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Abstract: In this paper, we propose a new method to map the fracture network structure in a 6 

heterogeneous aquifer from inversion hydraulic head data measured during pumping tests in hydraulic 7 

tomography mode. This inversion tool is based on the new concept of convolutional neural networks, 8 

which provides a direct approximation to the inverse function linking fracture geometry to hydraulic 9 

data. In order to handle the highly nonlinear inverse function more effectively, an advanced neural 10 

network is developed from Segnet architecture with encoder-decoder structure, which excels in image 11 

processing to translate the water level image associated with the pumping tests at the input into a 12 

fracture map at the output. The network is trained with a synthetic dataset where the fracture structure 13 

and matrix heterogeneity are randomly generated, and the hydraulic head are obtained by solving the 14 

groundwater flow equation. The trained network accurately maps different complexity levels of 15 

fractures embedded in a matrix with heterogeneous transmissivity.  16 

As a data-driven approach, the accuracy of the mapping depends on the quantity, quality, and 17 

relevance of the synthetic dataset used in the training phase. While generating data to train the 18 

network requires effort, the trained network performs each inversion instantly. The inversion result 19 

appears to be stable even in the presence of data noise, reliably interprets the hydraulic data if they 20 

share comparable fracture and matrix properties as specified in the training models. 21 

 22 

Keywords: Neural Network, Fractured aquifer, Convolution Neural Network, Groundwater, 23 

Inversion. 24 

  25 



Introduction 26 

Characterizing the hydraulic properties of fractured/karstic aquifers is known to be one of the most 27 

challenging tasks in the quest to understand groundwater dynamics and contaminant transport in these 28 

complex environments (Neuman, 2005). Indeed, due to the large variability in fractures and rock 29 

matrix, as well as the permeability gap between them, these fractured aquifers exhibit extremely 30 

complicated groundwater flow patterns. Water flows, in this heterogenous structure, are mostly 31 

concentrated in a percentage of the highly permeable matrix and in sparse fracture networks that 32 

emerge across a vast impermeable region (Budd & Vacher, 2004; Maréchal et al., 2004). 33 

Identification of these fracture networks is therefore crucial in determining strategies for exploiting 34 

and protecting any reservoir.  35 

Various tools have been tested and developed in the literature to locate preferential flows associated 36 

with the presence of fractures, including tracer tests, conventional pumping and cross-pumping 37 

techniques (Dverstorp et al., 1992; Dahan et al., 1999, Dausse et al., 2019). Cross-pumping tests are 38 

referred to as a hydraulic tomography technique that captures the spatial variability of the hydraulic 39 

properties of the porous or fractured aquifer from joining hydraulic drawdown data recorded in 40 

successive pumping tests (Illman, 2014). Typically, processing of these acquired hydraulic data is 41 

performed using an inversion code to determine models of hydraulic conductivity and storativity 42 

which are numerically consistent for the observed hydraulic data. The inversion method employs a 43 

forward problem to numerically provide hydraulic responses for a given model of hydraulic properties 44 

by solving for groundwater flow based on the Darcy equations. In this method, the forward operator is 45 

solved repeatedly until achieving a satisfactory match between the observed and simulated hydraulic 46 

data (Yeh, 1986). 47 

For the characterization of fractured/karstic aquifers, the groundwater flow equation can be solved 48 

using one of two distinct approaches: Equivalent Porous Medium (EPM) and discrete fracture 49 

networks (DFN). In the ECM concept, fracture networks are approximated as a porous medium in 50 

which the fractured aquifer is fully discretized with small cells that represent the effective values of 51 

transmissivity and storativity that are being identified during the inverse process (Yeh & Liu, 2000; 52 
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Zha et al., 2015; Tiedeman & Barrash, 2020). This approach is straightforward to implement and 53 

parameterize the spatial heterogeneities of the hydraulic property fields in the inverse process. It, 54 

however, ignores the discontinuity features of groundwater flow in fractured environments (Wang et 55 

al., 2016). In contrast, DFN concepts preserve the fracture shape and its hydraulic discontinuities via 56 

parameterizing the fracture and conduit structures as lines in 2D or surfaces in 3D and linking their 57 

hydraulic properties to their apertures (Fischer et al., 2018; Ringel et al., 2019; Mohammadi & Illman, 58 

2019). Despite its realistic representation, this parameterization is practically complicated due to the 59 

significant time required in numerical simulation and the difficulties in determining both the spatial 60 

geometries of the fractures and their apertures in the inverse process. For this reason, the number of 61 

applications of DFN parameterization in the inverse problem with stochastic or deterministic 62 

optimizers remains limited in comparison to EPM. 63 

In this paper, we explore the potential of deep learning tools in the inversion of hydraulic data 64 

monitored in pumping tests to identify conduit and fracture networks. Compared to stochastic and 65 

deterministic algorithms, the deep learning algorithm performs a direct approximation of the inverse 66 

function: linking the piezometric measurements as input to the hydraulic properties in the output. This 67 

link between the two is made through multiple linear and nonlinear operations performed sequentially 68 

on layers of the network. Such a decomposition provides an efficient way to approximate highly 69 

nonlinear functions as in the case of inversion operators (Elanayar & Shin, 1994). The concept 70 

involves the use of several multidimensional coefficients, called weights and biases, assigned to the 71 

network layers. The determination of these coefficients is based on an optimization process performed 72 

during the training operation, which uses a known set of input and output data, called the training 73 

dataset. Thus, most of the effort and computational time required to build a neural network relates to 74 

building the database for training and the training task itself. Once trained, however, the trained 75 

network provides an end-to-end operator that performs inversions of experimental data instantly. 76 

Deep learning algorithms are progressively gaining ground in the geosciences, particularly the 77 

emergence of the new powerful neural networks that enables to handle complex problems in 78 



geophysical imaging, remote sensing and other environmental monitoring (Benjamin et al., 2020; 79 

Lary et al., 2016; Moseley & Krischer, 2020). Some preliminary investigations adopted deep learning 80 

algorithms using vanilla neural networks, for example, to interpret measurements from pumping or 81 

tracing tests (Aziz & Wong, 1992; Zio, 1997; Balkhair, 2002; Trichakis et al., 2009). Comparative 82 

analyzes reveals the efficiency of neural network as a replacement for traditional interpretations. 83 

However, fully connected layers in a vanilla neural network with a high number of learnable 84 

coefficients lead to training task overload when dealing with high-dimensional problems. Recent 85 

breakthroughs in the field of data science have given rise to the new networks based on the 86 

convolutional concept that efficiently takle tomography problems with reasonable effort (LeCun & 87 

Bengio, 1998). Convolutional neural networks (CNN) translate the input image by scanning the 88 

shared small filters region-by-region to extract features on the entire image and construct local 89 

connections between neighboring pixels. Such a sharing mechanism facilitates the training task and 90 

information extraction compared to processing point-by-point as in the vanilla network (Rawat & 91 

Wang, 2017). 92 

Convolutional architecture performance has sparked a surge of research and applications in 93 

geophysical and hydraulic imagery for approximating inversion operators to identify the subsurface 94 

properties from sparse observations on the boreholes or at the surface. Among them, Liu et al. (2020) 95 

built a CNN architecture to map the 2D electrical resistivity in the subsurface from apparent resistivity 96 

images inferred from surface data, while Vu & Jardani (2021) developed a CNN-ERT3D neural 97 

network to process 3D resistivity tomography. Other efforts applied the networks in seismic 98 

exploration to reconstruct the seismic velocity models directly from seismogram data (Li, et al., 2020; 99 

Zhang & Lin, 2020, Apolinario et al., 2019; Park & Sacchi, 2020). Similar ideas were tested for the 100 

inversion of electromagnetic data to identify the 1D or 2D subsurface resistivity (Puzyrev & 101 

Swidinsky, 202; Puzyrev, 2019) 102 

In hydrogeology, Laloy et al accessed the effectiveness of a generative adversarial network (GAN) 103 

in mapping hydraulic conductivity heterogeneities in 2D and 3D binary pattern (Laloy et al., 2017; 104 

Laloy et al., 2018). Bao et al. (2020) extended the coupling of GAN and Ensemble Smoother with 105 

Multiple Data Assimilation, to reconstruct the binary media and reduce the prediction uncertainty. 106 
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Sun (2018) suggested a composition of GAN and state parameter identification to map simultaneously 107 

the parameter space, as the permeability, and the corresponding model state, as the subsurface 108 

structure. Other initiatives employed encoder-decoder architectures to image the spatial distribution of 109 

the transmissivity field from measurements of hydraulic heads (Jardani et al., 2022) or tracer 110 

concentrations (Vu & Jardani, 2022). However, all these applications focus solely on mapping 111 

heterogeneity in a porous aquifer; to our knowledge, only a few works contribute to determination of 112 

the fracture network geometry. 113 

In this paper, we propose a CNN based on the SegNet architecture to identify the fracture network 114 

structure from synthetic data of hydraulic head monitoring in a fractured aquifer. The study is 115 

structured as follows: Section 2 outlines the theoretical background which summarizes the forward 116 

problem with groundwater equations, the concept of the inverse problem approximated by Segnet and 117 

its differences from classical inversion methods. Details of the data generation, learning process and 118 

validation of the trained network follows in Section 3. Section 4 is devoted to accessing the 119 

performance of the proposed network in the face of possible interferences in practice, which could be 120 

related to the data quality and quantity, the heterogeneity in matrix, or the relevance of dataset 121 

features. Finally, a summary of the main findings with suggestions for future work concludes the 122 

paper. 123 

2. Theoretical Background 124 

In this section we summarize the theory of which the first part includes the forward problem, the 125 

concept of the inverse problem with neural network, followed by the description of proposed neural 126 

network architecture and its working mechanisms. 127 



2.1 Forward problem: Groundwater modelling 128 

As mentioned earlier, inversion by a deep learning algorithm is also based on the forward problem 129 

where generating the training data set involves solving the groundwater flow equation. This training 130 

data consists of the numerically computed hydraulic response to the pumping tests corresponding to a 131 

given synthetic transmissivity field and discrete fracture networks. Fractures in the aquifers are 132 

geometrically represented by 1D lines and assigned to an equivalent transmissivity, whereas matrix 133 

rock is characterized as a porous medium - a heterogeneous transmissivity field. The neural network 134 

then learns the relationship between the hydraulic head responses and the permeable fracture 135 

structures rooted in the training dataset. In this work, the inversion task aims only to reconstruct the 136 

geometric structure of fractures without rebuilding the transmissivities in fracture and matrix. 137 

In steady-state conditions, numerical simulation of groundwater flow in a fractured aquifer is 138 

performed using two connected equations derived from Darcy's Law that describe water flows in the 139 

rock matrix and fractures (Kohl et al., 1997):      140 

� ∇�−��∇ℎ� = 
  in the matrix Γ�  ∇��−��∇�ℎ� = 
  in the fracture Γ� ,                                          �1a� 141 

subjected to the following boundary conditions 142 

ℎ = ℎ� at Γ�,                                                                                  �1b� 143 

where ∇ and ∇� are the gradient and tangent gradient operators, respectively; Tm and Tf [m2/s] 144 

denote the transmissivity of heterogenous matrix (Γm) and fractures (Γf), respectively. The fractures 145 

are shaped as lines which is randomly generated, while their equivalent transmissivity is assumed 146 

constant. h [m] is the hydraulic head; q [l/s/m] represents the punctual water source at the 147 

extraction/injection wells. To form boundary conditions, the observation area is embedded in a large 148 

buffer zone assigned to the mean transmissivity of the matrix blocks. Such large bounds limit the 149 

boundary effects on the computational results. For completeness, a constant hydraulic head (hD) is 150 

imposed at the buffer zone periphery (ΓD).  151 

In this study, the source of water is the paired pumping wells, each pair consists of one extraction 152 

and one injection well located on opposite sides of the observation area. Each paired well pump at the 153 
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same constant rate over the operating period. Finally, we solve the set of flow equations numerically 154 

using a finite element method in COMSOL software to determine the hydraulic head at observed 155 

points, which are then taken as input to the neural network. 156 

2.2 Inversion problem with Neural network: Mapping fracture from groundwater observation 157 

As mentioned in the previous problem, equation (1) represents a numerical operator for computing 158 

piezometric data in response to a pumping test in an aquifer with matrix transmissivity Tm, fracture 159 

transmissivity Tf with geometry Cf. The operator can be expressed as the following function with three 160 

dependent parameters: 161 

! = "�#�, #� , $��,                                                                           �2� 162 

The operator works as a data generator for training the neural network which performs an inverse 163 

function to determine the fracture geometry from the hydraulic head data (see Figure 1). Here we 164 

focus only on reconstruction of the fracture geometry, without identifying the transmissivity field of 165 

matrix rock and fractures which will be handled in a future study. Thus, the aim of this study is to 166 

retrieve the fracture geometry from the hydraulic data by approximating the nonlinear inverse 167 

operator f -1 between two fields using Segnet network based on thousands of synthetic data sets: 168 

$� = "&'�!� = Ψ�), *�,                                                            �3�  169 

where Ψ represents the neural network, whose learnable parameters are denoted as Θ.  170 



 171 

Figure 1: A scheme representing the prediction of fracture geometries from the hydraulic 172 

head data using Neural network. The approach consists of the learning phase: solving the 173 

forward problem to generate the training data, and the use of neural network to establish the 174 

relationship between the fracture geometry and the hydraulic data from the training models.   175 

Indeed, the neural network, such as Segnet, offers a possibility to directly relate the hydraulic data 176 

to the fracture geometries by determining a set of learnable parameters defined as sequential linear 177 

and nonlinear operations in Segnet layers. Determination of the parameters is performed from solving 178 

an optimization problem with the following objective function 179 

* = argmin -./$� ~ Ψ�!1, *�/
2

'
3 ,                                                 �4� 180 

where the pair (Cf, hi) denotes a model and its corresponding measurement, N is the number of pairs 181 

in the training dataset; the operator ~ denotes the cross entropy to measure the difference between the 182 

truth and predicted models.  183 

A training process often demands a large dataset, of which the generation task takes the most time 184 

in the building of a neural network. However, once the training is completed, the trained network 185 

performs an inference instantly, an end-to-end operator without intervention from users. 186 

2.3 SegNet Architecture - Direct inversion function 187 

In this paper, the inversion operator is approximated by the SegNet architecture which is designed 188 

to efficiently locate the fracture map from groundwater level measurements relied on the concept of 189 
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convolutional neural network (see Figure 2). The SegNet architecture was developed by 190 

Badrinarayanan et al. (2017) and has been rapidly proven in a variety of domains with numerous 191 

applications, including:  traffic scene detection (Kendall et al., 2017; Jiang et al., 2020; Qin et al., 192 

2020), satellite image processing (Khryashchev et al., 2018; Mohammed & Edward, 2019; Sariturk et 193 

al., 2020), geophysics (Pham et al., 2018; Mukhopadhyay & Mallick, 2019; Vu & Jardani, 2021). 194 

However, it is still uncommon in hydrology, as well as other advanced algorithms in this discipline, 195 

where progress is modest compared to other geosciences such as geophysics. 196 

 197 

Figure 2: SegNet architecture consists of 4 encoder-decoder levels, with 63 neural layers to 198 

interpret the fracture network geometry from groundwater level measurement.  199 

Typically, a neural network consists of multiple layers of artificial neurons that mimic the 200 

operations of their biological counterpart through mathematical functions (Indiveri et al., 2011). When 201 

an input image is introduced into the network, each layer operates on activation functions to interpret 202 

features before passing them on to the next layer. The process ends with a mapping result 203 

reconstructed from the learned features. By matching the truth in the given datasets with its 204 

reconstruction from the network, all parameters in the activation functions are determined, which is 205 

then named as the training task. Network performance evidently relies on how efficiently the features 206 



are translated after this training process. A more complex network appears to better refine the learned 207 

features that is why the proposed neural network is based on an advanced architecture (Bengio et al., 208 

2013). 209 

The proposed architecture, as shown in Fig.2, consists of successive network blocks with four 210 

encoders and four decoders, finalized by a pixel-wise classification layer to map the fractures. This U-211 

shaped form consists of 63 layers divided into two paths: a contracting one with encoders and an 212 

expanding one with decoders, each having the same structure but arranged in reverse order. The 213 

encoders extract the features embedded in the input images using a set of sequential convolutions, 214 

each followed by a batch-normalization (BN) and a rectified linear unit (ReLU), and finally a max-215 

pooling operation. On the opposite path, the decoders start with an un-max-pooling operation 216 

followed by a sequence of convolutions, BN and ReLU layers. The max-pooling indices from each 217 

encoder are assigned to the corresponding decoder to compensate for the resolution loss in the 218 

encoders. This sharing mechanism is the core aspect of a SegNet architecture (Badrinarayanan et al., 219 

2017). 220 

But how does the network reconstruct the fractures? The concept of a convolutional neural network 221 

relies on scanning small filters over entire images to extract key features which represent the local 222 

connectivity among neighboring pixels. In this sequential convolution, the first layer usually extracts 223 

basic features, such as horizontal or diagonal edges, while more complex features are detected in the 224 

next layers, such as corners, edges, or shapes (Ghafoorian et al., 2017). The deeper it goes, the more 225 

complex features the network can detect (Fukushima, 1988). In this manner, convolutions translate 226 

the fracture information embedded in the input water level images to yield the fracture map.  227 

Number of convolution level is designed in response to problem complexity; however, deeper 228 

convolutional translation inevitably entails a large system of filters that soon overburdens the training 229 

task. To save time and resources, a max-pooling operation is invoked to sort out only maximum 230 

values. By shrinking the spatial size of the convolved features, the operation speeds up the processing 231 

and is effectively deals with overfitting issue. By working only on maxima, the max-pooling 232 

conserves the most prominent invariant features along with dimensionality reduction (Nagi et al., 233 

2011). Since the fracture is prominent in this case, the operation acts as a denoising agent to highlight 234 
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fractures from the matrix heterogeneity. However, the operation results in a downsized output and 235 

lose of information. To compensate the side effects, state of each max-pooling is transferred to the 236 

corresponding un-max-pooling in decoders to counterbalance the degradation.  237 

Thanks to sharing max-pooling indices, the SegNet outperforms other networks such as FCN, 238 

DeepLab, DeconvNet in terms of accuracy (Badrinarayanan et al., 2017). For example, the proposed 239 

network with 4 encoder-decoder levels requires only 0.5 million parameters, which is far less than 240 

Unet with 8 million. A smaller size is also related to the fact that the network employs only 3×3×64 241 

filters which are partly smaller than those in the Unet. Recall that our network is designed with 4 242 

encoder-decoder levels, shallower than the original network as it processes fewer output segmentation 243 

labels.  244 

3. Application 245 

This section is devoted to the training process in a synthetic application. We begin with a 246 

generation of aquifer models, each with a fracture network embedded in a heterogenous ground. 247 

Water level responses in each aquifer model are observed with a monitoring scheme designed to 248 

mimic a real experiment, where the acquisition setup maps the groundwater level in injection tests. 249 

Following that, the acquired data is processed to feed training of the network. The training is then 250 

implemented, along with hyperparameters, evaluation metrics, and its evolution during the process. 251 

Typical results are shown to validate the trained network. 252 

3.1 Aquifer model: fracture network embedded in a heterogeneous ground 253 

In this study, the heterogeneity in aquifer transmissivity is generated based on statistical parameters 254 

following a Gaussian distribution. For this purpose, we use the SGeMS code implemented in Matlab 255 

to create 35,000 transmissivity models, where the distribution of log10T is randomly constructed using 256 



a Gaussian variogram with constant mean and variable range (Remy et al., 2009). Heterogeneity in 257 

transmissivity models ranges from 10-8 to 10-4 m2/s in four orders of magnitude which corresponds to 258 

the range of a permeable aquifer. The generated transmissivity fields are then assigned to a 100 × 100 259 

m area with a locally constant aquifer depth (Figure 3). Each ground model is assigned a fracture 260 

network geometry which consists of no to three fractures assigned randomly. The transmissivity of 261 

fracture is set at 10-2 m2/s which is of orders conductive than the surrounding matrix with a mean of 262 

10-6 m2/s. All fractures are formed from 1D random generation using a Gaussian variogram in 263 

SGeMS, and then randomly rotated to redirect their orientation.  264 

 265 

Figure 3: Setting of monitoring area which consists of 49 observation wells arranged in a 266 

regular array (black dots) and 4 paired pump wells on the boundaries implemented successively 267 

(red numbers).  268 

To establish a monitoring scheme, we install 49 observation wells in a regular array in both 269 

directions on the synthetic aquifers (Figure 3). At the field boundaries, we arrange 4 paired pump 270 

wells, in each pair an up-pumping well is in opposite position to its down-pumping. This arrangement 271 

of the hydraulic forces in pairs allows realizing a hydraulic disturbance of the whole investigation 272 

area. In addition, this configuration in practice saves water resources during the hydraulic tomography 273 

test. 274 
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3.2 Data acquisition and data processing 275 

In each model, groundwater responses due to pumping/injection tests are determined by computing 276 

the forward problem described in Section 3.1. Four pumping/injection tests are performed 277 

sequentially at a constant flow rate of 10 L/min in each well. Hydraulic measurements are acquired on 278 

the 49 observation wells and then interpolated using the Akima method to obtain 4 maps of hydraulic 279 

head.  280 

The input and output maps in the training datasets use the same spatial resolution, being discretized 281 

by a 64 × 64 grid on the 100 × 100 m study area. Recall that in this study, we focus only on mapping 282 

the network of fractures as preferential flow paths during pumping/injection tests. The presence of 283 

fractures is often associated with abrupt changes in groundwater flow. To better identify these 284 

discontinuities, we calculate the gradient in both directions (x and y) of the hydraulic head maps 285 

interpolated from the hydraulic head measurements. The resulting gradients are then reshaped into a 286 

64 × 64 grid. Each pumping/injection test generates 2 gradient maps (x, y) to build the gradient map 287 

set of 8 channels (64×64×8) as the input of neural network training. For the output map, the fractures 288 

are labelled as 1 and the others as 0 on the gridded map. 289 

To quantitatively assess the predictions accuracy of the network, we use the accuracy coefficient as 290 

defined below 291 

5667896: =  1; .�:< == :=<�2

<>'
,                                               �5� 292 

where y and := denote the labels (fracture or ground) in the true model and its corresponding 293 

prediction, respectively. N represents the total pixel number in the output image (64×64). 294 

3.3 Training process and results 295 

For the training phase, we randomly separate 25,000 aquifer models with corresponding measured 296 

data: 20,000 for training the network and 5,000 for validation during the process. A high fraction of 297 



validation dataset aims to better evaluate efficiency of the training process. Training is performed 298 

using the ADAM optimization algorithm implemented in MATLAB, on a Dell Precision Tower 5810 299 

with a single GPU NVIDIA Quadro K2200. The task is completed in 5 hours, 60 epochs with a 300 

constant learning rate of 0.01 and a batch size of 128. Figure 4 summarizes evolution of accuracy 301 

along the training process.  302 

 303 

Figure 4: Accuracy evolution in the training process, including 20,000 data sets for training 304 

and 5,000 data sets for validation. 305 

The trained network is then evaluated with 10,000 unseen models, each model is executed in 0.006 306 

seconds, almost instantly. Fractures are efficiently mapped over 10,000 samples with an average 307 

accuracy of 94.83%. The overall reconstruction quality is summarized in the histogram shown in 308 

Figure 11. High accuracy prediction is related to the fact that fractures with higher conductivity drive 309 

dynamics in the aquifer that favor their detection. To investigate the sensitivity of the proposed model, 310 

we train the network 50 times with the same dataset and hyperparameters as above. The results show 311 

a consistent solution, where the average accuracy of the testing dataset centers at 94.86 %, with a 312 

standard deviation of 0.1 % over the trained models.  313 

To discuss the accuracy of the reconstructions in detail, we select and show six representative 314 

results of the tested models in Figure 5. Six showcases are arranged in different levels of complexity 315 

of the fracture distribution, starting with the models without fractures and ending with the networks 316 

consisting of three fractures. 317 
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 318 

Figure 5: Six representative models are selected to illustrate the effectiveness of the trained 319 

network (Case 1). From top to bottom by row: the real, accuracy, and predictions; from left to 320 

right by column: the representative cases from Ex1 to Ex6. Fractures are efficiently mapped 321 

with a high accuracy. The accuracy of reconstruction relies on the density and complexity of the 322 

fracture network overall. 323 

The accuracy of reconstructions overall refers to a clear dependency on the density of the mapped 324 

fractures and their complexity level. Without fractures, Ex1 shows an accurate prediction where the 325 

matrix transmissivity heterogeneities do not produce artifacts in the interpretation. A further 326 

discussion on this ground impact is addressed in Section 4.5 with higher heterogeneity. In the 327 

following cases, Ex2 and Ex3, the trained network also properly reproduces the models with one or 328 

two fractures. However, in a more complex case in Ex4 where two fractures cross closely, there is a 329 

minor misinterpretation with a fused joint. Even though, the reconstruction still faithfully represents 330 

the main aspects of the fractures.  331 

Case Ex5 otherwise presents a dense fracture network in which three fractures are oriented in 332 

different directions; these patterns are somewhat more complex than the previous ones, but the 333 

network is still able to identify the fracture paths with accuracy. Along the reconstructed fractures in 334 

Figure 5hij, other slightly deformed curves or a minor discontinuity can be observed, possibly due to 335 



the influence of ground heterogeneity. The ground heterogeneity exhibits less influence on subsurface 336 

flow compared to fractures. However, by introducing more noise and locally changing the water table, 337 

heterogeneity may misguide the understanding of fracture networks. A detailed discussion on this 338 

problem is further elaborated in Section 4.1 for results from homogeneous models. In the last case, 339 

Ex6 also consists of three fractures, but with a very complex geometry, including two fractures close 340 

to each other, which the network cannot distinguish in the reconstruction. This misinterpretation stems 341 

from the fact that the two fractures behave as similar as a single fracture in the middle. In general, 342 

however, the fracture reconstructions are very satisfactory.  343 

Indeed, number of interferences can impact prediction efficiency which may occur in a real field 344 

under diverse situations, some of the key issues are addressed in the following sections.  345 

4. Discussion 346 

This section is devoted to studying the impact of various sources of uncertainty that can affect the 347 

quality of the reconstructions with the network, such as: the uncertainty about the degree of 348 

heterogeneity of the ground transmissivity and the choice of the size and the nature of features of the 349 

training models. We also study the impact of the number of piezometers used in hydraulic 350 

tomography and the noise that can alter these hydraulic measurements. 351 

4.1 Effect of heterogeneity in the matrix 352 

Both porous ground and fracture network geometry associates in forming the subsurface dynamics; 353 

yet the roles of each system in driving the groundwater are distinct. Dominant conductivity and 354 

connectivity of fracture network make it superior to the surrounding porous ground. While fractures 355 

regulate the flow regime, the permeable ground, even of a lesser order, is equally important.  356 

To investigate the influence of heterogeneity in matrix transmissivity, we repeat the learning 357 

process described in Section 3, but this time with homogeneous transmissivity models. We regenerate 358 

35,000 models using the same fracture network configuration embedded in ground with a constant 359 
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transmissivity of 10-6 m2/s. The network is re-trained using the same piezometric configuration and 360 

network hyperparameters as in Section 3.3. The overall average accuracy for 10,000 test models 361 

shows a significant improvement from 94.83% in Case 1 to 96.94% in this case. Details of the 362 

representative models are shown in Figure 6, and the histogram is summarized in Figure 11. 363 

 364 

Figure 6: Examples of reconstruction with a homogeneous ground transmissivity of 10-6 m2/s 365 

(Case 2). From top to bottom by row: the truth, accuracy, and predictions; from left to right by 366 

column: the representative cases from Ex1 to Ex6. Without ground heterogeneity, fractures are 367 

reconstructed with a better accuracy. Complexity in the fracture network is better delineated 368 

than in the previous case which prove the impact of the ground heterogeneity on overall 369 

accuracy. 370 

The showcases in Figure 6 prove a better reconstruction due to the absence of disturbance effect 371 

associated with a heterogenous ground, particularly for the complex configurations in Ex4 and Ex6. 372 

The fused bottleneck in the prediction of Ex4 has clearly disappeared, accompanied by a better shape 373 

for both fractures. Other slightly deformed curves that appeared in Figure 5hij also do not appear in 374 

Figure 6hij. Similarly, all the fractures are well shaped overall in Ex6 where the two closed fractures 375 

are clearly delineated, even some minor disturbances are shown on the top of the fractures. 376 

Comparison of the accuracy between the two sets of reconstructions confirms the heterogeneity 377 



importance of the porous ground in determining the fracture network structure. Further discussion on 378 

this issue is developed in Section 4.5 where the heterogeneity deviates from a Gaussian distribution 379 

predefined in the training dataset.  380 

4.2 Effect of dataset size 381 

In general, the effectiveness of a trained neural network in a deep learning algorithm depends 382 

strongly on the size of the dataset used in the learning phase. In our inverse problem, generating the 383 

training dataset involves solving a mass of a forward problem with numerical tools, which is the 384 

longest and most laborious phase in building a neural network. The ideal strategy is to determine the 385 

optimal size which reduces computation effort while resulting in an accurate prediction. This can be 386 

accomplished by gradually increasing the data size and periodically verifying the prediction accuracy 387 

in the training, validation and testing phases until a satisfactory result is achieved.  388 

In this section we examine the impacts of training data size on driving the reliability of 389 

reconstructions by analyzing the predictions obtained with networks trained with three different sizes:  390 

5000, 10000, 20000 and 30000. The networks formed with these datasets are tested on the 10000 391 

unseen models as in Section 3.3, of which the metric results are reported in Table 1 and in Figure 11 392 

for the histogram. We recall the six representative models as in the previous tests to analyze the 393 

impact of dataset size in detail (see Figure 7). 394 
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 395 

Figure 7: Results from the network trained from 5,000 models in the dataset (Case 3). From 396 

top to bottom by row: the truth, accuracy, and predictions; from left to right by column: the 397 

representative cases from Ex1 to Ex6.  The accuracy of fracture reconstruction relies on the size 398 

of training dataset. A small training dataset results in a degradation in the prediction accuracy 399 

with artifacts or missing feature in the reconstruction. Larger dataset enhances the prediction 400 

quality, an asymptotic enhancement. 401 

The use of a minimal number of training data is sufficient to results in reliable maps when the 402 

reconstructed fracture networks are straightforward, as in the case of models Ex1 to Ex3. However, 403 

when the configurations are difficult, as in the cases of models Ex4 to Ex6, the predictions do not 404 

provide accurate identifications of the fracture structures with minor artifacts and missing features in 405 

the reconstruction. A larger training dataset assists improving reconstructions in enriching the learning 406 

process through introducing more complex features (Advani et al., 2020). Better generalization thus 407 

requires a wide range of alternative models to cover the high complexity in karstic aquifer and to 408 

tackle the overfitting issue. 409 

Details of prediction accuracy in Table 1 reveal a clear dependence on the size of dataset, with 410 

overall mean accuracy increasing from 93.08% for the first subset (5,000 models in training), to 411 

93.95% for the second (10,000 models in training), and to 95.19% of the third (30,000 models in 412 



training). The enhancement in accuracy is, however, not proportional to the enlargement of dataset 413 

size since results from subsets of 20,000 (Case 1) and 30,000 models show no clear difference (with 414 

0.3% of improvement in accuracy for extra 10,000 samples). Overfeeding data overburdens the 415 

training task since increasing data volume ineffectively contribute to improve accuracy when 416 

performance reaches an asymptotic stage (Amari et al., 1997). As mentioned at the beginning of this 417 

section, the choice of training data size depends on the desired accuracy. It is reasonable to gradually 418 

increase the size until this desired accuracy is achieved, to avoid generating a large amount of 419 

unnecessary data.  420 

4.3 Effect of amount of observation wells 421 

Number of observed wells is an important consideration in design a monitoring plan, as it 422 

determines measurement efforts and accuracy of any interpretation technique. A dense observation 423 

network engages a better understanding of the field when it better covers the dynamics subsurface. 424 

However, it also imposes higher requirement on the costs and feasibility of a monitoring plan in a real 425 

field sometimes. In this part we examine the importance of measurement points for reconstruction 426 

accuracy.  427 

To achieve this, the study evaluates two additional configurations of observation wells which share 428 

an identical pump setting but using less wells compared to the original configuration containing 49 429 

piezometers. The number of wells is first reduced by half (25 wells) and then by one third (16 wells); 430 

but we retain the pumping schemes with similar flow rates, paired pumping, and other conditions as 431 

performed for the original configuration of 49 wells in Section 3.1 (Figure 8). In practice, we rebuild 432 

new datasets in which the hydraulic head maps are interpolated with fewer measurements, which 433 

lowers the input resolution and worsens the inversion quality on the 10,000 test models (Table 1). 434 
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 435 

Figure 8: Altered monitoring configuration: lowering the number of observation wells to 25 436 

while maintaining all other settings: a) Equal spacing, b) Varied spacing. 437 

 438 

 439 

Figure 9: Reconstructions with a monitoring network of 25 wells (half number of the original 440 

design) (Case 4). From top to bottom by row: the truth, prediction, and accuracy of Case 4a and 441 

Case 4b; from left to right by column: the representative cases from Ex1 to Ex6. A coarse 442 



observation degrades in the prediction accuracy as the coverage of measurement data is crucial 443 

in determining the inversion quality. 444 

The results of the 10,000 test models in Table 1 reveal a clear dependence of the reconstruction 445 

accuracy on the piezometric density over three configurations. Degraded data coverage results in a 446 

drop in overall reconstruction accuracy: from 94.83% (49 wells) to nearly 92% with 25 and 16 wells. 447 

The degradation tendency is also confirmed visually in the representative models, where the 448 

reconstructions of the fracture network geometry from 25-well setup are less accurate than in the 49-449 

well (Figure 9). For simple fracture networks in Ex1 to Ex3, the reconstruction can be accomplished 450 

accurately with only a limited number of observation wells. However, the dissimilarity in the results 451 

for 25- and 16-well setups implies that the hydraulic information in these two cases is only sufficient 452 

to infer the existence and overall shape of the fractures, but not to identify them more precisely in 453 

complex cases. Another comparison of results between two configurations of observation wells in 454 

Figure 9 highlights the impact of well spacing. A scattered distribution of observation wells leads to a 455 

drop in accuracy of the fracture network reconstruction, as Case 4b shown in Figure 9, where the 456 

reconstruction quality depends locally on the scarcity of observation wells. Indeed, the relationship 457 

between the number of involved measurements and the reliability of resolved predictions is a common 458 

issue in any inversion problem, regardless of the optimization method employed. To ensure an 459 

accurate reconstruction, there must be a sufficient number of wells to cover all heterogeneities in the 460 

target field. 461 

4.4 Effect of pumping schemes 462 

To further investigate the impact of the amount of data in identifying fractures, in this section we 463 

reduce the number of pumping wells and keep the original configuration with the same pumping rate 464 

and observation wells (see Figure 10). This modification in the monitoring scheme results in a 465 

reduction of the amount of data to half and quarter of the original scheme. 466 
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 467 

Figure 10: Monitoring schemes with less pumping wells: a) 2 pairs of pumping wells, b) 1 468 

pairs of pumping wells. 469 

The reduction in data size leads to an overall deterioration in the result for the subsurface fracture 470 

network reconstruction, with the average accuracy dropping to 93.53% in Case 5a with 2 pairs of 471 

pumping wells and 91.50% in Case 5b with a single pair. Details for the six representative examples 472 

are shown in Figure 11 while the statistics are summarized in Table 1. Downsizing the observation 473 

data in this case undoubtedly leads to less coverage of observed data, resulting in a less reliable 474 

prediction. However, the consequence is less severe than the reduction in observation wells, where the 475 

lack of local information results in a coarse resolution that affects details of the reconstructed map. 476 

This comparison can be used as a guide to the design of the monitoring system in a real field.  477 



 478 

Figure 11: Reconstructions with data from different number of pumping wells (Case 5). From 479 

top to bottom by row: the truth, prediction, and accuracy of Case 5a (2 pairs of pumping wells) 480 

and Case 5b (1 pair of pumping wells); from left to right by column: the representative cases 481 

from Ex1 to Ex6. Less observation data degrades the prediction accuracy.  482 

In this section, we analyze the quality of reconstructions with piezometric data obtained with a low 483 

pumping rate of 0.5 l/min while maintaining all other acquisition parameters, such as the number of 484 

pumping wells and observation wells. The low flow rate hence entails a small hydraulic disturbance 485 

confined to the vicinity of the pumping wells. The absence or low response that can be affected by 486 

noise in distant wells cause a lack of information to perform a correct interpretation. Such difficulty 487 

can be the origin of inaccurate reconstructions with artifacts where the interpretation cannot 488 

distinguish the presence of a fracture network from the impacts of the heterogeneity of the 489 

surrounding matrix (see Figure 12).   490 
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 491 

Figure 12: Reconstructions with data from a monitoring scheme using a low pumping rate at 492 

all pumping wells (Case 5c). From top to bottom by row: the truth, accuracy, and prediction of 493 

Case 5c; from left to right by column: the representative cases from Ex1 to Ex6. A low pumping 494 

rate results in a small hydraulic disturbance focusing on the vicinity of the pumping wells, 495 

which limits the accuracy of fracture detection. 496 

4.5 Effect of observation uncertainty 497 

Removing the noise that affects hydraulic data can be a complex task to perform prior to 498 

interpreting input data in an inversion algorithm. Thus, identifying the influence of noise on imagery 499 

quality is a crucial step in determining the degree of uncertainty in the interpretation. To analyze this 500 

influence, we contaminate the hydraulic data with random Gaussian noise, where three standard 501 

deviations represent 5%, 15%, and 25% of the original signal, respectively. Contaminated data is then 502 

interpreted using the network formed with the original data (Section 3.3). To illustrate the result for 503 

10000 testing samples, we group the histogram in Figure 11 and summarizes the metric detail in Table 504 

1 while the predictions for the benchmark cases are shown in Figure 10.  505 



 506 

Figure 13: Prediction from measurement contaminated with a Gaussian noise of 15% (Case 507 

6). From top to bottom by row: the truth, accuracy, and predictions; from left to right by 508 

column: the representative cases from Ex1 to Ex6. The network faithfully reconstructs the 509 

fractures network with modest artifacts. Minor noise impact is associated to the neural layers 510 

which operates a region-wise convolution and de-noises in processing feature images.  511 

According to the metric assessment (average of all reconstruction accuracies), the increase in noise 512 

correspond to a slight decrease in reconstruction accuracy from 94.59 percent for 5% noise to 93.38 513 

percent for 15% and 91.90 percent for 25% noise. Noise appears to have only a minimal effect on the 514 

reconstruction accuracy of the fractures. Figure 10 details reconstructions of typical models where the 515 

fractures are well reconstructed despite some minor artifacts. Local noise that mimics the dynamic 516 

behavior of fractures in groundwater likely leads to the misinterpretation that produces these artifacts. 517 

Such a disturbance is then attributed to false segments, as in Ex1, or to slight misalignment of 518 

fractures, as in the other cases Ex4 to Ex6. However, the fracture networks are well identified overall, 519 

regardless certain degree of uncertainty in the hydraulic data. 520 

This minimal noise effect has been reported in the literature when applying CNN architectures to 521 

solve inversion problems, e.g., in electrical resistivity tomography (Vu & Jardani, 2021), seismology 522 

(Wu & Lin, 2018), or hydrology (Jardani et al., 2022). As explained in Section 2.3, the operation of 523 

CNN network relies on a convolutional mechanism that interpret feature on a region-by-region basis 524 

rather than treating each observation point separately, as is the case with a conventional inversion 525 
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method. Such a mechanism minimizes the impact of local changes due to random noise. Since the 526 

learning process includes max-pooling operations, which also contribute to denoising the information 527 

by keeping only the maximum values during the process.   528 

To summarize, we collect all the result discussed previously in Figure 11 for the histograms and in 529 

Table 1 for the accuracy of reconstructed fractures.  530 

 531 

Figure 14: Histogram of fracture reconstruction accuracy of 10,000 models in the testing 532 

dataset. From top to bottom by row: the cases from Case 1 to Case 6; from left to right by 533 

column: contexts of data used in the training and the corresponding histograms. Impacts of 534 

interferences is not equal, the accuracy is most sensitive to the number of observed wells, while 535 

showing certain resistance to the noise in measurements and heterogeneity in the ground 536 

matrix.  537 

 538 



Table 1: Summary of prediction accuracy in the discussion above, including the 539 

representative showcases and the mean for 10,000 models in the testing dataset.  540 

Data type Case 
Accuracy 

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Mean 

Complete 

dataset 

20.000 

samples, 

49 obs. wells, 

heterogenous 

ground 

C1 100.00 97.31 96.51 94.78 91.94 91.21 94.83 

Homogeneous 

ground 
 C2 100.00 99.24 98.12 95.95 95.36 95.63 96.94 

Size of dataset 

in training 

5.000 samples C3 100.00 96.44 92.82 93.02 90.06 89.23 93.08 

10.000 samples  100.00 97.44 95.48 91.75 93.68 92.46 93.95 

30.000 samples  100.00 98.32 94.80 93.82 93.14 93.58 95.19 

Lower number 

of observation 

wells 

25 obs. wells C4a 98.90 97.31 95.24 92.02 88.94 87.28 92.92 

25 obs. wells C4b 100.00 97.53 90.14 91.94 85.55 89.87 92.53 

16 obs. wells  100.00 97.66 90.31 88.50 84.25 90.63 91.45 

Lower number 

of pump wells 

2 pairs C5a 100.00 97.85 95.73 95.29 86.57 91.38 93.53 

1 pair C5b 100.00 96.41 93.55 92.11 86.65 90.21 91.50 

Lower 

pumping rate 
 C5c 99.39 97.14 87.18 88.35 81.37 84.91 90.25 

Contaminated 

with a 

Gaussian noise 

5%  100.00 97.17 95.83 95.19 91.97 91.41 94.59 

15% C6 97.31 96.44 96.56 93.77 92.09 89.87 93.38 

25%  98.19 95.17 91.58 92.85 90.21 90.14 91.90 

4.6 Influence of features in training models 541 

The training datasets, being the main and most essential data, enable machines to learn the feature 542 

and make predictions from the learned features. Not only quality and quantity of training datasets but 543 

also its relevance therefore affect the prediction accuracy. All the datasets together must be consistent 544 

and relevant to the response expected from the neural network. Gathering a broadly featuring data 545 

then better approximates the complexity of a real field, but this often associates to overhead costs and 546 

challenges in practice. Often, the training dataset is constrained to be as similar as possible to priori 547 
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knowledge in the field, which implies possible misinterprets if incomplete and inconsistent data 548 

appears. This discussion investigates how well the trained model performs under different conditions 549 

when the presented map differs from the training knowledge. 550 

Six synthetic aquifers with different features are tested as shown in Figure 12. On the first three 551 

aquifers (D1, D2 and D3), the transmissivity fields contain binary distributions that differ from the 552 

Gaussian models predefined in the training dataset. The neural network reconstructions successfully 553 

capture the heterogeneities of the aquifer, including the absence or presence of fractures in the target 554 

models. However, in the second case D2, Figure 12b&h, an anomaly is evident due to the 555 

interpretation of a segment at the interface between two hydro-facies. A transmissivity gap at the 556 

hydro-facies interface causes fracture-like behavior in the groundwater, resulting in an artifact in the 557 

prediction. As mentioned in Section 4.1 for Gaussian models, the ground heterogeneity can trigger 558 

misinterpretations depending on the gap of heterogeneity in the ground matrix. 559 

 560 

Figure 15: Applying trained network to prediction models of different features to the training 561 

dataset. From top to bottom by row: the truth, accuracy, and predictions; from left to right by 562 

column: the tested cases from D1 to D6. While examples D1 to D3 involve matrix blocks with 563 

non-Gaussian transmissivity distribution, the left three examples, D4 to D6, consist of more 564 

fracture features. With minimal misinterpretations, the trained network properly reconstructs 565 

the fracture systems. 566 



For the remain cases (D4, D5 and D6), we retain the Gaussian nature of the transmissivity as used 567 

in the training data, but the fracture network structures are more complicated. In the case D4, the 568 

fracture network consists of some short segment which differs from the training data containing only 569 

long fractures. The reconstruction of Case D4 efficiently detects the major fracture, but the neural 570 

network fails to detect minor fractures that were not learned during the training phase. In general, it is 571 

more complex to capture short fractures in hydraulic tomography with a poor resolution of the 572 

piezometric coverage (Fischer et al., 2018).  573 

In the following cases, D5 and D6, the trained network is challenged to interpret the models with 4 574 

and 5 fractures, respectively, which include more features than the trained data with at most 3 575 

fractures. The reconstructed maps mostly locate the fracture traces from the interpreted segments. 576 

When the complexity of the tested fracture system exceeds the coverage limit of the input data, certain 577 

fracture geometries can be simplified. In practice, the nature of fracture networks and the degree of 578 

heterogeneity in the transmissivity field coved in the training data reconstruction must be pre-579 

specified based on prior knowledge of the study area. As the rest of the classical deterministic or 580 

stochastic inversion methods, inversion with deep learning tools requires priori conditions to constrain 581 

the inversion and reduce the non-uniqueness issue in the solution. 582 

In this study, the focus is on the theoretical development of an advanced neural network to map the 583 

fracture system. Alternative approaches with comparable configuration can be found in the literature 584 

(Wang et al., 2016; Wang et al., 2017;  Fischer et al., 2018; Ringel et al., 2019) as some of them are 585 

addressed and relatively analyzed along the discussions; however, the implementation of a 586 

conventional inversion approach is beyond the scope of this work. When processing a real dataset, a 587 

more detailed comparison of the approaches should be considered. 588 

Conclusion 589 

In this paper, we present a novel and practical method for identifying fracture systems associated to 590 

spatial measurements of the water table in a fractured aquifer. Based on Segnet, the involving 591 

advanced neural network is designed to be efficient in terms of memory and processing time during 592 
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inference, with a substantially lower number of trainable parameters than competing designs. The 593 

architecture as a deep fully convolutional neural network, is topologically composed of encoder-594 

decoder structures that directly translate the inverted function in terms of trainable parameters, rather 595 

than the indirect approach used in classical inversion techniques.   596 

As with any deep learning approach, the algorithm requires a large synthetic training database to 597 

establish a reliable generalization capable of predicting the data not seen in the learning stage. The 598 

construction of this database was achieved by the geostatistical generation of fracture network models 599 

whose number varies between 0 and 3 and whose transmissivity is assumed constant and placed on a 600 

rock with heterogeneous matrix transmissivity, also generated according to a geostatistical variogram. 601 

Based on these synthetic aquifers, we performed pumping tests according to the hydraulic 602 

tomography model by solving the flow equation with the discrete fracture network parameterization. 603 

The neural network was trained using 20,000 synthetic aquifers with their hydraulic responses, while 604 

another 10,000 datasets test the relevance of the approach. Results show that the trained network 605 

succeed in accurately mapping the fracture network geometry and the performance of the network is 606 

then discussed in the context of a variety of potential interferences in practice. 607 

First, accuracy shows a clear relationship with the size of training dataset. When the network is 608 

trained with a limited dataset, the quality of identification of complex fracture networks degrades, 609 

while data abundance guarantees a high-quality response. The number of monitoring also affects the 610 

quality of the reconstruction, with accuracy improving if the complexity of groundwater dynamics in 611 

the fractured aquifer can be captured by the availability of planned monitoring wells. This dependence 612 

of inversion results on the number of wells also occurs in conventional deterministic or stochastic 613 

inversion methods. However, the neural network shows less impact of data noise on the inversion 614 

accuracy, which is due to the convolutional operation and max-pooling that de-noise input data 615 

through region-wise interpretation.   616 

The quality of the inversion results also depends on the nature of models used for training. As soon 617 

as the network is confronted with the processing of hydraulic data from models whose properties are 618 



very different from those used in the training, the quality of the inversion deteriorates. The choice of 619 

training model features must be based on a priori information in order to obtain an accurate inversion. 620 

Like other conventional inversion methods, inversion using a deep learning approach also requires the 621 

use of a priori information; and the trained neural network only covers a specific set of models with 622 

specific predefined features. 623 

A series of tests also reveals the importance of the matrix heterogeneity in reconstructing the 624 

fracture network structure. If the transmissivity of the matrix is very low compared to that of the 625 

fractures, the matrix contributes little to the dynamics of the flow field and cannot mask the effects of 626 

the main fractures. On the other hand, if the matrix contains secondary fractures that are represented 627 

together with the matrix in an equivalent porous medium with a slightly permeable transmissivity, this 628 

can show the effect of masking the identification of the main fractures.  629 

In this work, our effort focuses on the geometric identification of the main fractures of an aquifer 630 

where only constant aperture of fractures is considered. However, the fracture characteristics can be 631 

more complex bringing more feature such as the hydraulic transmissivity variation along the fracture 632 

and between the individual fracture. In the next work, other fracture apertures and the matrix 633 

heterogeneity will be tackled which requires the development of a new multi-task network. 634 

In this work, our effort focuses on the geometric identification of the major fractures of an aquifer 635 

where solely constant aperture fracture is considered. However, in practice fracture characteristics 636 

may be more complicated evolving additional features, such as hydraulic transmissivity varying along 637 

the fracture and between individual elements of the fracture network. To address this issue, the 638 

fracture apertures and matrix heterogeneity are both tackled in the following study, which requires the 639 

development of a new multi-task network. 640 
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