Rubinsteyn and Feldman, 2016) and
“transdim” (X. Chen et al., 2020). The fancyimpute library
provides several state-of-the-art algorithms such as “Soft-
Impute” (Mazumder et al., 2010), “IterativeSVD” (Troyan-
skaya et al., 2001), “MatrixFactorization”, “NuclearNorm-
Minimization” (Candés and Recht, 2009), and “Biscaler”
(Hastie et al., 2015). The transdim library provides algo-
rithms based upon neural networks for filling missing data.
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Figure 5. Comparison of different transformations of output data on
the performance of a neural network in the simulation of in-stream
E. coli concentrations (most probable number, MPN, 100 mL) in a
watershed in the Lao People’s Democratic Republic.

Al4Water provides a simple interface for using these libraries
with their full functionalities using the impute method.

3.3.3 Missing labels

In supervised machine learning problems, the training data
consist of examples. Each example consists of one or more
input data points and a corresponding label, which is the true
value for the given example. Similar to the input data, it is
common for the labels to have missing data. Although the

Geosci. Model Dev., 15, 3021-3039, 2022
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missing values in target features can be handled similarly to
those of input features, which has been explained in Sect. 2.3,
this can lead to unrealistic results, particularly when the num-
ber of missing values is large. Al4Water allows the user to
exclude examples with missing labels during model training.
For multi-output prediction, one can encounter situations in
which all target variables are not available for a given ex-
ample. Al4Water allows the user to handle such situations
by masking the missing observations during loss calculation.
However, the user can also opt to exclude these examples,
although this can reduce the number of examples in water
quality problems in which the number of samples is already
very small.

3.3.4 Resampling

Modeling hydrological processes at high temporal resolu-
tions can result in a large amount of data (Li et al., 2021).
Training with this large input data can be computationally
expensive. However, temporally coarse input data contain lit-
tle information. AI4Water handles large amounts of data by
either resampling the data at a lower temporal resolution us-
ing the “Resample” class or by skipping every nth input data,
where n represents the time step. The latter can be achieved
by setting the “input_steps” argument to a value > 1. The de-
fault value of this argument is 1, which results in the use of
all input data.

3.3.5 Feature generation

The incorporation of scientific knowledge into machine
learning models is an emerging paradigm for constraining
predictions from machine learning models to reality (Wang et
al., 2020). The guiding principle of Al4Water is to integrate
domain-specific knowledge and hydrological data. Al4Water
automates the calculation of several features and their inputs
to the machine learning algorithm. The input data require-
ment for the calculation of these features is minimal as they
are calculated from the raw data. The calculated features are
in the form of a time series, which are then directly given as
input to machine learning algorithms. The following sections
describe the feature generation process in more detail.

Land use change and HRU discretization

In rainfall-runoff modeling, the method of discretization of
the HRU plays an important role in many theory-driven mod-
els such as the Soil and Water Assessment Tool (SWAT)
(Neitsch et al., 2011) and Hydrological Simulation Program
FORTRAN (HSPF) (Bicknell et al., 1997). An HRU is a
building block of a process-driven hydrological model in
which all the processes are simulated. The area and forma-
tion of an HRU depend on its definition. For example, in the
HSPF model, an HRU is defined as a unique land use in a
unique sub-basin. On the other hand, the SWAT model con-
siders slope classes and soil type distributions in an HRU. In
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catchments, which undergo changes in land use over time,
the corresponding HRUs also change with time. Temporal
changes in HRUs are a major challenge in most process-
driven models (Kim et al., 2018). However, it has been shown
that machine learning models can easily incorporate land use
changes with time and dynamic HRU calculations (Abbas et
al., 2020). AI4Water contains a sub-module “MakeHRUs”,
which helps in distributing the time series of weather data
into HRUs using different HRU definitions. Figure 6 shows
two discretization schemes that combine land use, soil type,
and sub-basin. However, the user can also add other spatially
varying features, such as slope, in the HRU definition. A
complete list of the HRU definitions is provided in Table S1
in the Supplement. Figure 7 illustrates the HRU variation
with time in a Laotian catchment (Abbas et al., 2020). The
HRUs shown in Fig. 7 are defined as a unique land use with
a unique soil type. Thus, every HRU has distinct land use
and soil characteristics. As there are four land use types and
three soil types in the catchment, the total number of HRUs
was 12. We can observe how the area of certain HRUs, e.g.,
“Alisol_Fallow”, decreases with time at the expense of other
HRUs (Fig. 7a). The relative contributions of each HRU for
the years 2011, 2012, 2013, and 2014 is illustrated in Fig. 7b—
e, respectively. The MakeHRUs sub-module requires shape-
files of land use, soil, and slope to make the HRU according
to a given definition.

3.3.6 DataHandler class

The DataHandler class prepares the input data for the ma-
chine learning model and acts as an intermediate between the
Model class and other pre-processing classes, such as “Impu-
tation” and “Transformation” classes. The DataHandler can
read data from various files as long as the data are in a tabular
format in those files. The complete list of allowed file types
and their accepted file extensions is provided in Table S5 in
the Supplement. Internally, the DataHandler class stores data
as a pandas “DataFrame” object, which is a data model of
pandas for tabular data (Mckinney, 2011). DataHandler can
also save processed data as an HDFS5 file, which can be used
to inspect processed input data.

3.4 Evapotranspiration

The amount of evapotranspiration is an important factor that
affects the total water budget in a catchment. The impact
of the evapotranspiration process representation in rainfall—
runoff models has been studied extensively (Guo et al.,
2017). Several potential and reference evapotranspiration
calculation methods are available in the literature. AI4Water
contains sub-module “et” which can be used to calculate the
potential evapotranspiration using various methods. These
include complex methods such as Penman—Monteith (Allen
et al., 1998), which require many input variables, and simpli-
fied methods such as Jensen and Haise (Jensen and Haise,
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Figure 6. Example of HRU discretization schemes by combining (a) sub-basins and land uses and by combining (b) sub-basins and soil

types.

1963), which only depend on temperature. The “et” can
furthermore calculate potential evapotranspiration at various
time intervals, from 1 min to 1 year. The names of the 22
evapotranspiration methods available in “et” and their data
requirements are summarized in Table S2 in the Supple-
ment. The CAMELS Australia dataset (Fowler et al., 2021)
comes with pre-calculated potential evapotranspiration us-
ing the Morton (Morton, 1983) method. We compared this
method with three different potential evapotranspiration cal-
culation methods using “‘et”, as depicted in Fig. 8.

3.5 Hyperparameter optimization

The hyperparameters of a machine learning algorithm are the
parameters that remain fixed during model training and sig-
nificantly influence its performance (Chollet, 2018). Thus,
the choice of hyperparameters plays an important role in
evaluating the performance of machine learning algorithms.
Some of the most popular approaches for optimizing hyper-
parameters are random search, grid search, and the Bayesian
approach. Random search involves randomly selecting pa-
rameters from the given space for a given number of it-
erations. Grid search, on the other hand, comprehensively
explores all possible combinations of hyperparameters in
the hyperparameter space. Although grid search can ensure
global minima, the number of iterations increases exponen-
tially with an increase in the number of hyperparameters.
This renders the grid search practically unfeasible for deep-
neural-network-based models, which are computationally
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expensive. The two commonly used Bayesian approaches
are Gaussian processes (Snoek et al., 2012) and the tree-
structured Parzen estimators (TPEs) (Bergstra et al., 2011).

The libraries used to implement these algorithms are Hy-
perOpt (Bergstra et al., 2013), “scikit-optimize” (Head et al.,
2018), “optuna” (Akiba et al., 2019), and scikit-learn (Pe-
dregosa et al., 2011). These libraries implement different al-
gorithms with different strengths. The scikit-optimize library
allows the application of the Bayesian optimization approach
using Gaussian Processes. The scikit-learn library can be
used for random and grid-search-based approaches. The Hy-
perOpt module assists in Bayesian optimization using TPEs.
The HyperOpt sub-module in AI4Water provides a uniform
interface to interact with all of the aforementioned libraries.
The integration of HyperOpt with its underlying modules not
only complements the underlying optimization algorithms
but also adds additional functionality, such as visualization.
For example, the importance of hyperparameters is plotted
using the functional analysis of variance (FANOVA) method
proposed by Hutter et al. (2014).

We demonstrate the use of the HyperOpt sub-module of
Al4Water for optimizing the hyperparameters of an LSTM-
based neural network for rainfall-runoff modeling. The input
data consisted of climate data, whereas the target was stream-
flow. For this example, we used CAMELS data from a catch-
ment in Australia (Fowler et al., 2021). We compared the per-
formance of random search, grid search, and two Bayesian
algorithms based on Gaussian processes and TPEs. The con-
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Figure 7. Discretization of a catchment in Laos (Boithias et al., 2021) according to the HRU definition of “unique land use in unique soil”.
The catchment consists of three soil types and four land use types. The soil types are Alisol, Luvisol, and Leptosol, while the land use types
are fallow, forest, teak, and crop. The combination of soil types and land use types results in 12 distinct HRUs. Panel (a) shows annual
variation in these 12 land use types, while (b)-(e) show the percentage area of HRUs in the catchment in 2011, 2012, 2013, and 2014,

respectively.

vergence plots of all four algorithms are shown in Fig. 9.
The Bayesian approach using Gaussian processes was found
to be the most useful for minimizing the objective function.
The objective function was the minimum of the validation
loss. We also observed that grid search, despite a large num-
ber of iterations, did not perform better than the other three
methods.
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3.6 Model comparison with Experiment

Al4Water consists of an Experiment sub-module, which
makes it easier to compare different machine learning mod-
els. The basic purpose of the Experiment class is to com-
pare different models by optimizing their hyperparameters.
This is made possible as the Experiment class encompasses
the HyperOpt class, which in turn encompasses the Model
class (Fig. 10). Thus, the Experiment class can be used
for combined algorithm selection and hyperparameter opti-
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Figure 9. Comparison of four optimization algorithms for optimiz-
ing hyperparameters of an LSTM-based model for rainfall-runoff
modeling. GP represents Bayesian with Gaussian processes, while
TPE stands for tree-structured Parzen estimator. Grid and random
stand for grid-search- and random-search-based optimization, re-
spectively. The x axis shows the number of function evaluations,
while min f(x) on the y axis represents the objective function,
which takes x hyperparameters and returns the minimum of vali-
dation loss.

mization (Thornton et al., 2013). The results from the Ex-
periment class are organized within an “exp path” direc-
tory (Fig. 2). The Experiment class can be sub-classed to
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compare any number and type of models. It consists of
three sub-classed experiments: “MLRegressionExperiment”,
“MLClassificationExperiment”, and “TransformationExper-
iment”. The MLRegressionExperiment class runs and com-
pares approximately 50 different classical machine learning
algorithms for a regression task. The MLClassificationExper-
iment class compares classical machine learning algorithms
for a classification problem. The TransformationExperiment
class can be used to compare the application of different
transformation techniques (Sect. 3.3.1) on different input and
output features.

We conducted an experiment to compare the perfor-
mance of classic machine learning algorithms in predict-
ing antibiotic-resistant genes (ARGs) at a recreational beach
(Jang et al., 2021). The results of this experiment are shown
in Fig. 11, which compares the correlation coefficients for
the training and test sets. It can be seen that some algorithms
can yield an R? as high as 0.65. Other algorithms provide
training R? as high as 1.0, which indicates overfitting. In par-
ticular, we observed strong overfitting in the case of the de-
cision tree regressor and Gaussian process regressor. It can
also be inferred from Fig. 11 that ensemble methods such
as AdaBoost (Freund and Schapire, 1997), gradient boosting
(Friedman, 2001), bagging (Ho, 1998), extra trees (Geurts
et al., 2006), and random forest (Liaw and Wiener, 2002)
yield better performance than other methods. We also ob-
served that simple linear models such as LARS (least-angle
regression), Lasso, and multi-layer perceptron are not able to
model the dynamic and complex functions of the ARG dis-
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Figure 10. Hierarchy of model building and comparison in Al4Water. The Model class involves building, training, and prediction. The
hyperparameter optimization step iterates over the Model class until the best hyperparameters are obtained. Experiments are then designed
to compare the performance of different model architectures after tuning their hyperparameters.

tribution at the beach. On the other hand, complex nonlinear
models such as CatBoost (Prokhorenkova et al., 2017), XG-
Boost (Chen and Guestrin, 2016), and light gradient boosting
machines (Ke et al., 2017) are able to adequately capture dy-
namic features related to the ARG distribution. We also ob-
served that algorithms with cross-validation performed better
than their counterparts without cross-validation.

3.7 Post-processing

The post-processing submodule of Al4Water consists of sev-
eral utilities which can be used once the machine learning
model has been trained. These utilities are discussed in detail
below.

3.7.1 Visualization

The “visualize” sub-module, consisting of a “Visualize”
class, is used to examine inside the machine learning model.
When the model comprises several layers of neural networks,
this class plots the outputs of the intermediate layers, gra-
dients of these outputs, weights and biases of intermediate
layers, and gradients of these weights. Thus, this class helps
to visualize the working of neural networks. It can also be
used to plot the decision tree learned by the tree-based ma-
chine learning model. We demonstrate the use of this class
by building a four-layer neural network to predict stream-
flow using the CAMELS dataset (Fowler et al., 2021). The
four-layered neural network comprises an input layer, two
layers of LSTM, and a dense layer as output layer (Fig. S1 in
the Supplement). The dense layer is a fully connected layer
which is used for dimensionality reduction (Chollet, 2018).
Figures S2-S5 in the Supplement show the outputs of the first
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LSTM layer and its gradients along with the weights of the
first LSTM layer, as well as the gradients of those weights.

3.7.2 Interpretation and explainable AI

The interpretation of the results of machine learning models
is an area of active research. For classical machine learning
algorithms, interpretation tools include the plotting of deci-
sion trees or input feature importance. For neural-network-
based models, explainability is considered an even bigger
challenge. Al4Water consists of a sub-module called “Inter-
pret”, which can be used to plot interpretable results. The
Interpret class takes the trained model of Al4Water as in-
put and plots numerous results which help to explain the be-
havior of the model. The exact type of plots generated by
the Interpret sub-module depends on the algorithm used by
the model. For neural-network-based models, which consist
of a layered structure, the Interpret sub-module plots all the
trained weights, the outputs of each layer, the gradients of
weights, and the gradients of the activations of neural net-
works. This also includes plotting attention weights if the
model consists of an attention mechanism. Al4Water auto-
matically plots the results of the model when a model is used
for prediction. These include the scatter and line plots of each
target variable.

We demonstrate this by using a dual-stage attention model
(Qin et al., 2017) for daily rainfall-runoff modeling in catch-
ment number 401203 in the CAMELS Australia dataset
(Fowler et al., 2021). The input data consisted of evapo-
transpiration, precipitation, minimum and maximum tem-
peratures, vapor pressure, and relative humidity. The dual-
stage model showed significant performance during training
(R?2=0.93) and test (R =0.87), as shown in Fig. S6 in
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Figure 11. An experiment which compares ARG prediction performance at a recreational beach in Korea using various machine learning
algorithms. The y axis represents abbreviations of the algorithms. The complete names of algorithms are given in Table S4 in the Supplement.
The hyperparameters of each of the algorithms were optimized during the experiment.

the Supplement. The dual-stage attention model highlights
the importance of the input variables for prediction. The at-
tention weights for each of the input variables are shown in
Figs. S7-S9 in the Supplement. From these figures, we can
infer that the highest attention is given to precipitation fol-
lowed by evapotranspiration. Furthermore, we also observed
that the input of the previous 3—4 d was the most important.
This can be attributed to the higher attention weights dur-
ing the first 3—4 look-back steps in these figures. We also
observed periodic changes in attention weights for all input
variables, which can be attributed to the seasonal variations
of input variables.

https://doi.org/10.5194/gmd-15-3021-2022

Several model-agnostic methods have recently been devel-
oped to explain black-box machine learning models, such as
local independent model explanations (LIMEs) (Ribeiro et
al., 2016) and shapely additive explanations (SHAPs) (Lund-
berg and Lee, 2017). These methods explain the behavior of
complex machine learning models (such as black-box) using
a simplified but interpretable model. However, using these
methods in high-stakes decision-making has been criticized
(Rudin, 2019). The explanations of these methods can be
local or global. A local explanation describes the behavior
of the model for a single example, whereas a global expla-
nation can describe the model’s behavior for all examples.
The LIME method is only relevant for local explanations,

Geosci. Model Dev., 15, 3021-3039, 2022



3034

whereas SHAP also provides explanations for approximat-
ing the global importance of a feature. Al4Water consists of
“LimeExplainer” and “ShapExplainer” classes to explain the
behavior of a machine learning model using the LIME and
SHAP methods, respectively.

‘We built an XGBoost (Chen and Guestrin, 2016) model for
the prediction of E. coli in a Laotian catchment (Boithias et
al., 2021). Figure S10 in the Supplement shows the output of
the LimeExplainer class, whereas Fig. S11 in the Supplement
shows the output of the ShapExplainer class. In Fig. S10,
a large horizontal bar for a given feature indicates that this
feature strongly affected the model’s prediction. A positive
value indicates that the given feature caused an increase in
the model’s prediction. On the other hand, the negative value
indicates that it caused a decrease in the model’s prediction.
Thus, large negative values for solar radiation in example 41
indicate that the solar radiation causes a large reduction in
the model’s prediction. Large positive values for water level
in examples 42 to 46 indicate that the water level in these
cases strongly increased the model’s prediction. The numer-
ical values of features along the y axis indicate which value
of feature was responsible for the aforementioned behavior.
Thus, more precisely, the water level above 147.8 cm causes
a very large increase in the model’s prediction. Therefore, we
can verify that the E. coli predictions during flood events are
more strongly affected by water level.

The SHAP module provides a more detailed explanation
about the local and global importance of input features on
the model’s prediction. Figure S11a and b show the local ex-
planation summary of the model in the form of the SHAP
value of each input feature for each example (Lundberg et
al., 2020). Figure S11a shows that the examples with large
SHAP values of water level and suspended matter resulted in
large E. coli predictions. The f(x) in Fig. S11a indicates the
sum of SHAP values of all input features. The prediction of
the machine learning model is equal to the sum of f(x) and
the base value. The base value is the mean of the total predic-
tions from the model on training data (Lundberg et al., 2018).
In our example the base value was 4661.082 MPN 100 mL ™!
(MPN signifies most probable number). The examples in
Fig. S11aare clustered in such a way that examples with sim-
ilar explanations are grouped together. Figure S11b indicates
that the large values of water level and suspended particulate
matter result in an increase in E. coli. On the other hand, large
values of solar radiation resulted in negative SHAP values.
This shows that large solar radiation causes a reduction in E.
coli prediction. Figure S11c shows the global importance of
input features for E. coli prediction. This global importance
is obtained by calculating the mean of the SHAP value of a
feature for all examples (Lundberg and Lee, 2016). The ex-
planations from Fig. S11 correlate with our background un-
derstanding of E. coli behavior. Several studies have shown
that E. coli in surface water is strongly affected by suspended
solids, water level, and solar radiations (Nakhle et al., 2021;
Pandey and Soupir, 2013).
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3.7.3 Performance metrics

Performance metrics are a vital component of the evaluation
framework for machine learning (Botchkarev, 2018). There
are two major types of performance metrics related to the
evaluation of a model’s forecasting ability. These include
scale-dependent and scale-independent error metrics. Scale-
dependent metrics, such as mean absolute error, provide a
good estimate of a single model’s performance, but they can-
not be used across the models because of their scale depen-
dency (Prestwich et al., 2014). Scale-independent error met-
rics are more useful when comparing the performance of var-
ious models (Hyndman and Koehler, 2006). However, cer-
tain scale-independent error metrics cannot be defined when
one or more observed values are zero, such as percentage
errors or relative errors (Hyndman, 2006). The choice of a
performance metric to evaluate the model depends on the
problem definition and model objectives (Wheatcroft, 2019).
Al4Water calculates over 100 regression metrics and numer-
ous classification metrics to help the user analyze the general
characteristics of the forecasts. These performance metrics
are sub-packaged under SeqMetrics in AI4Water. These met-
rics are calculated automatically for all the target variables
whenever a model is used for prediction using the “predict”
method. The metrics are stored in a json file inside the path
of the model (errors.json in Fig. 2). The names of the perfor-
mance metrics calculated by Al4Water are listed in Table S3
in the Supplement. Additionally, several statistical parame-
ters of the predicted variable were calculated and stored in
this json file.

4 Loading and saving models in a readable json file

All features of AI4Water can be accomplished using a config-
uration file. The configuration file (config.json) of Al4Water
consists of a human-readable json file. All the information
regarding pre-processing of data, building and training of the
model, predictions, and post-processing of results is written
in this file. This file is generated every time a new model is
built. One of the advantages of this configuration file is that
any user can build and run the models without having to write
the code explicitly. All examples presented in this study can
be run using the corresponding configuration files. Figure 4
shows three examples of configuration files. Figure 4a shows
an LSTM-based model built for rainfall-runoff modeling us-
ing the CAMELS (Fowler et al., 2021) dataset. Figure 4b
and ¢ show the usage of the temporal fusion transformer and
XGBoost models for the same task. The user can define com-
mands to control the input and output features to use or the
training duration for the model. All hyperparameters of the
model can also be set using this configuration file.

https://doi.org/10.5194/gmd-15-3021-2022



A. Abbas et al.: AI4Water v1.0

5 Advanced usage

Al4Water was built using the object-oriented programming
(OOP) paradigm. Its core logic was implemented by the
Model class. The use of OOP allows a user to customize any
steps of model building, training, or testing by sub-classing
the Model class. This may include the implementation of a
custom training loop or a customized loss function. Similarly,
the pre-processing and data preparation steps implemented in
the Model class can also be overwritten for specific usages.
For example, if users want to implement another transforma-
tion on the training data, they can sub-class the Model class
and overwrite the training_data method. Similarly, the user
can customize the loss function by overwriting the “loss”
method of the Model class. Additionally, Al4Water exposes
the underlying machine learning libraries such as Tensor-
Flow and scikit-learn to the user. Thus, users can directly
use these libraries and implement the desired configuration.
However, this requires a deeper understanding of the under-
lying libraries.

6 Test coverage and continuous integration

Al4Water version 1.0 was tested with continuous integration
tools with GitHub Actions to ensure that it passes all the writ-
ten tests and can be installed on computers. The tests were
conducted on Windows- and Linux-based operating systems.
In addition, we tested the package on Python versions 3.6,
3.7, and 3.8. The package was also tested with TensorFlow
versions 1.15 and above.

7 Limitations and scope for expansion

— The current version of Al4Water was designed only
for supervised learning problems. However, there has
been growing interest in unsupervised machine learn-
ing models, such as generative adversarial networks
(GANs) and reinforcement learning. GANs have been
shown to exhibit high performance for time-series-
related tasks such as filling missing data (Luo et al.,
2018) or generating new high-resolution data (Chen et
al., 2019). This aspect of GANs can be useful in wa-
ter quality modeling, in which data collection is costly
and missing observations are common. Reinforcement
learning can be applied to optimal policy design in hy-
drological systems, such as scheduling the release of
water from a dam (Sit et al., 2020).

— Another limitation of Al4Water is its dependence on a
large number of third-party libraries. This can be chal-
lenging during installation when the interdependencies
of libraries conflict with each other. Although we have
provided the exact versions of the third-party libraries,
which were used to test the current version of AI4Water,
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a conflict in future due to the changes in third-party li-
braries cannot be guaranteed. As Al4Water is an open-
source project, we consider that such conflicts can be
minimized with community inputs.

— Al4Water was designed for the rapid testing and exper-
imentation of deep learning models. However, it should
be noted that the current version of the framework is not
suitable for the deployment of deep learning models in
production.

— As all the options to use Al4Water are accommodated
in a configuration file, this makes it suitable for devel-
oping a graphical user interface (GUI). Adding GUIs
will further widen the user base of Al4Water by being
accessible to non-programmers.

8 Conclusions

Modeling hydrological processes by machine learning re-
quires the development of pipelines that encompass data re-
trieval, feature extraction, visualization, and building, train-
ing, and testing the machine learning model, along with visu-
alization and interpretation of the results. The Al4Water soft-
ware introduced in this work was designed to facilitate the
development, reuse, and reproducibility of machine learn-
ing models for applications in hydrology. Al4Water was de-
signed to integrate the domain-specific aspects of hydrologi-
cal modeling with the professional level of machine learning
and data processing software already developed and used by
the Python community. We demonstrated the applicability of
Al4Water with supervised learning examples related to hy-
drological modeling. Further development of the package is
suggested with new features that may make Al4Water more
versatile. The platform is expected to be practical for a wide
range of users interested in hydrological modeling.

Code and data availability. The Al4Water source code can be
found in a publicly available GitHub repository (https://github.com/
AtrCheema/Al4Water, last access: 18 March 2022), and its ver-
sion 1.0 is archived at https://doi.org/10.5281/zenodo.5595680 (Ab-
bas et al., 2021). The user manual is built into the source code
“Docstring” and compiled into a “read the docs” web page (https:
/laidwater.readthedocs.io/en/latest/, last access: 18 March 2022) us-
ing Sphinx (Brandl, 2010) software. The Jupyter notebooks repli-
cating the examples described in the paper are available in the “ex-
amples” directory.
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