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Abstract. With more than 15 years of continuous and consis-
tent measurements, the Infrared Atmospheric Sounding In-
terferometer (IASI) radiance dataset is becoming a reference
climate data record. To be exploited to its full potential, it
requires a cloud filter that is accurate, unbiased over the full
IASI life span and strict enough to be used in satellite data
retrieval schemes. Here, we present a new cloud detection
algorithm which combines (1) a high sensitivity, (2) a good
consistency over the whole IASI time series and between the
different copies of the instrument flying on board the suite
of Metop satellites, and (3) simplicity in its parametrization.
The method is based on a supervised neural network (NN)
and relies, as input parameters, on the IASI radiance mea-
surements only. The robustness of the cloud mask over time
is ensured in particular by avoiding the IASI channels that
are influenced by CO2, N2O, CH4, CFC-11 and CFC-12 ab-
sorption lines and those corresponding to the ν2 H2O ab-
sorption band. As a reference dataset for the training, ver-
sion 6.5 of the operational IASI Level 2 (L2) cloud product
is used. We provide different illustrations of the NN cloud
product, including comparisons with other existing products.
We find very good agreement overall with version 6.5 of the
operational IASI L2 with an identical mean annual cloud
amount and a pixel-by-pixel correspondence of about 87 %.
The comparison with the other cloud products shows a good
correspondence in the main cloud regimes but with some-
times large differences in the mean cloud amount (up to
10 %) due to the specificities of each of the different prod-

ucts. We also show the good capability of the NN product to
differentiate clouds from dust plumes.

1 Introduction

Clouds cover between 70 % and 80 % of the Earth’s surface,
at any moment (Lavanant et al., 2011; Stubenrauch et al.,
2017). Because of their importance for the weather, the wa-
ter cycle and the Earth radiation budget, the development of
long, accurate and coherent time series of cloud properties
(e.g. cloud amount, cloud top height, optical thickness, cloud
type) is essential for improving our understanding of the cli-
mate and its past and future evolution. We can rely for this
on satellite observations, which allow the daily cloud cover-
age to be studied at global scales. Their use to detect clouds
and to derive climatologies began in the 1980s. One of the
first global cloud climate data records is the International
Satellite Cloud Climatology (ISCCP), which started in 1982
(Schiffer and Rossow, 1983; Rossow and Schiffer, 1999).
With more than 40 years of record, it has become today a
reference for climate analysis. Since then, the measurements
from a variety of sounders on board polar and geostationary
platforms have been used to detect and characterize clouds
(e.g. Kaspar et al., 2009; Karlsson et al., 2013, 2017; Sten-
gel et al., 2017; Feofilov and Stubenrauch, 2017). Despite
this, they remain today one of the largest sources of uncer-
tainties in future climate projections (Schneider et al., 2017;
Zelinka et al., 2017; Satoh et al., 2018). Besides their impor-
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tance for modelling the Earth’s climate, accurate detection of
cloud-free (clear) scenes from satellite measurements is also
an essential preprocessing step for most climate and atmo-
spheric satellite applications. This is especially the case in
most trace gas (e.g. Warner et al., 2013; Van Damme et al.,
2017) and dust retrieval schemes (DeSouza-Machado et al.,
2010; Capelle et al., 2018; Clarisse et al., 2019) or for de-
riving the Earth outgoing longwave radiation (OLR) budget
(Loeb et al., 2003; Chen and Huang, 2016; Whitburn et al.,
2020), as the presence of even small cloud amounts in the in-
strument field of view will significantly impact the radiance
at the top of the atmosphere.

Here, we present a new cloud detection algorithm for the
measurements of the Infrared Atmospheric Sounding Inter-
ferometer (IASI) flying on board the suite of Metop satel-
lites (Metop-A, Metop-B and Metop-C) since 2007 (Cler-
baux et al., 2009; Hilton et al., 2012). IASI is a hyperspec-
tral infrared sounder which covers a large part of the thermal
infrared region (between 645 and 2760 cm−1) without any
gaps and with a uniform spectral sampling of 0.25 cm−1. It
provides a quasi global coverage of the Earth twice daily (at
09:30 and 21:30 local time) with a relatively small ellipti-
cal footprint on the ground varying from 12 km× 12 km (at
nadir) up to 20 km× 39 km (off nadir). These characteristics,
combined with the good stability of the instrument over more
than 15 years (Saunders et al., 2021) and the consistency
in the measurements between the three instruments (Bouil-
lon et al., 2020), make the IASI radiance dataset an excel-
lent fundamental climate data record. For the detection and
the characterization of the clouds in the field of observation
of IASI, several products already exist: (i) the IASI-CIRS
(Clouds from Infrared Sounders) cloud product (Feofilov and
Stubenrauch, 2017; Stubenrauch et al., 2017); (ii) the inte-
grated cloud fraction from the AVHRR (Advanced Very High
Resolution Radiometer) imager, flying with IASI (product
identifier GEUMAvhrr1BCldFrac; Guidard et al., 2011); and
(iii) the EUMETSAT’s operationally distributed IASI Level 2
(L2) cloud product (August et al., 2012). While these three
products are generally of very good quality, they also suffer
from weaknesses in the identification of the clear-sky scenes.

The IASI-CIRS cloud product is derived from an oper-
ational and modular cloud retrieval algorithm suite (CIRS)
developed and maintained at the Laboratoire de Météorolo-
gie Dynamique (LMD) (Feofilov and Stubenrauch, 2017;
Stubenrauch et al., 2017). The retrieval relies on a weighted
χ2 method using channels around the 15 µm CO2 absorp-
tion band (Stubenrauch et al., 1999). It derives cloud pres-
sure and effective emissivity, which are then used to assign
a cloud type (eight classes in total, including clear sky) (Fe-
ofilov and Stubenrauch, 2017; Stubenrauch et al., 2017). So
far, the algorithm has been applied to the High-resolution In-
frared Radiation Sounder (HIRS), the Atmospheric Infrared
Sounder (AIRS) and the IASI dataset (Feofilov and Stuben-
rauch, 2017; Stubenrauch et al., 2017). The dataset is con-
sistent over time, in particular because of the consideration

of the increasing CO2 atmospheric concentrations in the cal-
culation to avoid long-term biases. However, the product is
not strict enough to be used in the cloud removal prepro-
cessing phase in satellite data retrieval schemes of geophysi-
cal variables. It was also never designed for this purpose but
rather for establishing global climatologies of cloud proper-
ties (Stubenrauch et al., 2017).

The AVHRR instrument on board the Metop satellites
measures the radiation in five spectral channels in both vis-
ible and infrared bands with a spatial resolution of 1.1 km
at nadir. The integrated AVHRR cloud fraction (hereafter ab-
breviated L1C-AVHRR), which presents the advantage of be-
ing directly embedded in the IASI L1C products, represents
the percentage of AVHRR cloudy pixels in the IASI field
of view (Guidard et al., 2011; Farouk et al., 2019). While
the product performs relatively well in the tropical and mid-
latitude regions, the sensitivity to cloud detection decreases
at high latitudes, especially during the winter period, likely
due to the absence of visible light and the very cold surface
temperatures, as well as in conditions of high albedo (e.g.
snow and ice).

Finally, the official IASI L2 cloud product is part of the
operational processing chain of the L2 IASI Product Pro-
cessing Facility (PPF) operationally disseminated by EU-
METSAT (European organization for the exploitation of ME-
Teorological SATellites). It includes a cloud flag and also
provides, for each cloud scene, the cloud top pressure, the
cloud fraction and the cloud phase (August et al., 2012;
IASI Level 2, 2017). Since it was first deployed in 2007,
the L2 meteorological data have undergone a series of up-
dates (summarized up to version 6.4 in Table 2 in Bouil-
lon et al., 2020), improving their quality to progressively
reach excellent performances today. Until version 6.4, the
cloud detection was based on three independent tests: an
AVHRR collocated cloud mask, a classical window chan-
nel test (observed minus simulated spectrum) based on nu-
merical weather prediction (NWP), and a neural network ap-
plied to the IASI and AVHRR measurements. A scene was
flagged as clear if all tests yielded an absence of clouds.
For all IASI pixels declared as cloudy, the characterization
was then performed using a CO2 slicing and a χ2 method
(August et al., 2012; IASI Level 2, 2017). Since version 6.5
released in December 2019, a new cloud detection scheme
has been introduced. It is based on an IASI-only optimal
estimation algorithm that retrieves the cloud fraction and
the cloud top pressure. The distinction between cloudy and
clear-sky scenes is based on the retrieved cloud fraction. The
same algorithm is planned to be used for the measurements
of the future IASI-NG (New Generation) (Crevoisier et al.,
2014) and MTG-IRS (Meteosat third generation) sounders.
The variational cloud retrieval algorithm is described in the
MTG-IRS Level 2 Algorithm Theoretical Basis Document
(ATBD) (https://www.eumetsat.int/media/45439, last access:
5 September 2022). In the IASI case, a check on the field of
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view inhomogeneity, based on the collocated AVHRR radi-
ances, is used to identify some additional clouds.

An entire reprocessed cloud series with the latest version
of the operational L2 cloud product (version 6.5) has, how-
ever, not been released yet, leading to discontinuities in the
current data record, which makes it less suitable for use in
long-term studies. Moreover, a positive trend is also observed
in the time series of the cloud amount related to the CO2 in-
crease in the atmosphere, as is shown in Sect. 4.2. Lastly, an-
other issue that was reported, at least for the earlier versions
of the product, is the presence of false cloud detections, in
particular in the centre of large dust plumes (Clarisse et al.,
2019).

The limitations of the existing products have triggered the
development of a sensitive and coherent IASI cloud detection
dataset to be used for climate research and for studying trends
of atmospheric compounds. The algorithm is based on the
use of a neural network (NN) and relies on IASI radiance in-
formation only, as was also successfully achieved recently to
retrieve surface skin temperatures (Safieddine et al., 2020). In
the next section, we detail the neural network retrieval algo-
rithm (set-up, parametrization, training). IASI-NN-derived
average cloud distributions and cloud seasonality are pre-
sented in Sect. 3. Section 4 gives a first assessment of the
cloud product and an inter-comparison with other existing
cloud products and cloud climate data records. We show that
the IASI cloud mask presented here is both accurate and con-
sistent over time and between the different IASI instruments.
Conclusions are given in Sect. 5.

2 The neural network: set-up, training, retrieval and
postfiltering

The goal of the proposed algorithm is to produce a sensitive
and consistent (unbiased) cloud mask over the entire IASI
life span using as a reference dataset version 6.5 (v6.5) of the
operational IASI L2 cloud product (August et al., 2012). The
latter shows a clear improvement over the previous version
(v6.4) when compared to the cloud products from the Cloud-
Aerosol LIdar with Orthogonal Polarization (CALIOP) on
board the Cloud-Aerosol Lidar and Infrared Pathfinder Satel-
lite Observation (CALIPSO; Winker, 2007), as reported in
the CALIOP-CALIPSO IASI Level 2 geophysical products’
monitoring reports available at https://www.eumetsat.int/
iasi-level-2-geophysical-products-monitoring-reports (last
access: 10 August 2022). The retrieval method presented
here is based on a supervised NN relying on the IASI
radiance spectra only, as opposed to the IASI-L2, which also
relies on the measurements of other instruments and model
simulation. The consistency over time is ensured by careful
selection of the IASI channels considered to be input in the
NN. In particular, spectral regions affected by the CO2, N2O,
CH4, CFC-11 and CFC-12 absorption lines were excluded
from the selection procedure as their concentrations evolve

steadily in the atmosphere and were found to significantly
affect the spectral OLR over 10 years of IASI measurements
(De Longueville et al., 2021; Whitburn et al., 2021). Other
long-lived species whose concentrations are changing in the
atmosphere also exist but are not expected to introduce a bias
in the cloud detection. Similarly, we also removed the region
corresponding to the ν2 H2O absorption band (between
1050 and 2140 cm−1) as preliminary tests indicated spurious
trends related to the activity of major climate phenomena
(e.g. El Niño–Southern Oscillation). Finally, the portion
of the spectrum affected by the solar reflectance (above
2400 cm−1) was avoided as well as it would introduce
inconsistencies between day and night measurements.

In the remaining spectral regions (see Fig. 1), we se-
lected, from a mean IASI spectrum, channels associated with
minimum and maximum brightness temperatures. Indeed,
the maxima represent mainly background radiation (coming
from either clouds or the surface or both). The minima corre-
spond to channels strongly affected by trace gas absorptions.
The difference between the maxima and the minima provides
information on cloud opacity. By selecting spectral regions
affected by H2O, O3 and CO, respectively, the network is
sufficiently robust against local changes in their concentra-
tion (e.g. at high latitude the water vapour column is low, but
in that case the O3 channels are still available). In practice,
the spectral regions were evaluated in groups of 20 channels
from which the minimum and the maximum brightness tem-
perature was selected. An exclusion criterion was applied to
neighbouring channels (two minima/maxima must be at least
three channels apart) to reduce redundancy and ease training
of the network (as neighbouring IASI channels are highly
correlated). We ended up with 45 channels mainly located in
the atmospheric window 1 and 3 and on the low-wavenumber
part of the ν3 O3 absorption band. The wavenumbers corre-
sponding to the selected IASI channels are given in Table 1
and are shown in Fig. 1. Note that, as most of the selected
channels are located in the atmospheric window regions, the
network should be sensitive to clouds at any altitude since the
atmosphere at these wavelengths is transparent in the absence
of clouds.

To get the training representative of real input data, the
training set should be as large and as extensive as possi-
ble while remaining reasonable in terms of computational
resources required. For this, about 54 000 clear and 54 000
cloud scenes derived from Metop-B observations were taken
randomly over 1 year (2020). Since the EUMETSAT IASI-
L2 product provides a value of cloud fraction in the IASI
pixel, we first converted it into a cloud flag: a scene was con-
sidered to be cloud-free only if the cloud fraction was strictly
equal to zero. With these and with the corresponding IASI
radiance at the 45 selected channels, the NN was trained.
The NN consists of a supervised two-layer pattern recogni-
tion network (Kothari and Oh, 1993) with one sigmoid hid-
den layer of 20 neurons and one output layer of one linear
neuron. The training algorithm is a Levenberg–Marquardt
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Figure 1. Mean IASI spectrum in brightness temperature with the 45 channels selected for the training displayed (red crosses). The shaded
green area corresponds to the regions considered for the channel selection. The coloured lines on the top represent the regions of sensitivity
to H2O, CO2, CH4, N2O, CFC-11 and CFC-12 excluded.

Table 1. List of IASI wavenumbers selected for the training of the cloud detection neural network.

IASI wavenumber (cm−1)

826.00, 827.50, 861.50, 865.50, 866.25, 869.25, 871.25, 874.75, 877.00, 878.50, 880.00, 883.75, 885.75,
887.25, 891.25, 894.25, 897.75, 899.75, 901.50, 902.50, 905.00, 994.50, 996.25, 999.50, 1001.50, 1004.75,
1006.50, 1009.75, 1011.50, 1014.50, 2145.50, 2147.25, 2150.00, 2152.50, 2153.50, 2157.25, 2158.25,
2161.75, 2164.75, 2166.75, 2169.25, 2172.75, 2174.25, 2176.25, 2177.75

backpropagation. For the training, the dataset was divided
randomly into three parts: (1) the training set (95 %), (2) a
validation set (4 %) and a test set (1 %). In addition to the 45
channels, we also included the surface elevation as an input
parameter for the NN taken from the “National Geophysi-
cal Data Center TerrainBase Global DTM Version 1.0” (ftp://
ftp.ngdc.noaa.gov/Solid_Earth/cdroms/TerrainBase_94/, last
access: 5 September 2022). In total, we performed 10 differ-
ent training sessions, and we selected the least affected by
dust (see Sect. 4.3). The corresponding MATLAB function
containing all the training variables is provided in the Sup-
plement along with an example code showing how to run
the network. The training of the network takes, depending on
the run, about 100–150 iterations and is completed in about
30 min on a typical personal computer. The performance of
the selected training reaches 87.3 % with an equivalent num-
ber of misdetections in the clear and cloud group.

The actual retrieval provides a value comprised between
0 and 1. If the average cloud fraction was about 50 % on
Earth, the threshold for separating the clear and cloud scenes
would be equal to 0.5 as the training was performed with the
same number of data in the two groups. However in prac-
tice, as mentioned in the introduction, cloud-contaminated
scenes dominate, and the optimal threshold (minimizing the
differences with the L2) has to be determined. For this, we
calculated the mean NN cloud amount for the year 2020
in a 0.25◦× 0.25◦ grid (calculated as the number of the
scenes flagged as cloud over the total number of observa-
tions) by considering a set of different thresholds and found
the one which minimizes the difference with the L2-derived
cloud amount. A separate threshold, of 0.175 (±0.020) and

0.275 (±0.015), respectively, was defined for land and for sea
measurements. Those are recommended when the NN cloud
product is used for the cloud removal preprocessing phase in
satellite data retrieval schemes. However, as we demonstrate
in Sect. 4.1, this threshold can be adjusted depending on the
application. The uncertainty in the thresholds is estimated by
evaluating the change in the threshold for a 1 % increase in
the difference between the L2 and the NN.

After application of the network and the threshold to de-
rive the cloud mask, a number of low-temperature obser-
vations stood out as being clearly misclassified, having a
very low temperature (< 270 K) at mid-latitude (mostly over
ocean). While the number of such observations is very low
(< 0.2 %), they were important enough to be removed with
a postfilter, which was constructed as follows. We built a
monthly climatology of the mean and standard deviation of
the brightness temperature (BT) calculated for one chan-
nel at 821.75 cm−1 on a 1◦× 1◦ grid from the 2008–2020
data. The channel was carefully selected to avoid the re-
gions of absorption of the main atmospheric absorbers and
the wavenumbers strongly affected by the surface type (wa-
ter, snow, ice, deserts, etc.). Any retrieval initially declared as
clear is flagged as cloudy if the BT associated with the mea-
surement is lower than the mean BT minus 3 times its stan-
dard deviation for the corresponding month in the 1◦× 1◦

grid.
An example of retrieved cloud mask on 15 February 2018

for the morning overpasses of IASI over Africa, the Ara-
bian Peninsula and the western part of the Indian Ocean is
given in Fig. 2. Yellow points correspond to pixels flagged as
cloudy. The MODIS Terra-corrected reflectance imagery for
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Figure 2. Left: example of cloud detection from the IASI neural network algorithm for 1 d of measurements (15 February 2018, morning
overpass). Cloud scenes are in yellow, clear-sky scenes in blue. Right: MODIS Terra-corrected reflectance (true colours) imagery for the
same day (from NASA Worldview).

the same day is shown as well. An excellent correspondence
is found for the large structures of high opaque clouds and
the cloud-free regions (e.g. northern and southern Africa, the
Arabian Peninsula). For the regions characterized by sparse
cumulus of thin cirrus clouds, the comparison is more diffi-
cult because of the different overpass time of the two instru-
ments (10:30/22:30 LT for MODIS Terra and 09:30/21:30 LT
for IASI) as the spatial distribution of clouds can evolve very
rapidly (due to evaporation, precipitation and transport). A
good distinction is also obtained between clouds and dust
plumes, as observed on the west coast of Africa north of
the Equator. The sensitivity to dust is further assessed in
Sect. 4.3.

3 Average distributions

The entire IASI time series has been processed for Metop-A,
Metop-B and Metop-C. The computational time is fast, tak-
ing about 2.5 min in CPU time per day processed (on a typ-
ical personal computer). For Metop-A before 2017, a repro-
cessed radiance dataset with the latest version of the L1C
has been released by EUMETSAT in 2018 (EUMETSAT,
2018). This allows us to produce a consistent time series of
the cloud mask for the 15 years of IASI observations. In this
section, we give a short overview of the large-scale cloud
regimes and seasonality as captured by the IASI-NN cloud
product. The mean cloud amount (%; also referred to syn-
onymously as cloud cover or cloud fraction from here on-
wards) derived from Metop-A observations separately from
the morning and the evening overpasses between 2008 and
2020 in a 0.25◦× 0.25◦ grid is shown in Fig. 3. It is calcu-
lated as the number of observations flagged as cloudy over

the total number of observations. The two distributions are
very similar, with, on average, differences in the mean cloud
amount lower than 2 % for seas and 1 % for land.

The large-scale patterns are very similar to those reported
in previous studies (e.g. Wylie and Menzel, 1999; King et al.,
2013). In general, clear sky is more common over land than
over oceans: globally, about 85 % and 57 % of all observa-
tions over seas and land, respectively, are flagged as cloudy.
The largest cloud amounts are found at mid-latitudes to high
latitudes over oceans, where cold air condenses water vapour
into clouds. This is especially the case in the Southern Hemi-
sphere (below about 45◦ S), where the cloud amount exceeds
95 % on average over the year. In the Northern Hemisphere,
the North Atlantic and North Pacific (from 40◦ N) exhibit
similar values. Close to the Equator, a band of high cloud
cover (> 90 %) located at the Intertropical Convergence Zone
(ITCZ) corresponding to the region of convergence of the
north-eastern and the south-eastern trade winds is also clearly
visible. Two other regions characterized by a very high mean
cloud cover are located along the coasts of Peru and Chile
and in the Atlantic, west of Angola. Conversely, lower cloud
amounts of about 50 % to 70 % are observed over the sub-
tropical gyres of the oceans.

Above land, the cloud distribution is more variable, with
desert areas characterized by a quasi absence of cloud over
the whole year (typically around 20 % for the Sahara and
the Arabian Peninsula), while intertropical regions show a
cloud cover of about 80 %–85 %. Mid-latitudes and high lat-
itudes in the Northern Hemisphere, for their parts, are typi-
cally characterized by a mean cloud fraction of 70 %–75 %.
Desert conditions with about 30 % mean cloud cover are
also observed in the eastern part of Antarctica, character-
ized by high altitudes reaching 4 km on the Antarctic Plateau
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Figure 3. Mean cloud cover (%) calculated using the IASI neural network cloud detection algorithm between 2008 and 2020 separately for
day (a) and night (b) observations in a 0.25◦× 0.25◦ grid.

(Listowski et al., 2019). Over high latitudes in the North-
ern Hemisphere and the Southern Hemisphere globally (be-
tween 60 and 90◦ N and S, for land and seas together), we
find a mean cloud coverage of about 76 % and 66 %, respec-
tively. While for the Northern Hemisphere, this is in excellent
agreement with values reported from the Cloud-Aerosol Li-
dar and Infrared Pathfinder Satellite Observation (CALIPSO)
in Karlsson and Devasthale (2018), the cloud coverage in
the Southern Hemisphere might be slightly underestimated
by about 10 % (around 76 % from CALIPSO; Karlsson and
Devasthale, 2018).

Note the presence of high cloud cover values observed
over the high mountain ranges in the different regions of
the world (e.g. Himalayas, Ural Mountains, Andes, Rocky
Mountains). These are likely exaggerated by false cloud de-
tection due to the climatic conditions in these areas (lower

thermal contrast between the surface and the cloud, drier air,
etc.) or to the heterogeneity of the topography within the
IASI pixel, which makes the distinction between clear and
cloudy pixels more difficult. In addition, for the nighttime
distribution, patches of slightly higher cloud coverage are ob-
served over deserts, in particular for the Sahara Desert, which
probably reflect emissivity features due to inhomogeneity in
the land surface properties associated with a lower sensitiv-
ity. These patterns over high mountain ranges and deserts are
also observed in the distributions derived from other cloud
products (see Sect. 4).

When looking at the seasonal average derived over the
2008–2020 period from the daytime measurements (Fig. 4),
we find strong variations in agreement with the known sea-
sonal cycles of the clouds around the globe. Close to the
Equator, the band of high cloud amount moves progres-
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Figure 4. Seasonal mean daytime cloud cover (%) calculated from the IASI neural network cloud detection algorithm between 2008 and
2020. (a) Winter (December–February), (b) spring (March–May), (c) summer (June–August), (d) autumn (September–November).

sively in latitude with the ITCZ from its northernmost posi-
tion around 10◦ N during the boreal summer (Fig. 4c; June–
August) to its southernmost position in the boreal winter
(Fig. 4a; December–February), in agreement with the obser-
vations of King et al. (2013) based on the measurements of
the MODIS sounders on board the Terra and Aqua satellites.
In the tropical regions (up to about 25◦ N and S), the sea-
sonal variations in Africa south and north of the Equator, in
central South America, in India, and in South East Asia are
mainly associated with the monsoon with a maximum cloud
coverage observed during the boreal summer (winter) for the
regions located north (south) of the Equator (Eastman and
Warren, 2010; Warren et al., 2015). Northern Australia also
experiences cloudy conditions during boreal winter. At mid-
latitudes, in the Northern Hemisphere, minimum and max-
imum cloud amount are observed, as expected, during the
summer and the winter months, respectively.

At high latitudes, the Southern Ocean surrounding Antarc-
tica exhibits high mean cloud amount, reaching up to 98 %
during the boreal winter and with a minimum of about 88 %
during the summer. A more pronounced seasonal cycle is ob-
served around the Weddell Sea and the Ross Sea, with a de-
crease by an amplitude of about 25 % observed during the
boreal summer (Fig. 4c; June–August). Over the Antarctic
Plateau, where the mean cloud amount is low, a clear season-

ality is also observed. The cloud fraction varies from about
16 % in spring (Fig. 4b; March–May) to about 40 % during
autumn (Fig. 4d; September–November). Western Antarc-
tica, for its part, is more cloudy, with a peak of 72 % observed
in the boreal winter and a minimum of 52 % in spring. Sim-
ilar seasonal features and cloud occurrence at high South-
ern Hemisphere latitudes have also been reported in previous
studies relying on CALIPSO observations (Adhikari et al.,
2012; Listowski et al., 2019; Karlsson and Devasthale, 2018).
In the Northern Hemisphere, the Arctic region shows a strong
seasonal cycle as well, more pronounced for the higher lati-
tudes, with a maximum during the boreal summer and a min-
imum in the winter. These seasonal patterns are in agreement
with the observations derived from CALIPSO in Karlsson
and Devasthale (2018) and with those reported in Eastman
and Warren (2010) based on land, ships and drifting sea ice
weather stations.

4 Assessment and intercomparison

4.1 Climatological mean

To give a first assessment of the IASI-NN cloud product, we
compare here the NN cloud mask with other existing cloud
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products. We start with average cloud distributions. In total,
seven different products are selected for the comparison: the
operational IASI-L2, the CIRS-LMD also directly based on
the IASI measurements, the L1C-AVHRR and three cloud
climate data records (CDRs) built from the measurements of
the AVHRR sounder on board the Metop-A satellite. Those
are the CLARA-A2.1 produced by the EUMETSAT Cli-
mate Monitoring Satellite Application Facility (CM-SAF)
(Karlsson et al., 2013, 2017), the Level-3U ESA Cloud_cci
(Stengel et al., 2017) and the PATMOS-x (Pathfinder Atmo-
sphere Extended) (Heidinger and Pavolonis, 2009; Heidinger
et al., 2014) datasets. We also include a comparison with
the Aqua/AIRS L2 (AIRS+AMSU) V7.0 product, despite the
different overpass time with IASI (01:30 and 13:30 LT; AIRS
Project, 2019). A short description of each cloud product is
provided in Table 2. The IASI-L2, the CIRS-LMD and the
L1C-AVHRR are also briefly described in the introduction.
The three CDRs are based on different retrieval approaches
(see Table 2 and references therein). In addition to a cloud
mask, they also include a full cloud characterization. The
data are provided at a resampled resolution of 0.05◦× 0.05◦

grid for the CLARA-A2.1 and the ESA Cloud_cci and at
0.1◦× 0.1◦ for PATMOS-x. The AIRS-AMSU L2 product
integrates cloud top level information and the cloud effective
fraction.

The intercomparison is performed over the 2016 data, ex-
cept for the IASI-L2 product, which is derived from 2020
and the AIRS-AMSU products from 2015 (as AMSU failed
in September 2016). For the IASI-L2, this choice was made
so that the comparison is performed against the latest version
of the L2, which was used for the training of the NN. For the
IASI-L2, the L1C-AVHRR and the AIRS-AMSU products,
as a cloud mask is not provided, we considered the scenes
with a cloud fraction in the field of view (FOV) strictly equal
to 0 % to be clear.

Figure 5 shows the global mean cloud cover (%; daytime
measurements only) in a 0.25◦× 0.25◦ grid for the IASI-
NN and the seven cloud products considered for the inter-
comparison. We also included the mean cloud amount dis-
tribution derived from the NN but with the threshold dou-
bled over seas for the separation between clear-sky and cloud
scenes (threshold of 0.55 instead of 0.275). For the three
cloud CDRs, their initial resolution was degraded to match
the 0.25◦ grid. The cloud fraction is calculated as in Sect. 3
(i.e. the number of observations flagged as cloudy over the to-
tal number of observations). As expected, the IASI-NN and
the IASI-L2 products (Fig. 5a and c) are very similar, with
an identical mean cloud amount of 75.7 % over the whole
globe and a correlation coefficient and a mean of the absolute
difference between the two distributions of 0.91 and 6.5 %,
respectively (5 % when the comparison is done against the
IASI-NN distribution for 2020). The same regions of high-
/low cloud load appear. In general, though, the IASI-NN
mean cloud fraction is slightly lower (by about 6 %) than the
IASI-L2 in the intertropical regions (between 20◦ N and S),

while the opposite is observed for the mid-latitudes and high
latitudes north and south of the Equator. This is particularly
visible in the Pacific, south of the ITCZ, and in the south-
ern Pacific and southern Atlantic. Over Antarctica, while the
cloud fraction is close on average (within 2 %), large regional
disparities are observed especially in the eastern part. Along
the Antarctic coasts, the cloud distribution derived from the
NN is generally higher than the L2 up to about 40 %. Over
the Antarctic Plateau, in contrast, the cloud cover is about
5 % lower for the NN (but up to 20 %–25 % locally). Note
that the differences between the L2 and the NN do not allow
the conclusion of a better performance in the cloud detection
for one or the other product as there is no guarantee that the
cloud attribution of the L2 is always correct.

The second IASI-derived cloud product, the CIRS-LMD
(Fig. 5d), appears to assign clear-sky flags more often than
the IASI-NN product, with a mean global cloud fraction
(land and sea observation together) of about 66 % (74 %
above oceans). Besides that, the same cloud patterns of low
and high cloud coverage appear, as reflected by the very good
correlation with the NN cloud product (r = 0.88). The corre-
spondence in the cloud fraction with the NN becomes much
better when the threshold considered for separating the clear
sky from the cloud scenes over oceans is doubled (Fig. 5b).
With this parametrization, the mean cloud coverage reaches
69 % globally (76 % above oceans only). Note also for both
the L2 and the CIRS-LMD product the similar features that
were reported for the IASI-NN product (see Sect. 3) in the
regions of tall mountain ranges associated with a weaker sen-
sitivity to cloud detection.

The four AVHRR-derived cloud products, for their part,
show very different mean cloud amounts. The dataset with
the lowest number of scenes flagged as clear is the L1C-
AVHRR product (Fig. 5e). Over seas, for tropical and mid-
latitude regions (between 50◦ N and S), the cloud amount
is close to the one from the IASI-NN product (mean of
the absolute difference of about 3 %). At higher latitudes,
the difference increases to 9 %. Above land, the differences
are much more pronounced and increase with latitude (from
about 20 % in the tropics and mid-latitudes to 32 % above
50◦ N and S). This is particularly evident above Antarctica,
where a large overestimation of the cloud fraction is observed
for the L1C-AVHRR product (mean cloud coverage of 96 %).
Large differences that are traceable to specific emissivity fea-
tures are also present above deserts and over high mountains
(e.g. over the Sahara).

The three other AVHRR products (CLARA-A2, CCI and
PATMOS-x; Fig. 5g, h, i) show cloud amounts close to
those from the CIRS-LMD and the IASI-NN product, with
a doubled threshold for the tropical and mid-latitudes re-
gions (around 60 % on average between 50◦ N and S), but
with lower fractions observed over the subtropical gyres. The
main difference between the three products lies in their sen-
sitivity to cloud detection at high latitudes, especially above
75◦ N and over Antarctica. For the latter, the CLARA-A2 and

Atmos. Meas. Tech., 15, 6653–6668, 2022 https://doi.org/10.5194/amt-15-6653-2022



S. Whitburn et al.: A CO2-independent cloud mask from IASI radiances for climate applications 6661

Ta
bl

e
2.

O
ve

rv
ie

w
of

th
e

cl
ou

d
ch

ar
ac

te
ri

za
tio

n
an

d
re

tr
ie

va
la

lg
or

ith
m

fo
rt

he
da

ta
se

ts
co

ns
id

er
ed

in
th

is
st

ud
y.

C
M

A
:c

lo
ud

m
as

k;
C

T
P:

cl
ou

d
to

p
pr

es
su

re
;C

T
M

P:
cl

ou
d

te
m

pe
ra

tu
re

;
C

A
:c

lo
ud

am
ou

nt
;C

PH
:c

lo
ud

ph
as

e;
C

E
:c

lo
ud

em
is

si
vi

ty
;C

O
D

:c
lo

ud
op

tic
al

de
pt

h;
r e

:c
lo

ud
ef

fe
ct

iv
e

ra
di

us
;C

TO
:c

lo
ud

to
p

le
ve

l;
C

W
P:

cl
ou

d
w

at
er

pa
th

.

Pr
od

uc
t

In
st

ru
m

en
t(

s)
Pl

at
fo

rm
(s

)
A

lg
or

ith
m

R
et

ri
ev

ed
pa

ra
m

et
er

R
ef

er
en

ce
s

O
pe

ra
tio

na
l

IA
SI

-L
2

IA
SI

M
et

op
U

nt
il

v6
.4

(1
)C

lo
ud

de
te

ct
io

n:
–

AV
H

R
R

co
llo

ca
te

d
C

M
A

–
N

W
P

–
N

N
on

IA
SI

an
d

AV
H

R
R

m
ea

su
re

m
en

ts
(2

)C
ha

ra
ct

er
iz

at
io

n:
C

O
2

sl
ic

in
g

an
d
χ

2
m

et
ho

d
Si

nc
e

v6
.5

(r
el

ea
se

da
te

:4
D

ec
em

be
r2

01
9)

:
–

cl
ou

d
fr

ac
tio

n
–

op
tim

al
es

tim
at

io
n

–
cl

ou
d

de
te

ct
io

n
de

riv
ed

fr
om

th
e

re
tr

ie
ve

d
cl

ou
d

fr
ac

tio
n

C
M

A
,C

T
P,

C
T

M
P,

C
A

,C
PH

A
ug

us
te

ta
l.

(2
01

2)
,

IA
SI

L
ev

el
2:

pr
od

uc
tg

ui
de

L
M

D
-C

IR
S

H
IR

S,
A

IR
S,

IA
SI

N
O

A
A

,
A

qu
a,

M
et

op

W
ei

gh
te

d
χ

2
m

et
ho

d
(c

ha
nn

el
s

ar
ou

nd
15

µm
)

C
T

P,
C

T
M

P,
C

E
,c

lo
ud

ty
pe

(e
ig

ht
in

to
ta

l,
on

e
fo

rc
le

ar
sk

y)
St

ub
en

ra
uc

h
et

al
.(

19
99

),
Fe

ofi
lo

v
an

d
St

ub
en

ra
uc

h
(2

01
7)

,
St

ub
en

ra
uc

h
et

al
.(

20
17

)

IA
SI

N
N

IA
SI

M
et

op
Su

pe
rv

is
ed

N
N

(i
np

ut
:4

5
IA

SI
ch

an
ne

ls
)

C
M

A
T

hi
s

w
or

k

L
1C

-A
V

H
R

R
AV

H
R

R
M

et
op

Se
qu

en
ce

of
th

re
sh

ol
d

te
st

s
ba

se
d

on
B

T
an

d
in

te
r-

ch
an

ne
l

di
ff

er
en

ce
s

in
th

e
IR

,v
is

an
d

ne
ar

in
fr

ar
ed

(N
IR

)
+

N
W

P
fo

re
ca

st
da

ta

C
A

A
ug

us
te

ta
l.

(2
01

2)
,

Se
ct

.5
.4

.4
of

th
e

“E
PS

G
ro

un
d

Se
gm

en
tA

V
H

R
R

L
1

Pr
od

uc
t

G
en

er
at

io
n

Sp
ec

ifi
ca

tio
n”

,
E

U
M

.E
PS

.S
Y

S.
SP

E
.9

90
00

4

L
3U

AV
H

R
R

-A
M

(E
SA

C
lo

ud
_c

ci
)

AV
H

R
R

N
O

A
A

-1
2,

15
,1

7
M

et
op

C
C

4C
L

v3
.0

re
tr

ie
va

ls
ys

te
m

(1
)C

lo
ud

de
te

ct
io

n:
A

N
N

us
in

g
th

e
AV

H
R

R
ch

an
ne

lr
ad

ia
nc

e,
ill

um
in

at
io

n,
sc

an
an

gl
es

an
d

au
xi

lia
ry

da
ta

(2
)C

lo
ud

ty
pi

ng
:t

hr
es

ho
ld

de
ci

si
on

tr
ee

(3
)C

ha
ra

ct
er

iz
at

io
n:

op
tim

al
es

tim
at

io
n

C
M

A
,C

T
P,

C
O

D
,r

e,
cl

ou
d

ty
pe

(g
ri

dd
ed

0.
05
◦
×

0.
05
◦
)

St
en

ge
le

ta
l.

(2
01

7)

C
L

A
R

A
-A

2.
1

(C
M

-S
A

F)
AV

H
R

R
N

O
A

A
,

M
et

op
A

.N
W

C
SA

F
PP

S
cl

ou
d

so
ft

w
ar

e
(1

)C
M

A
an

d
C

A
:

m
ul

tis
pe

ct
ra

lt
hr

es
ho

ld
in

g
te

ch
ni

qu
e

(2
)C

TO
:

–
co

m
pa

ri
so

n
of

si
m

ul
at

ed
an

d
m

ea
su

re
d

ra
di

an
ce

s
–

in
te

r-
ch

an
ne

lB
T

di
ff

er
en

ce
s

B
.C

PP
al

go
ri

th
m

:
C

PH
,C

O
D

,r
e,

C
W

P
–

L
U

T
ap

pr
oa

ch

C
M

A
,C

A
,C

TO
(T

,P
,h

ei
gh

t)
,

C
PH

,C
O

D
,r

e,
C

W
P,

+
jo

in
tc

lo
ud

hi
st

og
ra

m
+

su
rf

ac
e

ra
di

at
io

n
bu

dg
et

+
su

rf
ac

e
al

be
do

(g
ri

dd
ed

0.
05
◦
×

0.
05
◦
)

K
ar

ls
so

n
et

al
.(

20
13

,2
01

7)

PA
T

M
O

S-
x

AV
H

R
R

N
O

A
A

,
M

et
op

(1
)C

lo
ud

de
te

ct
io

n:
B

ay
es

ia
n

cl
as

si
fie

rs
de

riv
ed

fr
om

C
A

L
IP

SO
(2

)C
ha

ra
ct

er
iz

at
io

n:
op

tim
al

es
tim

at
io

n
C

M
A

,C
T

P,
C

E
,C

O
D

,r
e,

C
W

P
(g

ri
dd

ed
0.

1◦
×

0.
1◦

)
H

ei
di

ng
er

an
d

Pa
vo

lo
ni

s
(2

00
9)

,
H

ei
di

ng
er

et
al

.(
20

14
)

A
IR

S-
A

M
SU

L
2

v7
A

IR
S

+
A

M
SU

A
qu

a
C

om
pa

ri
so

n
be

tw
ee

n
ob

se
rv

ed
an

d
ca

lc
ul

at
ed

cl
ou

d-
cl

ea
re

d
A

IR
S

ra
di

an
ce

s
C

TO
(T

,P
,h

ei
gh

t)
,

cl
ou

d
ef

fe
ct

iv
e

fr
ac

tio
n

Su
ss

ki
nd

et
al

.(
20

03
),

K
ah

n
et

al
.(

20
14

),
A

IR
S

Pr
oj

ec
t(

20
19

)

https://doi.org/10.5194/amt-15-6653-2022 Atmos. Meas. Tech., 15, 6653–6668, 2022



6662 S. Whitburn et al.: A CO2-independent cloud mask from IASI radiances for climate applications

Figure 5. One-year-average cloud cover (%) from IASI-, AIRS- and AVHRR-derived cloud products (daytime observations). The year
considered for the averaging is 2016, except for the EUMETSAT IASI-L2 product (2020) and the AIRS-L2 product (2015). The global mean
cloud cover is provided on top of each panel.

CCI products are well below the three IASI-derived cloud
products (mean cloud coverage of 30 % versus 48 % for
IASI-NN) and likely underestimate the cloud amount (Karls-
son and Devasthale, 2018). The PATMOS-x product, in con-
trast, is much more strict in the cloud-free scene attribution,
with a mean cloud fraction over Antarctica of 87 %.

Finally, among the eight cloud products analysed here, the
one with the lowest number of scenes flagged as clear sky
is the AIRS-AMSU L2 (Fig. 5f). Globally, the mean cloud
fraction for the year 2015 is 88 %, about 12 % higher than
the NN-derived cloud product. Over seas, for the tropical and

mid-latitude regions (between 50◦ N and S), the mean value
even reaches 99 % (85 % for the NN product). Deserts also
show a high cloud coverage compared to the other selected
products, with, for example, a mean cloud fraction of 74 %
for the Sahara desert against 24 % with the NN product. Only
high latitudes present a very similar cloud amount to the NN,
with an average cloud coverage of 76 % and 65 % above and
below 60◦ N and S, respectively.
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4.2 Time series

Figure 6 shows the time series of the global mean fraction
of cloud-free scenes for the NN, the EUMETSAT IASI-L2
and the CIRS-LMD cloud masks, derived from Metop-A and
Metop-B between 2008 (2013 for Metop-B) and 2020. Cur-
rently, the CIRS-LMD data are only available until 2019.
Results are presented for land and sea observations together
and separate. Both the NN and the CIRS-LMD cloud prod-
ucts show an excellent stability over time, with no visible
trends and a very good consistency between the two Metop
instruments (absolute difference lower than 1 % on average
for the NN). In contrast, the L2 cloud-free time series reveal
sharp discontinuities coinciding with version changes. In ad-
dition, a clear positive trend is also visible between 2012 and
2020, likely due to the CO2 concentration increase in the at-
mosphere.

As expected, the correspondence between the fraction of
clear scenes from the NN and from version 6.5 of the IASI-
L2 (from December 2019 onward) is excellent, with differ-
ences lower than 1 % on average for both land and sea mea-
surements. The fraction of clear scenes above sea and land
are about 14 % and 42 % on average, respectively. The CIRS-
LMD product, for its part, appears to assign clear sky more
often than the IASI-NN product over seas, with about 25 %
of all scenes flagged as clear, but shows comparable values
(42 %) over land.

When looking at the interannual variations, a clear season-
ality appears above land for both the NN and the CIRS-LMD
products, with a peak in the clear-sky scenes during the bo-
real summer. Good agreement in the seasonality is also found
with the L2 cloud product from version 6.5 of the L2, but,
oddly, the seasonality seems out of phase with the NN (peak
occurring during the boreal spring) between 2012 and 2019
(corresponding to version 5.3 to version 6.4 of the L2). The
reason for the differences has not been investigated further.

4.3 Dust detection

One important aspect to consider when assessing the quality
of a cloud mask is its ability to distinguish clouds from dust
plumes. Figure 7 shows examples of days (2 in 2013 and 2
in 2020) when dust plumes are clearly visible above Africa
or the eastern Atlantic (right column). Those were selected
by analysing the MODIS (Terra)-corrected reflectance (true
colours) imagery (https://worldview.earthdata.nasa.gov, last
access: 5 September 2022) and a dust index developed by
Clarisse et al. (2019) quantifying the strength of the dust sig-
nal in the IASI spectrum. For each of them, we plotted the
cloud flag derived from the L2 (left) and from the NN (mid-
dle column). On top, we also displayed the contour plot of
the dust index for two different levels (index of 10 and 20,
respectively). For the L2, the IASI pixels seen as cloudy by
the L2 but as cloud-free by the NN in the presence of high
dust loads (dust index higher than 10) are shown in pink.

As has already been reported in Clarisse et al. (2019),
older versions of the operational IASI-L2 cloud product are
affected by the presence of dust for the detection of cloud
scenes. This can be seen for example on 3 and 7 June 2013
(left panels of the two first rows) with version 5.3.1 of the
L2 where the regions of high dust loads (index higher than
10 and 20) are often flagged as cloudy, while no clouds are
visible in the MODIS imagery.

In contrast, the NN and version 6.5 of the L2 (v6.5) cloud
products seem to fairly differentiate clouds from dust plumes,
as observed for example on 8 June 2020 (third line) and also
in 2013 for the NN. However, in rare cases, the cloud detec-
tion is still affected by the presence of dust, especially over
land in the centre of dust plumes. These false cloud detec-
tions seem to occur more frequently in the L2 than in the
NN. This is for example the case on 7 June 2020 (bottom
panels) where the dust index indicates the presence of a high
amount of dust over western Mauritania with no cloud visible
in the MODIS imagery. In the area, the NN (middle panel)
correctly flags the IASI measurements as cloud-free, while
the L2 reports the presence of clouds for most of the pixels
(pink circles on Fig. 7). Similarly, on 8 June 2020, the bottom
part of the area above Niger, where a high amount of dust is
observed (dust index> 20), is flagged as cloudy in the L2 and
as clear in the NN, while the MODIS map shows the presence
of only a few sparse clouds (for the most part detected by
the NN). The relatively better performance of the NN com-
pared to the L2 in correctly differentiating dust from clouds
may seem counterintuitive as the NN was trained to follow
the L2. However, as mentioned in Sect. 2, among the 10 dif-
ferent training sessions performed, we selected the training
least affected by dust. The choice was made by analysing the
cloud mask retrieved over 17 different dust storms in parallel
with the corresponding MODIS true colour imagery and the
dust index (Clarisse et al., 2019). In general, on the global
scale, the performance of the different training sessions was
very close. Note that, apart from the dust, good agreement
between the NN and version 6.5 of the L2 is also found for
the areas flagged as clear and cloudy and that match with the
MODIS true colour maps.

5 Conclusions

With already more than 15 years of continuous and consis-
tent measurements and at least another 25 years to come with
the recent launch of IASI on Metop-C and the future launch
of IASI-NG (New Generation, with a spectral sampling of
0.125 cm−1) on the Metop-SG suite of satellites (Crevoisier
et al., 2014), the IASI dataset is becoming a fundamental ref-
erence climate data record. To be exploited to its full poten-
tial, it requires an accurate and unbiased cloud filter. While
several cloud products of high quality already exist, they are
generally either not homogeneous on the whole IASI time
series or not strict enough in the cloud detection for use in
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Figure 6. Time series of the daily mean fraction of cloud-free scenes for the L2, NN and LMD cloud products (Metop-A and Metop-B)
globally for land and sea (a) and for sea (b) and land (c) observations only. The thick lines represent the 30 d moving average.

satellite data retrieval schemes of geophysical variables. In
this paper, we present a new algorithm for the identifica-
tion of cloud-free scenes in the IASI field of view that is
well suited to study trends for IASI-derived trace gases and
other climatological variables. The method relies on a neural
network (NN) taking a set of 45 IASI radiance channels as
input and trained with version 6.5 (v6.5) of the operational
IASI Level2 (L2) cloud product as reference. Usually, cloud
detection and characterization methods exploit the informa-
tion derived from CO2-sensitive channels. Here, the channels
were selected outside the regions of absorption of CO2, CH4,
N2O, CFC-11 and CFC-12 to avoid any long-term biases, as
their concentrations evolve over time in the atmosphere. De-
spite this, we managed to reach excellent performances for
the training (87 %), indicating that the information for de-
tecting clouds is also present in other regions of the spec-
trum. We have shown that the retrieval is both sensitive to
the cloud detection and consistent over the entire IASI life

span and between the different copies of the IASI instrument
on board the suite of Metop satellites. It also differentiates
cloud from dust plumes fairly well. While the agreement with
the IASI-L2 cloud product was generally very good, with a
correspondence of about 87 % overall, differences have been
reported over some regions, especially above seas over the
subtropical gyres and in the southern Pacific and the south-
ern Atlantic, but without being able to yield a better perfor-
mance for either product. The agreement with other existing
products was generally good in the main cloud regimes, but
with sometimes large differences in the mean cloud amount
(up to 10 % on average), especially with the three AVHRR
cloud climate data records and with the CIRS-LMD IASI
cloud retrieval algorithm suite. Given its good performances,
the IASI NN cloud product is planned to be implemented
in the near future in the Artificial Neural Network for IASI
(ANNI) (Franco et al., 2018), the dust (Clarisse et al., 2019)
and the spectrally resolved Outgoing Longwave Radiation

Atmos. Meas. Tech., 15, 6653–6668, 2022 https://doi.org/10.5194/amt-15-6653-2022
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Figure 7. Cloud detection over north-western Africa from the EUMETSAT IASI-L2 cloud product (left column) and the IASI-NN detection
algorithm (middle column) for 4 d (13 February, 24 February, 17 June, 18 June 2020, morning orbits) affected by dust plumes. Yellow
and blue circles refer to cloudy and cloud-free scenes, respectively. The right column shows the MODIS (Terra)-corrected reflectance (true
colours) imagery for the corresponding days (from NASA Worldview). The contours represent two levels of dust index (10 red and 20 black).
The pink circles on the IASI L2 maps show the pixels flagged as cloudy by the L2 and cloud-free by the NN in the presence of high dust
loads (cloud index > 10).

(Whitburn et al., 2020) IASI retrieval frameworks. Note fi-
nally that, in the case of future improvement in the IASI-L2
cloud product, the NN could easily be retrained, and a com-
plete reprocessing of the entire time series of the IASI NN
cloud mask could be performed in a short time.

Code availability. The analysis codes can be made available upon
request to the corresponding author. The MATLAB function con-
taining all the training variables is provided in the Supplement along
with an example code showing how to run the network.

Data availability. The daily IASI NN outputs will be made
freely available for all users through the IASI-FT website:
https://iasi-ft.eu/ (last access: 5 September 2022; Metop-A:
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https://doi.org/10.21413/IASI-FT_METOPA_CLD_L2_
ULB-LATMOS, Whitburn, 2022a; Metop-B: https://doi.org/10.
21413/IASI-FT_METOPB_CLD_L2_ULB-LATMOS, Whitburn,
2022b; Metop-C: https://doi.org/10.21413/IASI-FT_METOPC_
CLD_L2_ULB-LATMOS, Whitburn, 2022c). For use as cloud
removal preprocessing phase in satellite retrieval, we recommend
adopting the thresholds mentioned in the paper for land and sea
observations, but these can also be adjusted depending on the
application.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-15-6653-2022-supplement.
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