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Abstract. Excessive sediment discharge in karstic regions
can be highly disruptive to water treatment plants. It is essen-
tial for catchment stakeholders and drinking water suppliers
to limit the impact of high sediment loads on potable water
supply, but their strategic choices must be based on simula-
tions integrating surface and groundwater transfers and tak-
ing into account possible changes in land use. Karstic en-
vironments are particularly challenging as they face a lack
of accurate physical descriptions for the modelling process,
and they can be particularly complex to predict due to the
non-linearity of the processes generating sediment discharge.
The aim of the study was to assess the sediment discharge
variability at a water treatment plant according to multiple
realistic land use scenarios. To reach that goal, we devel-
oped a new cascade modelling approach with an erosion-
runoff geographic information system (GIS) model (Wa-
terSed) and a deep neural network. The model was used in
the Radicatel hydrogeological catchment (106 km2 in Nor-
mandy, France), where karstic spring water is extracted to
a water treatment plant. The sediment discharge was simu-
lated for five design storms under current land use and com-
pared to four land use scenarios (baseline, ploughing up of
grassland, eco-engineering, best farming practices, and cou-
pling of eco-engineering/best farming practices). Daily rain-
fall time series and WaterSed modelling outputs extracted at
connected sinkholes (positive dye tracing) were used as input
data for the deep neural network model. The model structure

was found by a classical trial-and-error procedure, and the
model was trained on 2 significant hydrologic years. Evalu-
ation on a test set showed a good performance of the model
(NSE= 0.82), and the application of a monthly backward-
chaining nested cross-validation revealed that the model is
able to generalize on new datasets. Simulations made for the
four land use scenarios suggested that ploughing up 33 %
of grasslands would increase sediment discharge at the wa-
ter treatment plant by 5 % on average. By contrast, eco-
engineering and best farming practices will significantly re-
duce sediment discharge at the water treatment plant (respec-
tively in the ranges of 10 %–44 % and 24 %–61 %). The cou-
pling of these two strategies is the most efficient since it
affects the hydro-sedimentary production and transfer pro-
cesses (decreasing sediment discharge from 40 % to 80 %).
The cascade modelling approach developed in this study of-
fers interesting opportunities for sediment discharge predic-
tion at karstic springs or water treatment plants under mul-
tiple land use scenarios. It also provides robust decision-
making tools for land use planning and drinking water sup-
pliers.
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1 Introduction

In karstic environments, erosion and runoff can lead to a
high load of sediments in surface and underground streams.
Sediment discharge (SD) can occur through rapid and di-
rect transfer via sinkholes and/or via re-suspension of sed-
iment in the karst network itself (Masséi et al., 2003). For
suppliers of drinking water, excessive sediment input can be
highly disruptive, requiring additional treatment or, in the
worst cases, temporary shutdowns of a water treatment plant
(WTP; Stevenson and Bravo, 2019). Impacts can be signifi-
cant, including restrictions on the use of drinking water. Up-
per Normandy (France) is particularly affected, and the eco-
nomic cost linked to the restrictions on the use of drinking
water due to excessive sediment inputs in raw water was
estimated at EUR 5 million during the period 1992–2018
(Patault et al., 2021a); 10 000 to 20 000 people are still af-
fected every year by restrictions on the use of drinking wa-
ter in the region (ARS, 2013). Reducing sediment delivery
to sinkholes is therefore essential for catchment managers in
order to reduce the impact on potable water supply. One way
to achieve this would be to build a complex decision-making
process modelling chain, integrating surface and ground-
water transfers. Several approaches have been proposed to
model erosion/runoff and the karstic response induced by
rainfall, but these approaches are often treated separately,
which does not make it possible to evaluate the impact of
a change in land use on the sediment load delivered to a
WTP. Many studies in the literature have focused on hills-
lope erosion processes using different types of erosion mod-
els (Merritt et al., 2003; De Vente et al., 2013). Empirical
models, such as RUSLE (Renard and Freidmund, 1994), are
frequently used because of limited data requirements but are
not able to fully represent spatial and temporal dynamics of
erosion processes at the catchment scale (Verstraeten et al.,
2007). Physical models, such as WEPP or LISEM (Laflen
et al., 1991; Takken et al., 1999), can more accurately de-
scribe processes but may require many input parameters that
are not available for application to large areas. Expert-based
models (e.g. STREAM, WaterSed; Cerdan et al., 2001; Lan-
demaine, 2016) offer an interesting compromise focusing on
the main driving factors of runoff and erosion. These mod-
els have been designed with cultivated areas of the European
loess belt in mind and are particularly efficient where Horto-
nian overland flow dominates (Souchère et al., 2005; Evrard
et al., 2010; Landemaine, 2016). Some hillslope erosion stud-
ies conducted in similar karstic environments do not account
for the transmissivity loss of water and sediment in sinkholes.
Other studies that have focused on modelling karst processes
have mainly examined karstic floods but, for the most part,
have overlooked sedimentary fluxes (see the review of Hart-
mann et al., 2014). Due to the non-linearity of the processes
generating sediment at karstic springs and the lack of ac-
curate physical descriptions of karstic environments, mod-
elling surface–subsurface interactions with physical models

can therefore be a difficult task (Savary et al., 2017; Jourde
et al., 2018). Based on systemic approaches, as initiated by
Mangin (1984), karst can be considered a system able to
transform an input (rainfall) into an output (discharge), and
the input–output relation can be evaluated using mathemat-
ical functions. This approach can be considered a “black-
box” model to some extent, and recent research emphasized
the advantages of using data-driven techniques, such as deep
neural networks (DNNs) in similar situations (Yaseen et al.,
2015; Kratzert et al., 2018, 2019). DNNs are advanced ar-
tificial neural networks (ANNs) which have been gaining
momentum since 2012 in the computer sciences and whose
adoption has been gradual in hydrology (Shen, 2018). DNNs
are now commonly used for modelling real-world problems
due to their ability to represent and generalize complex non-
linear relationships between inputs and outputs (Meyers et
al., 2016, 2017; Hafeez et al., 2019). DNNs can help by
providing both stronger predictive capabilities and a com-
plementary avenue toward knowledge discovery in the hy-
drologic sciences (Shen et al., 2018). Limited but conclu-
sive applications were made to predict inflows to reservoirs,
water levels of combined sewage outflow structures, turbid-
ity, and flood forecasting in karst regions and integrated in
rainfall–runoff modelling to better predict streamflows (Siou
et al., 2011; Bai et al., 2016; Savary et al., 2017; Hu et al.,
2018; Kratzert et al., 2018). The main objectives of this study
were (i) to develop a cascade modelling approach able to
simulate hydro-sedimentary transfer at a WTP for specific
daily rainfall events and (ii) to evaluate the impact of differ-
ent land use scenarios on the SD variability. This study was
conducted in the Radicatel hydrogeological catchment (Nor-
mandy, France), where spring water is extracted to a WTP.
We benefited from the use of an existing expert-based geo-
graphic information system (GIS) model (WaterSed), devel-
oped and successfully applied to the studied area, to simulate
the impact of land use management on hydro-sedimentary
transfers to connected sinkholes. Rainfall event characteris-
tics and WaterSed outputs were then used as input for a data-
driven model (i.e. a DNN) to simulate SD at the WTP. The
cascade modelling approach was applied to multiple design
storms (DS) under different scenarios in order to simulate
hydro-sedimentary transfer in the hydrogeological catchment
and evaluate the efficiency of different land use management
strategies.

2 Study site

The study site is in the Pays de Caux (Normandy, France)
on the right bank of the Seine River about 30 km from the
Seine estuary (Fig. 1a). The climate is temperate with an av-
erage temperature of 11 ◦C. Annual precipitation ranges be-
tween 600 and 1100 mm yr−1 with a rainy season occurring
between October and May. The karst is typical of the geo-
logical setting of the lower Seine Valley. The karstic chalk
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Figure 1. (a) Location of the study site in the lower Seine Valley (Normandy, France) on the right bank of the Seine River (Hanin, 2011)
and (b) location of the water treatment plant of Radicatel and the seven connected sinkholes. The background map was retrieved from
BD Ortho © IGN.

plateaus of the north-eastern side of the Normandy region
are part of the western edge of the Paris Basin. The elevation
ranges from 138 to 0 m a.s.l. (above sea level), and the me-
dian slope is 5.9 %. The geology consists of Cenomanian to
Campanian chalk overlaid by thick surficial formations. The
major formation is composed of clay with flints, which re-
sults from the weathering of the chalk (Laignel, 2003), loess,
and tertiary sands (Lautridou, 1985). The thickness of the
formation overlying the chalk ranges from 5 to 10 m. Water
infiltrates from the uplands of the chalk aquifer to the valleys
via rapid transfer through a highly developed karstic network
and via slower drainage through the thick surficial forma-
tions.

The hydrogeological catchment of Radicatel covers
106 km2 and the WTP is located at the interface of the Seine
alluvium and the karstic chalk (Fig. 1b). Water is pumped
from four different springs and seven pumping wells near
the WTP (Chédeville, 2015). According to the information
system for groundwater management in Seine–Normandy
(http://sigessn.brgm.fr/, last access: 1 September 2020), hy-
drogeological investigations reported seven sinkholes posi-

tively connected to the springs (in situ dye tracing already
performed and confirming the connection). The WTP of Rad-
icatel is exploited by the Le Havre-Seine Métropole (LHSM)
to supply Le Havre inhabitants. Turbidity (NTU) is measured
with a nephelometer at the inlet of the pumping station and
has been recorded since 1987 (Fig. 2). The maximum turbid-
ity value is recorded every day (1t = 1 d) and LHSM pro-
vided access to the entire turbidity time series (1987–2017).
Incomplete periods or hydrologic years with missing data
were discarded. Twenty-two hydrologic years with a com-
plete time series of turbidity were kept for the rest of the
study.

3 Methodology

The proposed cascade modelling for the simulation of SD at
a WTP incorporates two different models that can be used
separately or as part of an integrated modelling framework.
These components are described in detail in the following
sections.
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Figure 2. Cumulative daily rainfall (mm) extracted from the SAFRAN database over the Radicatel hydrogeological catchment and maximum
daily turbidity (NTU) observed at the water treatment plant from 1987 to 2017.

3.1 Expert-based GIS model

The WaterSed model uses a raster-based distributed approach
to model the spatial distribution of runoff and soil erosion
within a catchment for a given rainfall event. The WaterSed
model is an upgrade of the STREAM model (Souchère et
al., 1998; Cerdan et al., 2001) simulating hydrological pro-
cesses by conceptualizing each raster grid cell as a reser-
voir whose properties are calculated at the event scale and
by routing both water and sediment according to the surface
flow network. The WaterSed model requires several datasets
to compute runoff and erosion for any location in the catch-
ment: (i) a digital elevation model (DEM) to extract the slope
and the runoff flow network, (ii) a stream network (used to
modify the DEM to ensure a steady downstream gradient
according to the observed hydrographic network) and river
width, (iii) a land cover and soil texture map to associate
each land cover in the catchment with the appropriate soil
surface characteristics, (iv) decision tables, adapted for the
local conditions, to associate each soil surface characteris-
tic (soil surface crusting, surface roughness, and crop cover)
observed in the land cover or field with a steady-state infiltra-
tion rate, a Manning roughness coefficient, a single potential
sediment concentration, and a soil erodibility value (Cerdan
et al., 2002a), and (v) rainfall events including total precipi-
tation, antecedent moisture (48 h), and effective rainfall du-
ration.

3.2 Deep neural network

In this study, a multi-layer feed-forward network (DNN) was
built under Python version 3.6 using the high-level API Keras
(Chollet, 2015) and Tensorflow (Abadi et al., 2016) as a
background engine. A multi-layer feed-forward neural net-
work is an interconnection of perceptrons in which data and
calculations flow in a single direction, from the input data
to the outputs. The number of layers in a neural network
is the number of layers of perceptrons. The number of hid-
den layers and perceptrons depends on the characteristics

of the input data, and there is no specific rule for selecting
these parameters (Le et al., 2019). Neural networks are ad-
justed during a training stage when the parameters are cal-
culated iteratively in a gradient descent that seeks to mini-
mize a mean squared error. For efficient learning, input vari-
ables were rescaled between 0 and 1 using normalization
and re-transformed for the simulations using the normaliza-
tion parameters. The mean squared error (MSE) was cho-
sen as a loss function, and the adaptive moment estimation
(Adam) was adopted as the model optimization algorithm.
After training, the quality of the model is evaluated on a test
set. The ability of the model on the test set is known as gen-
eralization, and it can be influenced by overfitting during the
training stage. To avoid overfitting and increase model ro-
bustness, we used two regularization methods in this study:
(i) early stopping and (ii) cross-validation. Early stopping is
an efficient regularization method that prevents the model
from overfitting (Sjörberg and Ljung, 1992). We visually
monitored the learning curves and stopped the training as
soon as the validation error reached a minimum. Then, we
rolled back the model parameters to the point where the val-
idation error was at the minimum. The choice of the train-
ing/test set remains arbitrary and may need to be evaluated
to compute a robust estimate of model error. With time se-
ries data, care must be taken when splitting the data in order
to prevent data leakage (Cochrane, 2018). To address this is-
sue, we adapted a monthly backward-chaining nested cross-
validation procedure, which provides an almost unbiased es-
timate of the true error (Varma and Simon, 2006). The proce-
dure contains an inner loop for parameter tuning and an outer
loop for error estimation (see Fig. B1). The parameters that
minimize error are chosen on the inner loop, and we add an
outer loop, which splits the data into multiple training/test
sets. Then, the error is averaged on each split to evaluate
the overall performance of the model. The optimum structure
and configuration of the network (model design) were found
by a classical trial-and-error procedure (training-evaluation
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process through optimization of errors; Ortiz-Rodriguez et
al., 2013).

3.3 Performance evaluation

The performance of the model was evaluated through the
Nash–Sutcliffe efficiency (NSE) and the root mean square
error (RMSE). The RMSE corresponds to the standard devi-
ation of the residuals (prediction errors). The residuals are
a measure of the distance from the data points of the re-
gression line. They evaluate how the predictions match to
the observations, and values may range from no fit (+∞) to
perfect fit (0) based on the relative change in the data. The
NSE (Nash and Sutcliffe, 1970) indicates the model’s abil-
ity to predict variables different from the mean and gives
the proportion of the initial variance accounted for by the
model. NSE values vary between −∞ (poor model) and 1,
indicating a perfect fit between observed and predicted val-
ues. Finally, to ensure that the model does not suffer from a
weakness when making simulations during extreme events,
we performed an additional evaluation using the generalized
extreme value (GEV) distribution that is broadly applied to
extreme events such as rainfall or river discharges (Carreau
et al., 2013; De Michele and Avanzi, 2018). The GEV dis-
tribution was fitted to SD time series at the WTP of Radi-
catel. The maximum annual SD observed at the WTP was
extracted for all complete hydrologic years (i.e. annual max-
imal blocks; n= 22) and the distribution was fitted using
the package “extRemes” of the R software (R Development
Core Team, 2008; Gilleland and Katz, 2016; see Fig. C1).
We compared the SD simulated at the WTP by the DNN to
the values calculated by the GEV.

4 Data

Appropriate data handling can help address various concerns
in DNN modelling, such as its ability to generalize beyond
training limits (Kourgialas et al., 2015). Moreover, cascade
modelling with a GIS and a DNN can require important com-
putational effort; therefore, the input data must be carefully
selected.

4.1 WaterSed data

To compute erosion and runoff, the WaterSed model needs
a DEM. The DEM (5 m resolution) was retrieved from
BD Alti®. Depressions in the DEM were filled accord-
ing to the algorithm developed by Wang and Liu (2006).
The stream network location and width were provided by
BD TOPO®. To define the soil surface characteristics needed
by the WaterSed model, we computed a land cover map
and a soil texture map. The land cover map was developed
for 2016 by combining two national databases: the French
Land Parcel Identification System (RPG) and the Soil Ob-
servatory of Upper Normandy (OSCOM). The soil texture

map (three classes: clay, silt, and sand) was derived from
the Regional Pedological Referential (RRP) with a precision
of 1 : 250000. The parametrization consists of a character-
ization of the main parameters influencing runoff and infil-
tration in the studied context: soil surface crusting, surface
roughness, and crop cover. These soil surface characteris-
tics were defined for each month and for each crop class
according to the cropping calendar developed by Evrard et
al. (2010) and Delmas et al. (2012). Steady-state infiltration
and potential sediment concentration were assigned to each
soil surface characteristic according to Cerdan et al. (2001,
2002b). The WaterSed model requires Manning’s roughness
coefficient in order to compute flow velocity. Based on soil
surface characteristics, Manning’s values were derived from
surface roughness (Morgan, 2005) and the percentage of crop
cover (Gilley et al., 1991). Last, soil surface characteristics
were also used to define the soil erodibility factor, varying
in the [0–1] interval, by adapting the table developed by
Souchère et al. (2003). Calibration parameters were extracted
from a previous study (Landemaine, 2016; Landemaine et
al., 2020b) conducted in the Austreberthe catchment, located
30 km east of the Radicatel catchment. For the training phase
of the DNN, erosion and runoff were calculated with the Wa-
terSed model for 269 events to reduce computational efforts,
considering that erosion and runoff occur only for significant
rainfall events (P > 2.5 mm d−1, the threshold below which
no effective rainfall is generated, and runoff and sediment
discharge entering connected sinkholes were set to 0).

4.2 DNN data

Cumulative daily rainfall (mm) from 1987 to 2017 was ex-
tracted from the SAFRAN database over the hydrogeolog-
ical catchment of Radicatel. SAFRAN data are hydrocli-
matic data covering France at a resolution of 8 km on an ex-
tended Lambert-II projection and produced by Météo-France
(Quintana-Segui et al., 2008; Vidal et al., 2010). We used
the rainfall time series (i.e. daily cumulative rainfall, P, and
48 h antecedent rainfall, P48) retrieved from the SAFRAN
database and WaterSed modelling outputs – runoff (RWS)
and sediment discharge (SDWS) – at connected sinkholes as
input data for the DNN model. The SD time series at the Rad-
icatel WTP was retrieved from turbidity data and considered
the output for the DNN. In this study, turbidity data distribu-
tion was explored using scatter plots (Fig. A1). The turbid-
ity data were chosen so that they include the best dispersion
of values (0–370 NTU) and a strong recurrence of extreme
turbidity values (> 150 NTU). Thus, 2 significant hydro-
logic years (H12–H13; from 1 October 1998 to 30 Septem-
ber 2000) were selected, accounting for 731 daily events.
These 2 hydrologic years were selected as the training/test
set of the model. Data were split as a training set (70 %) and a
test set (30 %) while respecting the chronology of daily rain-
fall amounts. The training set was also split into training and
stop sets to fine-tune the hyperparameters (70 %–30 %). At
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Table 1. Design storms defined for the Radicatel catchment and
considered for the simulations.

Return Daily 6 min 48 h Season
period cumulative maximum antecedent
(year) rainfall intensity rainfall

(mm) (mm h−1) (mm)

0.5 19 25 45 Winter
2 31.4 25 45 Winter
10 51.9 45 0 Spring
50 74.7 45 0 Spring
100 87 45 0 Spring

the Radicatel WTP, the mean pumping flow rate is estimated
to 19 733 m3 d−1, and the volume of water pumped in 2018
was approximately 7.2 million m3. SD (kg d−1) was assessed
considering turbidity time series, mean pumping flow rate
at the Radicatel WTP, and the relation between turbidity
and sediment concentration resulting from field investiga-
tions ([mg L−1]= 0.96 · [NTU]; R2

= 0.97; Hanin, 2011). In
accordance with previous studies by Masséi et al. (2006) and
Hanin (2011) in a karstic environment in Normandy, a lag of
1 d was applied to the SD time series to properly match the
rainfall input.

4.3 Design storms and land use scenarios

Five design storms were constructed for the cascade mod-
elling approach based on expert knowledge and depth–
duration–frequency curves of the French Meteorological
Survey (Météo-France) available from 1996 to 2006 on the
studied area (Table 1). We considered winter events for low
return period rainfall (0.5 and 2 years). In the studied region,
even low daily rainfall depths can lead to severe erosion by
water runoff due to saturated soils induced by heavy cumu-
lated rainfall on antecedent days (Le Bissonnais et al., 2002;
Evrard et al., 2010). For higher return periods (i.e. 10, 50,
and 100 years), we considered spring events that are charac-
terized by stronger rainfall intensities and that can be partic-
ularly damaging in this region (Evrard et al., 2007).

Four land use change scenarios for the year 2050 were
investigated and compared to a baseline land use sce-
nario (2018). The scenarios were incorporated into the model
in order to simulate SD variability at the WTP and evaluate
their impacts. All scenarios are described below.

– Baseline scenario (S_base): this scenario served as a
reference and was built considering the latest available
land use data on the catchment (see Sect. 3.3). Exist-
ing erosion control measures in 2018 were considered
and extracted from a regional database (BD CASTOR;
http://bdcastor.fr/, last access: 1 September 2020). The
database contained 45 dams/retention ponds, 16 ponds,
1 fascine, and 4 hedges for the actual land use scenario

on the Radicatel catchment, which have been included
in the WaterSed model.

– Ploughing up of grassland (S_grass): based on re-
gional benchmarks (DRAAF; https://draaf.normandie.
agriculture.gouv.fr/, last access: 1 September 2020)
for the 1970–2010 period in the studied region (Pays
de Caux), we observed an average conversion rate of
grasslands up to 900 ha yr−1. Extrapolation by 2050 led
to the conversion of 33 % of existing grasslands. The ex-
trapolated rate was applied on the Radicatel catchment.
Grasslands were ploughed up based on a slope criterion,
taking into account the working conditions of farmers
and prioritizing those with mild slopes (< 12 %) and
therefore mainly located on the plateau upstream of the
catchment.

– Eco-engineering (S_engi): based on expert knowledge,
181 fascines and 13.1 ha of grass strips were imple-
mented in addition to existing erosion control mea-
sures to mitigate runoff/erosion on the catchment and
reduce rapid transfer via the connected sinkholes. Grass
strips were deployed on the flow paths in the vicinity of
the sinkholes. Fascines were deployed throughout the
catchment, also on flow paths and along plot bound-
aries. This scenario allows for a shift from a 0.19 per
30 ha erosion control measure density to nearly 1 per
30 ha, which is advised to promote sedimentation and
landscape restructuring (Ouvry et al., 2019). The local-
ization was optimized according to the baseline scenario
simulations.

– Best farming practices (S_farm): this scenario promotes
the adoption of farming practices improving infiltration
on the catchment (increasing crop cover or delaying the
formation of the slaking crust). Fifty percent of the plots
were randomly selected and applied a 15 % increase in
infiltration capacity, respecting the actual proportions
of winter and spring crops on the catchment. The ap-
plied value was set based on the study of Maetens et
al. (2012), who synthesized the reduction in erosion and
runoff following different agricultural practices across
Europe. According to their results, a 15 % increase in
infiltration capacity can be regarded as a conservative
assumption that can be easily achieved through simpli-
fied agricultural techniques (e.g. minimum tillage, no
till, direct seeding, crop cover).

– Coupling eco-engineering and best farming prac-
tices (S_farm+ engi): both scenarios, S_farm and
S_engi, were combined. Experiments carried out in the
study area suggested that combining both approaches is
necessary to reduce the impact on sensitive or vulnera-
ble areas (Ouvry et al., 2012).

Hydrol. Earth Syst. Sci., 25, 6223–6238, 2021 https://doi.org/10.5194/hess-25-6223-2021
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Figure 3. Cumulative sediment discharge (kg) and runoff (m3) simulated by the WaterSed model, extracted and summed over all positively
connected sinkholes from October 1998 to September 2000.

Figure 4. Observed and simulated sediment discharge (kg) at the water treatment plant using the DNN model.

5 Results

5.1 Modelling the inputs

In order to feed the DNN, erosion and runoff were sim-
ulated with the WaterSed model for 269 rainfall events
over the entire Radicatel catchment. We used the WaterSed
parametrization that was carried out on the adjacent catch-
ment (La Lézarde; Landemaine et al., 2020a) and that had
already proved to be valid in the same area of the Pays
de Caux (Landemaine, 2016; Landemaine et al., 2020b)
and Belgium (Baartman et al., 2020). For each event, Wa-
terSed outputs – i.e. runoff (RWS; m3) and sediment dis-
charge (SDWS; kg d−1) values – were independently ex-
tracted over the connected sinkholes and summed to con-
sider a unique contribution from the seven sinkholes to the
spring. Figure 3 shows that from October 1998 to Septem-
ber 2000, rainfall events led to a significant cumulative runoff
and sediment discharge to the sinkholes (RWS = 213 225 m3;
SDWS = 262806 kg). Most of the events occurred during
spring (SDWS_spr = 131672 kg; RWS_spr = 94732 m3) and
winter (SDWS_win = 88413 kg; RWS_win = 62590 m3). Sed-
iment discharge and runoff occurred on the catchment for
only 126 events over the 269 simulated; 61 % of the SDWS
(i.e. 162 168 kg) and 52 % of the RWS (i.e. 110 877 m3)

were transported during seven major events (i.e. 0.95 % of
the time). Over the 126 events, the maximum RWS and
SDWS reached 38 471 m3 and 38 380 kg (µSDWS = 2102 kg;
µRWS = 1705 m3; σSDWS = 5826 kg; σRWS = 4437 m3).

5.2 DNN: calibration and generalization

The final structure of the DNN was composed of one input
layer with four variables, two hidden layers, and one out-
put layer with the targeted variable. We set 40 neurons in
the hidden layers as follows: 30–10. We used the rectified
linear (ReLU) activation function for the two hidden layers.
The optimal number of iterations was set to 15 and the batch
size to 1. We used the runoff and sediment discharge sim-
ulated by the WaterSed model for the 2 selected hydrologic
years as inputs for the DNN. The rainfall time series (P , P48)
available on the catchment were also considered as inputs. A
turbidity time series recorded at the WTP was transformed
into sediment discharge knowing the mean pumping flow
rate at the Radicatel WTP and considering a mean sediment
concentration of 1 mg L−1 from field investigations made by
Hanin (2011). Thus, sediment discharge at the WTP was con-
sidered as output of the DNN. The DNN was trained from
October 1998 to February 2000 (n= 511 daily events). The
remaining period from March 2000 to September 2000 was

https://doi.org/10.5194/hess-25-6223-2021 Hydrol. Earth Syst. Sci., 25, 6223–6238, 2021



6230 E. Patault et al.: Simulating sediment discharge at water treatment plants under different land use scenarios

Figure 5. Boxplots of the performance metrics over the training and test sets using the monthly backward-chaining nested cross-validation.

Figure 6. Simulated sediment discharge (kg) at the water treatment plant of Radicatel for the five design storms and the land use baseline
scenario by (1) generalized extreme value distribution and (2) DNN modelling. The grey bars represent the 95 % confidence intervals.

used as the test set (n= 220 daily events). Modelling results
(Fig. 4) suggested a good agreement between observed and
simulated SD at the WTP over the test set, with a NSE crite-
rion reaching 0.82 and a RMSE around 383 kg. The tempo-
ral variability was also well reproduced. The results over the
training set were slightly worse and reached a NSE of 0.6 and
a RMSE of 420 kg. Over the investigated period, the cumu-
lative SD observed at the WTP reached 158 611 kg, whereas
the simulated cumulative SD reached 129 253 kg (underesti-
mation of 19 %). Comparing SDWS and observed SD at the
WTP resulted in a 60 % recovery rate from WaterSed outputs,
which was consistent with previous hydrogeological tracing
results on connected sinkholes. Hanin (2011) suggested the
existence of fast karstic connections between sinkholes and
springs on the Radicatel catchment, with a 62 % recovery
rate. For the 126 events for which erosion and runoff oc-
curred on the catchment, the cumulative amount for both
observed and simulated SD was estimated to 88 114 and
78 870 kg respectively, suggesting that direct transfers ac-
count for 55 %–61 %. These results were consistent with
previous published results of Masséi et al. (2003) in the
same karstic environment (Norville catchment, Normandy,

France), which evaluated the proportion of direct transfers at
73 % during erosive events.

The monthly backward-chaining nested cross-validation
procedure made it possible to assess the generalization ca-
pacity of the DNN on a new dataset. This procedure removed
1 month from the initial dataset (i.e. 731 events) and was
repeated 12 times while keeping at least 1 full hydrologic
year as input for the modelling. The modelling results were
more efficient for the inner loop (Fig. 4) than for the outer
loops (Figs. 5 and B1). Overall, the median NSE value for
the training and test sets for the outer loops was above 0.5.
The median RMSE value on the training and test sets was
on the same order of magnitude as for the complete dataset
(300–500 kg). The difficulties of the model in generalizing
suggested a classical problem in machine learning, the bias–
variance dilemma (Geman et al., 1992). Ideally, the model
should accurately reflect irregularities in the training data
while generalizing to data testing, but it was not possible to
achieve both at the same time. The higher NSE and lower
RMSE values on training sets suggest a complex model with
high variance and a reliable bias that represents the training
data fairly well but that presents a learning risk on the test
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data. The model can thus represent part of the random noise
of the learning dataset.

To validate the approach for extreme values, we simulated
overall SD for the baseline scenario at the connected sink-
holes and for the five DS using the WaterSed model. Then,
we used these modelling results as inputs for the DNN model
and applied them to the five DS. Secondly, we compared the
results with the calculated GEV distribution (Fig. 6). The SD
simulated at the WTP by the DNN model can be considered
to be in good agreement with the values calculated by the
GEV, even if the latter shows a high dispersion for higher
return periods.

In parallel, we selected the 1 % highest sediment discharge
on records from October 1998 to September 2000, which rep-
resented 28 % of the total sediment discharge observed at the
WTP, and compared the results with simulated sediment dis-
charge in a scatter plot. We observed a good relation between
those two variables (R2

= 0.72; Fig. D1), which strengthens
our confidence in the model for simulating extreme events.
While the performance of deep learning-based methods in
modelling extreme events is discussed (Zhang et al., 2019),
the results obtained here provide confidence in the model’s
ability to simulate them due to a careful selection of input
data that allow the model to learn patterns of extreme events
in historical time series.

5.3 Prospective analysis

Once the calibration was completed and the architecture of
the DNN defined, we applied the cascade modelling for all
predefined scenarios. As a first step, and using the WaterSed
model, we simulated SDWS and RWS at the connected sink-
holes for the three additional scenarios and the five DS,
comparing them to the baseline scenarios (Fig. 7a and b).
For the first scenario (S_grass), 33 % of grasslands were
ploughed up, which led to an increase in the spatial extent
of runoff generation on the catchment. SDS_grass ranged from
8468 to 188 264 kg for the five DS, with an average increase
of 4.74 % compared to the results of the baseline scenario.
The effect on runoff was higher, with an average increase
of 8.4 % for the five DS, ranging from 2211 to 67 097 m3.
The second scenario (S_engi) considered the implementa-
tion of erosion control measures by 2050 (i.e. 181 fascines
and 13.1 ha of grass strips), which led to a global decrease
in sediment flux rates. Simulated SDS_engi to connected sink-
holes ranged from 1659 to 133 458 kg, resulting in an average
decrease of 44 %. This scenario was more effective in small
return periods (i.e. 0.5 and 2 years), with a SD decrease be-
tween 79 % and 55 % respectively. Erosion control measures
were less effective on the three other DS, with decreases
ranging from 25 % to 34 %. The effects on runoff were not
as important, with an average decrease of 7 %. This was not
surprising because the considered management plan only in-
cluded 13.1 ha of grass strips, and the main interest of the
fascines lies in their ability to trap suspended sediments, es-

pecially their coarsest elements (AREAS, 2012). The third
scenario (S_farm) represented the adoption of good farm-
ing practices (i.e.+15 % infiltration capacity) on 50 % of the
plots. It can be observed that this scenario significantly re-
duced sediment production on the hillslopes (Fig. 8a and b).
The simulated SDS_farm ranged from 741 to 134 001 kg, lead-
ing to an average decrease of 49 % compared to the baseline
scenario results. The simulated values on runoff ranged from
720 to 47 442 m3. This scenario was more effective in re-
ducing SD and runoff, on average, than the eco-engineering
scenario. The SD decrease induced by good farming prac-
tices ranged from 25 % to 90 % at the connected sinkholes.
The fourth scenario (S_farm+ engi) combined both effects
of the erosion control measures and good farming practices.
We observed the highest decrease in sediment discharge and
runoff at connected sinkholes. The simulated values on SD
ranged from 547 to 97 739 kg and from 598 to 45 051 m3 for
runoff.

DS characteristics and simulated SD/runoff by the Wa-
terSed model at connected sinkholes, and for all scenarios,
were injected as inputs in the DNN model. In the base-
line scenario, simulated SD at the WTP ranged from 576 to
12 200 kg (see Sect. 4.2), and Fig. 9 shows the global trends
of the scenario modelling results. For the S_grass scenario,
simulated SD at the WTP was slightly higher than the base-
line scenario, reaching 12 894 kg for the 100-year DS. This
scenario resulted in an average increase of 4.5 % for the
SD at the WTP. The SD increase was less significant in
small return periods (+0.42 %–3.29 %) than longer return
periods (+5.68–6.82 %). In the second scenario (S_engi),
the modelling results suggested a significant SD decrease at
the WTP. The simulated SD ranged from 515 to 9810 kg,
which led to an average decrease of 25.4 %. The SD reduc-
tion was particularly effective on the 2-year DS, reaching
a decrease of 44.7 %. The smallest SD reduction was ob-
served for the 0.5-year DS (10 %) and ranged from 19 % to
30 % on longer return periods. These results were consistent
with those found by Fournier et al. (2008), who showed by
a parametric interpolation model that erosion control mea-
sures at connected sinkholes on the Caumont aquifer led to
a 36 % decrease in the turbidity in the Varras WTP (Nor-
mandy, France). The third scenario (S_farm) was more ef-
ficient, with simulated SD ranging from 223 to 9165 kg
and an average decrease of 43 %. The SD reduction ranged
from 28.9 % to 61.3 % and was more efficient for the 0.5-
and 2-year return periods (55.6 %–61.3 %). For the last sce-
nario (S_farm+ engi), we observed a global decrease of
59.6 %. The simulated SD values at the WTP ranged from
167 to 7298 kg. This scenario was more efficient for the 0.5-,
2-, and 10-year return periods (70 % on average).
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Figure 7. WaterSed modelling results according to the five designed storms for the four scenarios: simulated (a) sediment discharge (kg) and
(b) runoff (m3), extracted and summed over the seven connected sinkholes on the Radicatel catchment (S_base: baseline scenario in 2018;
S_grass: 33 % of grasslands ploughed up; S_farm: +15 % infiltration capacity on 50 % of the plots; S_engi: implementation of 181 fascines
and 13.1 ha of grass strips; S_farm+ engi: combination of S_farm and S_engi).

Figure 8. Mapping of flow path and sediment discharge for (a) the scenario including an increase of 15 % of the infiltration capacity on
selected plots (stronger grey colour) and (b) the baseline scenario, for the 10-year return period designed storm on the Radicatel catchment.

Hydrol. Earth Syst. Sci., 25, 6223–6238, 2021 https://doi.org/10.5194/hess-25-6223-2021



E. Patault et al.: Simulating sediment discharge at water treatment plants under different land use scenarios 6233

Figure 9. Simulated sediment discharge (kg) for designed storms and all scenarios at the Radicatel water treatment plant (WTP) using the
DNN model (S_base: baseline scenario in 2018; S_grass: 33 % of grasslands ploughed up; S_farm: +15 % infiltration capacity on 50 % of
the plots; S_engi: implementation of 181 fascines and 13.1 ha of grass strips; S_farm+ engi: combination of S_farm and S_engi).

6 Discussion

6.1 Cascade modelling approach: strength and
uncertainties

The original cascade modelling approach developed in this
study allowed the evaluation of surface and subsurface sed-
iment transfer processes. As karstic processes are complex
and difficult to model due to the lack of knowledge of their
geometry, the cascade modelling with a process-based GIS
model and a data-driven model (i.e. DNN) proved to be a
powerful tool. This approach is efficient at assessing the im-
pact of different land use scenarios on drinking water quality
at drinking water treatment plants. Despite very encouraging
results, one may notice that the cascade model was trained on
only 2 years of complete selected measurements and there-
fore may not have captured the full distribution of possible
cumulative daily rainfall on the catchment and/or turbidity
values at the drinking water treatment plant. The degree of
confidence in the model’s output could be further improved
with longer time series. Two limitations of the presented cas-
cade approach are the data availability and its ability to be
validated at other study sites, as the turbidity data backups are
not always properly done in all WTPs. One specific issue for
DL applications in the hydrological sciences, as mentioned
by Sit et al. (2020), is that data provided by the authorities
are dispersed and that they occasionally have mismatches in
temporal or spatial coverage. We thus encourage the drinking
water supplier to keep turbidity records to allow the applica-
tion of these data-driven models and to ensure that the time
series do not have interruptions.

6.2 Implications for future land use strategies

The modelling results in this study suggest that two different
land use strategies (i.e. increase in infiltration capacity and
eco-engineering) can significantly reduce the SD incoming
to connected sinkholes during extreme rainfall events (up to

90 %) and therefore decrease the SD at the WTP (from 10 %
to 61 %). The first strategy leads to a decrease in sediment
production through simplified cultural techniques, while the
second affects transfer processes. The adoption of better
farming practices (e.g. increase in crop cover, no-tillage, re-
duced tillage) inducing an increase of 15 % of the infiltration
capacity on 50 % of the agricultural plots of the catchment
appears to be slightly more efficient than the implementation
of eco-engineering infrastructures (181 fascines+ 13.1 ha of
grass strips) at reducing SD at the WTP. These results thus
show that it is more interesting to adopt a land use strategy
aimed at reducing hydro-sedimentary production directly on
cultivated plots than transfer processes on the catchment, but
these strategies could be combined. Additional simulations
integrating both effects of best farming practices on culti-
vated plots and the implementation of eco-engineering in-
frastructures show a 10-fold effect. As illustrated in Fig. 9,
the coupling of the two strategies makes it possible to reduce
significantly the SD at the WTP. The combined effect will
not add up, but we can expect an improved decrease in sedi-
ment discharge at the WTP from 40 % to 80 %. Both land use
strategies can also provide interesting effects on biodiversity
and ecosystem services (Posthumus et al., 2015) and/or can
improve soil resilience and promote sustainable agriculture
(Lal, 2014). Public policies leading to the implementation of
erosion control measures can be economically viable and ef-
ficient (Patault et al., 2021b). Even if some simplified cultural
techniques may imply negative returns for farmers, they may
be eligible for agri-environment payments (Posthumus et al.,
2015). The implementation of these land use strategies may
also require specific maintenance to keep their initial perfor-
mance (Frankl et al., 2018) or specific training and machines
for farmers.

According to the simulations, the ploughing up of 33 % of
grasslands for the benefit of agricultural plots on the catch-
ment by 2050 will not increase significantly the SD at the
WTP (less than 5 % on average). Our simulations just ex-
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tended the current trend observed in the studied region. De-
spite everything, some precautions must be taken regarding
the results of this scenario, which could be higher or lower
depending on the localization of the ploughed-up plots. The
same observations were made by Souchère et al. (2005), who
suggested, according to their results, that the efficiency of
all developments in reducing erosion and runoff is linked to
their location within the catchment. Indeed, it is well known
that hydrologic connectivity may lead to increments in runoff
(Appels et al., 2011).

7 Conclusions

In this study, a new cascade modelling approach was de-
veloped in order to help decision-makers choose an adapted
erosion and runoff management strategy to reduce the im-
pact of sediment discharge on drinking water supply. The
expert-based GIS model (WaterSed) was used to simulate
erosion and runoff at connected sinkholes (positive dye trac-
ing) on the Radicatel catchment (Normandy, France) and
used to feed a data-driven model (i.e. deep neural network)
to simulate karstic transfers. This new approach does not re-
quire knowledge of the geometry of the karstic system stud-
ied and demonstrated the value of understanding hillslope
erosion and runoff processes to model underground hydro-
sedimentary transfers in karstic systems. Our modelling re-
sults suggest that the cascade model performed well during
the calibrating phase. The cascade model was able to gen-
eralize on unknown datasets through an adapted monthly
backward-chaining nested cross-validation procedure, and
the cascade model was efficient at simulating extreme events.
The results also suggest that a land use change scenario con-
sidering the adoption of simplified cultural techniques can
significantly reduce sediment discharge at the water treat-
ment plant (up to 61 %). This scenario also outperformed the
one which considered the implementation of eco-engineering
control measures reducing erosion and runoff on the catch-
ment (up to 45 % at the water treatment plant). The coupling
of the two previous land use strategies can be even more ef-
fective since it operates on both the hydro-sedimentary pro-
duction and transfer processes (decreasing SD at WTP from
40 % to 80 %). Finally, ploughing up 33 % of actual grass-
lands on the catchment will not significantly increase sedi-
ment discharge at the water treatment plant. However, the re-
sults might be influenced by the spatial organization of grass-
lands on the catchment that is a key parameter for hydro-
sedimentary connectivity and hydro-sedimentary transfers to
the sinkholes. In the framework of this study, we suggest con-
ducting a specific study on this hypothesis.

Appendix A: Scatter plot of turbidity time series

Figure A1. Scatter plot of turbidity time series recorded at the water
treatment plant in the Radicatel catchment, Normandy, France.

Appendix B: Monthly backward-chaining nested
cross-validation

Figure B1. Monthly backward-chaining nested cross-validation
procedure developed to test the generalization capacity of the model
(modified after Cochrane, 2018).
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Appendix C: Generalized extreme values distribution

Figure C1. Generalized extreme value distribution modelled with
the “exTremes” R package on the sediment discharge time series
(22 hydrologic years) at the water treatment plant of the Radicatel
catchment.

Appendix D: Scatter plot of extreme events

Figure D1. Scatter plot of the observed versus simulated sediment
discharge by the DNN at the WTP for the 1 % highest sediment
discharge on record.
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