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Abstract: In this manuscript, we discuss the capabilities of a deep learning algorithm 12 

implemented with the Conventional Neural Network concept to characterize the hydraulic 13 

properties of aquifers. The algorithm called CNN-HT is designed to predict the inverse operator 14 

of hydraulic tomography using a synthetic training dataset in which the hydraulic head data 15 

associated with pumping tests are linked to hydraulic transmissivity field. This approach relies 16 

on an adaptation of the SegNet network that was initially developed to process image 17 

segmentation. The SegNet is composed of encoders and decoders networks. In the encoder, 18 

sequential operations with multiple filters, as convolution, batch normalization, max-pooling 19 

are performed to identify feature maps of the input data. In the decoder, the up-sampling, 20 

convolution, batch normalization and regression operations are used to prepare the output by 21 

recovering the loss of spatial resolution that occurred in the encoder process. In this adaptation, 22 

we used the least-square iterative formulation at the initial iteration with Jacobian matrix to 23 

resize the hydraulic head data to match the size of the output (transmissivity field). This protocol 24 

was applied to the hydraulic head data computed numerically by solving the groundwater flow 25 

equation for a given transmissivity field, generated geostatistically with Gaussian and spherical 26 

variograms. A part of this data was used for training the network and the other part to test its 27 

performance. The test step confirmed the effectiveness of this tool in reconstructing the main 28 

heterogeneities of the hydraulic properties, and its effectiveness is related to the nature and 29 
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quantity of the training data. Moreover, the CNN-HT method provided inversion results of the 30 

same quality than those obtained with the Gauss-Newton algorithm using the finite difference 31 

or adjoint state method in the computation of the Jacobian matrix. However, the computational 32 

time is longer in CNN-HT but this time can be less or of the same order as that of Gauss-Newton 33 

using finite difference method. 34 

1. Introduction 35 

 36 

Since the 1980s, the hydraulic tomography has been adopted in hydrology as an effective 37 

technique for mapping the heterogeneity of the hydraulic properties of aquifers (Neuman, 1987; 38 

Gottlieb and Dietrich, 1995; Bohling et al., 2002; Yeh and Liu, 2000). Indeed, this approach 39 

can effectively provide insights into the spatial variability of the hydraulic transmissivity and 40 

storage coefficient of a porous or fractured aquifer through a combined interpretation of 41 

hydraulic data obtained from several pumping tests (Bohling et al., 2002; Berg and Illman, 42 

2011; Cardiff et al., 2013; Fischer et al., 2018). The approach consists of using an inversion 43 

algorithm, either deterministic or stochastic, to retrieve the best models that could match the 44 

observed piezometric data (Fu & Gómez-Hernández, 2009a; Kitanidis, 1997). In general, the 45 

inverse solution is not unique for that reason the inverse formulation usually incorporates a 46 

regularization term in the optimization of the objective function ( )mΨ  that is defined as the 47 

sum of data misfit and regularization terms, as below (Tarantola and Valette, 1982): 48 

[ ] [ ] TT 1 1

obs d obs m0 0

Data  misfit  term constraint term

( ) F( ) F( ) ,  − −− − − −   = +    m m m m m m m

1444444444442 444444444443 14444444442 4444444443
Ψ h C h C    (1) 49 

where the data misfit term assesses the pertinence of the model in term of matching the data 50 

and is expressed as a sum of square differences between the observed hydraulic data obsh  and 51 

the numerical hydraulic data derived by solving a forward operator F( )m . In hydraulic 52 

tomography, the forward problem involves a numerical discretization for solving the 53 
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groundwater flow equation subject to Darcy's law in transient or steady modes. [ ]log= − Tm  54 

is the spatial distribution of the negative logarithm of the hydraulic transmissivity T , which is 55 

regarded as an unknown field and is expressed logarithmically to ensure its positivity during 56 

the inverse process. dC  is a diagonal matrix for incorporating data uncertainty in the 57 

optimization. On the other side, the regularization term is expressed with a prior model 
0

m  and 58 

its covariance matrix 
mC . This term can be obtained from geological, geophysical and tracer 59 

investigations to constrain the inversion to offer only plausible solutions (Lochbühler et al., 60 

2013; Zhao et al., 2016; Soueid et al., 2016). In general, the use of geostatistical constraints is 61 

still widely applied in hydraulic tomography by using statistical properties such as mean and 62 

covariance to obtain an imagery of hydraulic properties with smooth features ( Kitanidis, 1997; 63 

Yeh and Liu, 2000). 64 

Once the parameters of the objective function are formulated, its optimization is processed 65 

iteratively using one of the three categories of optimization algorithms: deterministic (Li et al., 66 

2005), stochastic (Jimenez et al., 2016) or global (Castagna and Bellin, 2009). These algorithms 67 

involve a repetitive numerical solving of the forward problem by applying finite elements or 68 

finite difference methods to assess the ability of the proposed model to reach the convergence 69 

state. Therefore, the computation time is dependent on the numerical tools, the dimensionality 70 

of the unknown parameters and the nature of the optimization algorithm employed.  In general, 71 

deterministic algorithms are the most used in high-dimensional inverse problems due to their 72 

advantage of reaching convergence in a short time compared to stochastic or global algorithms 73 

by exploiting the geometric properties of the objective function (gradient and Hessian) 74 

(Tarantola and Valette, 1982). Nevertheless, their efficiency depends strongly on the choice of 75 

the initial model as they only provide local minima. On the other hand, stochastic methods (such 76 

as Markov chain Monte Carlo McMC) are based on the concept of sampling where the solution 77 
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is obtained by exploring the optimization performance of many randomly generated models and 78 

selecting the best of them in terms of minimization of the objective function.  Most of the time, 79 

algorithms belonging to this category are easy to implement and insensitive to the initial model. 80 

However, their applicability to inverse problems with a large number of unknown parameters 81 

remains limited due to the high repetitive and heavy computation of the forward problem during 82 

the sampling process (Oliver et al., 1997; Fu and Gómez-Hernández, 2009b; Wang et al. 2017; 83 

Jardani et al., 2012; Elsheikh et al., 2012). Other global optimization algorithms such as particle 84 

swarm optimization, genetic, simulated annealing can also be used to identify the best solution 85 

by iteratively evaluating the objective function until the state of convergence. However, 86 

convergence can be slow, especially in the case of high-dimensional inverse problems (Scales 87 

et al., 1990; Fernández-Martínez et al., 2011). 88 

In this paper, we test a new generation of deep learning algorithm that can be considered as a 89 

global optimizer in which prediction does not depend on an initial model and the computation 90 

of the sensitivity matrix as it is the case for gradient-based methods (Zio, 1997).  The concept 91 

of this approach is different from previous optimization methods as the process focuses on 92 

approximating the inverse function by finding a universal relationship linking the input and 93 

output data (in the case of hydraulic tomography between hydraulic pressure and hydraulic 94 

transmissivity). Indeed, the deep learning is a powerful generalizer of non-linear and complex 95 

functions by identifying a set of parameters such as weights and biases allocated to the hidden 96 

layer neurons that process the input data and link them to their corresponding output. The first 97 

generation of deep learning algorithms uses a set of hidden layers with a large number of 98 

neurons fully connected via high-dimensional weights, which complicates computation and 99 

requires a lot of time, especially for handling the imaging tasks (Shen, 2018). However, the 100 

emergence of new deep learning architectures with Convolutional Neural Networks (CNN) 101 

concept that have been proven in high-resolution image processing have opened the way for 102 
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broadening their applicability in the hydraulic characterization (LeCun et al., 1998; Sun, 2018; 103 

Zhu and Zabaras, 2018). Indeed, the CNN concept has succeeded in reducing drastically the 104 

image processing time thanks to the convolution calculation, which allows to retrieve the local 105 

features of the image through small filters (Indolia et al., 2018). These filters cover the whole 106 

input image but their activation is done zone by zone with local connections between pixels. 107 

This local convolution reduces the number of parameters to optimize during the learning 108 

process (LeCun et al., 1998). Among the first attempts at adopting the CNN concept in the 109 

realm of tomography by inversion in geosciences, we cite: Sun (2018) trained the Generative 110 

Adversarial networks for linking the hydraulic head map and the spatial distribution of 111 

hydraulic conductivity. Zhu and Zabaras (2018) proposed a deep convolutional encoder-112 

decoder network to reconstruct the image of hydraulic conductivity from hydraulic head map. 113 

Laloy et al. (2018) used the Generative Adversarial networks to generate randomly in 2D and 114 

3D binary hydraulic conductivity fields and MCMC to perform the inversion process. In 115 

geophysics realm, Wu and Lin et al. (2019) applied CNN with encoder-decoder networks for 116 

mapping the subsurface velocity from seismogram data.  Puzyrev and Swidinsky. (2019) used 117 

the CNN network to determine the vertical subsurface heterogeneity of electrical conductivity 118 

by training electromagnetic data. 119 

In this article, we discuss the use of the convolution neural networks formed according to the 120 

SegNet architecture to process hydraulic tomography. This technique was initially designed for 121 

the semantic segmentation of objects learned on the images (Badrinarayanan, et al. 2017).  To 122 

illustrate the inversion principle with the CNN-HT structure, we organize this manuscript with 123 

the following outline: the first section will be devoted to the generation of data used in training, 124 

validation and test, and the second to the introduction of concept of the CNN-SegNet structure. 125 

In the application sections, we discuss the relevance of the approach on theoretical cases under 126 

different conditions on training data with high and low resolution and contaminated or not by 127 
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the noise. We also devote a section to the comparison of the results obtained with CNN-SegNet 128 

code with those determined with the Gauss-Newton algorithm. 129 

2. Theoretical concept:    130 

2.1.Preparation of Training data:  131 

In deep learning algorithm, the first step concerns the construction of training data that 132 

will condition the accuracy of the result obtained from the predicted inversion operator (see 133 

figure 1). Given the impossibility of having a real dataset connecting the spatial distribution of 134 

hydraulic properties of aquifers and the piezometric responses, we use synthetic models in 135 

which the hydraulic parameter fields are generated geostatistically and their corresponding 136 

piezometric responses are obtained by solving the numerical groundwater equation in steady 137 

state (forward problem).  138 

( ) ( ). , 

 ,              d

F( ) :
Γ

∇ ∇ =


=

p

0

pT h q -

h h

x x

m

δ
,    (2) 139 

where m is the negative of logarithm of transmissivity 
-

=10T
m

 randomly generated and 140 

distributed on the studied domain. h  is the hydraulic head responses due to water extraction 141 

represented by a point source term ( )ppq -x xδ  defined at pumping well locations 
p

x  (δ  is 142 

Dirac delta function).  The pumping tests will be done sequentially on several wells. The 143 

forward problem is solved by finite element technique using the Comsol software with a 144 

constant hydraulic level 
0

h imposed as Dirichlet boundary at all limit of the domain 
d

Γ  that are 145 

positioned far from the studied area for reducing their impact.  146 
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 147 

Figure 1: A sketch describing the concept of hydraulic tomography with the CNN-SegNet. This 148 

concept is based on the prediction of inverse operator 
1

obsF̂ ( , )ϒ−
h by the CNN-SegNet 149 

algorithm using a training dataset in which the hydraulic transmissivity fields are generated 150 

geostatistically and the hydraulic head responses due to pumping tests are obtained numerically 151 

by solving the groundwater flow equation (Forward problem F( )m ). 152 

As the nature of the training models conditions the result of the CNN-HT inversion, we have to 153 

use the prior information on the studied field to establish a cluster of models for training and 154 

targeting a type of solution with certain characteristics. In this paper, prior information is 155 

expressed in statistical terms, with a Gaussian distribution wherein the mean and covariance, 156 

are held constants during model generation. Once the parameters of the distribution are defined, 157 

we launch the generation of thousands of hydraulic transmissivity fields using the SGeMS code 158 

implemented in Matlab (Remy et al., 2009). The generated transmissivity fields are then 159 

assigned to a domain of [40 m × 40 m] on which we set up a dense distribution of wells to better 160 

cover the heterogeneity of the field. On this configuration, we conduct 5 pumping tests in such 161 

a way to hydraulically disturb the whole area. Each pumping test allows us to retrieve 44 162 

measurements from the remaining observation wells; in the end, we obtain 220 measurements 163 

for each field (see figure 2). 164 
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 165 

Figure 2: Position of the wells used in the generation of the hydraulic head data. 5 pumping 166 

tests were carried out successively in the wells marked with a triangle and the responses of the 167 

hydraulic head were collected in 44 wells with the dot symbol. This configuration provides 220 168 

hydraulic data that are then used in the reconstruction of the hydraulic transmissivity. 169 

 170 

To predict an inversion operator using convolutional neural networks with the encoder-decoder 171 

architecture, we need to reshape the piezometric data into a field with the same dimension than 172 

the hydraulic transmissivity field in order to link tow images with the same size. To do this, we 173 

can use one of two methods:  174 

(i) The first consists in interpolating the piezometric data recorded on the observation wells 175 

for each pumping test in order to form images with the same resolution in the target 176 

transmissivity field. In this case, the input data are composed of a number of maps equal to the 177 

number of pumping tests. In our example, we have 5 pumping tests and we will then obtain 5 178 

maps that will be treated jointly as 5 channels in convolutional neural networks.  179 

(ii)  This second is more compact than the first in which all piezometric data set recorded 180 

for different pumping tests are introduced by a single map using a projection operation derived 181 

from the Gauss-Newton formulation. This formulation results from the minimization of the 182 
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objective function presented in the introduction section (
( )

0
∂

=
∂

m

m

Ψ
) (Tarantola & Valette, 183 

1982):  184 

( ) ( )
1

T 1 1 T 1 1

obs i i 0d m d mi 1 i i i i
F( )

−

+ +
− − − −

+
= − −+    

   
m m mm m hJ C J C J C C , (3) 185 

where 
i

J  is Jacobian matrix with a size of N×M, (N and M are number of the data and the 186 

unknown parameters respectively). At the first iteration, usually we start with the prior model 187 

then:  188 

( )
1

T 1 1 T 1

obs 0d m d1 0 0 0 0
F( )

−
− − −

+= −+  
 

mm m hJ C J C J C ,   (4) 189 

and this equation can be reformulated under this following form:   190 

obs1
Λ= +m hβ ,          (5) 191 

where       
1

T 1 1 T 1

0 d m d 00 0 0
F( )β

−

+
− − −= −  

 
m mJ C J C J C  ,  (6) 192 

and 
1

T 1 1 T 1

d m d0 0 0
Λ

−

+
− − −=  

 
J C J C J C ,     (7) 193 

1
m is the hydraulic transmissivity model resulting from the first iteration; obviously, it does not 194 

fit the observed data, but it can be applied as a projection term for all piezometric data in order 195 

to convert them into matrices with same size as the transmissivity fields. 
0

J  is the sensitivity 196 

matrix of the prior homogenous model 
0

m  representing the mean of the fields. In this case, the 197 

Jacobian can be derived analytically using the Thiem’s equation for confined aquifers to express 198 

the radial flow field and its adjoint state operator (for details, see Appendix). 199 
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 To further simplify this projection term so that it is less dependent on prior information, we 200 

remove the bias term β , replace the covariance matrices 
m

C  and 
d

C  by simple identity 201 

matrices, now the new projection term takes this form:  202 

p

obsobs
Λ=h h With 

1
T T

m0 0 0
Λ

−

+=  
 

J J I J .   (8) 203 

Thanks to this simple multiplication, the hydraulic data 
obs

h  will be transformed into a vector 204 

p

obs
h of the same size as the output hydraulic transmissivity field and used in matrix form as the 205 

input field in the network. This formulation allows to link linearly 
obs

h  and 
p

obs
h  and preserves 206 

all the hydraulic information to establish a relationship between 
p

obs
h  and transmissivity field.  207 

The comparison of the results of the two methods (linear interpolation and projection) 208 

in terms of inverse operator prediction is presented in the last section. However, the first 209 

sections all applications are done with the projection method.   210 

2.2. Inversion by Convolutional Neural Networks with encoder-decoder structure 211 

In this article, we will explore for the first time the efficiency of SegNet architecture to 212 

process the inversion in hydraulic tomography. The approach uses the Conventional Neural 213 

Networks concept built with an encoder-decoder architecture (see figure 3). This approach was 214 

originally conceived to process semantic segmentation of images by delineating the shapes of 215 

learned objects (Badrinarayanan, et al., 2017).  216 
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 217 

Figure 3: SegNet Convolutional Neural Networks with encoder-decoder structure. Modified 218 

from (Badrinarayanan, et al., 2017). Here, the piezometric data can be resized to the same 219 

dimension of the output field using the projection method  220 

 221 

In the encoder network, the input image is processed sequentially by a set of encoders. In 222 

our case, we use only 2 encoders chosen after an analysis of the inversion results obtained with 223 

networks having 1, 2 and 3 encoders. The network with 2 encoders gave the best result in terms 224 

of training and generalization with a low sensitivity to overfitting.  Each encoder starts with a 225 

convolutional process in which multiple filters with the small size (3×3×64) are convoluted on 226 

the input layer zone by zone to identify their features (Badrinarayanan, et al., 2017). This 227 

calculus permits to establish a local connectivity between pixels with these shared small filters, 228 

which remain simple to predict in the training process. The convolutional operations are 229 

followed by Batch normalization which is a linear operation that plays the role of a regularizer 230 

in scaling the convolution outputs in order facilitate and accelerate the training (Ioffe and 231 

Szegedy, 2015). This step is followed by the application of the ReLU function, which 232 

introduces the nonlinearity in the process. Then, the dimensionality of the result of the previous 233 

sequence will be considerably reduced in the max-pooling layer with stride of 2 and 2× 2 234 

windows to keep only the main features. Therefore, the construction of feature maps in the 235 

encoder network leads to a decrease in the spatial resolution that will be restored in the decoder 236 

network. Indeed, the decoder network is configured in a symmetrical form with 2 decoders to 237 
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prepare the output by recovering the resolution lost in the decoder with up-sampling operations 238 

from the max-pooling indices obtained in the previous max-pooling layers carried out in each 239 

encoder (Badrinarayanan, et al., 2017). These results of up-sampling will be convoluted with 240 

other filters to build feature maps with more details. Then the Batch normalization and ReLU 241 

are applied successively on the convolutional outputs as in the encoder network. At the end of 242 

the encoder network, we add a convolution layer having the same size of the output and a 243 

regression layer to assess the performance of the training. This last layer replaces the Softmax 244 

layer used in the original version of SegNet network for the segmentation task. The set of 245 

weights and biases ϒ used in the various encoder-decoder operations are chosen in way to 246 

match the training data p
i obs ,i

,
 
 
 

hm by minimizing this objective function: 247 

p

obs,

1

i

i 1
i

ˆarg min F ( , )ϒ ϒ−

=

 = − 
 
∑
Nt

m h ,     (9) 248 

where  i  is the sample index of the training data set with Nt as size of the training data , 249 

p

obs,

1

i
F̂ ( , )ϒ−

h  denotes the inverse function to identify by using the training data in the prediction 250 

of the networks parameters ϒ  with ADAM optimization algorithm (Kingma and Ba, 2014). 251 

This optimizer was run with a batch size of 70 and a learning rate starting at 0.01 and decreasing 252 

by 0.1 every 50 epochs.  The computation was performed on a workstation with (Intel(R) 253 

Xeon(R) Silver 4110 CPU @ 2.10GHz) and 128 G of RAM with a single GPU.  After training 254 

is complete, we use a sample of generated data not used during training phase to check the 255 

quality of the inversion results by the CNN-HT code. 256 

3. Applications to synthetic cases  257 

In this section, we apply the inversion concept with CNN encoder-decoder networks on 258 

theoretical cases where the log of hydraulic transmissivity fields are generated randomly with 259 
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a Gaussian variogram and their hydraulic head responses by the groundwater equation as 260 

explained in the data preparation section. This distribution has 
-5

μ = 10  (m2/s) as mean and an 261 

isotropic Gaussian variogram with 0.5 and 10 m as variance and range respectively. With this 262 

variogram model, we performed 11000 realizations in which the transmissivity is ranging over 263 

[10-8.3, 10-1.6] (m2/s); however 95% of these models have transmissivities between 10-6.4 and 10-
264 

3.5 (m2/s) (see figure 4). Then, these models are used in a forward operator that takes 2s per 265 

simulation to get the hydraulic head responses. These realizations aim to evaluate the 266 

effectiveness of the CNN-SegNet approach in the reconstruction of hydraulic transmissivity 267 

field and to analyze the sensitivity of this reconstruction to the size of the training dataset and 268 

the amount and uncertainties of the hydraulic head data collected during the pumping tests. 269 

 270 

Figure 4: Gaussian distribution of the log of transmissivity fields used in the training of 271 

CNN-SegNet network. 272 

 273 

3.1. Effect of training data size  274 
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In the first analysis, we examine the impact of training data size on the reliability of the 275 

inverse operator prediction and determine the amount of data required to obtain a satisfactory 276 

prediction. For this purpose, we performed three assessments with different training data sizes: 277 

T1=1000, T2=3000, T3=10000, the validation was done with 1000 models and the test with 278 

500 models different from those used in the learning phase (training and validation). During the 279 

optimization process, we followed the quality of the minimization of loss functions with the 280 

training and validation data until they reached optimal values to stop the process manually or 281 

wait until the maximum number of epochs was met (see figure 5). In this way, we avoid the 282 

problem of overfitting which appears especially when we tried to build the network with a 283 

limited number of training data (T1=1000).  284 

The results obtained with these different sizes of training data are presented in the Table 1a, 285 

in which we can easily identify through the analysis of the correlation coefficient between the 286 

real and predicted models of test sample that the accuracy of the prediction improved with 287 

increasing training data size. Indeed, the reliability of the predictive model derived from a deep 288 

learning algorithm is highly dependent on the amount of data used in the training, in which a 289 

large amount of data guarantees a good prediction. This implies a long computational time in 290 

the generation of training data, in any case the degree of accuracy desired remains linked to the 291 

nature of the problem studied.  292 
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 293 

Figure 5: Both curves represent the quality of predictions of the network on validation and 294 

training data (10000 models for training, 1000 models for validation) during the optimization 295 

process.(RMSE: Root Mean Square Error). 296 

In our case, training with T1=1000 data allowed us to predict 500 test models with a 297 

correlation coefficient R between real and predicted models ranging from 0.74 to 0.93 and a 298 

mean of 0.86 (see Table 1a). From these models, we choose 3 models: the first one (m1) with 299 

a relative poor prediction (R=0.75), a second model (m2) (R=0.83) close to the mean 300 

representing quality of the majority of predicted models, and the last one (m3) with a good 301 

reconstruction (R=0.91) (see figure 6). These models will be used to analyze the impact of 302 

training data size on the quality of their estimations (see figure 6). The first model m1 is 303 

characterized by a high degree of variability with the small heterogeneities at the boundary of 304 

the domain and a logarithm of the hydraulic transmissivity that varies between [-6 , -2.5]. Over 305 

this range, there are outliers in the Gaussian distribution of training data in particular which are 306 

around -2.5. Thus, in this case only a few models have been seen in the training with this feature, 307 

which explains the poor reconstruction (see figure 6). The same problem occurs in the 308 

prediction of models with low outliers < -6.5. However, the models having variabilities well 309 

covered by training models such as m2 and m3 with transmissivities values between [- 6.5, -310 



16 

 

3.5], the reconstructions are more accurate. However, if the number of training models 311 

increases, the models with outliers will be more frequent and will be reconsidered in the 312 

generalization as shown in the table, where the reconstructions of these models have been well 313 

improved. 314 

 315 

Figure 6: Three models selected from test models to illustrate the prediction quality of the 316 

CNN-HT tool by comparing their true and predicted transmissivities. In this figure, the 317 
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predictions of these models were made with three different amounts of training data, in which 318 

a significant improvement in the reconstructions was obtained when the amount of training data 319 

becomes important. 320 

  321 
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3.2 Effect of amount of observation wells   322 

In the second analysis, we study the influence of the number of hydraulic data collected 323 

during the pumping tests on the efficiency of the network to approximate the inverse operator. 324 

In this analysis, we first reduce the number of observation wells to half (22 observation wells) 325 

and in the second step to one quarter (11 observations wells). However, we maintain the number 326 

of pumping tests and the size of the spatial discretization of the transmissivity fields (16 ×16), 327 

as used in previous test. These new well configurations are illustrated in the figure 7. In practice, 328 

only the hydraulic responses of abandoned wells are removed from previous training data. Thus, 329 

these data acquired with the two new observation well configurations are used as training input 330 

to determine the corresponding inverse operators, and the results obtained were compared to 331 

the previous configuration with 44 wells. The training operations were performed with 10,000 332 

models, and the tests were also done on the previous unseen samples. The reconstruction results 333 

of the test models with different series of piezometric data expressed in terms of correlation 334 

coefficients reveal a degradation of the accuracy of prediction with the decrease in the number 335 

of hydraulic data (see Table 1b). Because the number of piezometers becomes insufficient to 336 

cover all the heterogeneities and the complexities of the medium, and this also occurs with 337 

classical inversion methods. This is further confirmed by analyzing the spatial aspect of the 338 

reconstructions of models (m1, m2 and m3), in which we observe a loss of resolution and an 339 

increase in smoothness degrees with the reduction of hydraulic data (figure 8). However, the 340 

main heterogeneities can still be identified with less data.  341 
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 342 

Figure 7: Two new observation well configurations were retained to study the effect of the 343 

reduction in hydraulic data on the quality of the prediction. In the first configuration, the number 344 

of observation wells was reduced by half (22 observation wells) and in the second, by a quarter 345 

(11 observation wells) from the initial configuration shown in Figure 2. 346 
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 347 

Figure 8: Predictions of the three models are provided with a set of training data 348 

(T3=10000) in which piezometric responses are collected with 3 different well configurations 349 

(44, 22 and 11 wells). These predictions showed a degradation in the reconstructions of 350 

hydraulic transmissivity with a decrease in the number of wells used in the survey. 351 

 352 

 353 

 354 
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Table 1 Summarizing metric evaluations of the predictions quality (in term of correlation 355 

coefficient) of 500 test models with correlation coefficient. a. Evaluation of the impact of the 356 

size of training data (T) on predictions. b. Evaluation of the impact of the number of observation 357 

wells on predictions. c. Evaluation of the effect of uncertainties in the piezometric data on 358 

predictions with incorporation or not of these uncertainties in the learning process. 359 

 360 

a. Size of training data Correlation coefficient 

R 

min            mean          max 

T1=1000                    0.74            0.86            0.93 

T2=3000                     0.77            0.90           0.95 

T3=10000                     0.84             0.92           0.96 

 

b. Number of observation data  Correlation coefficient 

R 

min            mean          max 

T3=10000, N° data=220                      0.84          0.92            0.96 

 

T3=10000 N° data=110                      0.73           0.85            0.93 

T3=10000, N° data=55                       0.57          0.77            0.91 

c. Degree of noise on the data  Correlation coefficient 

R 

min            mean          max 

T3=10000, N° data=220, 

std=0 free noise 

                              0.84          0.92            0.96 

 

T3=10000, N° data=220, 

std=0.5 on Training and Test 

data 

                               

                              0.55           0.84            0.93 

T3=10000, N° data=220, 

std=0.5 only on Test data 

                              0.49           0.79             0.92 

 361 

3.3. Effect of observation uncertainties   362 

In this section, we analyze the effect of uncertainties that may be associated with 363 

hydraulic pressure measurements collected during pumping tests. This involves contaminating 364 

the numerical piezometric data with a random Gaussian noise of 0.5 as the standard deviation, 365 

and verifying its impact on the quality of hydraulic field reconstructions of test models. 366 
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As a first analysis, we use an inverse operator established on the basis of uncontaminated 367 

training data to interpret hydraulic head data from a test set that are contaminated by noise. 368 

Here, the training operation did not take into account the noise. The result of this test is 369 

presented by the benchmark models in figure 9 and table 1c of correlation coefficients, which 370 

reveal a sharp degradation in the quality of the predictions compared to the noise-free test 371 

models, with a decrease in the correlation coefficient (from 0.92 to 0.79 mean for all test 372 

models).  In the second strategy, noise is taken into account in the estimation of the inversion 373 

function by adding noise to the hydraulic data used in the learning process. This method has led 374 

to a significant improvement in the prediction quality of the test models, as shown by the three 375 

models (m1,m2 & m3) and the correlation coefficient noted in table 1c with the average R of 376 

the set of models increasing from 0.79 to 0.84. However, this prediction is less accurate when 377 

compared to the noise-free training and test data, as shown by the R-values. We can, therefore, 378 

conclude that uncertainties in the measured data may have an impact on the results of inversion, 379 

as is the case with classical optimization techniques, but to reduce their impacts, it is necessary 380 

to incorporate these uncertainties in the construction of the inversion model, i.e. in the learning 381 

process. 382 
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 383 

Figure 9: The purpose of these reconstructions is to analyze the effect of noisy data on 384 

the efficiency of the inversion with CNN-HT by comparing 3 types of predictions: 1) with the 385 

training and test data without noise; 2) with the training data without noise but the test models 386 

are noisy; 3) both the training and the test models are noisy. These comparisons show that the 387 

uncertainties in the measured data are affecting the quality of the reconstructions; however, 388 

their impacts could be attenuated by taking into account this noise in the training process. 389 

 390 

 391 
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4. Comparison of CNN-HT and Gauss-Newton algorithms 392 

In this section, we compare the inversion results obtained with the CNN-HT algorithm 393 

with those determined by the traditional Gauss-Newton (GN) method. To this end, we apply 394 

both algorithms to the reconstruction of a transmissivity field with a mean of 10-5 m2 s-1 and 395 

generated with a spherical covariance having 0.5  and 10 m as variance and range respectively. 396 

However, this time, the models are highly discretized (32×32) compared to those used in the 397 

previous sections.  The Gauss-Newton algorithm, as described in the introductory section, is a 398 

deterministic approach that relies on the minimization of an objective function (Eq. 1) by 399 

iteratively computing the Jacobian matrix until obtaining a local minimum. The calculation of 400 

the Jacobian matrix remains the most demanding part of this process, especially when the 401 

number of unknowns is important. This calculation is usually done either by the finite difference 402 

or the adjoint state technique. The finite difference method is simple to implement, but its 403 

computation is time consuming because it involves to solve the forward problem for each 404 

unknown parameters (Cardiff & Kitanidis, 2008; Fischer et al., 2017 ). In our case study, where 405 

the model is discretized into 32×32 cells, the construction of the Jacobian will therefore involve 406 

solving the forward problem 1024 times. On the other hand, the adjoint state technique requires 407 

less computation, by iteratively solving an adjoint operator with the form of the forward 408 

problem on the number of observation wells, but its implementation is quite complex (for more 409 

details see Sykes et al., 1985; Cardiff & Kitanidis, 2008). In this section, we test the 410 

implementation of Gauss-Newton algorithm to invert the synthetic hydraulic data determined 411 

with a hydraulic transmissivity field shown in figure 10, (called True model) and using the 412 

piezometric coverage shown in figure 2. These data were then contaminated with noise with a 413 

variance of 5cm2.  The inversion of these datasets was constrained, as explained in the 414 

introduction, by geostatistical parameters such as covariance and mean. The results of the 415 

inversions with the GN algorithm using the finite difference and adjoint state methods are 416 
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presented in Figure 10 where we can conclude that the GN algorithm succeeded in both cases 417 

in identifying the main heterogeneities of the real field with certain smoothness. In the case 418 

where the Jacobian is computed with the finite difference method, convergence was achieved 419 

after 7 iterations in 4h10min and solving the forward problem 7×(1024+1) =7175 times. In 420 

contrast, the adjoint state method took only 1min24s. 421 

Regarding the application of the CNN-HT algorithm, we geostatistically generate 11000 422 

transmissivity models with the same variogram as the real model used for the comparison. We 423 

keep 10000 models for the training, and the rest of the models are equally split for validation 424 

and testing. In this case study, we test two different ways of resizing the piezometric data, the 425 

first method called projection method uses the Hessian matrix to reshape the input data into the 426 

same size as the transmissivity field (output) as described in the section 2. This method requires 427 

the calculation of a Jacobian matrix with a homogeneous field for example the mean field value. 428 

The second method is based on a linear interpolation of the hydraulic data recorded during each 429 

pumping test to form 5 maps of size 32×32 (i.e., one map for each pumping test), so the input 430 

data has the form of a matrix of 5 channels (32×32×5).  431 

Both approaches were used to build the SegNet networks and then tested on the test 432 

sample. The analysis of the predictions obtained on this sample shows that both methods 433 

provide almost the same prediction qualities with a small advantage for the projection method 434 

according to the correlation coefficients (see table 2). However, when we reduced the training 435 

size to T=500 and T=2500 models, the network using the projection method was able to provide 436 

accurate generalization while the network with interpolated data failed. We believe this is due 437 

to the fact that the interpolation of piezometric data does not preserve all the information 438 

masking the degree of variability in hydraulic responses, which makes learning difficult with 439 

few training data. In addition, using the interpolation method increases the size of the input 440 
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data, which requires more memory and makes the training process more cumbersome compared 441 

to the projection technique that brings the data into a compact form. 442 

Regarding the application of these two networks on the hydraulic data of the real model, 443 

we find that the network built with compact data provides a better reconstruction of the spatial 444 

variability of transmissivity field with a correlation coefficient R=0.80 (see figure 10). 445 

Moreover, this prediction has almost the same accuracy as the result determined by the Gauss-446 

Newton algorithm (R=0.83). We also mention that the time used in the GN with the finite 447 

difference method is perhaps comparable to the time spent in the DL method mainly devoted 448 

to the construction of the data set. In particular, the DL method becomes faster when we reduce 449 

the amount of training data to T=500 and T=2500 (20 min and 1h41 min), because even with 450 

these small samples, the transmissivity field can be well reconstructed well in a reasonable 451 

amount of time, as demonstrated by the comparison of real and inverted fields (figure10). 452 

At the end of this comparison, we conclude that both the CNN-HT and Gauss Newton 453 

codes are based on the forward problem for which the computation time depends on the 454 

numerical method and the degree of mesh refinement used to solve the groundwater flow 455 

equation. The machine learning technique uses this forward problem to generate a training 456 

database to build the CNN network. The time spent in this construction can be equivalent or 457 

less to the time spent in finding a local minimum with the Gauss Newton using the finite 458 

difference method to calculate the Jacobian matrix over a large number of unknown parameters. 459 

However, it is difficult to have an idea in advance of the time that will be spent in building this 460 

database because the size needed to get accurate results is related to the degree of complexity 461 

of the input-output relationship and the type of network. The optimal size as well as the rest of 462 

the network parameters (epochs, number of encoders) are only established by a trial-and-error 463 

analysis, which can take a considerable amount of time. Therefore, the data size used in this 464 

paper cannot be generalized to all cases treated by this network or others. 465 
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Both methods also share their dependence on prior information. In the Gauss-Newton 466 

algorithm, this prior information is introduced as a constraint to guide the optimization towards 467 

realistic models and reduce the uncertainties associated with the non-uniqueness of the solution. 468 

On the other hand, the CNN-HT algorithm uses it to generate the training models. The CNN-469 

HT offers the possibility of incorporating multiple prior models into the construction of the 470 

training dataset, which is difficult to perform in a deterministic algorithm where the 471 

mathematical forms of these constraints must be differentiable. In addition, both methods are 472 

sensitive to the uncertainties associated with the measured data. The CNN-HT allows 473 

simultaneous learning with data affected by several degrees of uncertainty by adding noise to 474 

the training data, then combining this set with the original to double the size of the training data 475 

and take into account the impact of noise. Regarding the quantification of the prediction 476 

uncertainties, in the Gauss Newton method, we use the a posteriori covariance formulation to 477 

get an idea of the uncertainty interval concerning the local minimum (Tarantola and Valette, 478 

1982). However, in the CNN-HT algorithm it is difficult to construct an uncertainty map of the 479 

predicted model. We can only build an uncertainty map on the model used in the test. 480 

Table 2: We report the metric evaluations (correlation coefficient R) and computational 481 

time of inversions obtained with the CNN-HT and Gauss-Newton algorithms. The CNN-HT 482 

network was trained with hydraulic data introduced either by the linear interpolation method or 483 

by the projection method. We tested 3 different sizes of training data (500, 2500, 10000), but 484 

the network with the interpolation method failed in the training process when the data size 485 

became small (500 and 2500). We also present the evaluation of the Gauss-Newton metric using 486 

the finite difference method and adjoint state on a test model shown in figure 10. 487 

  

 

Computation Time R 

True Model 

(figure 10) 

R 

Test Sample 

min  mean  max 

T1=500 Projection method  20min 0.73   0.54    0.69    0.79 

T2=2500 Projection method 1h41 0.79   0.65    0.77    0.86 

T3=10000 Projection method  6h 0.82   0.69    0.80    0.88 

T3=10000 Interpolation method 6h38min 0.76   0.68    0.80    0.89 

Finite Difference 4h 10 min 0.83  

Adjoint state method 1 min 24s 0.81  

 488 
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 489 

Figure 10: The results obtained when applying CNN-HT and Gauss-Newton algorithm 490 

in the reconstruction of the “True model”. The results obtained with GN using the finite 491 

difference and adjoint state methods recovered the main heterogeneities of the field. The same 492 

reconstruction quality was obtained with CNN-HT, especially using the projection method for 493 

the preparation of the input data. Even with a small amount of data ( T=500 and T=25000), this 494 

CNN-HT network provided satisfactory reconstructions. 495 

 496 

5. Conclusion and Summary 497 

In this work, we explore the relevance of a deep learning tool called the SegNet network 498 

in the mapping of spatial variability of hydraulic parameters by interpreting the piezometric 499 

data recorded during pumping tests. This approach relies on the approximation of the non-linear 500 

inverse operator connecting the hydraulic head data to the hydraulic transmissivity field. This 501 

approach is the outcome of an adaptation of the SegNet network that has been successfully 502 

applied in the realm of image segmentation by identifying the objects studied on the pixels of 503 

images. The SegNet is designed to establish a relationship between two images sharing the 504 
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same size and certain similarities, which is not the case for hydraulic head data, which are less 505 

numerous than the hydraulic transmissivity values to be estimated. To meet this point, we test 506 

the projection and interpolation methods. Projection method is based on the classical iterative 507 

formulation of a least-square method at the initial iteration to build a projection operator with 508 

the Hessian and Jacobian matrices derived from the mean value of transmissivity fields used in 509 

the training data to resize the hydraulic data into the hydraulic transmissivity field size. 510 

Interpolation method involves reshaping the data size by interpolating the hydraulic head data 511 

to form a map with the same size as the output (transmissivity field) for each pumping test. As 512 

a result, the interpolation significantly increases the size of the input data, which can slow down 513 

the numerical calculation without improving the quality of the prediction compared to the 514 

projection method, which better preserves the hydraulic information in compact form. 515 

In the projection method, the operator is applied to the totality of the hydraulic pressure 516 

data used in training which are determined numerically as responses to pumping tests carried 517 

out on geostatistically generated hydraulic transmissivity fields with certain statistical 518 

properties. Once the training data has been gathered, the inverse operator is established by 519 

identifying the different filters used in the SegNet, which is composed of encoders and decoders 520 

networks. The encoder network allows, through multiple application of filters and sequential 521 

calculations of convolution, Batch normalization, ReLU and max-pooling operations to extract 522 

the main features of the input data. This encoder process induces a drop in spatial resolution, 523 

which will be recovered in the decoder network, which is designed to prepare the output with 524 

the applications of up-sampling, convolution, Batch normalization and ReLU operations. This 525 

network ends with a regression layer to evaluate the performance of the inverse operator 526 

approximation. 527 

  The quality of this approximation is highly dependent on the amount of data used in the 528 

training with an accurate approximation when the dataset is large. This makes the assembly of 529 
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the training data the most expensive step in time, requiring several hours compared to the 530 

learning process that in this case does not exceed 30 minutes. In practice, it is preferable to 531 

launch the learning with few data and check whether or not the desired accuracy is achieved 532 

before generating large amounts of data unnecessarily. In terms of comparison, the time spent 533 

in forming a training database can be equivalent to the time spent to reach a local minimum 534 

with Gauss Newton using the finite difference method to compute the Jacobian matrix 535 

In addition to the amount of training data, the nature of this data also controls the 536 

prediction results of the network. Indeed, the trained network is only intended to handle certain 537 

types of models with similar characteristics to the models used in training. Thus, it is by no 538 

means a universal inversion operator, which makes the choice of the nature of the training 539 

models a crucial step that must be based on realistic prior information. In real application case, 540 

it should also be verified that the transmissivity fields used in the training allow to generate 541 

hydraulic data with the magnitude of the piezometric data observed in the field. It is also 542 

necessary to ensure that the degree of heterogeneity of the generated models can be easily 543 

mapped to the piezometric data during training process. Because if the piezometric coverage 544 

does not allow to cover transmissivity models with high heterogeneity, the learning process will 545 

fail to establish this relation. The result of the inversion with CNN-HT depends on the prior 546 

information and this particularity is also found with classical inversion techniques such as 547 

Gauss-Newton. 548 

Noise can alter the information carried by the piezometric data and is a frequent problem 549 

in inversion algorithms. The deep learning algorithms are no exception, but its impact can be 550 

reduced by integrating it into the learning step by contaminating the input of training data. The 551 

number of wells and their spatial configurations used in the study also had a determining effect 552 

on the effectiveness of the CNN-SegNet inversion tool, with more reliable reconstructions when 553 
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these piezometers are well distributed over the study area, which was also observed in the use 554 

of conventional deterministic and stochastic methods.  555 

At the end of this conclusion, we enumerate and discuss the main advantages and 556 

limitations of the proposed method. Regarding the advantages, we point out that: 557 

� The CNN-HT method uses the forward problem as a black box to generate the training 558 

data with user-selected transmissivity fields, thus avoiding numerical instability and outliers in 559 

hydraulic head simulations related to its solving. These numerical problems can be encountered 560 

when using conventional inversion methods (stochastic and deterministic) if they are ill-561 

constrained. 562 

� Once the inverse operator is trained, the network permits to interpret the piezometric 563 

data in a few seconds without the user having to add new parameters. 564 

� The CNN-HT code provides predictions that require any initial hydraulic transmissivity 565 

models or computation of sensitivity matrix, as is the case with deterministic methods. This 566 

advantage makes CNN-HT an effective inversion tool for dealing with highly nonlinear inverse 567 

problems with large-scale parameterization that are difficult to handle with deterministic codes, 568 

especially when the computation of sensitivity is complex. 569 

� The CNN-HT code performs reconstructions of the transmissivity field that depend on 570 

the a priori model used in the generation of transmissivity field for the training data.  This 571 

dependence to the a priori model is a property shared with other inversion methods. However, 572 

in this CNN-HT tool, the mathematical form of this a priori model is not subject to any 573 

condition, which is not the case with deterministic methods where the model must have a 574 

quadratic and differentiable form.  575 

 576 
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� The CNN-HT algorithm also provides great flexibility for the user to incorporate 577 

multiple prior models, especially when in doubt about which a priori information to use. 578 

� The proposed method is based on a simple network that can be generalized and applied 579 

to handle hydraulic tomography in 3D or in time domain in order to identify the storativity 580 

coefficient as well, by only modifying the training dataset. It is also easily adaptable to deal 581 

with hydraulic tomographies with complex heterogeneities having for example multiple 582 

discontinuous hydrofacies with contrasting transmissivities, or parameterized in discrete 583 

fracture network mode. These types of problems can be treated as a classification task by 584 

replacing the regression layer of the network with the Softmax layer. In this way, the network 585 

can identify fracture geometries or hydrofacies shapes. 586 

� The code allows the incorporation of uncertainties on the boundary conditions imposed 587 

in the numerical solving of the forward problem by randomly choosing their values within a 588 

confidence interval when building the training data set. 589 

� This code, like other deep learning algorithms that use the convolutional neural network 590 

technique are able to better reduce the effects of noise in the data. This is thanks to the 591 

convolution concept that processes the input data with some local connectivity and not in a 592 

pointwise manner as in other conventional inversion methods (Vu and Jardani, 2021). The 593 

impact of noise could be minimized and accounted for in the inversion results by contaminating 594 

the hydraulic data used in the training data with a noise signal. 595 

Regarding the disadvantages of this method, we mention that  596 

� It is based on a repetitive and time-consuming numerical resolution of the forward 597 

problem, which is involved in the construction of the training database. The size of this database 598 

conditions the quality of the predictions, and its optimal size can only be obtained by a long 599 

trial-and-error procedure. 600 

� The method requires important computing resources to carry out the learning.  601 
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� The code also uses a large number of parameters that intervene in the construction of 602 

the networks (such as: size of the decoder-encoder, number of filters and their size), and in the 603 

optimization algorithm used in the training phase (number of epochs, regularization parameters, 604 

initialization of filters, Batchsize, Dropout). The determination of all these parameters implies 605 

a tedious sensitivity analysis with several training operations to choose the best parameters. 606 

� The method does not provide an uncertainty assessment of the predicted transmissivity 607 

fields. This is a major weakness of this method compared to classical approaches. There are 608 

some attempts in the literature to estimate the uncertainty of the prediction determined with DL 609 

algorithms by performing the learning in a probabilistic way (Kendall et al., 2016; Gal and 610 

Ghahramani, 2016). However, this type of approach requires a lot of computational time and it 611 

does not take into account all the uncertainties that can come from all the parameters used in 612 

the learning. 613 

� The method is highly dependent on prior information. This dependence can be an 614 

obstacle to its application, especially when the network fails in the learning phase to relate the 615 

transmissivity fields to their piezometric data. This can occur when the transmissivity fields 616 

have complex heterogeneities that are not captured by low piezometric resolution. This 617 

dependence can also lead to a misinterpretation, even with a well-trained inversion operator, 618 

when the magnitudes of the piezometric data used in the training are so different from those we 619 

desire to predict. To avoid both of these problems, it is necessary to ensure that generated 620 

transmissivity fields have a degree of heterogeneity that can be mapped with the piezometer 621 

coverage and that they produce hydraulic head data that include the magnitude of the hydraulic 622 

observations to be interpreted. 623 

In conventional inversion methods, the predicted transmissivity distribution is the result of a 624 

compromise between the a priori model and the piezometric data. However, here, the result is 625 
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strongly linked to the a priori model and the piezometric data to be interpreted come only at the 626 

end of the learning process. 627 

. 628 

 629 

Acknowledgements : We thank Normandy region for its financial support to our consortium 630 

on the hydraulic characterization of aquifers. 631 

Appendix  632 

Here we present the mathematical formulation to analytically calculate the Jacobian matrix of 633 

a homogeneous transmissivity field. This matrix is used in the projection method to transform 634 

the hydraulic data to the same size as the transmissivity field to form the Segnet network. 635 

We recall that in the joint state method, the sensitivity matrix can be expressed as an integral 636 

(Sykes et al.,1985): 637 
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 with 
2 2

obs obs
obs

( ) ( )= − + −r x x y y  and 
2 2

p p
p

( ) ( )= − + −r x x y y   645 

h0 and 0
φ  are the values  imposed as the boundary of the domain located at a distance R, away 646 

from the study area. r is radial distance. Then the sensitivity of hydraulic head at point O to a 647 

variation of the transmissivity at cell Ω
j
 can be approximated with this integral: 648 
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