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Abstract. Oceanic particulate organic carbon (POC) is a
small but dynamic component of the global carbon cycle.
Biogeochemical models historically focused on reproducing
the sinking flux of POC driven by large fast-sinking parti-
cles (LPOC). However, suspended and slow-sinking parti-
cles (SPOC, here < 100 um) dominate the total POC (TPOC)
stock, support a large fraction of microbial respiration, and
can make sizable contributions to vertical fluxes.

Recent developments in the parameterization of POC re-
activity in PISCES (Pelagic Interactions Scheme for Car-
bon and Ecosystem Studies model; PISCESv2_RC) have im-
proved its ability to capture POC dynamics. Here we evalu-
ated this model by matching a global 3D simulation and 1D
simulations at 50 different locations with observations made
from biogeochemical (BGC-) Argo floats and satellites. Our
evaluation covers globally representative biomes between 0
and 1000 m depth and relies on (1) a refined scheme for con-
verting particulate backscattering at 700 nm (byp700) to POC,
based on biome-dependent POC / byp700 ratios in the surface
layer that decrease to an asymptotic value at depth; (2) a
novel approach for matching annual time series of BGC-
Argo vertical profiles to PISCES 1D simulations forced by
pre-computed vertical mixing fields; and (3) a critical evalu-
ation of the correspondence between in situ measurements
of POC fractions, PISCES model tracers, and SPOC and
LPOC estimated from high vertical resolution byy700 profiles
through a separation of the baseline and spike signals.

We show that PISCES captures the major features of
SPOC and LPOC across a range of spatiotemporal scales,
from highly resolved profile time series to biome-aggregated
climatological profiles. Model-observation agreement is

usually better in the epipelagic (0-200m) than in the
mesopelagic (200-1000 m), with SPOC showing overall
higher spatiotemporal correlation and smaller deviation (typ-
ically within a factor of 1.5). Still, annual mean LPOC stocks
estimated from PISCES and BGC-Argo are highly corre-
lated across biomes, especially in the epipelagic (r = 0.78;
n = 50). Estimates of the SPOC / TPOC fraction converge
around a median of 85 % (range 66 %—92 %) globally. Dis-
tinct patterns of model-observations misfits are found in sub-
polar and subtropical gyres, pointing to the need to better
resolve the interplay between sinking, remineralization, and
SPOC-LPOC interconversion in PISCES. Our analysis also
indicates that a widely used satellite algorithm overestimates
POC severalfold at high latitudes during the winter. The ap-
proaches proposed here can help constrain the stocks, and
ultimately budgets, of oceanic POC.

1 Introduction

The biological carbon pump (BCP) is the ensemble of pro-
cesses that transfer the organic matter produced by plank-
ton in the sunlit ocean surface to deeper layers (Volk and
Hoffert, 1985). This vertical flux plays a central role in the
Earth’s climate, as it influences the oceans’ capacity to ab-
sorb and ultimately store atmospheric CO; over centennial or
millennial timescales (Kwon et al., 2009; Passow and Carl-
son, 2012). The BCP is also central to biogeochemical func-
tioning of the ocean, as it determines the quality and quantity
of organic matter available to the ocean interior (Aristegui
et al., 2009; Hernandez-Ledn et al., 2020) and the seafloor
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ecosystems. The spatiotemporal patterns of organic matter
supply and respiration influence the distribution of dissolved
oxygen, inorganic carbon, remineralized nutrients and trace
metals in the ocean interior (Bianchi et al., 2018; Duteil et
al., 2012; Hayes et al., 2015; Oschlies et al., 2018; Weber et
al., 2016) and their return pathways to the surface. In conse-
quence, the BCP is intimately linked to, and feeds back on,
upper-ocean productivity.

Over the last decades, BCP research has placed empha-
sis on understanding the ecological and physical factors that
control the gravitational export of particulate organic carbon
(POC; see Table 1 for abbreviation definitions). This process
is often represented as the product of export production (the
fraction of net primary production exported below the eu-
photic layer) and transfer efficiency (Teff; the fraction of ex-
port production that reaches a given depth below the euphotic
layer). Both variables vary widely across ocean biomes and
along the seasonal cycle (Buesseler and Boyd, 2009; Passow
and Carlson, 2012; Buesseler et al., 2020), and our under-
standing of the underlying mechanisms is still limited by the
relatively small amount of in situ measurements (Mouw et
al., 2016). Biogeochemical models have been built, and their
parameters tuned, to be able to reproduce these sparse ob-
servations of export production and vertical flux attenuation,
sometimes reaching apparently contradictory results (Marsay
et al., 2015). In comparison, the models’ ability to repre-
sent marine particle concentrations has received less atten-
tion (Lam et al., 2011).

Marine particles are mainly composed of living micro-
bial plankton cells, living metazoans, and detritus (“marine
snow” aggregates, fecal pellets, zooplankton feeding struc-
tures, biominerals), whose size ranges from < 1 um to sev-
eral millimeters (Bishop et al., 1980; Mullin et al., 1965;
Stemmann and Boss, 2012). Indeed, these particles feature
wide variations in their physicochemical properties and de-
gree of biological processing (Kharbush et al., 2020; Lam
et al., 2015; Passow and Carlson, 2012; Stemmann and
Boss, 2012), as well as microbial colonization (Baumas et
al., 2021; Duret et al., 2019; Mestre et al., 2018), all of
which change during the particles’ lifetime. The gravita-
tional sinking speed generally increases with particle size,
although observations show a wide scatter around canoni-
cal Stokes’ law predictions (Cael et al., 2021; Laurenceau-
Cornec et al., 2019). Owing to this general relationship, par-
ticle populations are often partitioned into a few functional
size classes: large particles, typically defined as larger than
50 or 100 pm, which usually sink at several tens or hundreds
of meters per day, and small particles, which usually sink
slowly (< 10md~") or are suspended in the water column.
In this study, POC is divided into small POC (SPOC) and
large POC (LPOC), with a nominal cutoff at 100 um (Table 2;
Sect. 2.2.2).

The traditional BCP paradigm posits that gravitational
sinking of LPOC controls the vertical carbon flux (Sarmiento
and Gruber, 2006). However, it has been known for decades
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that POC export is shaped by additional processes, such as
the physical transport of particles by convection and subduc-
tion and the “active” particle flux mediated by the vertical
migration of metazoans. Recently, these processes have been
collectively termed “particle injection pumps” (Boyd et al.,
2019). In parallel, the role of dissolved organic carbon in
vertical carbon export has been widely recognized (Jiao et
al., 2010; Passow and Carlson, 2012; Legendre et al., 2015).
Therefore, the BCP is increasingly seen as a diverse array of
interconnected mechanisms.

One aspect that has recently received considerable at-
tention is the role of suspended and slow-sinking particles
(Alonso-Gonzélez et al., 2010; Baker et al., 2017). Owing
to their longer residence time, small particles usually dom-
inate the POC stock (Aumont et al., 2017; Baker et al.,
2017) and may support a proportional fraction of the respi-
ration (Baltar et al., 2010a, b; Belcher et al., 2016; Garcia-
Martin et al., 2021). Convective mixing (Bishop et al., 1986;
Dall’Olmo and Mork, 2014; Lacour et al., 2019) and sub-
duction (Llort et al., 2018; Omand et al., 2015; Resplandy
et al., 2019) can transport SPOC into the mesopelagic layer,
adding to other export mechanisms and potentially making
large contributions to total POC export (Alonso-Gonzalez
et al., 2010; Henson et al., 2015). Production of SPOC in
the mesopelagic and below also results from the fragmenta-
tion of LPOC, caused by physical disaggregation (Takeuchi
et al., 2019), bacterial solubilization, and zooplankton activ-
ity (Briggs et al., 2020; Goldthwait et al., 2004; Mayor et
al., 2020; Stemmann et al., 2004b). Moreover, SPOC is also
produced through bacterial chemosynthesis in the dark ocean
(Aristegui et al., 2009; Herndl and Reinthaler, 2013). Alto-
gether, these findings illustrate how our limited knowledge
of POC characteristics and cycling hampers a mechanistic
understanding of the BCP and mesopelagic carbon budgets
(Giering et al., 2014).

Biogeochemical models designed to capture only gravi-
tational POC sinking fail to represent POC stocks in the
ocean interior. Aumont et al. (2017) recently showed that
the Pelagic Interactions Scheme for Carbon and Ecosystem
Studies model (PISCESv2; Aumont et al., 2015) underes-
timated POC by 1 order of magnitude or more below the
epipelagic layer. This pitfall is likely common to any state-
of-the-art model with a similar structure (Laufkoétter et al.,
2016; Séférian et al., 2020). Aumont’s work also showed
that the model’s fit to observed deep-ocean POC concen-
trations could be dramatically improved by treating detrital
POC, both small and large, as a mixture of particles with dif-
ferent reactivity (or lability) towards bacterial degradation. In
this scheme, termed the reactivity continuum (RC) parame-
terization, detrital POC degradation is computed after divid-
ing it into many reactivity classes that approximately follow
a continuous gamma distribution — hence its name. The most
labile fractions are rapidly consumed below the upper mixed
layer, such that vertically exported POC becomes progres-
sively more refractory. This results in enhanced preservation
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Table 1. List of abbreviations.

Type Abbreviation  Definition
Region name NASPG North Atlantic subpolar gyre

STG Subtropical gyres of the Atlantic and Pacific oceans
Process or concept BCP Biological carbon pump

CATS Coherent annual time series

MLD Mixed layer depth

Teff Vertical transfer efficiency of POC

Operationally defined POC

Particulate organic carbon (used here as a generic name)

chemical compartment®  SPOC Small particulate organic carbon

LPOC Large particulate organic carbon

TPOC Total particulate organic carbon (here equivalent to SPOC + LPOC)
Bio-optical variable bpp700 Particulate backscattering coefficient at 700 nm wavelength

Chla Chlorophyll a concentration estimated from fluorescence®
Numerical model or NEMO Nucleus for European Modelling of the Ocean
parameterization PISCES Pelagic Interactions Scheme for Carbon and Ecosystem Studies

RC Reactivity continuum parameterization for POC degradation
Project name NAOS Novel Argo Ocean Observing System

remOCEAN  Remotely-Sensed Biogeochemical Cycles in the Ocean

4 These variables may be estimated directly from seawater sampling, indirectly from in situ or remote sensors, and from biogeochemical models.

See Table 2. P See text Sect. 2.2 for details.

of SPOC in the model and a much more realistic fraction of
SPOC with respect to total POC (TPOC) in the ocean in-
terior. In addition, the RC scheme does not appreciably de-
grade model estimates of the gravitational POC flux.
Despite this breakthrough in the representation of POC
fractions in PISCESv2_RC (hereafter “PISCES”), the new
parameterization was evaluated using only sparse measure-
ments (Druffel et al., 1992; Lam et al., 2011, 2015) based on
large-volume filtration with in situ pumps. This approach en-
ables an accurate determination of the mass and composition
of the particulate fraction but cannot afford high-frequency
sampling over extended spatiotemporal scales (Bishop, 1999;
Boss et al., 2015; Gardner et al., 2006). During the last
decade, the launching of the biogeochemical Argo (BGC-
Argo) program of robotic observations has ended the histor-
ical undersampling of particles in the ocean interior (Claus-
tre et al., 2020). BGC-Argo floats provide vertical profiles of
temperature, salinity, bio-optical, and chemical variables be-
tween 0—1000 m every 1 to 10 d in near-real time and are thus
well-suited to study particles (~ 0.5 um to ~2mm in size;
Table 2) in the mesopelagic layer, where the strongest POC
gradient occurs. The rapidly growing fleet of BGC-Argo
floats equipped with bio-optical sensors enables a compari-
son between models and observations at global scales with
enhanced spatiotemporal resolution. Unfortunately, BGC-
Argo floats measure only a bio-optical proxy of POC, the par-
ticulate backscattering coefficient (usually at 700 nm, bpp700)
and empirical conversion factors are needed to estimate POC
(Bishop and Wood, 2008; Cetini¢ et al., 2012; Stramski et al.,

https://doi.org/10.5194/bg-19-1245-2022

2008). These conversion factors vary in response to several
concurrent processes that alter particle abundance, size distri-
bution, shape, composition, and ultimately optical properties
(Boss et al., 2015; Giering et al., 2020).

In this study we compare SPOC and LPOC concentrations
estimated from BGC-Argo floats to their PISCES-simulated
counterparts, as well as satellite-retrieved surface POC con-
centration. The comparison is enabled by a novel empirical
algorithm to convert bpp700 to POC. Observations and simu-
lations are matched in 3D (biome-wide climatological scale)
and 1D (at defined locations over an annual cycle). These
complementary strategies allow us to evaluate the skill of
PISCES at simulating POC stocks and fractions in globally
representative biomes. We conclude with a list of recommen-
dations to fully exploit the potential of robotic particle obser-
vations combined with biogeochemical modeling.

2 Methods
2.1 Definition of vertical and horizontal domains

Studies of the BCP usually decompose the ocean into
vertical domains: a surface layer where autotrophic ac-
tivities dominate and one or several ocean interior layers
where heterotrophic processes dominate. Functional defini-
tions based on light penetration, peak export production,
vertical mixing, or long-term carbon sequestration are usu-
ally the most appropriate ones for process studies (Buesseler
and Boyd, 2009; Buesseler et al., 2020; Guidi et al., 2015;

Biogeosciences, 19, 1245-1275, 2022
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Table 2. Match between BGC-Argo observations, PISCES tracers (Aumont et al., 2017), real-world particulate organic carbon pools, and

particle size ranges®.

POC fraction BGC-Argo observation PISCES tracer (carbon currency) Closest real-world correspondence
SPOC bpp700 vertical profiles, PHY: “nanophytoplankton”, includes Picocyanobacteria and non-diatom
despiked signal. Most sen- calcifiers (default fraction 30 %). phyto-eukaryotes, generally 0.5-20 um.
sitive to 0.5-30pum particles Nominally 1-10 um.
(Dall’Olmo et al., 2009; Or-
ganelli et al., 2018). Calibrated
as POC with Egs. (1) and (2).
PHY?2: silicifying microphytoplankton.  Diatoms, between 1.5 um cells (Vaulot
Nominally 10-50 pm. et al, 2008) and millimeter-scale
chains. Mean ESDP generally < 50 um
in seawater (Snoejis et al., 2002; Ciotti
et al., 2002; Bricaud et al., 2004).
POC: detrital particulate organic carbon.  Detrital particles between
Nominally < 100 pm. ~0.2¢ and 100 pum.
In practice, it includes heterotrophic In practice, measurements may include
prokaryotes’ biomass with current particle-attached and free-living organ-
parameter values (see Sect. 4.3). isms, viruses, colloids and adsorbed
DOC.
Z0O0: microzooplankton. Microzooplankton. Mostly ciliates and
Nominally 10-200 pym. flagellates with size similar to their
prey, down to around 2um (Calbet,
2008).
Heterotrophic prokaryotes (BACT): cur-  Free-living heterotrophic prokaryotes
rently not a prognostic tracer in PISCES.  (bacteria and archaea), < 1 um.
Not considered explicitly in this study
(see Sect. 4.3).
LPOC bpp700 vertical profiles, spike GOC: detrital particulate organic carbon.  Detrital particles > 100 um (aggregates,

signal. Particle size between

~ 100 um (byp700 spike of

23 %107 m_l) and ~2mm
(bbp700 Spike of 8 x 1073m™
(Briggs et al., 2020). Calibrated
as POC with Egs. (1) and (2).

Nominally > 100 pm.

fecal pellets).
Includes attached microbes.

Z002: mesozooplankton. Includes flux
feedersd. Nominally 0.2-2 mm.

Mesozooplanktond

4 See Stemmann and Boss (2012) for typical seawater particle size spectra. b Equivalent spherical diameter. ¢ Particles in the 0.2-0.8 um size range and DOC are retained with
variable efficiency by the filters commonly used to determine POC (Bishop, 1999; Cetini¢ et al., 2012; Graff et al., 2015; Lee et al., 1995; Mordn et al., 1999; Strubinger Sandoval
etal., 2021). 9 PISCES mesozooplankton represents mostly copepods in the euphotic layer and flux feeders below it. The fraction of flux feeders is diagnosed in PISCES from the
proportion between flux feeding rates and total mesozooplankton ingestion rates. By construction, flux feeding becomes the dominant mode of mesozooplankton feeding below
the euphotic layer under productive surface waters in PISCES. In reality, a wide variety of feeding strategies and organisms are found in the mesopelagic (Ikenoue et al., 2019;

Kigrboe, 2011; Mayor et al., 2020; Stukel et al., 2019).

Palevsky and Doney, 2018). Because this paper is mainly
descriptive and combines observations and simulations, we
will refer to layers defined by fixed depths: epipelagic
(0200 m), mesopelagic (200—1000m), and bathypelagic
(1000-4000 m).

Over the horizontal dimensions, our comparisons between
observations and model results rely on the ocean biomes
defined by Fay and McKinley (2014). These authors sub-
divided each ocean basin (Atlantic, Pacific, Indian, and

Biogeosciences, 19, 1245-1275, 2022

Southern Ocean) into different biomes based on observed
variables, namely sea-surface temperature, spring—summer
chlorophyll a concentration (Chl a), ice fraction, and max-
imum mixed layer depth (MLD), all on a 1° x 1° grid. This
division resulted in 17 regions ascribed to one of the follow-
ing five biomes: the ice biome, the subpolar seasonally strat-
ified biome, the subtropical seasonally stratified biome, the
subtropical permanently stratified biome, and the equatorial
biome. The analyses reported herein focus on the following

https://doi.org/10.5194/bg-19-1245-2022
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four biomes (Fig. 1): the seasonally stratified North Atlantic
subpolar gyre (NASPQG); the permanently stratified Atlantic
and Pacific subtropical gyres, which were grouped together
(STG); the seasonally stratified Southern Ocean (subantarc-
tic); and the Mediterranean Sea, which was added here owing
to the abundance of BGC-Argo data and represents a season-
ally stratified subtropical biome. Fay and McKinley’s defi-
nition allows biome boundaries to change from one year to
another. Here we analyzed only data from the core of each
biome, defined as the grid cells that never changed classifi-
cation during the 1998-2010 satellite observation period.

2.2 BGC-Argo observations

The global dataset acquired by the array of BGC-Argo floats
was downloaded from the Global Data Assembly Center
hosted by Ifremer (ftp://ftp.ifremer.fr/ifremer/argo/dac/, last
access: 14 January 2020) (Argo, 2000). The selected floats
were equipped with a Seabird-Wetlabs ECO-Triplet sensor
package including a Chl a fluorometer (excitation at 470 nm;
emission at 695 nm) and a backscattering sensor at 700 nm
(bvp700), in addition to the conductivity—temperature—depth
(CTD) probe. The downloaded measurements had under-
gone the standard processing, which includes the applica-
tion of calibration equations to raw sensor output and the
performance of near-real-time quality control to both CTD
(Wong et al., 2021) and Chl a measurements (Schmechtig
et al., 2018). Since no specific quality control procedure
has been established yet for byy700 profiles, the latter were
only quality-controlled according to the general criteria
(Schmechtig et al., 2016). Thus, we used all by,700 measure-
ments with quality control flag <3 (equivalent results were
obtained with flag <2). Two different processing pipelines
were applied to different subsets of the BGC-Argo data, as
described below.

2.2.1 Global gridded climatologies (3D approach)

The global dataset acquired between 2010 and 2019 was used
to produce global gridded monthly and seasonal climatolo-
gies for bpp700 and Chl a. The measurements were binned
onto the ORCA2_L.31 grid used for NEMO-PISCES simu-
lations (see Sect. 2.4.1), which has a horizontal resolution of
about 2° that increases to 0.5° in the meridional direction in
the equatorial domain, and 30 oceanic vertical levels between
the surface and the ocean bottom. The thickness of the ver-
tical bins increases progressively from 10 m at the surface to
339 m in the 22nd bin (870-1209 m), the deepest one con-
taining BGC-Argo data. In each grid element, the average,
median, range, and data counts were computed. Profiles from
the CSIRO and INCOIS data assembly centers were not used
because, at the time of download, they had not taken into
consideration the new calibration files provided by the man-
ufacturer. A total of 72 460 profiles were used to calculate the
global gridded climatologies.

https://doi.org/10.5194/bg-19-1245-2022

2.2.2 Profile time series for individual floats sampling
at higher resolution (1D approach)

A subset of the floats, deployed mostly by the projects
NAOS, remOCEAN, and Bio-Argo France (model NKE
PROVOR CTS-4), were programmed to sample at higher
temporal and vertical resolution than the Argo defaults
(10d and 10 m). These floats made vertical profiles between
1000 m and the surface every 2, 5, or 10d with a vertical
resolution of 10 m between 1000 and 250 m (or 350), 1 m
between 250 (or 350) and 10m, and 0.2m between 10m
and the sea surface. We processed this dataset with a dedi-
cated pipeline to extract additional information on POC size
fractions and their dynamics. Along each vertical profile we
computed depth, conservative temperature, absolute salin-
ity, og, and spiciness (Flament, 2002) from the calibrated
pressure, temperature, and salinity using the R package oce
(Kelley, 2011). The MLD was calculated as the shallow-
est depth where oy exceeded the surface reference value by
0.03kg m™3 (Bishop and Wood, 2009; Sallée et al., 2021).
The surface reference corresponded to the oy at Sm after
applying a five-point running mean to the top 10m of the
profile. The 0.03kgm™3 criterion provided sensible results
across biomes and was consistent with the NEMO-simulated
turbocline depth (see Sect. 2.5.2). Eleven additional MLD
criteria were also calculated to assess the robustness of the
approach (Fig. S1).

Following Briggs et al. (2011, 2020), each bpp700 verti-
cal profile was smoothed with sequential 11-point running-
minimum and running-maximum filters to separate the base-
line from the spikes. The baseline signal corresponds to the
bulk population of small particles, whose diameter is smaller
than 100 um and mostly between 0.5 and 30 um (Dall’Olmo
et al., 2009; Organelli et al., 2018). Each spike reflects the
passage of a particle larger than about 100 um in front of the
sensor window. Previous studies inferred that backscattering
spikes are caused mostly by phytodetrital aggregates but also
by large zooplankton and phytoplankton (Bishop and Wood,
2008; Briggs et al., 2011; Gardner et al., 2000). Assum-
ing that backscattering sensors sample a volume of 10 mL
(Briggs et al., 2020), we estimated that backscattering spike
concentration was typically between a few and < 100 L1,
consistent with previous independent estimates (McDonnell
and Buesseler, 2010; Stemmann et al., 2008; Stemmann and
Boss, 2012). Backscattering spikes were on average 4—10
times more abundant than chlorophyll fluorescence spikes.
The by,700 spikes larger than 0.008 m~!, associated with par-
ticles larger than ~ 2 mm, were removed, with a negligible
impact on the total spike signal (Briggs et al., 2020). Un-
like Briggs et al. (2020), we did not subtract from the base-
line profile the 850-900 m signal, which in that study was
attributed to a background of small refractory particles with
constant concentration. The baseline and spike signals were
converted to SPOC and LPOC, respectively, as described in
the next section.

Biogeosciences, 19, 1245-1275, 2022
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Figure 1. Global distribution and abundance of BGC-Argo profiles between 2010 and 2019. Grid cells (1° x 1°) with at least one profile of
the backscattering coefficient at 700 nm (bpp700) are marked with black dots, and those with at least 20 profiles are marked with yellow-filled
circles. The gray contours indicate the 1000 m isobath. Color shading indicates ocean biomes (see text), whose names are indicated on top of
the bottom histograms. For each biome, light color indicates its average extent over 13 years of satellite observations (1998-2010), whereas
the darker color indicates the “core” grid cells that never changed biome classification during the same period. The bottom panels (b—f) show

the number of BGC-Argo byy700 profiles per year in the four selected biomes and in the global ocean.

All measurements were subsequently averaged into 18
vertical bins of progressively increasing thickness, such that
the deepest bins contained at least 10 measurements. Finally,
each profile was interpolated onto the L75 vertical grid com-
monly used in NEMO simulations. This grid has 46 bins be-
tween the surface (0—1 m) and the deepest layer considered
here (901-996 m). The profile time series was temporally
binned into 5 d periods.

For the comparison to PISCES 1D simulations, BGC-Argo
time series were cut into 1-year periods (shifted by 6 months
in the Southern Hemisphere), which we will call coherent
annual time series (CATS) hereafter. The CATS fulfilled the
following conditions: (1) sampling dates spanned at least be-
tween days of year 25 and 340; (2) the float remained in the

Biogeosciences, 19, 1245-1275, 2022

same region and did not cross major oceanic fronts according
to the vertical-temporal evolution of temperature, salinity,
o0y, and spiciness; (3) bottom depth was > 1000 m for all pro-
files (bathymetry obtained from the 15 arcsec GEBCO 2019
product; https://www.gebco.net/data_and_products/gridded_
bathymetry_data/gebco_2019/gebco_2019_info.html, last
access: 12 May 2019); and (4) the Chl a and byp700 sensors
were stable according to both the vertical profiles and the
continuous measurements acquired during drift at 1000 m
between profiles. A total of 50 CATS from 28 different
floats were selected, with 10-16 CATS in each biome and
32 (18) in the Northern (Southern) Hemisphere (Table S1).

https://doi.org/10.5194/bg-19-1245-2022


https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2019/gebco_2019_info.html
https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2019/gebco_2019_info.html

M. Gali et al.: Oceanic POC from particulate backscattering vs. the PISCES model

2.3 Conversion of byy700 to POC

To convert the profiles of the backscattering coefficient at
700 nm (bpp700) to POC we developed an empirical algorithm
building on previous studies (Bol et al., 2018; Evers-King et
al., 2017). The behavior of this algorithm is summarized in
Fig. 2 and discussed in Sect. 4.2. Further details are provided
in the Appendix. The algorithm estimates the POC / byy700
ratio along the vertical profile between 0 and 1000 m and
proceeds in two steps. First, the POC / byp700 ratio is calcu-
lated by prescribing a POC / byp700 ratio in the surface layer
(Zsurf, biome) and an exponential decrease with depth in the un-
derlying water column, which converges asymptotically to-
wards a constant deep value (c¢):

POC

—0.001-b- (Z - Zsurf,biome)
byp700

(z2) = ¢ + apiome - €

Z > Zsurf,biome- (1)

The apiome coefficient is biome-specific, whereas the asymp-
tote at depth is fixed at ¢=1000mmolCm—>3m. The
Zsurf,biome corresponds to the 5 % quantile of the climatologi-
cal MLD in summer in a given biome (here ranging between
14 m in the Mediterranean and 41 m in the subantarctic). The
POC / byp,700 1ti0s at Zsurf, biome, corresponding to apiome +¢
in Eq. (1), are taken from the literature and range between
2600 and 4900 mmol Cm™—3 m (Fig. 2; Table Al). Second,
the POC / by, 700 profile derived from Eq. (1) is modified by
extrapolating a constant POC / byp 700 value, taken from a
reference depth, zrf, to the sea surface. In each vertical pro-
file, zref is defined as the deepest of Zsurf biome and the MLD:

POC POC
7) = (Zref) , 2= Zref;
bbp700 bp700
Zref = Max (Zsurf,biomev MLD) . &

The exponential decrease prescribed by Eq. (1) is simi-
lar to that proposed by Bol et al. (2018), except for the in-
clusion of the constant term ¢ that prevents the ratio from
becoming 0 at depth. The slope of the exponential decrease
(b = —6.57) is constant in all biomes and based on our fit to
the Cetini€ et al. (2012) dataset, using the same depth bins as
Bol et al. (2018) but additionally forcing the curve towards ¢
at 1000 m.

The uncertainty of regional by,700—POC conversion fac-
tors in the epipelagic is typically < 10% according to
the standard error of the POC vs. by,700 linear regression
slopes (Table Al). The few available measurements in the
mesopelagic suggest a POC / bpp700 uncertainty lower than
a factor of 2. Through this study, we will assume that
model / observation ratios larger (smaller) than 2 (0.5) can
safely be regarded as model overestimates (underestimates),
which possibly is a conservative criterion for the epipelagic
layer.

The conversion of byy700 to POC was done using different
MLD data for the global climatologies and the CATS. For
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Figure 2. Empirical model used to convert the backscattering co-
efficient at 700 nm (bpp700) to particulate organic carbon (POC).
Black dots and error bars show the dataset of Cetini¢ et al. (2012)
as binned by Bol et al. (2018). The black curve shows the expo-
nential fit of Bol et al. (2018) to the Cetini¢ dataset. The dashed
light-blue curve shows our fit to the same dataset (NASPG: North
Atlantic subpolar gyre), forced to converge to a nonzero minimum
value at depth. The remaining curves show similar functions with
the same exponential slope (b = —6.57) as the NASPG fit, but with
different surface values derived from the following studies: Loisel
et al. (2001) for the Mediterranean Sea; Stramski et al. (2008) for
the ensemble of subtropical and tropical areas excluding equato-
rial upwellings (STG); and Johnson et al. (2017) for the Southern
Ocean (subantarctic). The depth of the homogeneous surface layer,
Zsurf,biome 1N Egs. (1) and (2), corresponds to the 5 % quantile of
the climatological MLD in summer in a given biome: 15 m in the
NASPG, 14 m in the MED, 21 m in the STG, and 41 m in the SO.
The dotted green line, shown for the SO case only, illustrates the
behavior of the algorithm for a hypothetical MLD of 150 m.

the global climatologies we used the Monthly Isopycnal and
Mixed-layer Ocean Climatology (MIMOC) of Schmidtko
et al. (2013), downloaded from https://www.pmel.noaa.gov/
mimoc/, last access: 24 November 2020, which was repro-
jected onto the ORCA?2 horizontal grid. Although MIMOC
is based on an algorithm that evaluates several MLD criteria,
it has been shown to be globally consistent with the MLD
based on a 0.03 kg m 30y threshold (Holte and Talley, 2009;
Sallée et al., 2021). For the float time series, we used the
MLD defined by a 0.03 kg m~ threshold computed for each
individual profile.
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2.4 Ocean color satellite data

Satellite observations for the 1997-2019 period were down-
loaded from GlobColour (https://www.globcolour.info, last
access: 2 March 2020), a merged multi-sensor dataset.
Monthly sea-surface POC fields based on the algorithm of
Stramski et al. (2008) were used to compute monthly clima-
tologies that were subsequently reprojected onto the ORCA?2
grid.

2.5 PISCES simulations and matching with
observations

Simulations were run using the ocean biogeochemistry
model PISCESv2 (Aumont et al., 2015) with the RC param-
eterization for detrital POC (Aumont et al., 2017). The con-
figuration of PISCES used here has 24 tracers: two classes of
phytoplankton (“nanophytoplankton” and diatoms), detrital
particles (small and big), and zooplankton (micro- and meso-
zooplankton), plus 18 additional tracers that comprise dis-
solved inorganic macronutrients and iron, inorganic carbon
chemistry variables, dissolved organic carbon (DOC), and
different particulate stocks of iron and silica. Phytoplank-
ton growth depends on light, inorganic nitrogen, phosphorus,
and iron, with an additional silicate requirement for diatoms.
Microzooplankton and mesozooplankton consume the two
classes of phytoplankton and small detrital particles with
different preferences, and mesozooplankton also predate on
microzooplankton. Detrital particles are produced through
the mortality of phytoplankton and zooplankton (which are
routed to small and large particles in different proportions),
zooplankton sloppy feeding, and DOC coagulation. Produc-
tion of large detritus also results from enhanced diatom mor-
tality upon bloom collapse, aggregation of small detritus, and
zooplankton mortality and fecal pellet production (the lat-
ter two derived from a closure term that accounts for unre-
solved higher trophic levels). Small and large detrital parti-
cles are nominally smaller/larger than 100 um and sink, re-
spectively, at 2 and 50md~!. Both small and large detri-
tus are remineralized by implicit bacterial activity and con-
sumed by flux feeding mesozooplankton. Remineralization
follows first-order kinetics with an initial specific rate “k” of
0.035d~" (at 0°C) for freshly produced detritus in the up-
per mixed layer. This k decreases with depth as an emergent
result of the RC parameterization. To account for bacterial
solubilization of aggregate-binding polymers, 10 % of the de-
graded large detritus is routed to small detritus (this fraction
is hard-coded based on previous calculations). The flux feed-
ing rate depends on the particles’ sinking flux and thus at-
tenuates the flux of large particles more strongly than that of
small particles. Additionally, a variable fraction of the large
detritus intercepted by flux feeders is fragmented into small
detritus. Flux feeding attenuates up to around 50 % of the
large detritus sinking flux through the top 500 m during in-
tense export events. Phytoplankton growth rates and reminer-
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alization rates increase with temperature with a Q19 of 1.9,
whereas zooplankton growth rates have a Q¢ of 2.14.

To evaluate PISCES simulations against in situ POC
measurements or their proxies, the correspondence between
PISCES tracers (in italics) and observed POC fractions must
be established. In this study we assumed that SPOC corre-
sponds to the sum of PISCES-simulated nanophytoplankton
(PHY), diatoms (PHY2), small detrital particles (POC), and
microzooplankton (ZOO), whereas LPOC corresponds to
the sum of PISCES-simulated large detrital particles (GOC)
and mesozooplankton (ZOO2) (Table 2). Total POC (TPOC)
corresponds to the sum of those six PISCES tracers or,
which is the same, SPOC 4 LPOC. Heterotrophic prokary-
otes (BACT) are not a prognostic tracer in PISCES and are
not explicitly included in our analysis. The correspondence
between observed and simulated POC fractions, explicit and
implicit, is discussed in Sect. 4.3.

2.5.1 PISCES 3D simulations vs. biome-aggregated
observations

For the global-scale comparison between PISCES outputs
and observations from BGC-Argo and satellites, we used
the simulation presented by Aumont et al. (2017), which
was forced by pre-computed dynamical fields from a pre-
industrial run of the ocean circulation model NEMO. Global
monthly climatological fields of the PISCES tracers were
used to compute seasonal climatologies of modeled SPOC,
LPOC, and TPOC. To enable a direct comparison to the
BGC-Argo observations, model output was resampled at lo-
cations where BGC-Argo profiles were available over the
2010-2019 period. Prior to comparison with modeled fields,
BGC-Argo observations were further screened to remove
“outliers” in each biome and season. Outliers were defined as
grid cells where the mean by,700 in the upper 50 m was above
the 95 % percentile or greater than 0.008 m~! (Briggs et al.,
2020). The same spatial resampling was applied to satellite-
retrieved POC.

2.5.2 PISCES 1D simulations vs. BGC-Argo coherent
annual time series (CATS)

A more detailed comparison was undertaken by matching
each of the CATS from individual BGC-Argo floats with
a PISCES water-column (“PISCES 1D”) simulation. The
match was based on the coherence between the seasonal cy-
cle of MLD observed by the float and the turbulent layer
simulated by NEMO. The pre-computed dynamical fields
used to evaluate the match-ups were obtained from an ocean-
only historical simulation (NEMO v3.6) at 1° resolution
with 75 vertical levels (ORCA1_L75 grid) forced with the
JRA-55 atmospheric reanalysis that covered the 1958-2018
period (Tsujino et al., 2020) following the OMIP2 proto-
col (Griffies et al., 2016). The float-observed MLD and the
NEMO-simulated turbocline depth (defined by turbulent ver-
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tical diffusivity > 5 x 10~*m? s~!) were compared over the
entire annual cycle in all the model grid cells that had been
visited by the float on a given year. The best model grid
cell was selected based on model-observation correlation,
root-mean-square error, and time lag in the onset date of
summer stratification. An example of the metrics used to
match NEMO dynamical fields and BGC-Argo MLD is pro-
vided in Figs. S1-S4. The associated model configuration
and datasets are available in public repositories (Galif et al.,
2021a and b).

PISCES 1D offline simulations were forced using the dy-
namical fields from the selected model grid cells. The same
annual forcing, corresponding to the year of the BGC-Argo
observations, was repeated over 5 simulation years. After
4 years of spin-up, the output from year 5 at a 5 d resolution
was used for the comparison to the BGC-Argo CATS. Initial
conditions (climatological fields of inorganic nutrients and
carbon chemistry variables) and boundary conditions (atmo-
spheric deposition) were the same as used for PISCES 3D
(Aumont et al., 2015, 2017). Nutrient fields were restored
towards the mean annual profile below 300 m. This proce-
dure avoided drift in nutrient stocks by replenishing the upper
ocean with the same amount of nutrients each year, resulting
in regular seasonal cycles after 1 year and identical cycles
from year 4 onwards.

3 Results
3.1 Climatological POC fields

This section describes the comparison among TPOC fields
estimated from BGC-Argo and satellite observations and
PISCES simulations across four ocean biomes. Figure 3
compares monthly climatologies at the sea surface (0-20 m),
Fig. 4 compares seasonal climatologies between 0—-1000 m,
and Fig. 5 displays skill metrics (Pearson’s correlation,
model / observations ratio, and bias) for the vertical profiles
shown in Fig. 4, as well as for the 1D simulations matched to
BGC-Argo CATS.

3.1.1 Seasonally stratified subpolar biomes

In the subpolar biomes, near-surface TPOC ranged between
~ 1 mmol m~3 in the winter months and around 5 (subantarc-
tic) or 10 (NASPG)mmolm™3 in early summer. In these
biomes, PISCES-simulated TPOC was within the 2.5-97.5 %
bounds of BGC-Argo observations for most months (Fig. 3).
During the apex of the bloom (months 5-7), however, median
PISCES estimates exceeded those obtained from BGC-Argo
(by ~ 80 %) and satellites (by ~ 15 %). In the subantarctic,
this pattern extended through the fall.

Satellite TPOC was in poor agreement with both PISCES
and BGC-Argo TPOC outside the apex of the bloom. Dur-
ing the winter semester (months 10-12 and 1-3), and con-
sidering only the subset of pixels observed by both satellites
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and floats, satellite TPOC exceeded BGC-Argo TPOC by a
factor of 6.1 (factor of 3.3) in the NASPG (subantarctic), as
discussed in Sect. 4.1.

PISCES reproduced the vertical decrease in TPOC con-
centration down to 1000m (Fig. 4) with generally good
skill (Fig. 5), but some misfits were observed. In the North
Atlantic subpolar gyre (NASPG), PISCES underestimated
TPOC through the epipelagic and the upper mesopelagic dur-
ing the winter by ~40 % (Fig. 4) because of too vigorous
convection in the NEMO dynamical fields that kept phyto-
plankton under insufficient light exposure. In the subantarc-
tic biome, simulated TPOC exceeded BGC-Argo estimates
in the upper portion of the mesopelagic layer in spring, and
the overestimation pattern propagated downwards through
the summer and fall. A similar but smaller overestimation
pattern was observed in the NASPG in summer and fall.

3.1.2 Permanently and seasonally stratified subtropical
biomes

In the oligotrophic biomes, monthly median surface TPOC
displayed low seasonal amplitude. Total POC concentra-
tions estimated from BGC-Argo data typically oscillated
around 2 mmol m_3, with a maximum / minimum ratio of
around 1.6 in the Mediterranean and 1.3 in the Atlantic and
Pacific subtropical gyres (STG). In the STG, satellite and
BGC-Argo TPOC were in good agreement, which was to be
expected because subtropical bpp700—-POC conversion factors
and satellite POC are based on the same study (Stramski et
al., 2008). By contrast, PISCES TPOC exceeded BGC-Argo
TPOC around 2-fold in the STG. In the Mediterranean, satel-
lite TPOC exceeded BGC-Argo TPOC by ~ 80 %, point-
ing to the differences in the respective POC estimation al-
gorithms. PISCES TPOC was nearly fourfold higher than
BGC-Argo TPOC at the surface in the Mediterranean, an
overestimation that results from unrealistic physics in that
basin caused by the too coarse (2°) model grid (Tonani et al.,
2008; Lebeaupin Brossier et al., 2011) (see Sects. 3.3 and
4.3). Vertical TPOC profiles evidenced the shortcomings of
PISCES simulations in the oligotrophic gyres. Compared to
BGC-Argo profiles, PISCES simulations produced too sharp
deep POC maxima and underestimated TPOC in the waters
above and below (Fig. 4). These mismatch patterns prompted
us to examine the seasonal cycles of POC in different biomes
in greater detail.

3.2 Coherent annual time series of SPOC and LPOC:
case studies

In this section we describe two CATS from BGC-Argo
floats and their PISCES 1D counterparts (Sect. 3.2.1). The
floats, identified by their World Meteorological Organiza-
tion (WMO) number, are nos. 6901486 in the NASPG (year
2015) and the 6901660 in the South Pacific STG (year 2017).
Float 6901486 represents the most productive conditions of

Biogeosciences, 19, 1245-1275, 2022



1254 M. Gali et al.: Oceanic POC from particulate backscattering vs. the PISCES model

?_ 0.1
€
o
©
€
€
10
— e
me— S —
e — ==
0.1

Variable

= BGC-Argo TPOC

=== GlobColour TPOC
PISCES D

== . PISCES D+P

= PI|SCES D+P+Z

1234567‘89101112 123 456 7 8 9101112

Month

Figure 3. Monthly sea-surface particulate organic carbon (POC) concentration at the sea surface. Shown are POC estimates based on BGC-
Argo (derived from the backscattering coefficient at 700 nm, bpp700), satellite (GlobColour), and PISCES. PISCES TPOC results from the
addition of the detritus (D), phytoplankton (P), and zooplankton (Z) tracers (Table 2), which are shown here as cumulative sums. Satellite
data not shown for months when more than half of the ocean pixels could not be observed because of low solar elevation at high latitudes.

our dataset, with annual median (maximum) Chl a of 0.60
(10.7)mgm—3 and TPOC of 5.5 (16.7)ymmolm~> in the
near-surface layer (0-20 m). By contrast, float 6901660 rep-
resents the most oligotrophic waters, with annual median
(maximum) Chl a of 0.011 (0.036) mg m—3 and TPOC of 1.8
(2.5)mmolm~ in the near-surface layer. In Figs. S5-S10
we provide additional examples of the CATS-PISCES 1D
match-ups in the four biomes and in two subregions within
the NASPG.

3.2.1 Labrador Sea (North Atlantic subpolar gyre)

Float 6901486 was deployed in June 2013 close to the
Reykjanes Ridge in the Irminger Sea, NW Atlantic subpo-
lar gyre. After drifting SW carried by the East Greenland
Current, the float was trapped in the Labrador Sea cyclonic
circulation between 2014 and July 2017, when it stopped
communication after completing 344 profiles (cycles). Dur-
ing its multi-year sampling in the Labrador Sea (56-60° N
latitude and 48-54° W longitude), over a bottom depth of
around 3500 m, the float showed stable physical and bio-
optical records at 1000 m, broken only by winter convec-
tion events, and recurring annual patterns of spring—summer
phytoplankton blooming and vertical carbon export as de-
picted by Chl a and POC profiles. Here we describe the
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year 2015 (Fig. 6), characterized by deep convection dur-
ing February and March, when the MLD generally exceeded
1000 m (Fig. S1). Epipelagic TPOC increased rapidly upon
water-column re-stratification in mid-April and peaked in
mid-May. A secondary bloom peaked in late June after a tran-
sient MLD deepening caused by stormy weather. Epipelagic
TPOC decreased progressively thereafter until a small bloom
was observed in October linked to pycnocline erosion. This
bloom terminated rapidly and epipelagic TPOC reached the
baseline level in late December. The SPOC fraction dom-
inated epipelagic TPOC all year round, and the highest
LPOC fractions of nearly 20 % were recorded at the apex of
the spring—summer blooms. Distinct vertical particle export
events were observed in May and June, matching the sur-
face phytoplankton blooms, and August, when nutrient lim-
itation likely triggered bloom collapse. These export pulses
produced synchronous increases in SPOC and LPOC through
the mesopelagic layer, though with different magnitudes. Af-
ter reaching relative minima in October, mesopelagic SPOC
and TPOC increased again in November, but they showed
different vertical patterns.

The matching PISCES 1D simulation captured the patterns
of SPOC and LPOC with good skill in the epipelagic and,
to a lesser extent, the mesopelagic layer (Fig. 6). Excellent
correlation (r = 0.92) and bias (—0.5 %) between BGC-Argo
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Figure 4. Seasonal 0-1000 m profiles of particulate organic carbon (POC). BGC-Argo estimates of TPOC (based on the backscattering
coefficient at 700 nm, bpp700) are represented with the median and the 0.025-0.975 quantiles within each biome. PISCES TPOC results from
the addition of the detritus (D), phytoplankton (P), and zooplankton (Z) tracers (Table 2), which are shown here as cumulative sums.

and PISCES were found for vertically integrated epipelagic
TPOC (Fig. 6i). A delayed start of the bloom was observed
in the simulation, which can be partly attributed to a de-
lay of around 1 week in the onset of permanent stratifica-
tion in the model. It is also plausible that modeled phyto-
plankton reacted too weakly to the cessation of deep con-
vection, which was captured by alternative MLD metrics
in BGC-Argo profiles (Fig. 6a and b). Despite the general
good agreement between observed and simulated SPOC, the
model produced a conspicuous plume of SPOC that sank
from the surface spring bloom into the mesopelagic layer,
at the prescribed constant rate of 2md~!, which was not
found in the observations. At the core of this plume, PISCES
POC exceeded BGC-Argo SPOC more than 2-fold. A similar
model—-observation mismatch was observed in all the north-
ern and southern subpolar CATS as well as in some CATS in
the Mediterranean (Figs. S5-S8 and S10). On average, sim-
ulated LPOC exceeded BGC-Argo LPOC by 36 % and 96 %
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in the epi- and mesopelagic layers, respectively. The largest
overestimation was observed during the midsummer export
event. On the other hand, LPOC underestimation was found
during the May bloom between 0—400 m.

PISCES qualitatively reproduced the late summer peak of
mesopelagic LPOC, which was observed in all the subpolar
North Atlantic CATS. By contrast, it failed to reproduce both
the decrease in SPOC and LPOC in fall between 600-800 m
and the LPOC increase below 800 m. The latter occurred in
6 out of 11 CATS in the NASPG, all located in the Labrador
Sea. The apparent decoupling of deep mesopelagic LPOC
from the overlying water column may be related to the in-
sufficient temporal resolution of BGC-Argo profiling during
that period compared to LPOC sinking speed or reflect LPOC
export events from surface waters not located vertically over
the float (Siegel and Deuser, 1997).

Biogeosciences, 19, 1245-1275, 2022
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Figure 5. Summary of skill metrics for the comparison between PISCES and BGC-Argo particulate organic carbon (POC) profiles in different
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levels: using all the grid cells with matching BGC-Argo profiles in a given biome (circles), and after averaging all the documented grid
cells within the biome (empty triangles), as displayed in Fig. 4. In the case of the PISCES 1D simulations, statistics are computed for each
individual CATS separately (small crosses), and the biome-season median is also shown (small filled triangles).

3.2.2 South Pacific subtropical gyre

Float 6901660 was deployed in March 2015 in the west-
ern South Pacific STG and drifted westwards until it de-
flected SW while approaching Tahiti. As of March 2021, the
float was still active and had completed 244 cycles with sta-
ble continuous records at the 1000 m drift depth. Between
July 2017 and June 2018 (18-21° S latitude and 148—157° W
longitude), the period selected for the CATS analysis, the
BGC-Argo profiles portrayed a stably stratified water column
typical of the core of the subtropical gyres (Fig. 7). Vertical
mixing events that reached a depth of around 100 m were ob-
served in July, August, and October. However, their effect on
surface SPOC was hardly noticeable, indicating that turbu-
lent entrainment of nutrients was too weak to stimulate new
production significantly. A deep Chl @ maximum was present
all year round between 150 and 200 m as identified by the
maximum Chl a gradient. This Chl ¢ maximum did not trans-
late into a deep POC maximum. The fraction LPOC / TPOC
was consistently around 6 % in the epipelagic and 12 % in
the mesopelagic according to the vertically integrated stocks.
The vertical-temporal distribution of LPOC was patchy in
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the lower mesopelagic (500—1000 m), perhaps reflecting the
difficulty of detecting rare aggregates from byp700 spikes.

The epipelagic TPOC stock (driven by SPOC) simulated
by PISCES matched the observations well, with a high tem-
poral correlation coefficient (r = 0.69; Fig. 7i) despite the
low seasonal variability in this tropical setting. PISCES over-
estimated SPOC between the base of the mixed layer and
the deep Chl ¢ maximum and underestimated SPOC be-
low it. Thus, the low mean bias of epipelagic SPOC (9 %)
resulted from these mutually compensating biases. In the
mesopelagic layer, vertically integrated PISCES SPOC was
on average 45 % lower than BGC-Argo SPOC and showed
low negative temporal correlation to the observations. Re-
garding LPOC, the simulated stock was nearly twice as large
as BGC-Argo estimates in the epipelagic, with the largest
overestimation seen in the deep Chl ¢ maximum. In the
mesopelagic, PISCES LPOC exceeded BGC-Argo estimates
by 25 % on average. Despite these deviations, PISCES simu-
lations supported the increase in the LPOC / TPOC fraction
between the epipelagic and the mesopelagic layers deduced
from BGC-Argo profiles.
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Figure 6. Temporal evolution of small and large POC concentrations (SPOC and LPOC, respectively) in the North Atlantic subpolar gyre
(NASPG). Panels (a) and (d) show observations from the BGC-Argo float WMO 6901486, which drifted in the Labrador Sea during the
year 2015. Panels (b) and (e) show the corresponding PISCES 1D simulation. Panels (c¢) and (f) show the ratio between the model and the
observations and the corresponding correlation coefficient and RMSE in log; scale. Solid lines depict the observed MLD (a and d, in gray)
and the simulated turbocline depth (b and e, in black). In panels a and d, the dotted lines show the depths of the maximum Chl @ fluorescence
gradient and the dashed lines an alternative MLD estimated with a 0.005 °C temperature threshold that captures weak stratification. Panels (g),
(h), and (i) show the vertically integrated SPOC and LPOC stocks in different layers: 0—200 m or epipelagic (g), 200—1000 m or mesopelagic
(g), and 0-1000 m (i). On top of panels (g)—(i) we show the correlation and mean bias between BGC-Argo and PISCES total POC (TPOC).

3.3 Coherent annual time series of SPOC and LPOC:
generalized approach

Although each of the 50 CATS included in this study has
unique features, some of the misfit patterns between PISCES
and BGC-Argo data described in the previous section are
common to most CATS in a given biome or, more broadly,
in subpolar vs. subtropical biomes. In this section we gen-
eralize the quantitative comparison between the 50 BGC-
Argo CATS and their PISCES 1D counterparts across the
four biomes. We consider separately the epipelagic and
mesopelagic domains, focusing on mean annual SPOC and
LPOC standing stocks (Fig. 8), the SPOC / TPOC fraction
(Fig. 9), and the mesopelagic Teff of SPOC and LPOC
(Fig. 10).

Epipelagic SPOC stocks ranged between 193—
425 mmol C m—2 (1.0—2.1mm01Cm_3 in concentration
units) according to BGC-Argo observations. The SPOC
range in the corresponding PISCES 1D simulations was

https://doi.org/10.5194/bg-19-1245-2022

282-537 mmol Cm~2 (1.4-2.7 mmol C m~3). Although the
ranges of the different biomes overlapped, smaller stocks
were usually found in the more oligotrophic (STG and
Mediterranean) biomes. The agreement between simulated
and observed epipelagic SPOC was better in the STG
and NASPG biomes, whereas simulated epipelagic SPOC
exceeded observations by around 50 % in the Mediterranean
and subantarctic biomes. Simulated and observed stocks
were positively correlated (r = 0.45, p =9 x 107).

In the mesopelagic domain, observed and simulated SPOC
stocks ranged between 145-283 and 105-308 mmol C m~2,
respectively (corresponding to concentration ranges of 0.18—
0.35 and 0.13-0.39 mmol Cm~3). The correlation between
simulated and observed mesopelagic SPOC stocks was not
significant (r = —0.08, p = 0.55). PISCES SPOC was sim-
ilar to or slightly higher than BGC-Argo SPOC in the sub-
polar biomes but up to 2-fold lower in the STG and Mediter-
ranean biomes, as previously shown in Figs. 4 and 7.

Biogeosciences, 19, 1245-1275, 2022
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Figure 7. Temporal evolution of small and large POC concentrations (SPOC and LPOC, respectively) in the South Pacific subtropical gyre
(STG). Panels (a) and (d) show observations from the BGC-Argo float WMO 6901660, which drifted westwards near Tahiti, during the
year 2016. Panels (b) and (e) show the corresponding PISCES 1D simulation. Panels (c¢) and (f) show the ratio between the model and
the observations and the corresponding correlation coefficient and RMSE in logq scale. Solid lines depict the observed MLD (a and d,
in gray) and the simulated turbocline depth (b and e, in black). In panels (a) and (d), the dotted lines show the depths of the maximum
Chl a fluorescence gradient and the dashed lines an alternative MLD estimated with a 0.005 °C temperature threshold that captures weak
stratification. The bottom panels show the vertically integrated SPOC and LPOC stocks in different layers: 0—200 m or epipelagic (g), 200—
1000 m or mesopelagic (g), and 0—1000 m (i). On top of panels (g)—(i) we show the correlation and mean bias between BGC-Argo and

PISCES total POC (TPOC).

Epipelagic LPOC stocks were smaller and showed wider
inter-biome variability than SPOC stocks, with around 2-fold
higher LPOC in subpolar biomes. The positive correlation
between simulated and observed LPOC was highly signifi-
cant (r =0.78, p =2 x 10~!1). Yet, PISCES LPOC (range
19-83mmol Cm~2, 0.10-0.42mmol Cm™3) typically ex-
ceeded BGC-Argo LPOC (range 27-119 mmol C m~2, 0.14—
0.60 mmol C m—) by around 50 % and up to 3-fold for some
CATS. A lower but still highly significant correlation was
found in the mesopelagic (r =0.64, p =5 x 10_7), where
PISCES LPOC was usually within a factor of 1.5 of observa-
tions, except for the NASPG biome where it exceeded BGC-
Argo LPOC around 2-fold.

The SPOC / TPOC fraction showed low variability in the
epipelagic layer (Fig. 9), with a median (range) of 89 %
(84 %94 %) and 85 % (75 %-91 %) for BGC-Argo and
PISCES, respectively. The simulated SPOC / TPOC fraction
was within 10 % of BGC-Argo estimates for all biomes

Biogeosciences, 19, 1245-1275, 2022

except the NASPG, where PISCES tended to underesti-
mate the observed SPOC / TPOC fraction. A significant pos-
itive correlation (r =0.56, p =2 x 10_5) was found be-
tween simulations and observations in the epipelagic layer.
The SPOC / TPOC fraction was lower in the mesopelagic
layer according to both BGC-Argo (75 %—90 %) and PISCES
(66 %—85 %) estimates. In this case, CATS from the sub-
antarctic biome showed excellent model-observation agree-
ment, whereas PISCES was 20 % lower than BGC-Argo
estimates in the other three biomes. No significant cor-
relation was found between the simulated and observed
SPOC / TPOC fraction in the mesopelagic.

Transfer efficiency (Teff; Fig. 10) was computed as the ra-
tio between the SPOC or LPOC concentrations in the depth
bins centered at 697 m (range 662—734 m) and 200 m (range
190-210 m). The shallowest bin corresponds to the bottom
of the epipelagic layer, and the 500 m interval was chosen
following previous studies (Lam et al., 2011; Dall’Olmo and

https://doi.org/10.5194/bg-19-1245-2022
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Mork, 2014). Different depth ranges between 180 and 800 m
gave similar Teff patterns. The analysis of Teff yielded some
important insights:

1. SPOC and LPOC showed similar Teff, both in the obser-
vations (medians of 0.39-0.41) and in the model (me-
dians of 0.27-0.29). Similar patterns were found when
each biome was considered separately.

2. BGC-Argo Teff usually exceeded PISCES Teff and
spanned a wider range. The best agreement was gener-
ally found in the STG and the subantarctic biomes, and
the poorest agreement occurred in the Mediterranean
where BGC-Argo Teff was typically twice the modeled
Teff.

3. Distinct patterns were found for four CATS in
the Labrador Sea (NASPG) characterized by high
epipelagic TPOC (>440mmolCm™—2). In this sub-
set, PISCES and BGC-Argo Teff were in good agree-
ment for SPOC (median 0.40 for both), whereas, for
LPOC, PISCES Teff (0.36-0.45) doubled BGC-Argo
Teff (0.12-0.28), which had some of the lowest values
of the dataset. These CATS showed a LPOC minimum
at 600-800m in fall, which PISCES could not repro-
duce (Sect. 3.2.1).

https://doi.org/10.5194/bg-19-1245-2022

4. PISCES and BGC-Argo Teff showed a weak positive
correlation for SPOC (r = 0.26, p = 0.07), with some
improvement when the Labrador Sea “outliers” were re-
moved (r = 0.34, p = 0.02). A negative correlation be-
tween simulations and observations was found in the
case of LPOC Teff (r = —0.29, p = 0.04), which be-
came non-significant without the Labrador Sea outliers
(r=0.04, p =0.81).

Our observational estimates are sensitive to the choice
of bpp700—POC conversion factors. These factors are espe-
cially uncertain in the mesopelagic due to data scarcity,
which prompted us to use a constant global value for “c”
in Eq. (1) (Fig. 2); ¢ = 1000 mmol Cm™? is the asymptotic
POC-byp700 conversion factor below 1000 m, taken from Ce-
tini¢ et al. (2012). To address this uncertainty, we conducted
sensitivity tests where ¢ was halved or doubled. The result-
ing range of 500-2000 mmol C m~? is probably generous, as
indicated by our indirect estimates based on the studies of
Bishop (1999) and Bishop et al. (1999) (Appendix A). As
expected, changing ¢ had little effect on epipelagic POC, a
larger effect on mesopelagic POC and Teff, and no effect
on the SPOC / TPOC fraction (because the same conversion
factor is used to estimate SPOC and LPOC). Halving c re-
sulted in steeper POC profiles, which brought mesopelagic

Biogeosciences, 19, 1245-1275, 2022
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Figure 9. Mean annual SPOC / TPOC fractions. BGC-Argo versus
PISCES scatterplots are shown for the epipelagic (0-200m) and
mesopelagic (200-1000 m) layers. Reference lines indicate a range
of model : data ratios, from 1 : 1 (perfect correspondence) to a factor
of 1.5 or its inverse. Biomes are distinguished with different colors,
and the size of the circles is proportional to the annual mean TPOC
stock in the epipelagic layer, used as an indicator of productivity.

SPOC closer to the 1 : 1 line in the STG and Mediterranean,
at the expense of increasing the SPOC bias in the subpolar
biomes and that of LPOC everywhere (Fig. S11). Doubling
¢ caused a less steep vertical decrease in BGC-Argo POC,
which overall worsened the model—-observation agreement in
the mesopelagic (Fig. S12), except for LPOC stocks in the
NASPG.

4 Discussion

4.1 Towards a globally consistent picture of POC fields
in observations and models

Global quantification of POC stocks through the water col-
umn has been elusive until recently because of data sparse-
ness and limitations of model parameterizations, both of
which are especially severe below the epipelagic. Our joint
analysis of PISCES simulations, satellite observations, and
over 70000 BGC-Argo vertical profiles reveals a globally
consistent picture across the epi- and mesopelagic layers
(Figs. 3-10). The global ocean stock of TPOC simulated by
PISCES amounts to 4 Pg C, shared in a proportion of 39 %
(1.6PgC), 25% (1PgC), and 36 % (1.4PgC) between the
epi-, meso-, and bathypelagic layers (Table 3; the bathy-

Biogeosciences, 19, 1245-1275, 2022

pelagic is defined here as 1000-5000 m to include the entire
model domain in the stock calculation).

The PISCES-simulated TPOC concentration is on aver-
age within a factor of 1.56 (1.42) of BGC-Argo estimates
for the median (mean) seasonal biome profiles shown in
Fig. 4 (Mediterranean excluded). Aumont et al. (2017) re-
ported a similar reliability index of 1.6 for the comparison
between PISCES and in situ chemically determined POC
profiles. Thus, our evaluation lends further confidence to the
POC reactivity continuum parameterization implemented in
PISCES, which represents both SPOC and LPOC as a mix-
ture of fractions with different lability (Aumont et al., 2017),
in globally representative biomes.

The epipelagic TPOC stock simulated by PISCES,
1.6 PgC, is comparable to previous observational estimates.
Gardner et al. (2006) estimated the global POC stock within
the first optical attenuation depth using a compilation of in
situ POC and ¢, measurements leveraged by ocean color
satellite data. They obtained a global stock of 0.43 PgC, and
invoked some scaling arguments to estimate that the total
POC stock down to middle-mesopelagic “background lev-
els” would range from 1 to 2 Pg C. Stramska (2009) obtained
a larger global epipelagic POC stock of 1.8-2.3 PgC using
the satellite algorithm of Stramski et al. (2008). Our match-
up analysis indicates that satellite TPOC exceeds BGC-Argo
estimates by up to 7-fold at high latitudes outside of the
summer season (Fig. 3). This deviation is well beyond the
nominal uncertainty of the satellite POC product (< 30 %)
and the range of observed POC / byp700 Tatios at the sea sur-
face (Fig. 2). Therefore, we conclude that the algorithm of
Stramski et al. (2008) overestimates POC at high latitudes
in winter, an issue that deserves further investigation. Poten-
tial explanations are the satellite algorithm being calibrated
mostly against samples from lower latitudes (50° N=30° S),
or its sensitivity to the differential atmospheric attenuation of
blue and green wavelengths at low solar elevation.

Recently, Evers-King et al. (2017) calculated the global
POC stock in the upper mixed layer using several satel-
lite algorithms (including that of Stramski et al., 2008)
and indicated that 0.77-1.3 Pg C was a plausible range. Our
PISCES-based estimate for the mixed-layer POC stock, us-
ing the same MLD climatology (Schmidtko et al., 2013),
is 0.58 Pg C. The lower PISCES-derived estimate may arise
from the combination of POC overestimation by some satel-
lite algorithms, discussed above, with PISCES’ tendency
to underestimate mixed-layer POC in oligotrophic areas
(Figs. 4 and 7). This negative bias in PISCES is compen-
sated by a positive POC bias in deep Chl ¢ maxima (be-
low the MLD), resulting in smaller deviations between BGC
Argo and PISCES over the entire epipelagic layer in the STG
biome (Figs. 8 and S13). Given the limited coverage of in situ
seawater sampling and satellite observations in some regions
and seasons (Evers-King et al., 2017), further intercompari-
son between those observations, BGC-Argo data, and models
is needed to better constrain epipelagic POC stocks.
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POC in the lower mesopelagic and below has been tradi-
tionally treated as a “background” signal (Bellacicco et al.,
2019; Gardner et al., 2006; Loisel and Morel, 1998). This
approach is convenient for studies that focus solely on upper-
ocean processes because POC concentration decreases expo-
nentially with depth. Yet, our global estimates and several
previous studies highlight the need to turn our attention to
the large POC stocks (> 2 Pg C) that reside in the meso- and
bathypelagic layers, whose dynamics are still poorly under-
stood. In line with previous studies (Dall’Olmo and Mork,
2014; Poteau et al., 2017), we showed that mesopelagic POC
exhibits clear seasonal cycles in productive regions (Figs. 6,
S5-S7, and S10), owing to their connection with the upper-
ocean through numerous biological and physical processes
(Boyd et al., 2019; Briggs et al., 2020). Despite being less
reactive on average than upper-ocean POC, meso- and bathy-
pelagic organic particles are microbial hotspots that host key
biogeochemical functions, from enzymatic decomposition of
macromolecules (Arnosti et al., 2012; Baltar et al., 2010a, b)
to aerobic and anaerobic respiration (Bianchi et al., 2018;
Karthiuser et al., 2021) and chemosynthesis (Aristegui et
al., 2009; Herndl and Reinthaler, 2014; Pachiadaki et al.,
2017). Moreover, mesopelagic particles are consumed by up-
per trophic levels that sustain fisheries (Bode et al., 2021;
Woodstock et al., 2021).

In situ bio-optical measurements are poised to play a key
role in monitoring marine POC stocks in layers that can-
not be accessed by remote sensing. For example, Sauzede
et al. (2020) merged BGC-Argo and satellite observations to
obtain a dynamic 3D view of particle backscattering. Using
a data-driven machine learning approach, they were able to
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predict the profiles of logiobpp700 measured by two BGC-
Argo floats in the NASPG and STG biomes (R? of ~0.85
and mean absolute percentage deviation of ~ 12 %) from the
sole knowledge of physical properties of the water column
and surface ocean color (remote-sensing reflectance). Their
estimates were recently extended to POC (Sauzede et al.,
2021), which can be of great utility for constraining bio-
geochemical models. Here we took an entirely different ap-
proach, based on converting available byp700 data to POC
with a simple empirical algorithm (Fig. 2) and then com-
paring it to the outputs of the PISCES model. Our PISCES-
based estimates obtained a median R?> =0.86 and mean
absolute percentage deviation of 38 % (5d depth-binned
log1oPOC; 50 CATS from 28 globally distributed floats).
This good skill is remarkable because neither the empirical
POC estimates nor PISCES were tuned to maximize their
mutual agreement. Still, our study shows that the compari-
son of bio-optics-derived POC measurements and PISCES is
affected by different types of uncertainty that we analyze in
the following sections.

4.2 Bio-optical underpinnings of POC fields based on
BGC-Argo observations

Accurate interconversion between bio-optical variables and
concentrations is key for constraining ocean particle dynam-
ics and their model representation (Bishop et al., 2004; Gard-
ner et al., 2006). Here we discuss the processes that appear to
drive, to first order, the variability of the POC / bpp700 ratios
embodied in Egs. (1) and (2) (Fig. 2; Appendix A) and the
main strengths and weaknesses of our scheme.

Biogeosciences, 19, 1245-1275, 2022
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Table 3. Global and regional POC stocks, concentrations, and fractions in different layers as simulated by PISCESv2_RC.

M. Gali et al.: Oceanic POC from particulate backscattering vs. the PISCES model

Variable Depth range (m) Open-ocean biomes Globald
Ice SPSS? STSS® STPS®  Equatorial

Area (%) 6.5 143 12.0 46.0 9.2 100

TPOC 0-200 73 281 263 263 154 1590

(TgO) 200-1000 57 221 173 397 90 1006

1000-5000 80 274 237 633 144 1438

TPOC 0-200 1.18 222 2.57 1.66 1.99 1.85

(mmol Cm—3) 200-1000  0.29 0.48 0.44 0.25 0.29 0.33

1000-5000 0.14 0.18 0.17 0.10 0.13 0.13

SPOC® 0-200 72 81 79 89 84 81

(%) 200-1000 75 75 70 79 71 75

1000-5000 81 80 77 79 75 79

Phytof (%) 0-20 45 45 41 58 49 50

Diatoms® (%) 0-20 28 21 14 3 4 14

Non-phyto! (%) 0-20 55 55 59 42 51 50

Detritus! (%) 0-20 15 25 31 26 31 24

0-200 36 43 48 44 50 42

200-1000 62 67 70 78 78 70

@ Subpolar seasonally stratified. b Subtropical seasonally stratified. © Subtropical permanently stratified. d Larger than the sum of
biomes because the latter do not include coastal areas. © SPOC / TPOC. f (PHY + PHY?2) / TPOC. & PHY2 / TPOC.
h (POC+ GOC + Z0O0 + Z002) ] TPOC. ' PISCES detritus (POC + GOC) divided by TPOC. Heterotrophic prokaryotes are de

facto included in TPOC.

Changes in the trophic status appear as the primary driver
of POC / byp700 variability in the epipelagic layer (Cetini¢ et
al., 2012; Fig. Al). Productive waters host greater absolute
and relative abundance of diatoms (Uitz et al., 2006) (see also
Table 3), which have lower POC per cell volume (Menden-
Deuer and Lessard, 2000) and are covered with silica frus-
tules that may scatter light more efficiently than naked cells
(Twardowski et al., 2001), altogether resulting in lower POC
content per unit byp700 (Cetini€ et al., 2012; Oubelkheir et
al., 2005). The proportions of different autotrophic and het-
erotrophic organisms and detritus are also likely to vary with
upper-ocean productivity (see Sect. 4.3). If the mass-specific
backscattering coefficients of these components were bet-
ter known, their systematic variation patterns could be used
to develop a continuous formulation for POC / byp700 rather
than the regionalized conversion factors used here. However,
POC / bppr00 is influenced by other seawater constituents
whose occurrence is less predictable, foremost, biogenic cal-
cite (e.g., from coccolithophores) and desert dust (Claustre,
2002; Loisel et al., 2011), both of which enhance bpp700.
In our dataset, we detected a CATS (float WMO 6901647,
year 2016) that was strongly affected by coccolith backscat-
tering in the Iceland Basin, an area known for its massive
coccolithophore blooms (Moore et al., 2012). This CATS
was an obvious outlier in our model-observation scatterplots
(Fig. S13), likely because the enhancement of by,700 caused
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by coccoliths had no translation in TPOC, and was therefore
removed from the analysis.

The decrease in POC /byp700 along the vertical axis
(Fig. 2) reflects the increase in the particles’ index of re-
fraction, hence the backscattering ratio (Cetinic et al., 2012;
Nencioli et al., 2010). This change is likely caused by the
remineralization of organic materials (Martin et al., 1987)
that leaves a higher mineral fraction (Honjo et al., 2008;
Lam et al.,, 2011) and the increase in the structural com-
plexity of aggregates with depth (Organelli et al., 2018).
According to our sensitivity analysis (Figs. S11 and S12),
the prescribed exponential decrease in POC / byy700 towards
a constant POC / bpp700 (¢ = 1000mmolCm™~) at depths
> 1000 m provides a good compromise globally, given the
limited knowledge of mesopelagic POC / byy700 and its vari-
ability across regions. However, the comparison between
simulated and observed mesopelagic SPOC (and thus TPOC)
is more favorable in subpolar than in subtropical biomes.
In the latter, better model—observation agreement was found
when POC / byy700 was halved (¢ =500 mmolCm™—2). A
lower ¢ would also bring the simulated Teff for SPOC
and LPOC closer to BGC-Argo estimates. It is tempting
to hypothesize that lower latitudes have lower mesopelagic
POC / byp700 owing to the greater proportion of calcite (Fran-
cois et al., 2002; Honjo et al., 2008; Lam et al., 2011, 2015).
These hypotheses need further verification.
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Finally, the decrease in surface POC / byp700 With deeper
vertical mixing imposed by Eq. (2) partially reflects the dilu-
tion of surface particle assemblages by entrainment of deeper
waters (Lacour et al., 2019) with lower POC / byp700 (Bol
et al., 2018). Modulation of POC / byy700 by vertical mix-
ing improves the agreement between PISCES and BGC-Argo
data in regions with wide seasonal MLD amplitude such as
the NASPG. Still, our approach should be seen as a simplis-
tic first-order approximation, and alternative formulations
should be further evaluated when more data become avail-
able. For example, POC / byp700 might be kept constant re-
gardless of the MLD or estimated for each profile as the aver-
age within the mixed layer of the pre-computed POC / byy700
profile (Eq. 1). In both cases, however, POC / byp700 would
have to decrease abruptly below the mixed layer to meet
the low POC / byy700 in the mesopelagic, producing sharp
discontinuities that have not been observed. On the other
hand, the behavior prescribed by Eq. (2) may not be appro-
priate for situations when vertical mixing cannot erode the
seasonal thermocline or pycnocline because in such cases it
will entrain water from the deep Chl ¢ maximum, and not
mesopelagic water, to the upper mixed layer.

Our POC-byp700 conversion algorithm omits several other
sources of uncertainty. Foremost, it assumes that SPOC and
LPOC have the same POC / byp70 ratio, which largely cor-
responds to that of the more abundant SPOC (Figs. 6-8). In
addition, the in situ data used to parameterize Eqgs. (1) and
(2) are not free of uncertainty (Cetini€ et al., 2012; Lam et
al., 2011; Moréan et al., 1999; Organelli et al., 2018; Strub-
inger Sandoval et al., 2021). Despite these limitations, the
POC-byy700 conversion scheme used here provides POC es-
timates that are generally consistent with PISCES (Fig. 8)
and with previous assessments (Aumont et al., 2017). More-
over, this scheme allowed us to identify potential shortcom-
ings of satellite-based assessments (Evers-King et al., 2017;
Stramski et al., 2008). The development of more sophisti-
cated POC—bpp700 interconversion schemes is desirable and
would greatly benefit from the measurement of mass-specific
bio-optical properties of various seawater constituents across
different ocean basins and depths.

4.3 Correspondence between observed and simulated
POC fractions

An additional source of uncertainty in our analysis is the
imperfect match between the PISCES tracers and the ob-
servable POC fractions (Table 2). A positive aspect of our
evaluation is the reasonable agreement between the simu-
lated SPOC / TPOC fraction and the BGC-Argo estimates
based on the bpp7o0 spike signal (Fig. 9). Our estimates
converge to a global median value of 85 %, with 95 %
of the data between 69 %-92 %, fully within the range of
size-fractionated chemical POC determination (Aumont et
al., 2017, and references therein). Our SPOC / TPOC esti-
mates can also be compared to the suspended POC esti-
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mated with the marine snow catcher during spring in sub-
polar epipelagic and upper mesopelagic waters (Baker et al.,
2017). The slow-sinking POC measured by the marine snow
catcher should not be included in this comparison because
it sinks at around 18 md~!, a range more typical of parti-
cles > 100 um (Cael et al., 2021). The median 94 % of sus-
pended POC reported by Baker et al. (2017) is higher than
the 86 % (81 %) SPOC / TPOC estimated here from BGC-
Argo (PISCES) in the subpolar biome, suggesting further
comparison between different approaches is needed. The ten-
dency of SPOC / TPOC to decrease between the epipelagic
and the mesopelagic, found in both PISCES and BGC-Argo
data (Fig. 9, Table 3), was also reported in previous studies
(Aumont et al., 2017, and references therein; Organelli et al.,
2020), lending further confidence to our estimates. On the
other hand, the simulated partitioning of POC into different
living and detrital compartments is probably less realistic, as
discussed in greater detail below.

An aspect that deserves further attention is the partitioning
between phytoplanktonic (autotrophic), heterotrophic, and
detrital POC in the upper ocean. Unfortunately, this par-
titioning is far from being well established from observa-
tions. Using bio-optical data, Oubelkheir et al. (2005) es-
timated that detritus accounted for around 60 % of POC
across a wide range in ocean productivity, and 70 %—85 %
of POC was assigned to non-phytoplanktonic material (de-
tritus + heterotrophs). These percentages accord well with
those found by Claustre et al. (1999) in the tropical Pacific
(their Table 2; see also Organelli et al., 2020). By contrast,
Graff et al. (2015) found wide latitudinal variations in the
non-phytoplanktonic POC, increasing between ~ 20 % and
~ 80 % from the tropical to the temperate Atlantic. Bellaci-
cco et al. (2019) analyzed the covariation between byp700 and
Chl a in the (much larger) BGC-Argo dataset. They con-
cluded that the background byp700, defined as the byp700 that
does not covary with Chl a, decreases with productivity from
> 80 % in subtropical gyres to <20 % in the NASPG, with
a mean contribution of 65 % in oligotrophic areas. Although
the background byp700 fraction cannot be entirely assigned
to non-phytoplanktonic material, the biogeographic patterns
found by Bellacicco et al. (2019) are hardly compatible with
those found by Graff et al. (2015) or with a nearly con-
stant detrital fraction across biomes. The detrital and non-
phytoplanktonic POC fractions in PISCES near the sea sur-
face range, respectively, between 15 %—31 % and 42 %—59 %
(annual mean values by biome; Table 3). Although they are
within the full range of observations, these values suggest
that PISCES underestimates the percentage of detrital POC,
especially in oligotrophic waters. A deeper analysis, properly
matching observations and simulations over time and space,
should be undertaken to obtain a mechanistic understand-
ing of upper-ocean POC partitioning, with potential con-
sequences for remotely sensed POC export estimates (e.g.,
Siegel et al., 2014).
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PISCES bias may also arise from the inappropriate rep-
resentation of some POC reservoirs, such as heterotrophic
prokaryotes (bacteria and archaea, BACT in PISCES), which
have long been recognized as important contributors to the
suspended POC (Morel and Ahn, 1990; Gasol et al., 1997).
However, BACT are not explicitly modeled in PISCES as
prognostic tracers, meaning they are not interacting fully
with other tracers. Instead, they are diagnosed in the pro-
ductive surface layer from zooplankton biomass, based on
an old model version that had interactive BACT. Below this
layer, BACT biomass is propagated downwards with a power
function based on Aristegui et al. (2009), which resem-
bles a Martin curve (Martin et al., 1987), and is therefore
very sensitive to the reference depth (Zy) (Buesseler et al.,
2020). We find two main arguments against the inclusion
of PISCES-estimated BACT in our POC estimates with the
current model configuration. First, the empirical BACT es-
timation in PISCES has not been validated, to our knowl-
edge, and may introduce noise into the comparisons. Sec-
ond, PISCES-simulated POC already includes heterotrophic
prokaryotes because their biomass was not removed from the
in situ POC measurements used to adjust the POC parame-
ters in PISCESv2_RC (Aumont et al., 2017). In consequence,
adding BACT to SPOC causes overestimation of mesopelagic
POC (Figs. S14-S16) and can produce unrealistic temporal
patterns (Fig. S15). Nevertheless, we believe that inclusion of
prognostic bacteria would enable a more realistic simulation
of POC stocks, with the potential side effect of improving the
simulation of element fluxes in PISCES.

The comparison between simulated and observed LPOC
is a novel contribution of our study. The method of Briggs
et al. (2011, 2020), originally developed to study intense
POC export events, was here extended to estimate SPOC
and LPOC separately over the full annual cycle through the
epi- and mesopelagic domains. Our analysis shows that, de-
spite the mismatch in terms of concentration, the LPOC
derived from the spikes of high-resolution bio-optical pro-
files is strongly correlated to the PISCES-simulated LPOC
(r =0.78, r> = 0.61) along a wide trophic gradient (Fig. 8).
This result is encouraging and supports the more widespread
deployment of instruments that perform high-resolution bio-
optical sampling to shed light on the spatiotemporal dy-
namics of large aggregates and particles (Briggs et al.,
2020; Lampitt et al., 1993; Stemmann et al., 2008). On the
other hand, it is unclear to what extent the LPOC inferred
from the bpp700 spike signal is capturing mesozooplankton
biomass, in addition to aggregates. The exclusion of PISCES
mesozooplankton (ZOO2) from the comparison increases
model-observation mismatch, with BGC-Argo LPOC ex-
ceeding PISCES estimates around 2-fold, although the high
correlation remains (r = 0.76, p< 10719). Imaging devices
mounted on BGC-Argo floats may provide a more accurate
quantification of LPOC, allowing for the separation of de-
trital LPOC (Trudnowska et al., 2021) from mesozooplank-
ton and micronekton (Haéntjens et al., 2020) and the separa-
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tion and quantification of particle classes contributing to flux
across the complete particle spectrum (Bourne et al., 2021).

4.4 Importance of realistic physics and model
evaluation across scales

In Fig. 5, PISCES simulations and BGC-Argo observations
are compared using an array of skill metrics computed on
the seasonal vertical profiles of TPOC between 0—1000 m.
Starting with the 3D seasonal climatology, we observed that
the correlation between the median (aggregated) profiles was
generally better than the correlation between the spatially
collocated (non-aggregated) profiles within a given biome
and season (Fig. 5a), whereas no differences were found in
terms of dispersion metrics (Fig. 5b and c). The difference
in correlation was larger in subpolar biomes, suggesting that
the model—observation spatial mismatch was magnified in re-
gions with more energetic ocean dynamics and sharper phys-
ical and biogeochemical gradients, whose real-world loca-
tion may not be well reproduced by the ocean circulation
model used to force PISCES. For PISCES 1D simulations,
their correlation coefficients with their CATS counterparts
was usually in the high range of the correlation coefficients
obtained by the biome-median PISCES 3D profiles. In terms
of dispersion metrics, the ensemble of PISCES 1D simula-
tions showed wider dispersion, but the best 1D simulations
clearly outperformed the 3D simulation in a given region
and season. The better skill of 1D simulations was more ev-
ident during spring, a season characterized by the onset of
stable stratification after deep winter vertical mixing in mid-
dle and high latitudes. The greatest difference between 3D
and 1D simulations was found in the Mediterranean, high-
lighting the more realistic vertical mixing and upper-ocean
productivity in the 1D simulations.

Our cross-scale evaluation indicates how crucial it is to
evaluate model physics before extracting conclusions on bio-
geochemical model performance (Doney et al., 2004; Kriest
et al., 2020; Loptien and Dietze, 2019). In our 1D CATS
approach, the skill of PISCES simulations was maximized
by carefully matching observed and modeled vertical mixing
(Figs. S1-S4), which is a key driver of upper-ocean ecosys-
tems. This approach has a subjective component and may
also suffer from the idealized assumption that BGC-Argo
profiles reflect mostly vertical-scale processes, disregarding
horizontal advection (Alonso-Gonzalez et al., 2009). Yet, the
similar misfit patterns encountered for different CATS within
a given biome support the robustness of the 1D matching
approach (compare Fig. 6 versus Fig. S6 and Fig. 7 ver-
sus Fig. S9). To further evaluate this issue, we matched
different neighboring NEMO grid cells to the same in situ
CATS. Again, this exercise indicated that our main conclu-
sions are not sensitive to the choices made for 1D model-
observation matching (compare Figs. 6 and S5). Indeed, al-
ternative matching approaches can be devised, each of which
have advantages and pitfalls, for example (1) sampling the
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outputs of biogeochemical models at the locations visited by
BGC-Argo floats, which may require high-resolution mod-
els; (2) deploying virtual BGC-Argo floats (van Sebille et
al., 2018) and comparing them statistically to observations;
or (3) forcing 1D biogeochemical simulations with observed
physical fields, e.g., vertical mixing (Llort et al., 2015) or
light (Terzi¢ et al., 2019). As a general rule, the good skill
of the best PISCES 1D simulations (Fig. 5) indicates that
our CATS approach can be used to tease apart model-
observation misfits caused by the physical and biogeochem-
ical components, opening up new avenues for parameter op-
timization (Falls et al., 2022) and model development.

Our cross-scale evaluation is also informative as to the
spatiotemporal scales that can be addressed with a given
model setup. This matter was recently tackled by Bisson
et al. (2019) using the export production model of Siegel
et al. (2014), which is forced by satellite-derived primary
production. In particular, they showed that this diagnos-
tic model could be optimized to reproduce global clima-
tological patterns but exhibited poor skill when faced with
non-climatological datasets, which reflect local snapshots of
ecosystem functioning. Model evaluation at climatological
scales provides an incomplete picture, especially in produc-
tive regions where much POC export can take place dur-
ing intense but short-lived events (Briggs et al., 2020). Such
events are smoothed out when climatologies are computed,
and their coherence with the physical forcing is lost. Our
work shows that a prognostic model like PISCES can afford
both event-scale and climatological scale predictions. This
capability is important to test our process-level understand-
ing, which underpins climate change projections.

4.5 Joint use of BGC-Argo and models for
process-level understanding

Properly representing POC stocks is crucial for constrain-
ing epi- and mesopelagic carbon budgets and, ultimately,
estimating the strength of the BCP and predicting its fu-
ture evolution. The mismatch patterns between simulated
and observed POC profiles (Figs. 4, 6, and 7) indicate dif-
ferent types of model shortcomings in subpolar and sub-
tropical latitudes. The poorest agreement between PISCES
and BGC-Argo data is found when their respective esti-
mates of mesopelagic Teff are compared (Fig. 10), which
should prompt further research on this key descriptor of the
BCP, both in terms of POC fluxes (Buesseler et al., 2020)
and stocks (Lam et al., 2011; this study) and their relation-
ship with the structure and productivity of the upper-ocean
ecosystem.

In the subpolar biomes, we find discrepancies between the
patterns of SPOC and LPOC vertical export triggered by the
intense surface phytoplankton blooms typical of these wa-
ters (Figs. 6, S5-S7, and S10). The observed rapid SPOC
increase at depth cannot be explained by the SPOC gravita-
tional sinking, and fragmentation of rapidly sinking LPOC
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has to be invoked (Briggs et al., 2020). This fragmentation
may be caused by zooplankton feeding (Mayor et al., 2020;
Stemmann et al., 2004a, b; Stukel et al., 2019) and swim-
ming (Goldthwait et al., 2004), combined with bacterial hy-
drolysis of aggregate-binding polymers (Arnosti et al., 2012;
Baltar et al., 2010a), and turbulence at a high kinetic en-
ergy dissipation rate (Takeuchi et al., 2019). In relative terms,
mesopelagic SPOC increases less strongly than LPOC dur-
ing blooms (Fig. 61), which is consistent with SPOC being
a byproduct of the transformation of less abundant LPOC.
Fragmentation processes may supply fresher SPOC to the
mesopelagic, enhancing the coexistence of suspended par-
ticles with variable freshness (Alonso-Gonzalez et al., 2010;
Aumont et al., 2017) and overall contributing to POC rem-
ineralization (Giering et al., 2014; Mayor et al., 2020).

In the subtropical gyres and the most oligotrophic Mediter-
ranean waters, PISCES underestimates TPOC between 0—
1000 m except for the deep Chl @ maximum, where it over-
estimates TPOC. The prominent deep POC maximum sim-
ulated by PISCES is generally not found in observations
from the STG biome (Figs. 7 and S9), where deep Chl a
maxima generally reflect phytoplankton photo-acclimation,
not enhanced phytoplankton biomass (Cornec et al., 2021).
Thus, PISCES possibly overestimates the productivity of
deep Chl a maxima globally, indirectly causing stronger
nutrient limitation at the surface. Between the deep Chl a
maximum and 200 m, POC pools decrease more steeply in
PISCES than in BGC-Argo observations. Between 200 and
700 m, by contrast, simulated SPOC and LPOC Teff are only
10 % lower than observations, well within observation un-
certainty. Thus, the mesopelagic SPOC deficit simulated by
PISCES in the STG originates mostly through the insufficient
vertical POC export at 200 m depth. The Mediterranean rep-
resents a different case, whereby the large disagreement be-
tween PISCES and BGC-Argo Teff may result from either
poorly constrained POC / byp700, simulated POC dynamics,
or both. Thus, this region may provide a good test bed for
studying the role of the mineral fraction in the BCP, includ-
ing the controversial ballast hypothesis (Frangois et al., 2002;
Klaas and Archer, 2002; Passow, 2004).

In summary, the mismatch with observations suggests the
need to improve the representation of SPOC-LPOC inter-
conversion in PISCES. The size distribution of POC along
the vertical axis is a key variable for constraining POC bud-
gets because it reflects the interplay between gravitational
sinking, remineralization, trophic transfer, and 3D dynam-
ics including horizontal POC advection (Alonso-Gonzélez
et al., 2009; Boyd et al., 2019). In many instances (Fig. 9),
our analysis suggests that better model performance in the
mesopelagic may be achieved by increasing the net transfer
of LPOC to SPOC, e.g., through LPOC fragmentation, and
the Teff of both fractions. The vertical model—observation
mismatch patterns observed here emphasize that POC bud-
gets have to be computed with the highest vertical resolu-
tion affordable, or otherwise an apparent POC budget bal-
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ance may result from compensating imbalances in different
horizons (Giering et al., 2014; Marsay et al., 2015). The de-
tailed level of information available from BGC-Argo floats
may prove to be extremely valuable to help improve the POC
schemes embedded in models such as PISCES.

5 Conclusions and outlook

In this study we compared globally distributed POC obser-
vations between 0—1000 m made by BGC-Argo floats to the
predictions made by the PISCES model (PISCESv2_RC).
A subset of BGC-Argo floats profiling at high vertical res-
olution enabled us to analyze small and large POC sepa-
rately. The comparisons rely on a proposed new scheme for
converting a bio-optical measurement (bpp700) to POC. Al-
though PISCES recreates the main features observed in sub-
polar and subtropical biomes with good skill, the comparison
is still hampered by (1) spatial and temporal variability in
POC / byp700 conversion factors, (2) mismatches in observed
and simulated physics, and (3) imperfect correspondence be-
tween observed and simulated POC fractions. An evalua-
tion of these uncertainties allowed us to detect limitations of
the biogeochemical model parameterizations. Some limita-
tions may be tackled by optimizing model parameters (e.g.,
particle sinking and remineralization rates), whereas others
may require changes in model structure, for example the rep-
resentation of zooplankton feeding on, and transformation
of, mesopelagic particles (Mayor et al., 2020). The descrip-
tive work and model—data matching strategies presented here
pave the way towards the use of BGC-Argo observations for
data assimilation, parameter optimization (Falls et al., 2022),
and, ultimately, model development.

Widespread use of BGC-Argo data for understanding POC
budgets and the BCP can complement classical model con-
straints based on vertical POC fluxes and ocean-interior nu-
trient remineralization. Merging of BGC-Argo and satellite
data streams through data-driven approaches — which allow
for great flexibility — and mechanistic models — which pro-
vide process-level understanding — can soon provide us with
a high-resolution 4D view of the oceanic carbon cycle. Fur-
ther work is granted to investigate POC dynamics through a
combination of PISCES, autonomous observations, and ship-
based observation programs (e.g., GEOTRACES; Lam et al.,
2015) and data compilations (Mouw et al. ,2016; Evers-King
et al., 2017).

Below we list several research priorities, whose implemen-
tation would advance the study of the biological carbon pump
through the synergies between BGC-Argo observations and
modeling.

— Observations

— High-resolution bio-optical profiles are indispens-
able for process-level understanding. A combina-
tion of low- and high-resolution sampling in sepa-
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rate or individual floats (e.g., burst sampling) may
provide a good compromise between float lifetime
and observation capabilities.

— More in situ measurements are needed to constrain
POC estimation from bio-optical variables, espe-
cially in meso- and bathypelagic waters. The ad-
dition of transmissometers may enable more accu-
rate POC quantification (Bishop, 1999) and particle
characterization (Boss et al., 2015).

— The inclusion of new types of sensors (Claustre
et al., 2020) and the extension of measurements
into the bathypelagic (Deep-Argo; Roemmich et
al., 2019) hold high potential for advancing BCP
research.

— Further developments in BGC-Argo data process-
ing are needed, with the final goal of supplying a
wide public with user-friendly data products in near
real time.

— Models

— Evaluating model skill at resolving POC stocks, in
addition to fluxes, is key to ensure that models re-
produce observed fluxes for the right reasons.

— Evaluation against globally consistent datasets is
critical to avoid model overtuning towards small,
sparse datasets, such as vertical POC fluxes.

— Continuous development of schemes representing
particle dynamics across the entire size spectrum is
needed to constrain ecologically, climatically, and
economically relevant element fluxes.

— Extension of prognostic modeling of bio-optical
properties (Dutkiewicz et al., 2019) into the meso-
and bathypelagic layers would enable direct match-
ing with measurements made from autonomous
platforms, facilitating their assimilation by models.

— Joint planning of field observation and modeling
projects, from their very conception and through their
entire development, is key to fully exploit the capabili-
ties of each approach.

Appendix A: Calculation of POC / byp7¢9 ratios and
related optical considerations

POC / bpp700 ratios at the sea surface were obtained from
the slope of the linear regression between POC and bpp700
(Table Al). Our approach essentially follows the literature
compilation made by Cetini¢ et al. (2012). The linear re-
gressions generally yielded small and non-significant y inter-
cepts for sea-surface data. Therefore, we assumed the slopes
were equal to the POC / byp700 ratio. When the by, mea-
surements were made at another wavelength, we converted
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them to bpy700 assuming an exponent n = 0.41 (Cetinic et
al., 2012), according to the following equation:

bop (A1) = bp(1o) - (A1/40)". (A1)

For measurements taken at 555 nm, which was the wave-
length used in two studies (Table Al), this resulted in
10% lower bypp700 compared to bppsss and thus higher
POC / byp700 ratios.

The dataset of Cetini¢ et al. (2012) was the only one show-
ing a significant negative intercept of the POC vs. byy700
linear regression. Unlike the other datasets, where the POC
V8. bpp700 Telationship reflected mostly sea-surface variabil-
ity in a given biome, this was the only dataset that included
data collected between the sea surface and 600 m. Bol et
al. (2018) reprocessed this dataset by computing the linear
regression between POC and byp700 in different depth bins,
forcing the intercept through zero. The slope of the POC vs.
byp700 regressions, and therefore the POC / bpp700 ratio, de-
creased more than 2-fold between the surface and the 600 m
bins. These results suggest that the POC vs. byp7qo relation-
ship may be better modeled with nonlinear equations, as done
for surface data in some previous studies (Balch et al., 2010;
Johnson et al., 2017; Stramski et al., 1999). However, one
must keep in mind that the ecosystem processes that define
POC / byp700 ratios in the surface layer may be different from
those occurring in the mesopelagic (see Sect. 4.2).

The relationship between POC and particulate beam atten-
uation at 660 nm, cp, has been analyzed on more occasions
than the POC / byp70p relationship. The backscattering ratio,
byp/bp, relates particulate backscattering to the total partic-
ulate scattering and is directly related to the refractive index
of the particle assemblage (Babin et al., 2003; Dall’Olmo et
al., 2009; Loisel et al., 2011; Organelli et al., 2018; Stram-
ski and Kiefer, 1991; Stramski et al., 1999; Twardowski et
al., 2001; Ulloa et al., 1994). Light absorption by particles is
negligible in the 650—700 nm spectral region, such that total
beam attenuation c;, is a good approximation of the scattering
coefficient by. Thus, once the known absorption and scatter-
ing coefficients of seawater are removed, byp/cp is a good
approximation of the backscattering ratio and can be used to
compare the relationships between POC vs. ¢, and POC vs.
bup700-

The observed POC / byp700 variability in the surface layer
across biomes, reflected in our POC estimation algorithm,
seems analogous to that found for the relationship between
POC and ¢, by Cetini¢ et al. (2012) (Fig. Al). The POC
content per unit byp700 decreases with the maximum by,700
of each dataset, which may be related to the structure
and species composition of upper-ocean ecosystems (see
Sect. 4.3). It is also plausible that the fraction of POC (in
terms of particle size or type) that contributes to backscatter-
ing varies across sites, further enhancing POC / byp700 vari-
ability.
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The number of studies that tackled the interconversion be-
tween POC and bio-optical proxies in the mesopelagic layer
is much smaller than those that focused on the epipelagic
layer. Besides Cetinic et al. (2012) in the subpolar North At-
lantic, we are only aware of the studies of Bishop (1999) and
Bishop et al. (1999). The latter two studies found a POC
vs. ¢p slope of around 16 mmol Cm ™2 (=mmol C m~3 m).
Given that modern transmissometers accept more forward
scattered light that those used by Bishop (1999), the cor-
responding slope would be approximately 27 mmol C m~2
(Jim K. B. Bishop, personal communication, 2021). Bishop
(1999) found this slope to be nearly constant in contrasting
areas over the 0—1000 m depth range, as depicted in Fig. Al
with the datasets labeled “Bishop1999eqgpac” (Equatorial Pa-
cific) and “Bishop1999all” (Equatorial Pacific, NE Pacific,
and North Atlantic together).

The linear relationship between POC and ¢ is compati-
ble with the nonlinear relationship between POC and byp700
along the vertical profile if the backscattering ratio also
increases with depth, as found by Cetini¢ et al. (2012).
The latter study found an increase in the backscattering
ratio (bpp700/Cp653) from around 1.2% at the surface to
around 1.5% in the upper mesopelagic. The byp700/Cp653
ratio was more variable in deeper layers and values > 2 %
were not rare (see also Nencioli et al., 2010; Organelli et
al., 2018; Twardowski et al., 2001). The POC / byp700 ra-
tio of 1000 mmol C m~2 used here for deep waters (Eq. 1),
based on the analysis of Bol et al. (2018), would correspond
to a POC vs. ¢, slope of 27 mmol C m~2 if the backscatter-
ing ratio was 2.7 % in the lower mesopelagic (600—1000 m,
Fig. 2). Analogously, the range of POC / byp700 used in our
sensitivity tests, 500 to 2000 mmol m~2, would correspond
to a backscattering ratio between 5.4 % (likely too high) and
1.35 % (closer to available estimates). More collocated mea-
surements of POC, by,700, and ¢p in the mesopelagic and be-
low are needed to reduce these uncertainties.

Beyond the natural variability, the interconversion be-
tween POC and bio-optical proxies is also confounded
by methodological issues (Cetini¢ et al., 2012; Strubinger-
Sandoval et al., 2021), most of which were not fully ad-
dressed in the studies compiled here. In particular, filtration
of large sample volumes in the cubic meter range with in
situ pumps yielded much stronger POC—c,, relationships than
small-volume sampling (Bishop, 1999).
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Figure A1l. Coherent patterns in the conversion factors between POC and bio-optical variables. Left: relationship between the POC versus
¢p slope and the maximum cp in a given dataset, based on the Fig. 8 from Cetinic et al. (2012) with the addition of Bishop (1999) datasets.

Right: analogous relationship for bpp700, as used in our study. Linear fits are only illustrative.

Table Al. Compilation of studies that reported linear regressions between POC and byp700 in the euphotic layer of the oceans.

Location Reference N  Depthrange Slope (mgC m~2 m) Intercept  Comments
North Atlantic Cetinic et al. (2012) 321 0-600 35422 + 1754 —1444+58 Downcast
subpolar gyre
321 0-600 43317 £2092 —18.4+5.8 Upcast
Bol et al., 2018 NA 0-10 41550 Forced through O  Subset of Cetinié
et al. (2012) at the
surface
Mediterranean Loisel et al. (2001) NA NA 41305 1.43  Original measure-
ments at 555 nm
Subtropical and  Stramski et al. (2008) 54 4-8 58968 2.75  Original measure-
tropical Pacific ments at 555 nm
and Atlantic
(upwellings
excluded)
Subantarctic Johnson et al. (2017) 67 0-100 3120042470 3.0+6.8

NA: not available.

Code availability. The model code used in this paper is available
under https://doi.org/10.5281/zenodo.5243343 (Gali et al., 2021a).
The authors can provide the code used to process the datasets on
reasonable request.

Data availability. The simulated and observed datasets analyzed in
this article are available at https://doi.org/10.5281/zenod0.5139602
(Gali et al., 2021b). The code and documentation of NEMO and
PISCES are available at https://www.nemo-ocean.eu/ (Madec and
NEMO System Team, 2019; NEMO TOP Working Group, 2019).

Biogeosciences, 19, 1245-1275, 2022

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-19-1245-2022-supplement.

Author contributions. MG and RB designed the study. MF pro-
duced and/or reprocessed global climatological datasets. RB pro-
duced the NEMO dynamical fields used to force PISCES 1D of-
fline simulations. OA provided the global PISCES simulation. MG
processed BGC-Argo coherent annual time series, ran PISCES 1D
simulations, analyzed data and produced the figures, and wrote the
paper with contributions from all coauthors.

https://doi.org/10.5194/bg-19-1245-2022


https://doi.org/10.5281/zenodo.5243343
https://doi.org/10.5281/zenodo.5139602
https://www.nemo-ocean.eu/
https://doi.org/10.5194/bg-19-1245-2022-supplement

M. Gali et al.: Oceanic POC from particulate backscattering vs. the PISCES model 1269

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors acknowledge Antoine Poteau for
guidance with BGC-Argo data; Margarida Samsé and Pierre-
Antoine Bretonniere for downloading and storing the Argo data;
and Thomas Arsouze, Vladimir Lapin, and Joan Llort for advice on
the PISCES 1D configuration. Argo data were collected and made
freely available by the International Argo Program, which is part
of the Global Ocean Observing System, and the national programs
that contribute to it. The authors thank Jim K. B. Bishop and an
anonymous reviewer for their constructive criticisms that improved
the paper.

Financial support. Marti Gali has received financial sup-
port through the Postdoctoral Junior Leader Fellowship Pro-
gramme from “La Caixa” Banking Foundation (ORCAS project;
LCF/BQ/PI18/11630009) and through the OPERA project
funded by the Ministerio de Ciencia, Innovacién y Universidades
(PID2019-107952GA-100). Raffaele Bernardello received support
from the Ministerio de Ciencia, Innovacién y Universidades as part
of the DeCUSO project (CGL2017-84493-R).

Review statement. This paper was edited by Carolin Loscher and
reviewed by Jim K. B. Bishop and one anonymous referee.

References

Alonso-Gonzilez, 1. J., Aristegui, J., Vilas, J. C., and Hernandez-
Guerra, A.: Lateral POC transport and consumption in
surface and deep waters of the Canary Current region:
A box model study, Global Biogeochem. Cy., 23, 1-12,
https://doi.org/10.1029/2008 GB003185, 2009.

Alonso-Gonzalez, 1. J., Aristegui, J., Lee, C., Sanchez-Vidal, A.,
Calafat, A., Fabres, J., Sangra, P, Masque, P., Hernandez-
Guerra, A., and Benitez-Barrios, V.: Role of slowly settling par-
ticles in the ocean carbon cycle, Geophys. Res. Lett., 37, 1-5,
https://doi.org/10.1029/2010GL043827, 2010.

Argo: Argo float data and metadata from Global Data As-
sembly Centre (Argo GDAC), SEANOE [Data set],
https://doi.org/10.17882/42182, 2000.

Aristegui, J., Gasol, J. M., Duarte, C. M., and Herndl,
G. J.: Microbial oceanography of the dark ocean’s
pelagic realm, Limnol. Oceanogr., 54, 1501-1529,
https://doi.org/10.4319/10.2009.54.5.1501, 2009.

Arnosti, C., Fuchs, B. M., Amann, R., and Passow, U.: Contrast-
ing extracellular enzyme activities of particle-associated bacte-
ria from distinct provinces of the north Atlantic Ocean, Front.

https://doi.org/10.5194/bg-19-1245-2022

Microbiol., 3, 1-9, https://doi.org/10.3389/fmicb.2012.00425,
2012.

Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen,
M.: PISCES-v2: An ocean biogeochemical model for carbon
and ecosystem studies, Geosci. Model Dev., 8, 2465-2513,
https://doi.org/10.5194/gmd-8-2465-2015, 2015.

Aumont, O., van Hulten, M., Roy-Barman, M., Dutay, J.-C., Ethé,
C., and Gehlen, M.: Variable reactivity of particulate organic
matter in a global ocean biogeochemical model, Biogeosciences,
14, 2321-2341, https://doi.org/10.5194/bg-14-2321-2017, 2017.

Babin, M., Morel, A., Fournier-sicre, V., Fell, E., Stramski, D., Mar,
N., Villefranche, D., Cedex, V., and Morel, A.: Light Scattering
Properties of Marine Particles in Coastal and Open Ocean Waters
as Related to the Particle Mass Concentration Light scattering
properties of marine particles in coastal and open ocean waters as
related to the particle mass concentration, Limnology, 48, 843—
859, 2003.

Baker, C. A., Henson, S. A., Cavan, E. L., Giering, S.
L. C., and Sanders, R.: Slow-sinking particulate organic
carbon in the Atlantic Ocean: Magnitude, flux, and po-
tential controls, Global Biogeochem. Cy., 31, 1051-1065,
https://doi.org/10.1002/2017GB005638, 2017.

Balch, W. M., Bowler, B. C., Drapeau, D. T., Poulton, A. J., and
Holligan, P. M.: Biominerals and the vertical flux of particulate
organic carbon from the surface ocean, Geophys. Res. Lett., 37,
1-6, https://doi.org/10.1029/2010GL044640, 2010.

Baltar, F., Aristegui, J., Gasol, J. M., Sintes, E., Van Aken, H. M.,
and Herndl, G. J.: High dissolved extracellular enzymatic activity
in the deep central Atlantic ocean, Aquat. Microb. Ecol., 58, 287—
302, https://doi.org/10.3354/ame01377, 2010a.

Baltar, F., Aristegui, J., Sintes, E., Gasol, J. M., Reinthaler, T., and
Herndl, G. J.: Significance of non-sinking particulate organic car-
bon and dark CO; fixation to heterotrophic carbon demand in
the mesopelagic northeast Atlantic, Geophys. Res. Lett., 37, 1—-
6, https://doi.org/10.1029/2010GL043105, 2010b.

Baumas, C. M., Le Moigne, F. A., Garel, M., Bhairy, N., Guasco,
S., Riou, V., Armougom, F., Grossart, H. P., and Tamburini, C.:
Mesopelagic microbial carbon production correlates with diver-
sity across different marine particle fractions, ISME J., 15, 1695-
1708, https://doi.org/10.1038/s41396-020-00880-z, 2021.

Belcher, A., Iversen, M., Giering, S., Riou, V., Henson, S.
A., Berline, L., Guilloux, L., and Sanders, R.: Depth-
resolved  particle-associated ~ microbial  respiration  in
the northeast Atlantic, Biogeosciences, 13, 4927-4963,
https://doi.org/10.5194/bg-13-4927-2016, 2016.

Bellacicco, M., Cornec, M., Organelli, E., Brewin, R. J. W., Neuk-
ermans, G., Volpe, G., Barbieux, M., Poteau, A., Schmechtig,
C., D’Ortenzio, F., Marullo, S., Claustre, H., and Pitarch, J.:
Global Variability of Optical Backscattering by Non-algal parti-
cles From a Biogeochemical-Argo Data Set, Geophys. Res. Lett.,
46, 9767-9776, https://doi.org/10.1029/2019GL084078, 2019.

Bianchi, D., Weber, T. S., Kiko, R., and Deutsch, C.:
Global niche of marine anaerobic metabolisms expanded
by particle microenvironments, Nat. Geosci., 11, 263-268,
https://doi.org/10.1038/s41561-018-0081-0, 2018.

Bishop, J. K. B.: Transmissometer measurement of POC, Deep-
Sea Res. Pt. I, 46, 353-369, https://doi.org/10.1016/S0967-
0637(98)00069-7, 1999.

Biogeosciences, 19, 1245-1275, 2022


https://doi.org/10.1029/2008GB003185
https://doi.org/10.1029/2010GL043827
https://doi.org/10.17882/42182
https://doi.org/10.4319/lo.2009.54.5.1501
https://doi.org/10.3389/fmicb.2012.00425
https://doi.org/10.5194/gmd-8-2465-2015
https://doi.org/10.5194/bg-14-2321-2017
https://doi.org/10.1002/2017GB005638
https://doi.org/10.1029/2010GL044640
https://doi.org/10.3354/ame01377
https://doi.org/10.1029/2010GL043105
https://doi.org/10.1038/s41396-020-00880-z
https://doi.org/10.5194/bg-13-4927-2016
https://doi.org/10.1029/2019GL084078
https://doi.org/10.1038/s41561-018-0081-0
https://doi.org/10.1016/S0967-0637(98)00069-7
https://doi.org/10.1016/S0967-0637(98)00069-7

1270 M. Gali et al.: Oceanic POC from particulate backscattering vs. the PISCES model

Bishop, J. K. and Wood, T. J.: Particulate matter chem-
istry and dynamics in the twilight zone at VERTIGO
ALOHA and K2 sites, Deep-Sea Res. Pt. I, 55, 1684-1706,
https://doi.org/10.1016/j.dsr.2008.07.012, 2008.

Bishop, J. K. B. and Wood, T. J.: Year-round observa-
tions of carbon biomass and flux variability in the
Southern Ocean, Global Biogeochem. Cy., 23, GB2019,
https://doi.org/10.1029/2008 GB003206, 2009.

Bishop, J. K. B., Collier, R. W., Kettens, D. R., and Edmond, J.
M.: The chemistry, biology, and vertical flux of particulate matter
from the upper 1500 m of the Panama Basin, Deep-Sea Res. Pt.
A, 27, 615-640, https://doi.org/10.1016/0198-0149(80)90077-1,
1980.

Bishop, J. K. B., Conte, M. H., Wiebe, P. H., Roman, M. R., and
Langdon, C.: Particulate matter production and consumption in
deep mixed layers: observations in a warm-core ring, Deep-
Sea Res. Pt. A, 33, 1813-1841, https://doi.org/10.1016/0198-
0149(86)90081-6, 1986.

Bishop, J. K. B., Calvert, S. E., and Soon, M. Y. S.: Spatial and
temporal variability of POC in the northeast subarctic Pacific,
Deep-Res. Pt. 11, 46, 2699-2733, https://doi.org/10.1016/S0967-
0645(99)00081-8, 1999.

Bishop, J. K. B., Wood, T. J.,, Davis, R. E., and Sherman,
J. T.: Robotic Observations of Enhanced Carbon Biomass
and Export at 55°S during SOFeX, Science, 304, 417-420,
https://doi.org/10.1126/science.1087717, 2004.

Bisson, K., Siegel, D. A., DeVries, T., Cael, B. B., and Bues-
seler, K. O.: How data set characteristics influence ocean car-
bon export models, Global Biogeochem. Cy., 32, 1312-1328,
https://doi.org/10.1029/2018GB005934, 2019.

Bode, A., Olivar, M. P., and Herndndez-Le6n, S.: Trophic in-
dices for micronektonic fishes reveal their dependence on the
microbial system in the North Atlantic, Sci. Rep., 11, 8488,
https://doi.org/10.1038/s41598-021-87767-x, 2021.

Bol, R, Henson, S. A., Rumyantseva, A., and Briggs, N.: High-
Frequency Variability of Small-Particle Carbon Export Flux in
the Northeast Atlantic, Global Biogeochem. Cy., 32, 1803-1814,
https://doi.org/10.1029/2018GB005963, 2018.

Boss, E., Guidi, L., Richardson, M. J., Stemmann, L., Gardner, W.,
Bishop, J. K. B., Anderson, R. F., and Sherrell, R. M.: Opti-
cal techniques for remote and in-situ characterization of parti-
cles pertinent to GEOTRACES, Prog. Oceanogr., 133, 43-54,
https://doi.org/10.1016/j.pocean.2014.09.007, 2015.

Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.:
Multi-faceted particle pumps drive carbon sequestration in the
ocean, Nature, 568, 327-335, https://doi.org/10.1038/s41586-
019-1098-2, 2019.

Briggs, N., Perry, M. J., Cetini¢, 1., Lee, C., D’ Asaro, E., Gray, A.
M., and Rehm, E.: High-resolution observations of aggregate flux
during a sub-polar North Atlantic spring bloom, Deep-Res. Pt. I,
58, 1031-1039, https://doi.org/10.1016/j.dsr.2011.07.007, 2011.

Briggs, N., Olmo, G. D., and Claustre, H.: Major role of particle
fragmentation in regulating the biological sequestration of CO;
by the oceans, Science, 793, 791-793, 2020.

Bourne, H. L., Bishop, J. K., Connors, E. J., and Wood, T.
J.: Carbon export and fate beneath a dynamic upwelled fila-
ment off the California coast, Biogeosciences, 18, 3053-3086,
https://doi.org/10.5194/bg-18-3053-2021, 2021.

Biogeosciences, 19, 1245-1275, 2022

Bricaud, A., Claustre, H., Ras, J., and Oubelkheir, K.: Natural vari-
ability of phytoplanktonic absorption in oceanic waters: Influ-
ence of the size structure of algal populations, J. Geophys. Res.-
Ocean., 109, C11010, https://doi.org/10.1029/2004JC002419,
2004.

Buesseler, K. O. and Boyd, P. W.: Shedding light on processes
that control particle export and flux attenuation in the twilight
zone of the open ocean, Limnol. Oceanogr., 54, 1210-1232,
https://doi.org/10.4319/10.2009.54.4.1210, 2009.

Buesseler, K. O., Boyd, P. W., Black, E. E., and Siegel, D.
A.: Metrics that matter for assessing the ocean biological
carbon pump, P. Natl. Acad. Sci. USA, 117, 9679-9687,
https://doi.org/10.1073/pnas.1918114117, 2020.

Cael, B. B., Cavan, E. L., and Britten, G. L.. Recon-
ciling the size-dependence of marine particle sink-
ing speed, Geophys. Res. Lett, 48, e2020GL091771,
https://doi.org/10.1029/2020GL091771, 2021.

Calbet, A.: The trophic roles of microzooplankton in
marine systems, ICES J. Mar. Sci, 65, 325-331,
https://doi.org/10.1093/icesjms/fsn013, 2008.

Cetini¢, 1., Perry, M. J., Briggs, N. T., Kallin, E., D’Asaro,
E. A, and Lee, C. M.: Particulate organic carbon and
inherent optical properties during 2008 North Atlantic
bloom experiment, J. Geophys. Res.-Ocean., 117, C06028,
https://doi.org/10.1029/2011JC007771, 2012.

Ciotti, A. M., Lewis, M. R., and Cullen, J. J.: Assessment
of the relationships between dominant cell size in natu-
ral phytoplankton communities and the spectral shape of
the absorption coefficient, Limnol. Oceanogr., 47, 404-417,
https://doi.org/10.4319/10.2002.47.2.0404, 2002.

Claustre, H.: Is desert dust making oligotrophic wa-
ters greener?, Geophys. Res. Lett., 29, 10-13,
https://doi.org/10.1029/2001GL014056, 2002.

Claustre, H., Morel, A., Babin, M., Cailliau, C., Marie, D., Marty,
J. C., Tailliez, D., and Vaulot, D.: Variability in particle attenua-
tion and chlorophyll fluorescence in the tropical Pacific: Scales,
patterns, and biogeochemical implications, J. Geophys. Res.-
Ocean., 104, 3401-3422, https://doi.org/10.1029/98jc01334,
1999.

Claustre, H., Johnson, K. S., and Takeshita, Y.: Observing the
Global Ocean with Biogeochemical-Argo, Ann. Rev. Mar.
Sci., 12,2348, https://doi.org/10.1146/annurev-marine-010419-
010956, 2020.

Cornec, M., Claustre, H., Mignot, A., Guidi, L., Lacour, L.,
Poteau, A., D’Ortenzio, F., Gentili, B., and Schmechtig, C.:
Deep Chlorophyll Maxima in the Global Ocean: Occurrences,
Drivers and Characteristics, Global Biogeochem. Cy., 35, 1-30,
https://doi.org/10.1029/2020gb006759, 2021.

Dall’Olmo, G. and Mork, K. A.: Carbon export by small parti-
cles in the Norwegian Sea, Geophys. Res. Lett., 41, 2921-2927,
https://doi.org/10.1002/2014GL059244, 2014.

Dall’Olmo, G., Westberry, T. K., Behrenfeld, M. J., Boss, E., and
Slade, W. H.: Significant contribution of large particles to optical
backscattering in the open ocean, Biogeosciences, 6, 947-967,
https://doi.org/10.5194/bg-6-947-2009, 2009.

Doney, S. C., Lindsay, K., Caldeira, K., Campin, J. M., Drange,
H., Dutay, J. C., Follows, M., Gao, Y., Gnanadesikan, A., Gru-
ber, N., Ishida, A., Joos, F., Madec, G., Maier-Reimer, E.,
Marshall, J. C., Matear, R. J., Monfray, P., Mouchet, A., Naj-

https://doi.org/10.5194/bg-19-1245-2022


https://doi.org/10.1016/j.dsr.2008.07.012
https://doi.org/10.1029/2008GB003206
https://doi.org/10.1016/0198-0149(80)90077-1
https://doi.org/10.1016/0198-0149(86)90081-6
https://doi.org/10.1016/0198-0149(86)90081-6
https://doi.org/10.1016/S0967-0645(99)00081-8
https://doi.org/10.1016/S0967-0645(99)00081-8
https://doi.org/10.1126/science.1087717
https://doi.org/10.1029/2018GB005934
https://doi.org/10.1038/s41598-021-87767-x
https://doi.org/10.1029/2018GB005963
https://doi.org/10.1016/j.pocean.2014.09.007
https://doi.org/10.1038/s41586-019-1098-2
https://doi.org/10.1038/s41586-019-1098-2
https://doi.org/10.1016/j.dsr.2011.07.007
https://doi.org/10.5194/bg-18-3053-2021
https://doi.org/10.1029/2004JC002419
https://doi.org/10.4319/lo.2009.54.4.1210
https://doi.org/10.1073/pnas.1918114117
https://doi.org/10.1029/2020GL091771
https://doi.org/10.1093/icesjms/fsn013
https://doi.org/10.1029/2011JC007771
https://doi.org/10.4319/lo.2002.47.2.0404
https://doi.org/10.1029/2001GL014056
https://doi.org/10.1029/98jc01334
https://doi.org/10.1146/annurev-marine-010419-010956
https://doi.org/10.1146/annurev-marine-010419-010956
https://doi.org/10.1029/2020gb006759
https://doi.org/10.1002/2014GL059244
https://doi.org/10.5194/bg-6-947-2009

M. Gali et al.: Oceanic POC from particulate backscattering vs. the PISCES model 1271

jar, R., Orr, J. C., Plattner, G. K., Sarmiento, J., Schlitzer, R.,
Slater, R., Totterdell, I. J., Weirig, M. F., Yamanaka, Y., and
Yool, A.: Evaluating global ocean carbon models: The impor-
tance of realistic physics, Global Biogeochem. Cy., 18, GB3017,
https://doi.org/10.1029/2003GB002150, 2004.

Druffel, E. R., Williams, P. M., Bauer, J. E., and Ertel, J.
R.: Cycling of dissolved and particulate organic matter in
the open ocean, J. Geophys. Res.-Ocean., 97, 15639-15659,
https://doi.org/10.1029/92JC01511, 1992.

Duret, M. T., Lampitt, R. S., and Lam, P.: Prokaryotic niche par-
titioning between suspended and sinking marine particles, Env.
Microbiol. Rep., 11, 386-400, https://doi.org/10.1111/1758-
2229.12692, 2019.

Duteil, O., Koeve, W., Oschlies, A., Aumont, O., Bianchi, D.,
Bopp, L., Galbraith, E., Matear, R., Moore, J. K., Sarmiento,
J. L., and Segschneider, J.: Preformed and regenerated phos-
phate in ocean general circulation models: Can right to-
tal concentrations be wrong?, Biogeosciences, 9, 1797-1807,
https://doi.org/10.5194/bg-9-1797-2012, 2012.

Dutkiewicz, S., Hickman, A. E., Jahn, O., Henson, S., Beaulieu, C.,
and Monier, E.: Ocean colour signature of climate change, Nat.
Commun., 10, 578, https://doi.org/10.1038/541467-019-08457-
X, 2019.

Evers-King, H., Martinez-Vicente, V., Brewin, R. J. W., Dall’Olmo,
G., Hickman, A. E., Jackson, T., Kostadinov, T. S., Krasemann,
H., Loisel, H., Rottgers, R., Roy, S., Stramski, D., Thoma-
lla, S., Platt, T., and Sathyendranath, S.: Validation and inter-
comparison of ocean color algorithms for estimating particu-
late organic carbon in the oceans, Front. Mar. Sci., 4, 1-20,
https://doi.org/10.3389/fmars.2017.00251, 2017.

Falls, M., Bernardello, R., Castrillo, M., Acosta, M., Llort, J.,
and Gali, M.: Use of Genetic Algorithms for Ocean Model Pa-
rameter Optimisation, Geosci. Model Dev. Discuss. [preprint],
https://doi.org/10.5194/gmd-2021-222, in review, 2021.

Fay, A. R. and McKinley, G. A.: Global open-ocean biomes: Mean
and temporal variability, Earth Syst. Sci. Data, 6, 273-284,
https://doi.org/10.5194/essd-6-273-2014, 2014.

Flament, P.: A state variable for characterizing water masses and
their diffusive stability: Spiciness, Prog. Oceanogr., 54, 493-501,
https://doi.org/10.1016/S0079-6611(02)00065-4, 2002.

Francois, R., Honjo, S., Krishfield, R., and Manganini, S.: Fac-
tors controlling the flux of organic carbon to the bathy-
pelagic zone of the ocean, Global Biogeochem. Cy., 16, 1087,
https://doi.org/10.1029/2001gb001722, 2002.

Gali, M., Benardello, R., Falls, M., Claustre, H., and Au-
mont, O.: PISCES-v2 1D configuration used to study POC
dynamics as observed by BGC-Argo floats, Zenodo [code],
https://doi.org/10.5281/zenodo.5243343, 2021a.

Gali, M., Benardello, R., Falls, M., Claustre, H., and Aumont, O.:
Datasets for the comparison between POC estimated from BGC-
Argo floats and PISCES model simulations, Zenodo [data set],
https://doi.org/10.5281/zenodo.5139602, 2021b.

Garcia-Martin, E. E., Davidson, K., Davis, C. E., Mahaffey, C.,
Mcneill, S., Purdie, D. A., and Robinson, C.: Low contri-
bution of the fast-sinking particle fraction to total plankton
metabolism in a temperate shelf sea, Global Biogeochem. Cy.,
35, €2021GB007015, https://doi.org/10.1029/2021GB007015,
2021.

https://doi.org/10.5194/bg-19-1245-2022

Gardner, W. D., Richardson, M. J., and Smith Jr., W. O.: Seasonal
patterns of water column particulate organic carbon and fluxes in
the Ross Sea, Antarctica, Deep-Sea Res. Pt. 11, 47, 3423-3449,
https://doi.org/10.1016/S0967-0645(00)00074-6, 2000.

Gardner, W. D., Mishonov, A. V., and Richardson, M. J.: Global
POC concentrations from in-situ and satellite data, Deep-Res.
Pt. II, 53, 718-740, https://doi.org/10.1016/j.dsr2.2006.01.029,
2006.

Gasol, J. M., del Giorgio, P. A., and Duarte, C. M.: Biomass dis-
tribution in marine planktonic communities, Limnol. Oceanogr.,
42, 1353-1363, 1997.

Giering, S. L. C., Sanders, R., Lampitt, R. S., Anderson, T. R., Tam-
burini, C., Boutrif, M., Zubkov, M. V., Marsay, C. M., Henson,
S. A., Saw, K., Cook, K., and Mayor, D. J.: Reconciliation of the
carbon budget in the ocean’s twilight zone, Nature, 507, 480—
483, https://doi.org/10.1038/nature13123, 2014.

Goldthwait, S., Yen, J.,, Brown, J., and Alldredge, A.:
Quantification of marine snow fragmentation by swim-
ming euphausiids, Limnol. Oceanogr., 49, 940-952,
https://doi.org/10.4319/10.2004.49.4.0940, 2004.

Graff, J. R., Westberry, T. K., Milligan, A. J., Brown, M. B.,
Dall’Olmo, G., van Dongen-Vogels, V., Reifel, K. M., and
Behrenfeld, M. J.: Analytical phytoplankton carbon measure-
ments spanning diverse ecosystems, Deep-Sea Res. Pt. I, 102,
16-25, https://doi.org/10.1016/j.dsr.2015.04.006, 2015.

Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Bal-
aji, V., Boning, C. W., Chassignet, E. P., Curchitser, E., Deshayes,
J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M.,
Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Hol-
land, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting,
J. P, Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J.,
Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J.,
Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso,
M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution
to CMIP6: experimental and diagnostic protocol for the physical
component of the Ocean Model Intercomparison Project, Geosci.
Model Dev., 9, 3231-3296, https://doi.org/10.5194/gmd-9-3231-
2016, 2016.

Guidi, L., Legendre, L., Reygondeau, G., Uitz, J., Stemmann, L.,
and Henson, S. A.: A new look at ocean carbon remineralization
for estimating deepwater sequestration, Global Biogeochem. Cy.,
29, 1044-1059, https://doi.org/10.1002/2014GB005063, 2015.

Haéntjens, N., Della Penna, A., Briggs, N., Karp-Boss, L., Gaube,
P., Claustre, H., and Boss, E.: Detecting Mesopelagic Organisms
Using Biogeochemical-Argo Floats, Geophys. Res. Lett., 47,
€2019GL08608, https://doi.org/10.1029/2019GL086088, 2020.

Hayes, C. T., Anderson, R. F., Fleisher, M. Q., Huang, K. F., Robin-
son, L. F, Lu, Y., Cheng, H., Edwards, R. L., and Moran, S.
B.: 230Th and 23'Pa on GEOTRACES GAO03, the U.S. GEO-
TRACES North Atlantic transect, and implications for modern
and paleoceanographic chemical fluxes, Deep-Res. Pt. 11, 116,
29-41, https://doi.org/10.1016/j.dsr2.2014.07.007, 2015.

Henson, S. A., Yool, A. and Sanders, R.: Variabil-
ity in efficiency of particulate organic carbon export:
A model study, Global Biogeochem. Cy., 29, 33-45,
https://doi.org/10.1002/2014GB004965, 2015.

Hernandez-Ledn, S., Koppelmann, R., Fraile-Nuez, E., Bode, A.,
Mompedn, C., Irigoien, X., Olivar, M. P., Echevarria, F., Fernan-
dez de Puelles, M. L., Gonzilez-Gordillo, J. 1., Cézar, A., Acuiia,

Biogeosciences, 19, 1245-1275, 2022


https://doi.org/10.1029/2003GB002150
https://doi.org/10.1029/92JC01511
https://doi.org/10.1111/1758-2229.12692
https://doi.org/10.1111/1758-2229.12692
https://doi.org/10.5194/bg-9-1797-2012
https://doi.org/10.1038/s41467-019-08457-x
https://doi.org/10.1038/s41467-019-08457-x
https://doi.org/10.3389/fmars.2017.00251
https://doi.org/10.5194/gmd-2021-222
https://doi.org/10.5194/essd-6-273-2014
https://doi.org/10.1016/S0079-6611(02)00065-4
https://doi.org/10.1029/2001gb001722
https://doi.org/10.5281/zenodo.5243343
https://doi.org/10.5281/zenodo.5139602
https://doi.org/10.1029/2021GB007015
https://doi.org/10.1016/S0967-0645(00)00074-6
https://doi.org/10.1016/j.dsr2.2006.01.029
https://doi.org/10.1038/nature13123
https://doi.org/10.4319/lo.2004.49.4.0940
https://doi.org/10.1016/j.dsr.2015.04.006
https://doi.org/10.5194/gmd-9-3231-2016
https://doi.org/10.5194/gmd-9-3231-2016
https://doi.org/10.1002/2014GB005063
https://doi.org/10.1029/2019GL086088
https://doi.org/10.1016/j.dsr2.2014.07.007
https://doi.org/10.1002/2014GB004965

1272 M. Gali et al.: Oceanic POC from particulate backscattering vs. the PISCES model

J. L., Agusti, S., and Duarte, C. M.: Large deep-sea zooplank-
ton biomass mirrors primary production in the global ocean, Nat.
Commun., 11, 6048, https://doi.org/10.1038/s41467-020-19875-
7,2020.

Herndl, G. J. and Reinthaler, T.: Microbial control of the
dark end of the biological pump, Nat. Geosci., 6, 718-724,
https://doi.org/10.1038/nge01921, 2013.

Holte, J. and Talley, L.: A new algorithm for finding mixed layer
depths with applications to Argo data and Subantarctic Mode
Water formation, J. Atmos. Ocean. Technol., 26, 1920-1939,
https://doi.org/10.1175/2009JTECHO543.1, 2009.

Honjo, S., Manganini, S. J., Krishfield, R. A., and Francois, R.:
Particulate organic carbon fluxes to the ocean interior and fac-
tors controlling the biological pump: A synthesis of global sed-
iment trap programs since 1983, Prog. Oceanogr., 76, 217-285,
https://doi.org/10.1016/j.pocean.2007.11.003, 2008.

Ikenoue, T., Kimoto, K., Okazaki, Y., Sato, M., Honda, M. C., Taka-
hashi, K., Harada, N., and Fujiki, T.: Phaeodaria: An Important
Carrier of Particulate Organic Carbon in the Mesopelagic Twi-
light Zone of the North Pacific Ocean, Global Biogeochem. Cy.,
33, 1146-1160, https://doi.org/10.1029/2019GB006258, 2019.

Jiao, N., Herndl, G. J., Hansell, D. a, Benner, R., Kattner,
G., Wilhelm, S. W.,, Kirchman, D. L., Weinbauer, M. G.,
Luo, T., Chen, F, and Azam, F.: Microbial production of
recalcitrant dissolved organic matter: long-term carbon stor-
age in the global ocean, Nat. Rev. Microbiol., 8, 593-599,
https://doi.org/10.1038/nrmicro2386, 2010.

Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W.,
Sakamoto, C. M., Riser, S. C., Swift, D. D., Williams, N.
L., Boss, E., Haéntjens, N., Talley, L. D., and Sarmiento, J.
L.: Biogeochemical sensor performance in the SOCCOM pro-
filing float array, J. Geophys. Res.-Ocean., 122, 6416-6436,
https://doi.org/10.1002/2017JC012838, 2017.

Karthéuser, C., Ahmerkamp, S., Marchant, H. K., Bristow, L. A.,
Hauss, H., Iversen, M. H., Kiko, R., Maerz, J., Lavik, G., and
Kuypers, M. M. M.: Small sinking particles control anammox
rates in the Peruvian oxygen minimum zone, Nat. Commun., 12,
3235, https://doi.org/10.1038/s41467-021-23340-4, 2021.

Kelley, D.: Package “oce”: Analysis of Oceanographic data, R
Package, available at: https://dankelley.github.io/oce/ (last ac-
cess: 27 November 2018), 2011.

Kharbush, J. J., Close, H. G., Van Mooy, B. A. S., Arnosti, C.,
Smittenberg, R. H., Le Moigne, F. A. C., Mollenhauer, G.,
Scholz-Bottcher, B., Obreht, 1., Koch, B. P.,, Becker, K. W.,
Iversen, M. H., and Mohr, W.: Particulate Organic Carbon De-
constructed: Molecular and Chemical Composition of Partic-
ulate Organic Carbon in the Ocean, Front. Mar. Sci., 7, 518,
https://doi.org/10.3389/fmars.2020.00518, 2020.

Kigrboe, T.: How zooplankton feed: Mechanisms, traits and trade-
offs, Biol. Rev., 86, 311-339, https://doi.org/10.1111/j.1469-
185X.2010.00148 %, 2011.

Klaas, C. and Archer, D. E.: Association of sinking organic mat-
ter with various types of mineral ballast in the deep sea: Im-
plications for the rain ratio, Global Biogeochem. Cy., 16, 1116,
https://doi.org/10.1029/2001gb001765, 2002.

Kriest, 1., Kihler, P., Koeve, W., Kvale, K., Sauerland, V., and Os-
chlies, A.: One size fits all? Calibrating an ocean biogeochem-
istry model for different circulations, Biogeosciences, 17, 3057—
3082, https://doi.org/10.5194/bg-17-3057-2020, 2020.

Biogeosciences, 19, 1245-1275, 2022

Kwon, E. Y., Primeau, F., and Sarmiento, J. L.: The impact of rem-
ineralization depth on the air-sea carbon balance, Nat. Geosci.,
2, 630-635, https://doi.org/10.1038/ngeo612, 2009.

Lacour, L., Briggs, N., Claustre, H., Ardyna, M., and Dall’Olmo,
G.: The Intraseasonal Dynamics of the Mixed Layer Pump
in the Subpolar North Atlantic Ocean: A Biogeochemical-
Argo Float Approach, Global Biogeochem. Cy., 33, 266-281,
https://doi.org/10.1029/2018GB005997, 2019.

Lam, P. J., Doney, S. C., and Bishop, J. K. B.: The dynamic
ocean biological pump: Insights from a global compilation of
particulate organic carbon, CaCO3, and opal concentration pro-
files from the mesopelagic, Global Biogeochem. Cy., 25, 1-14,
https://doi.org/10.1029/2010GB003868, 2011.

Lam, P. J., Ohnemus, D. C., and Auro, M. E.: Size-fractionated ma-
jor particle composition and concentrations from the US GEO-
TRACES North Atlantic Zonal Transect, Deep-Res. Pt. 11, 116,
303-320, https://doi.org/10.1016/j.dsr2.2014.11.020, 2015.

Lampitt, R. S., Wishner, K. F,, Turley, C. M., and Angel, M. V.:
Marine snow studies in the Northeast Atlantic Ocean: distribu-
tion, composition and role as a food source for migrating plank-
ton, Mar. Biol. Int. J. Life Ocean. Coast. Waters, 116, 689-702,
https://doi.org/10.1007/BF00355486, 1993.

Laufkétter, C., Vogt, M., Gruber, N., Aumont, O., Bopp, L., Doney,
S. C., Dunne, J. P, Hauck, J., John, J. G., Lima, I. D., Se-
ferian, R., and Volker, C.: Projected decreases in future ma-
rine export production: The role of the carbon flux through
the upper ocean ecosystem, Biogeosciences, 13, 4023-4047,
https://doi.org/10.5194/bg-13-4023-2016, 2016.

Laurenceau-Cornec, E. C., Le Moigne, F. A., Gallinari, M.,
Moriceau, B., Toullec, J., Iversen, M. H., Engel, A., and De
La Rocha, C. L.: New guidelines for the application of Stokes’
models to the sinking velocity of marine aggregates, Limnol.
Oceanogr., 65, 1264-1285, https://doi.org/10.1002/Ino.11388,
2020.

Lebeaupin Brossier, C., Béranger, K., Deltel, C., and Drobin-
ski, P.: The Mediterranean response to different space—
time resolution atmospheric forcings using perpetual
mode sensitivity simulations, Ocean Model., 36, 1-25,
https://doi.org/10.1016/j.0cemod.2010.10.008, 2011.

Lee, S., Kang, Y. C., and Fuhrman, J. A.: Imperfect retention of
natural bacterioplankton cells by glass fiber filters, Mar. Ecol.
Prog. Ser., 119, 285-290, https://doi.org/10.3354/meps119285,
1995.

Legendre, L., Rivkin, R. B., Weinbauer, M. G., Guidi, L., and Uitz,
J.: The microbial carbon pump concept: Potential biogeochemi-
cal significance in the globally changing ocean, Prog. Oceanogr.,
134, 432-450, https://doi.org/10.1016/j.pocean.2015.01.008,
2015.

Llort, J., Lévy, M., Sallée, J.-B., and Tagliabue, A.: On-
set, intensification, and decline of phytoplankton blooms in
the Southern Ocean, ICES J. Mar. Sci.,, 72, 1971-1984,
https://doi.org/10.1093/icesjms/fst176, 2015.

Llort, J., Langlais, C., Matear, R., Moreau, S., Lenton, A., and
Strutton, P. G.: Evaluating Southern Ocean Carbon Eddy-Pump
From Biogeochemical Argo Floats, J. Geophys. Res.-Ocean.,
123, 971-984, https://doi.org/10.1002/2017JC012861, 2018.

Loisel, H. and Morel, A.: Light Scattering and Chlorophyll Concen-
tration in Case 1 Waters: A Reexamination, Limnol. Oceanogr.,
43, 847-858, https://doi.org/10.4319/10.1998.43.5.0847, 1998.

https://doi.org/10.5194/bg-19-1245-2022


https://doi.org/10.1038/s41467-020-19875-7
https://doi.org/10.1038/s41467-020-19875-7
https://doi.org/10.1038/ngeo1921
https://doi.org/10.1175/2009JTECHO543.1
https://doi.org/10.1016/j.pocean.2007.11.003
https://doi.org/10.1029/2019GB006258
https://doi.org/10.1038/nrmicro2386
https://doi.org/10.1002/2017JC012838
https://doi.org/10.1038/s41467-021-23340-4
https://dankelley.github.io/oce/
https://doi.org/10.3389/fmars.2020.00518
https://doi.org/10.1111/j.1469-185X.2010.00148.x
https://doi.org/10.1111/j.1469-185X.2010.00148.x
https://doi.org/10.1029/2001gb001765
https://doi.org/10.5194/bg-17-3057-2020
https://doi.org/10.1038/ngeo612
https://doi.org/10.1029/2018GB005997
https://doi.org/10.1029/2010GB003868
https://doi.org/10.1016/j.dsr2.2014.11.020
https://doi.org/10.1007/BF00355486
https://doi.org/10.5194/bg-13-4023-2016
https://doi.org/10.1002/lno.11388
https://doi.org/10.1016/j.ocemod.2010.10.008
https://doi.org/10.3354/meps119285
https://doi.org/10.1016/j.pocean.2015.01.008
https://doi.org/10.1093/icesjms/fst176
https://doi.org/10.1002/2017JC012861
https://doi.org/10.4319/lo.1998.43.5.0847

M. Gali et al.: Oceanic POC from particulate backscattering vs. the PISCES model 1273

Loisel, H., Vantrepotte, V., Norkvist, K., Mriaux, X., Kheireddine,
M., Ras, J., Pujo-Pay, M., Combet, Y., Leblanc, K., Dall’Olmo,
G., Mauriac, R., Dessailly, D., and Moutin, T.: Characterization
of the bio-optical anomaly and diurnal variability of particulate
matter, as seen from scattering and backscattering coefficients,
in ultra-oligotrophic eddies of the Mediterranean Sea, Bio-
geosciences, 8, 3295-3317, https://doi.org/10.5194/bg-8-3295-
2011, 2011.

Loptien, U. and Dietze, H.: Reciprocal bias compensation and en-
suing uncertainties in model-based climate projections: Pelagic
biogeochemistry versus ocean mixing, Biogeosciences, 16,
18651881, https://doi.org/10.5194/bg-16-1865-2019, 2019.

Madec, G. and NEMO System Team: NEMO ocean en-
gine, Scientific Notes of Climate Modelling Center (27),
ISSN 1288-1619, Institut Pierre-Simon Laplace (IPSL),
https://doi.org/10.5281/zenodo.1464816, 2019.

Marsay, C. M., Sanders, R. J., Henson, S. A., Pabort-
sava, K., Achterberg, E. P., and Lampitt, R. S.: Attenua-
tion of sinking particulate organic carbon flux through the
mesopelagic ocean, P. Natl. Acad. Sci. USA, 112, 1089-1094,
https://doi.org/10.1073/pnas.1415311112, 2015.

Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.:
VERTEX: carbon cycling in the northeast Pacific, Deep. Res.,
34,267-285, 1987.

Mayor, D. J., Gentleman, W. C., and Anderson, T. R.: Ocean
carbon sequestration: Particle fragmentation by copepods as
a significant unrecognised factor?, BioEssays, 42, 2000149,
https://doi.org/10.1002/bies.202000149, 2020.

Menden-Deuer, S. and Lessard, E. J.: Carbon to vol-
ume relationships for dinoflagellates, diatoms, and
other protist plankton, Limnol. Oceanogr., 45, 569-579,
https://doi.org/10.4319/10.2000.45.3.0569, 2000.

McDonnell, A. M. and Buesseler, K. O.: Variability in the aver-
age sinking velocity of marine particles, Limnol. Oceanogr., 55,
2085-2096, https://doi.org/10.4319/10.2010.55.5.2085, 2010.

Mestre, M., Ruiz-Gonzélez, C., Logares, R., Duarte, C. M., Gasol,
J. M., and Sala, M. M.: Sinking particles promote vertical con-
nectivity in the ocean microbiome, P. Natl. Acad. Sci. USA, 115,
E6799-E6807, https://doi.org/10.1073/pnas.1802470115, 2018.

Moore, T. S., Dowell, M. D., and Franz, B. A.: Detection of coccol-
ithophore blooms in ocean color satellite imagery: A generalized
approach for use with multiple sensors, Remote Sens. Environ.,
117, 249-263, https://doi.org/10.1016/j.rse.2011.10.001, 2012.

Morén, X. A. G., Gasol, J. M., Arin, L., and Estrada, M.: A compar-
ison between glass fiber and membrane filters for the estimation
of phytoplankton POC and DOC production, Mar. Ecol. Prog.
Ser., 187, 31-41, 1999.

Morel, A. and Ahn, Y. H.: Optical efficiency factors of
free-living marine bacteria: Influence of bacterioplank-
ton upon the optical properties and particulate organic
carbon in oceanic waters, J. Mar. Res., 48, 145-175,
https://doi.org/10.1357/002224090784984632, 1990.

Mouw, C. B., Barnett, A., McKinley, G. A., Gloege, L., and
Pilcher, D.: Global ocean particulate organic carbon flux merged
with satellite parameters, Earth Syst. Sci. Data, 8, 531-541,
https://doi.org/10.5194/essd-8-531-2016, 2016.

Mullin, M. M.: Size fractionation of particulate or-
ganic carbon in the surface waters of the west-

https://doi.org/10.5194/bg-19-1245-2022

ern  Indian  Ocean, Limnol. Oceanogr, 10, 459462,
https://doi.org/10.4319/10.1965.10.3.0459, 1965.

NEMO TOP Working Group: Tracer in Ocean Paradigm
(TOP) — The NEMO passive tracer engine, Scientific
Notes of Climate Modelling Center (28) [data set],
ISSN 1288-1619, Institut Pierre-Simon Laplace (IPSL),
https://doi.org/10.5281/zenodo.1471700, 2019.

Nencioli, F., Chang, G., Twardowski, M., and Dickey, T. D.:
Optical characterization of an eddy-induced diatom bloom
west of the island of Hawaii, Biogeosciences, 7, 151-162,
https://doi.org/10.5194/bg-7-151-2010, 2010.

Omand, M. M., D’ Asaro, E. A., Lee, C. M., Perry, M. J., Briggs, N.,
Cetini, 1., and Mahadevan, A.: Eddy-driven subduction exports
particulate organic carbon from the spring bloom, Science, 348,
222-225, https://doi.org/10.1126/science. 1260062, 2015.

Organelli, E., Dall’Olmo, G., Brewin, R. J. W, Tarran, G. A., Boss,
E., and Bricaud, A.: The open-ocean missing backscattering is
in the structural complexity of particles, Nat. Commun., 9, 5439,
https://doi.org/10.1038/s41467-018-07814-6, 2018.

Organelli, E., Dall’Olmo, G., Brewin, R. J. W, Nencioli, F., and
Tarran, G. A.: Drivers of spectral optical scattering by particles
in the upper 500 m of the Atlantic Ocean, Opt. Exp., 28, 34147,
https://doi.org/10.1364/0e.408439, 2020.

Oschlies, A., Brandt, P., Stramma, L., and Schmidtko, S.: Drivers
and mechanisms of ocean deoxygenation, Nat. Geosci., 11, 467—
473, https://doi.org/10.1038/s41561-018-0152-2, 2018.

Oubelkheir, K., Claustre, H., Sciandra, A., and Babin, M.: Bio-
optical and biogeochemical properties of different trophic
regimes in oceanic waters, Limnol. Oceanogr., 50, 1795-1809,
https://doi.org/10.4319/10.2005.50.6.1795, 2005.

Pachiadaki, M. G., Sintes, E., Bergauer, K., Brown, J. M., Record,
N. R., Swan, B. K., Mathyer, M. E., Hallam, S. J., Lopez-
Garcia, P., Takaki, Y., Nunoura, T., Woyke, T., Herndl, G. J.,
and Stepanauskas, R.: Major role of nitrite-oxidizing bacte-
ria in dark ocean carbon fixation, Science, 358, 1046-1051,
https://doi.org/10.1126/science.aan8260, 2017.

Palevsky, H. I. and Doney, S. C.: How Choice of Depth Horizon
Influences the Estimated Spatial Patterns and Global Magnitude
of Ocean Carbon Export Flux, Geophys. Res. Lett., 45, 4171—
4179, https://doi.org/10.1029/2017GL076498, 2018.

Passow, U.: Switching perspectives: Do mineral fluxes determine
particulate organic carbon fluxes or vice versa?, Geochem. Geo-
phy. Geosy., 5, Q04002, https://doi.org/10.1029/2003GC000670,
2004.

Passow, U. and Carlson, C. A.: The biological pump in a
high CO, world, Mar. Ecol. Prog. Ser., 470, 249-271,
https://doi.org/10.3354/meps09985, 2012.

Poteau, A., Boss, E., and Claustre, H.: Particulate concen-
tration and seasonal dynamics in the mesopelagic ocean
based on the backscattering coefficient measured with
Biogeochemical-Argo floats, Geophys. Res. Lett., 44, 6933—
6939, https://doi.org/10.1002/2017GL073949, 2017.

Resplandy, L., Lévy, M., and McGillicuddy, D. J.: Effects
of Eddy-Driven Subduction on Ocean Biological Car-
bon Pump, Global Biogeochem. Cy., 33, 1071-1084,
https://doi.org/10.1029/2018GB006125, 2019.

Roemmich, D., Alford, M. H., Claustre, H., Johnson, K. S., King,
B., Moum, J., Oke, P. R., Owens, W. B., Pouliquen, S., Purkey,
S., Scanderbeg, M., Suga, T., Wijftels, S. E., Zilberman, N.,

Biogeosciences, 19, 1245-1275, 2022


https://doi.org/10.5194/bg-8-3295-2011
https://doi.org/10.5194/bg-8-3295-2011
https://doi.org/10.5194/bg-16-1865-2019
https://doi.org/10.5281/zenodo.1464816
https://doi.org/10.1073/pnas.1415311112
https://doi.org/10.1002/bies.202000149
https://doi.org/10.4319/lo.2000.45.3.0569
https://doi.org/10.4319/lo.2010.55.5.2085
https://doi.org/10.1073/pnas.1802470115
https://doi.org/10.1016/j.rse.2011.10.001
https://doi.org/10.1357/002224090784984632
https://doi.org/10.5194/essd-8-531-2016
https://doi.org/10.4319/lo.1965.10.3.0459
https://doi.org/10.5281/zenodo.1471700
https://doi.org/10.5194/bg-7-151-2010
https://doi.org/10.1126/science.1260062
https://doi.org/10.1038/s41467-018-07814-6
https://doi.org/10.1364/oe.408439
https://doi.org/10.1038/s41561-018-0152-2
https://doi.org/10.4319/lo.2005.50.6.1795
https://doi.org/10.1126/science.aan8260
https://doi.org/10.1029/2017GL076498
https://doi.org/10.1029/2003GC000670
https://doi.org/10.3354/meps09985
https://doi.org/10.1002/2017GL073949
https://doi.org/10.1029/2018GB006125

1274

Bakker, D., Baringer, M. O., Belbeoch, M., Bittig, H. C., Boss,
E., Calil, P, Carse, F., Carval, T., Chai, F., Conchubhair, D.
0., D’Ortenzio, F., Dall’Olmo, G., Desbruyeres, D., Fennel, K.,
Fer, 1., Ferrari, R., Forget, G., Freeland, H., Fujiki, T., Gehlen,
M., Greenan, B., Hallberg, R., Hibiya, T., Hosoda, S., Jayne,
S., Jochum, M., Johnson, G. C., Kang, K. R., Kolodziejczyk,
N., Koertzinger, A., Le Traon, P. Y., Lenn, Y. D., Maze, G.,
Mork, K. A., Morris, T., Nagai, T., Nash, J., Garabato, A. N.,
Olsen, A., Pattabhi, R. R., Prakash, S., Riser, S., Schmechtig,
C., Shroyer, E., Sterl, A., Sutton, P., Talley, L., Tanhua, T,
Thierry, V., Thomalla, S., Toole, J., Troisi, A., Trull, T., Tur-
ton, J. D., Velez-Belchi, P. J., Walczowski, W., Wang, H., Wan-
ninkhof, R., Waterhouse, A., Watson, A., Wilson, C., Wong, A.
P, Xu, J., and Yasuda, I.: On the future of Argo: A global,
full-depth, multi-disciplinary array, Front. Mar. Sci., 6, 439,
https://doi.org/10.3389/fmars.2019.00439, 2019.

Sallée, J. B., Pellichero, V., Akhoudas, C., Pauthenet, E., Vi-
gnes, L., Schmidtko, S., Naveira Garabato, A., Sutherland,
P, and Kuusela, M.: Summertime increases in upper-ocean
stratification and mixed-layer depth, Nature, 591, 592-598,
https://doi.org/10.1038/s41586-021-03303-x, 2021.

Sarmiento, J. and Gruber, N.: Organic Matter Export and
Remineralization, in: Ocean Biogeochemical Dynamics,
Princeton University Press, Princeton, New Jersey, 173-226,
https://doi.org/10.2307/j.ctt3fgxgx.8, 2006.

Sauzede, R., Johnson, J. E., Claustre, H., Camps-Valls, G., and
Ruescas, A. B.: Estimation of Oceanic Particulate Organic Car-
bon with Machine Learning, ISPRS Ann. Photogramm. Remote
Sens. Spat. Inf. Sci., 5, 949-956, https://doi.org/10.5194/isprs-
annals-V-2-2020-949-2020, 2020.

Sauzede, R., Johnson, J., Claustre, H., Camps-
Valls, G., and Ruescas, A.: MULTI-
OBS_GLO_BIO_BGC_3D_REP_015_010, Copernicus

Monitoring Environment Marine Service (CMEMS) [Data
set], https://marine.copernicus.eu/node/18802  (last
1 July 2021), 2021.

Schmechtig, C., Thierry, V., and Bio Argo Team: Argo Qual-
ity Control Manual for Biogeochemical Data, Version 1, Ist
March 2016, Villefranche-sur-Mer, France, CNRS, UMR 7093,
LOV, Observatoire Océanologique, Bio-Argo Group, 36 pp.,
https://doi.org/10.13155/40879, 2016.

Schmechtig, C., Poteau, A., Claustre, H., D’Ortenzio, F,
Dall@Olmo, G., and Boss, E.: Processing BGC-Argo particle
backscattering at the DAC level, IFREMER for Argo Data Man-
agement, 15 pp., https://doi.org/10.13155/39459, 2018.

Schmidtko, S., Johnson, G. C., and Lyman, J. M.: MIMOC:
A global monthly isopycnal upper-ocean climatology with
mixed layers, J. Geophys. Res.-Ocean., 118, 1658-1672,
https://doi.org/10.1002/jgrc.20122, 2013.

Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L., Tagli-
abue, A., Kwiatkowski, L., Aumont, O., Christian, J., Dunne,
J., Gehlen, M., Ilyina, T., John, J. G., Li, H., Long, M. C,,
Luo, J. Y., Nakano, H., Romanou, A., Schwinger, J., Stock,
C., Santana-Falcén, Y., Takano, Y., Tjiputra, J., Tsujino, H.,
Watanabe, M., Wu, T., Wu, F, and Yamamoto, A.: Track-
ing Improvement in Simulated Marine Biogeochemistry Be-
tween CMIPS5 and CMIP6, Curr. Clim. Chang. Rep., 6, 95-119,
https://doi.org/10.1007/s40641-020-00160-0, 2020.

access:

Biogeosciences, 19, 1245-1275, 2022

M. Gali et al.: Oceanic POC from particulate backscattering vs. the PISCES model

Siegel, D. A. and Deuser, W. G.: Trajectories of sinking parti-
cles in the Sargasso Sea: Modeling of statistical funnels above
deep-ocean sediment traps, Deep-Res. Pt. I, 44, 1519-1541,
https://doi.org/10.1016/S0967-0637(97)00028-9, 1997.

Siegel, D. A., Buesseler, K. O., Doney, S. C., Sailley, S.
F., Behrenfeld, M. J., and Boyd, P. W.: Global assessment
of ocean carbon export by combining satellite observations
and food-web model, Global Biogeochem. Cy., 28, 181-196,
https://doi.org/10.1002/2013GB004743.Received, 2014.

Snoejis, P, Busse, S., and Potapova, M.: The importance of di-
atom cell size in community analysis, J. Phycol., 38, 265-281,
https://doi.org/10.1046/j.1529-8817.2002.01105.x, 2002.

Stemmann, L. and Boss, E.: Plankton and Particle Size and
Packaging: From Determining Optical Properties to Driv-
ing the Biological Pump, Ann. Rev. Mar. Sci., 4, 263-290,
https://doi.org/10.1146/annurev-marine-120710-100853, 2012.

Stemmann, L., Jackson, G. A., and Ianson, D.: A vertical
model of particle size distributions and fluxes in the mid-
water column that includes biological and physical processes
— Part I: Model formulation, Deep-Res. Pt. 1., 51, 865-884,
https://doi.org/10.1016/j.dsr.2004.03.001, 2004a.

Stemmann, L., Jackson, G. A., and Gorsky, G.: A vertical model of
particle size distributions and fluxes in the midwater column that
includes biological and physical processes — Part II: Application
to a three year survey in the NW Mediterranean Sea, Deep-Res.
Pt. I, 51, 885-908, https://doi.org/10.1016/j.dsr.2004.03.002,
2004b.

Stemmann, L., Prieur, L., Legendre, L., Taupier-Letage, 1., Picheral,
M., Guidi, L., and Gorsky, G.: Effects of frontal processes on
marine aggregate dynamics and fluxes: An interannual study in a
permanent geostrophic front (NW Mediterranean), J. Mar. Syst.,
70, 1-20, https://doi.org/10.1016/j.jmarsys.2007.02.014, 2008.

Stramska, M.: Particulate organic carbon in the global ocean derived
from SeaWiFS ocean color, Deep-Sea Res. Pt. I, 56, 1459-1470,
https://doi.org/10.1016/;.dsr.2009.04.009, 2009.

Stramski, D. and Kiefer, D.: Light scattering by microorgan-
isms in the open ocean, Prog. Oceanogr., 28, 343-383,
https://doi.org/10.1016/0079-6611(91)90032-H, 1991.

Stramski, D., Reynolds, R. A., Kahru, M., and Mitchell,
B. G.: Estimation of particulate organic carbon in the
ocean from satellite remote sensing, Science, 285, 239-242,
https://doi.org/10.1126/science.285.5425.239, 1999.

Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis,
M. R., Réttgers, R., Sciandra, A., Stramska, M., Twardowski,
M. S., and Claustre, H.: Relationships between the surface
concentration of particulate organic carbon and optical proper-
ties in the eastern South Pacific and eastern Atlantic Oceans,
Biogeosciences, 5, 171-201, https://doi.org/10.5194/bg-5-171-
2008, 2008.

Strubinger Sandoval, P., Dall’Olmo, G., Rasse, R., Ross, J., and
Haines, K.: Uncertainties of particulate organic carbon concen-
trations in the mesopelagic zone of the Atlantic ocean, Open Res.
Eur., 1, 43, https://doi.org/10.12688/openreseurope.13395.2,
2021.

Stukel, M. R., Ohman, M. D., Kelly, T. B., and Biard, T.
The roles of suspension-feeding and flux-feeding zooplank-
ton as gatekeepers of particle flux into the mesopelagic
ocean in the Northeast Pacific, Front. Mar. Sci., 6, 1-16,
https://doi.org/10.3389/fmars.2019.00397, 2019.

https://doi.org/10.5194/bg-19-1245-2022


https://doi.org/10.3389/fmars.2019.00439
https://doi.org/10.1038/s41586-021-03303-x
https://doi.org/10.2307/j.ctt3fgxqx.8
https://doi.org/10.5194/isprs-annals-V-2-2020-949-2020
https://doi.org/10.5194/isprs-annals-V-2-2020-949-2020
https://marine.copernicus.eu/node/18802
https://doi.org/10.13155/40879
https://doi.org/10.13155/39459
https://doi.org/10.1002/jgrc.20122
https://doi.org/10.1007/s40641-020-00160-0
https://doi.org/10.1016/S0967-0637(97)00028-9
https://doi.org/10.1002/2013GB004743.Received
https://doi.org/10.1046/j.1529-8817.2002.01105.x
https://doi.org/10.1146/annurev-marine-120710-100853
https://doi.org/10.1016/j.dsr.2004.03.001
https://doi.org/10.1016/j.dsr.2004.03.002
https://doi.org/10.1016/j.jmarsys.2007.02.014
https://doi.org/10.1016/j.dsr.2009.04.009
https://doi.org/10.1016/0079-6611(91)90032-H
https://doi.org/10.1126/science.285.5425.239
https://doi.org/10.5194/bg-5-171-2008
https://doi.org/10.5194/bg-5-171-2008
https://doi.org/10.12688/openreseurope.13395.2
https://doi.org/10.3389/fmars.2019.00397

M. Gali et al.: Oceanic POC from particulate backscattering vs. the PISCES model 1275

Takeuchi, M., Doubell, M. J., Jackson, G. A., Yukawa, M., Sagara,
Y., and Yamazaki, H.: Turbulence mediates marine aggregate for-
mation and destruction in the upper ocean, Sci. Rep., 9, 1-8,
https://doi.org/10.1038/s41598-019-52470-5, 2019.

Terzi¢, E., Lazzari, P.,, Organelli, E., Solidoro, C., Salon,
S., D’Ortenzio, F., and Conan, P.. Merging bio-optical
data from Biogeochemical-Argo floats and models in
marine biogeochemistry, Biogeosciences, 16, 2527-2542,
https://doi.org/10.5194/bg-16-2527-2019, 2019.

Tonani, M., Pinardi, N., Dobricic, S., Pujol, 1., and Fratianni, C.:
A high-resolution free-surface model of the Mediterranean Sea,
Ocean Sci., 4, 1-14, https://doi.org/10.5194/0s-4-1-2008, 2008.

Trudnowska, E., Lacour, L., Ardyna, M., Rogge, A., Irisson, J. O.,
Waite, A. M., Babin, M., and Stemmann, L.: Marine snow mor-
phology illuminates the evolution of phytoplankton blooms and
determines their subsequent vertical export, Nat. Commun., 12,
2816, https://doi.org/10.1038/s41467-021-22994-4, 2021.

Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Ad-
croft, A.J., Amaral, A. E., Arsouze, T., Bentsen, M., Bernardello,
R., Boning, C. W., Bozec, A., Chassignet, E. P., Danilov, S.,
Dussin, R., Exarchou, E., Fogli, P. G., Fox-Kemper, B., Guo,
C., llicak, M., Iovino, D., Kim, W. M., Koldunov, N., Lapin,
V., Li, Y., Lin, P, Lindsay, K., Liu, H., Long, M. C., Komuro,
Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K.,
Ruprich-Robert, Y., Scheinert, M., Sicardi, V., Sidorenko, D.,
Suzuki, T., Tatebe, H., Wang, Q., Yeager, S. G., and Yu, Z.:
Evaluation of global ocean—sea-ice model simulations based on
the experimental protocols of the Ocean Model Intercomparison
Project phase 2 (OMIP-2), Geosci. Model Dev., 13, 3643-3708,
https://doi.org/10.5194/gmd-13-3643-2020, 2020.

Twardowski, M. S., Boss, E., Macdonald, J. B., Pegau, W. S,
Barnard, A. H., and Zaneveld, J. R. V: A model for estimat-
ing bulk refractive index from the optical backscattering ratio
and the implications for understanding particle composition in
case | and case II waters, J. Geophys. Res., 106, 14129-14142,
https://doi.org/10.1029/2000JC000404, 2001.

Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical dis-
tribution of phytoplankton communities in open ocean: An as-
sessment based on surface chlorophyll, J. Geophys. Res., 111,
C08005, https://doi.org/10.1029/2005JC003207, 2006.

https://doi.org/10.5194/bg-19-1245-2022

Ulloa, O., Sathyendranath, S., and Platt, T.: Effect of the particle-
size distribution on the backscattering ratio in seawater, Appl.
Opt., 33, 7070, https://doi.org/10.1364/20.33.007070, 1994.

van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P,
Berloff, P., Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y.,
Cotter, C. J., Deleersnijder, E., D66s, K., Drake, H. F., Drijthout,
S., Gary, S. F,, Heemink, A. W., Kjellsson, J., Koszalka, I. M.,
Lange, M., Lique, C., MacGilchrist, G. A., Marsh, R., Mayorga
Adame, C. G., McAdam, R., Nencioli, F.,, Paris, C. B., Piggott,
M. D., Polton, J. A., Riihs, S., Shah, S. H. A. M., Thomas, M. D.,
Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.: Lagrangian
ocean analysis: Fundamentals and practices, Ocean Model., 121,
49-75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018.

Vaulot, D., Eikrem, W., Viprey, M., and Moreau, H.: The
diversity of small eukaryotic phytoplankton (<3 um) in
marine ecosystems, FEMS Microbiol. Rev., 32, 795-820,
https://doi.org/10.1111/j.1574-6976.2008.00121.x, 2008.

Volk, T. and Hoffert, M. I.: Ocean carbon pumps: Analysis of
relative strengths and efficiencies in ocean-driven atmospheric
CO; changes, The carbon cycle and atmospheric CO5: natural
variations Archean to present, Geophysical Monograph Series,
edited by: Sundquist, E. T. and Broecker, W. S., 32, 99-110,
https://doi.org/10.1029/GM032p0099, 1985.

Weber, T., Cram, J. A., Leung, S. W., DeVries, T., and Deutsch, C.:
Deep ocean nutrients imply large latitudinal variation in parti-
cle transfer efficiency, P. Natl. Acad. Sci. USA, 113, 8606-8611,
https://doi.org/10.1073/pnas.1604414113, 2016.

Wong, A., Keeley, R., Carval, T., and Argo Data Management
Team: Argo Quality Control Manual for CTD and Trajectory
Data, https://doi.org/10.13155/33951, 2021.

Woodstock, M. S., Sutton, T. T., Frank, T., and Zhang, Y.: An
early warning sign: trophic structure changes in the oceanic
Gulf of Mexico from 2011-2018, Ecol. Model., 445, 109509,
https://doi.org/10.1016/j.ecolmodel.2021.109509, 2021.

Biogeosciences, 19, 1245-1275, 2022


https://doi.org/10.1038/s41598-019-52470-5
https://doi.org/10.5194/bg-16-2527-2019
https://doi.org/10.5194/os-4-1-2008
https://doi.org/10.1038/s41467-021-22994-4
https://doi.org/10.5194/gmd-13-3643-2020
https://doi.org/10.1029/2000JC000404
https://doi.org/10.1029/2005JC003207
https://doi.org/10.1364/ao.33.007070
https://doi.org/10.1016/j.ocemod.2017.11.008
https://doi.org/10.1111/j.1574-6976.2008.00121.x
https://doi.org/10.1029/GM032p0099
https://doi.org/10.1073/pnas.1604414113
https://doi.org/10.13155/33951
https://doi.org/10.1016/j.ecolmodel.2021.109509

	Abstract
	Introduction
	Methods
	Definition of vertical and horizontal domains
	BGC-Argo observations
	Global gridded climatologies (3D approach)
	Profile time series for individual floats sampling at higher resolution (1D approach)

	Conversion of bbp700 to POC
	Ocean color satellite data
	PISCES simulations and matching with observations
	PISCES 3D simulations vs. biome-aggregated observations
	PISCES 1D simulations vs. BGC-Argo coherent annual time series (CATS)


	Results
	Climatological POC fields
	Seasonally stratified subpolar biomes
	Permanently and seasonally stratified subtropical biomes

	Coherent annual time series of SPOC and LPOC: case studies
	Labrador Sea (North Atlantic subpolar gyre)
	South Pacific subtropical gyre

	Coherent annual time series of SPOC and LPOC: generalized approach

	Discussion
	Towards a globally consistent picture of POC fields in observations and models
	Bio-optical underpinnings of POC fields based on BGC-Argo observations
	Correspondence between observed and simulated POC fractions
	Importance of realistic physics and model evaluation across scales
	Joint use of BGC-Argo and models for process-level understanding

	Conclusions and outlook
	Appendix A: Calculation of POC/bbp700 ratios and related optical considerations
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

