The first flat wasps (Hymenoptera: Bethylidae) from Miocene Mexican amber

Manuel Brazidec, Vincent Perrichot

- To cite this version:

Manuel Brazidec, Vincent Perrichot. The first flat wasps (Hymenoptera: Bethylidae) from Miocene Mexican amber. Journal of South American Earth Sciences, 2022, 116, pp. 103838. 10.1016/j.jsames.2022.103838 . insu-03664482

HAL Id: insu-03664482
https://insu.hal.science/insu-03664482
Submitted on 11 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Journal Pre-proof

The first flat wasps (Hymenoptera: Bethylidae) from Miocene Mexican amber

Manuel Brazidec, Vincent Perrichot

PII: S0895-9811(22)00128-6
DOI: https://doi.org/10.1016/j.jsames.2022.103838
Reference: SAMES 103838

To appear in: Journal of South American Earth Sciences

Received Date: 4 April 2022
Revised Date: 3 May 2022
Accepted Date: 3 May 2022

Please cite this article as: Brazidec, M., Perrichot, V., The first flat wasps (Hymenoptera: Bethylidae) from Miocene Mexican amber, Journal of South American Earth Sciences (2022), doi: https:// doi.org/10.1016/j.jsames.2022.103838.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
© 2022 Published by Elsevier Ltd.

The first flat wasps (Hymenoptera: Bethylidae) from Miocene Mexican amber

MANUEL BRAZIDEC ${ }^{1,2^{*}}$, VINCENT PERRICHOT ${ }^{1}$

${ }^{1}$ Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France. manuel.brazidec@gmail.com / https://orcid.org/0000-0002-0860-8972; vincent.perrichot@univ-rennes1.fr / https://orcid.org/0000-0002-7973-0430
${ }^{2}$ State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China.
*corresponding author

Abstract

Despite a fairly good number of Miocene insect-bearing deposits available worldwide, the bethylid wasps from this period are yet very poorly known. Here, we describe and figure three new species in three subfamilies, from the early to middle Miocene of Totolapa (Mexico): Goniozus cotyi sp. nov. (Bethylinae), Bakeriella nanyhelae sp. nov. (Epyrinae), and Solepyris electromexicanus sp. nov. (Scleroderminae). The cosmopolitan Goniozus Förster, 1856 was already known from the Miocene of Dominican Republic, whereas the Pan-American Bakeriella Kieffer, 1910 and the South-American Solepyris Azevedo, 2006 are recorded for the first time as fossil. Our finding expands the geographical distribution of the latter genus much northward in the New World.

Keywords: Insecta; Chrysidoidea; Bethylinae; Epyrinae; Scleroderminae; Chiapas amber;

1. Introduction

Wasps of the family Bethylidae (Chrysidoidea) are cosmopolitan, although more diverse in tropical regions. Today the family comprises more than 2900 extant species that are mainly parasitoids of lepidopteran and coleopteran larvae (Azevedo et al., 2018; Evans, 1964). The diversity of bethylid wasps is also witnessed through geological times, with about 100 fossil species described, principally from the long-surveyed Baltic Eocene amber. But whereas it is often repeated that Cretaceous bethylids are poorly documented, Miocene representatives did not receive much attention either. This is particularly surprising when considering that highly fossiliferous deposits such as Dominican and Mexican amber have been studied for more than six decades (e.g., Sanderson and Farr, 1960; Snyder, 1960). In fact, only five species are known from the Miocene, all but one from the New World: Goniozus respectus Sorg, 1988 (Bethylinae), Anisepyris gradatus Sorg, 1988 (Epyrinae), Apenesia miki (Terayama, 2004) (Pristocerinae), and Alongatepyris pedrocai Colombo and Azevedo (in Colombo et al., 2022a) (Scleroderminae), from Dominican amber; Parascleroderma palaeosinica Brazidec and Perrichot, 2022 (Pristocerinae) from Chinese amber of Zhangpu; and Epyris deletus Brues, 1910 (Epyrinae) from rock-imprints of Florissant, USA. However, it is worth mentioning that the latter specimen was attributed to Epyris s.l., since many diagnostic features cannot be observed on the compression fossil (Brues, 1910: fig. 1). Another bethylid from Florissant was briefly characterized but not named (Brues, 1906), and an unnamed species of Goniozus Förster, 1856 was also figured from compression fossils of Rubielos de Mora, in Spain (Peñalver-Mollá, 1998). In general, however, bethylids are poorly preserved and even rarely observed in sedimentary rocks, maybe due to the small size and fossorial habits of these wasps. As small insects frequently moving on bark, these are more prone to fossilization in tree resin (Solórzano Kraemer et al., 2018). The scant Miocene record of Bethylidae may therefore be particularly enriched by screening amber, notably that of poorly investigated deposits such as Totolapa (Mexico), or recently discovered deposits from New Zealand,

Ethiopia, and China (Solórzano Kraemer et al., 2015; Schmidt et al., 2018; Bouju and Perrichot, 2020; Wang et al., 2021).

Here, we propose three new species of Bethylidae from the Totolapa deposit, one of the earliest-known amber sites from Chiapas, Mexico (Bryant, 1983). This is the first report of the family from this site, the biota of which being still largely unknown (Solórzano Kraemer, 2010; Coty and Nel, 2013; Durán-Ruiz et al., 2013; Ross et al., 2016).

2. Material and methods

The studied specimens are contained in three amber pieces originating from the Totolapa deposit, State of Chiapas, southwestern Mexico, more specifically from a mine owned by the Ramirez family along the Río Salado (see map in Durán-Ruiz et al., 2013: fig. 1). Ambers from Totolapa and Simojovel are chemically identical and have been assigned their own variety, the Simojovelite (Lambert et al., 1989; Riquelme et al., 2014). Furthermore, the amber-bearing strata in Totolapa have been correlated with the Mazantic shale and Balumtum sandstone from the Simojovel deposits, and are thus similarly dated as early-middle Miocene (Perrilliat et al., 2010; Durán-Ruiz et al., 2013; Riquelme and Menéndez-Acuña, 2017; Hegna et al., 2020 and references therein). The pieces studied herein have been collected and bought to the mine owners in 2007 by M. David Coty (France) who recently offered them to one of us (M.B.) for study. We subsequently donated the specimens for permanent repository in the paleontological collection of the Museo de Paleontología de la Facultad de Ciencias (FCMP), Universidad Nacional Autónoma de México.

The amber pieces have been polished to facilitate the observation of the specimen, using thin silicon carbide sanding papers on a grinder polisher (Buehler EcoMet 30). The
examination and photographs were conducted with a Leica DMC4500 camera attached to a Leica M205C stereomicroscope. All images are digitally stacked photomicrographic composite of several focal planes, which were obtained using Helicon Focus 6.7. Adobe Illustrator CC2019 and Photoshop CC2019 software were used to compose the figures and ImageJ 1.53 for measurements (Schneider et al., 2012). Details of the body have been redrawn digitally from sketch drawings made with a camera lucida attached to the stereomicroscope. The morphological nomenclature follows Lanes et al. (2020), except Harris (1979) for the surface sculpturing. Main measurements and indices used are as follows: length of forewing (LFW); length of head, measured from top of vertex to apex of clypeus (LH); width of head above eyes (WH); width of frons (WF); height/width of eye (HE); ocello-ocular line (OOL); width of ocellar triangle (WOT); diameter of anterior ocellus (DAO); vertexocular line (VOL).

This published work and its new nomenclatural acts are registered in ZooBank with the following LSID (reference): urn:lsid:zoobank.org:pub:E1861647-9624-4AC1-9201B362CDFEC545

3. Systematic palaeontology

Superfamily Chrysidoidea Latreille, 1802

Family Bethylidae Haliday, 1839

Subfamily Bethylinae Haliday, 1839

Genus Goniozus Förster, 1856

Goniozus cotyi sp. nov.

Fig. 1

LSID (species): urn:lsid:zoobank.org:act:37E8ABCD-D609-45BE-9389-EB5D77F07BAB

Material. Holotype number FCMP-1464, a complete male, with some features hidden by air bubbles.

Etymology. This species honours David Coty, for his generous donation of the specimen and in this way contributing to the knowledge of the Totolapa amber. The specific epithet is to be treated as a noun in a genitive case.

Diagnosis. (Male) Body stout; head wider than high (Fig. 1A); mandible thick, with four short teeth (Fig. 1C); flagellomeres slightly longer than wide; flagellomere 1 thinner than following ones; parapsidal signum deeply impressed (Fig. 1C); [1M] cell closed; prestigma triangular; pterostigma large, rounded; 2r-rs\&Rs contiguous, only slightly arched toward anterior wing margin (Fig. 1D); femora enlarged; profemur largest, laterally flattened (Fig. 1B).

Type locality. Río Salado Mine, Totolapa, State of Chiapas, southwestern Mexico.

Age. Early to middle Miocene, ca. 23-15 Ma

Description. Body rather flattened, stout (length 3.70 mm). Head prognathous, ovoid, longer than wide; LH: 0.71 mm , WH: 0.58 mm ; WF: 0.41 mm , HE: 0.25 mm ; frons flat, punctuate, sparsely pubescent; compound eyes elliptical, longer than high; clypeus with median lobe acutely angular, clypeal carina outcurved in profile, extending on frons; mandibles widely opened, thick, with four small teeth apically; antennae short, with 11 flagellomeres; flagellomeres slightly longer than wide (length ca. 0.06 mm); flagellomere 1 thinner than following one(s); flagellomeres 2-5 stout; flagellomeres 6-11 thin; flagellomere 11 tapering at apex.

Mesosoma with dorsum smooth (length 1.16 mm); propleuron not visible dorsally; dorsal pronotal area with lateral margin straight; anteromesoscutum as long as pronotum, parapsidal signum well impressed, notauli absent; scuto-scutellar suture without sulcus; mesopleuron not prominent. Fore wing macropterous, hyaline (LFW: 2.07 mm); C, $\mathrm{Sc}+\mathrm{R}, \mathrm{M}+\mathrm{Cu}, \mathrm{A}$ tubular; Rs\&M curved; Rs+M tubular; [1M] cell (areolet) closed; prestigma triangular; pterostigma large, rounded; 2r-rs\&Rs contiguous, slightly arched toward wing margin, distal segment absent. Legs pubescent; profemur largest, slightly flattened; meso and metafemora enlarged; tarsal claws curved.

Metasoma about as long as head + mesosoma combined, not distinctly pubescent (length 1.83 $\mathrm{mm})$; petiole inconspicuous; segments subequal in length.

Systematic remarks. The specimen possesses numerous features reminiscent of the Bethylinae, such as the thick mandibles with four teeth, the clypeal carina extending on the frons and outcurved as seen in profile, the tarsal claws strongly angled, the fore wing with Rs +M tubular and Rs\&M widely angled, allowing attribution to this subfamily. Following the key of the bethyline genera of Azevedo et al. (2018), it keys in Goniozus for the following characters: antenna with 11 flagellomeres, dorsal pronotal area regularly long, fore wing with less than five closed cells, mesopleuron not prominent and fore wing with [2R1] cell opened. It differs from Goniozus respectus, known from the more or less contemporary Dominican amber in having the 2 r -rs\&Rs vein shorter, not conspicuously angled apically, the cu-a vein arched (vs. straight) and the pterostigma more rounded (Sorg, 1988: fig. 22). It also differs from the unnamed Goniozus from compressions of Rubielos de Mora, Spain, in having the [1M] cell closed (but this might be due to the coarser preservation of rock-imprints), the pterostigma more rounded and the 2r-rs\&Rs vein not angled apically (Peñalver-Mollá, 1998: fig. 36).

Subfamily Epyrinae Kieffer, 1914

Genus Bakeriella Kieffer, 1910

Bakeriella nanyhelae sp. nov.

Fig. 2

LSID (species): urn:lsid:zoobank.org:act:urn:lsid:zoobank.org:act:F310FE17-B8F7-4648-9C86-A49B9A10109C

Material. Holotype number FCMP-1465, a complete female.

Etymology. Nanyhela is the female divinity of fertility and harvests in the Chiapanec mythology. The specific epithet is to be treated as a noun in a genitive case.

Diagnosis. Body punctate, with metallic reflections; head ovoid (Figs. 2.A, B); median clypeal lobe wide, obtuse triangle-shaped; mandibles thick, with three stout teeth; flagellomere 1 shortest, shorter than pedicel (Fig. 2.F); propleuron visible dorsally; notauli sinuous, convergent posteriorly; mesoscuto-mesoscutellar pits large, bean-shaped, separated by thin septum (Fig. 2.B); metapectal-propodeal complex carinate, median carina complete; [2R1] cell narrow (Fig. 2.A); meso- and metafemora more enlarged than profemur and flattened; mesotibia shorter than mesofemur, with row of spines distally along outer margin (Fig. 2.E); metasoma slightly longer than mesosoma, with sparse but long pubescence on posterior segments (Fig. 2.D).

Type locality. Río Salado Mine, Totolapa, State of Chiapas, southwestern Mexico.

Age. Early to middle Miocene, ca. 23-15 Ma

Description. Body stout, uniformly punctate, blackish, with metallic reflections (length 6.70 $\mathrm{mm})$. Head prognathous, ovoid, longer than wide; LH: 1.28 mm , WH: ca. 0.82 mm ; WF: 0.55 mm , HE: 0.32 mm ; OOL: 0.26 mm ; WOT: 0.10 mm ; DAO: 0.07 mm ; VOL: 0.24 mm ; frons slightly convex, bearing very short pubescence; compound eyes elliptical, longer than high, glabrous, closer to mandibles insertion than to occipital carina; clypeus with wide obtuse triangle median lobe, clypeal carina short, not extending on frons, lateral lobes poorly developed; mandibles thick, slightly overlapping, with three stout teeth, ventralmost tooth longest; scape punctate, 2.6 times longer than pedicel; pedicel longer than wide; 11 flagellomeres, barely longer than wide; flagellomere 1 shortest (0.07 mm vs. $0.08-0.11 \mathrm{~mm}$), shorter than pedicel; flagellomere 11 tapering at apex; ocellar triangle posteriad on head; occipital carina complete.

Mesosoma sparsely pubescent (length 2.51 mm); propleuron visible in dorsal view; dorsal pronotal area ecarinate, long, without anterior depression or elevation, without pronounced corners; anteromesoscutum with parapsidal signum impressed posteriorly, with notauli complete, convergent posteriorly and sinuous; mesoscuto-mesoscutellar pits large, beanshaped, separated by thin septum; mesoscutellum diamond-shaped with blunted apex nearly in contact with metapectal-propodeal complex; mesopleuron not prominent, with transepisternal line; metapectal-propodeal complex carinate, metapostnotal median carina complete, metapostnotal-propodeal carina not curved, no posterior spines or projections. Fore wing hyaline and micropubescent (LFW: 3.82 mm); C, $\mathrm{Sc}+\mathrm{R}, \mathrm{M}+\mathrm{Cu}, \mathrm{A}, \mathrm{Rs} \& \mathrm{M}$ and $\mathrm{cu}-\mathrm{a}$ tubular; pterostigma short, not rounded; 2 r -rs\&Rs contiguous, long and poorly arched toward wing margin; [2R1] cell narrow, opened apically. Legs swollen; meso- and metafemora more
enlarged than profemur, flattened; mesotibia shorter than mesofemur (0.59 mm vs. 0.64 mm), with 8-10 spines along outer margin; tibial spurs configuration 1-2-2.

Metasoma slightly longer than mesosoma, fusiform (length 2.91 mm); petiole inconspicuous; metasomal segments decreasing in length posteriorly; pubescence absent on anterior segments, long pubescence sparse but present on posterior segments; sting exerted, long (length 0.66 mm).

Systematic remarks. Following the key to the subfamilies of Bethylidae of Azevedo et al. (2018), this specimen keys in the Epyrinae for the fully-developed wings, without Rs +M , the metanotum short, the metapectal-propodeal complex without posterior spines, the metasomal segment 2 regularly long, the mesopleuron with transepisternal line, the fore wing with anterior margin straight and C present. Following the key to the genera of Epyrinae of Colombo et al. (2022b), it keys between Epyris Kieffer, 1914 and Bakeriella Kieffer, 1910 for the mesoscuto-mesoscutellar foveae not connected by sulcus, the posterior ocelli broadly separated, the dorsal pronotal area without elevation anteriorly and the anterior margin not incurved, the anterior area of sternite 2 without flap and the antennae not pectinate, the mesoscuto-mesoscutellar foveae separated by less than half their own length, the metapectalpropodeal disc with distinct metapostnotal-propodeal carina. However, some features merely indicate Bakeriella for the present fossil: the body with metallic reflections, as is visible in some Bakeriella but not in Epyris (Azevedo et al., 2018); the mesoscuto-mesoscutellar foveae subelliptical rather than rectangular, a pattern of Bakeriella (e.g., Azevedo, 2014: figs. 1, 6, 9); the mesoscutellum not contacting the metapectal-propodeal complex, a diagnostic character of Bakeriella (Azevedo, 2014); and the strong metapostnotal-propodeal carina also merely indicates Bakeriella (Azevedo, 2014; Azevedo et al., 2018). Following the key to the species of Bakeriella of Azevedo (2014), the specimen keys between Bakeriella
quinquepartita (Kieffer, 1910) and Bakeriella lindigi (Kieffer, 1910) for the dorsal pronotal area without carina, the mesoscuto-mesoscutellar foveae not connected, the median clypeal lobe angulate and the mesoscuto-mesoscutellar foveae wider than long. It differs from both species in having the notauli complete and the mandibles with three teeth. Therefore, we propose the new species Bakeriella nanyhelae sp. nov. for this specimen.

Subfamily Scleroderminae Kieffer, 1914

Genus Solepyris Azevedo, 2006

Solepyris electromexicanus sp. nov.

Fig. 3

LSID (species): urn:lsid:zoobank.org:act:urn:Isid:zoobank.org:act:130FED75-1BCA-48CB-83FA-00F0D5F6C829

Material. Holotype number FCMP-1466, a complete female but accidentally damaged during preparation (head separated from body).

Etymology. Combination of electro-, from the Greek electron meaning amber, and mexicanus, for the geographical origin.

Diagnosis. (Female) Body much flattened (Figs. 3A, C); mandibles with three teeth, ventralmost two teeth longest (Figs. 3.D, G); occipital carina present; dorsal pronotal area 1.53 times longer than anteromesoscutum; mesoscuto-mesoscutellar grooves elongate, separate by thin septum (Fig. 3.B); fore wing with only $\mathrm{Sc}+\mathrm{R}$, Rs\&M and A tubular; $\mathrm{Sc}+\mathrm{R}$ thickened distally (Fig. 3.F); femora enlarged (Fig. 3.C).; metasoma smooth, with last tergites more pubescent

Type locality. Río Salado Mine, Totolapa, State of Chiapas, southwestern Mexico.

Age. Early to middle Miocene, ca. 23-15 Ma

Description. Body much depressed, elongate and poorly pubescent (length 5.05 mm). Head prognathous, ovoid, longer than wide; LH: 0.89 mm , WH: 0.76 mm ; WF: 0.48 mm , HE: ca. 0.19 mm ; OOL: 0.43 mm ; WOT: 0.08 mm ; DAO: ca. 0.05 mm ; VOL: 0.24 mm ; frons flat; compound eyes elliptical, longer than high, as high as head laterally, glabrous, located anteriorly on head; clypeus with median lobe poorly projecting forward; mandibles rather long, with three teeth, ventralmost two teeth longest; antennae filiform; scape 2.3 times longer than pedicel; 11 flagellomeres slightly longer than wide (length ca. 0.09 mm); flagellomere 11 longest; vertex convex with corner rounded; ocellar triangle compact, anterior ocellus posterior to supra ocular line; occipital carina present.

Mesosoma with dorsum coriaceous (length 1.68 mm : height 0.44 mm); propleuron visible dorsally, anterior corner rather angulate; prosternum large, larger than procoxa, triangular with anterior margin outcurved; dorsal pronotal area elongate, depressed anteriorly, lateral margin strongly incurved, posterior margin slightly incurved with corners overlapped by anteromesoscutum; anteromesoscutum with parapsidal signum, without notauli; mesoscutomesoscutellar grooves elongate, separate by thin septum; mesoscutellum trapezoidal with blunt corners, large; metanotum barely visible; metapectal-propodeal complex smooth, without posterior spines; propodeal declivity short. Fore wing macropterous, hyaline (LFW: 2.32 mm); venation reduced to $\mathrm{Sc}+\mathrm{R}$, Rs\&M and A; Sc+R thickened distally, reaching anterior margin in basal half of wing. Hind wing without venation. Legs slightly pubescent; protrochanter originating from apex of procoxa; all femora swollen.

Metasoma longer than mesosoma, fusiform, with denser pubescence on last segments (length 2.48 mm ; height 0.32 mm); petiole inconspicuous; six tergites visible, subequal in length; no modifications of tergites; short sting visible.

Systematic remarks. Considering the general habitus and the large prosternum, our specimen could easily be mistaken for a Scolebythidae. But the reduced fore wing venation, the protrochanter inserted on apex of coxa instead of laterally, and the prosternum triangular rather than diamond-shaped, rather suggest that it belongs to the Scleroderminae. Following the keys to the Scleroderminae, our specimen keys in Solepyris Azevedo, 2006 for the antennae with 11 flagellomeres, the body much depressed with the eye as high as head laterally, the fore wing macropterous, the prosternum large, triangular and the vein A and Rs\&M complete. The large prosternum is much uncommon within the Bethylidae and our specimen additionally shares numerous characters with Solepyris: the head wider than mesosoma, the clypeus short, the number of mandibular teeth, the notauli absent, the dorsal pronotal area depressed anteriorly with lateral margins incurved, the anteromesoscutum slightly overlapping posterolateral corners of pronotum, the $\mathrm{Sc}+\mathrm{R}$ vein dilated distally, and the stigma absent. It differs from the two known species of the genus, S. unicus Azevedo, 2006 and S. montuosus Azevedo, 2009, by the body more depressed, the femora more enlarged, and a different shape of the mandibles, with the dorsalmost tooth more basad (Azevedo, 2009).

4. Discussion

Of the three species studied here, two belong to genera with a wide distribution:
Gonozius, which is cosmopolitan, and Bakeriella, a Pan-American genus. Approximately
thirty living species of Goniozus were recognized by Evans (1978) in Mexico. Judging by the presence of G. respectus in the more or less contemporary deposit of Dominican amber, its diversity was probably already settled by this epoch. This is supported by its presence in the fossil record since the Upper Eocene (Ramos et al., 2014). It is therefore not surprising to record it in the Chiapas amber and demonstrates that Goniozus is well distributed around the globe since the Miocene at least. Similarly, Azevedo (2014) records six extant species of Bakeriella in Mexico but Bakeriella nanyhelae sp. nov. is the first fossil of the genus. Given that Bethylidae from Mexican and Dominican ambers have been poorly investigated and that Bakeriella is almost restricted to the Neotropics, with a few species in Northern Mexico and the United States, this is not surprising. However, it denotes a long occurrence of both genera in the Neotropical region.

Solepyris is much more uncommon nowadays. The genus and type species S. unicus were erected by Azevedo (2006) based on three females with a scolebythid-like habitus from Ecuador (Rio Palengue) and Brazil (Belo Horizonte). Later, Azevedo (2009) found another species from Brazil (Espírito Santo) and investigated several sclerodermine collections but failed to find additional specimens. The few specimens collected showed that Solepyris might have a broad distribution throughout South America but our finding geographically expands it about $2,500 \mathrm{~km}$ northward in the Neotropics. However, the type specimens of S. unicus are distant of more than 4,000 km. Recently, Colombo et al. (2022a) proposed a hypothesis for the exclusive presence of strongly flattened sclerodermine wasps in tropical regions. They based it on the observation that Coleoptera larvae living in cryptic habitats, their hosts, occur widely in these regions. Unfortunately, nothing is known about the biology of Solepyris and none of the sclerodermine genera with such particular morphology listed in Colombo et al. (2022a) occur as north in Central America as Solepyris electromexicanus sp. nov. According to Azevedo (2009), Solepyris might be closely related to Megaprosternum Azevedo, 2006,
which has been reported to parasitise Cleonaria bicolor Thomson, 1864 (Coleoptera: Cerambycidae; see Gupta et al., 2017). It would have been possible for Solepyris electromexicanus sp. nov. to have a similar feeding habit since some Cerambycidae have been recorded emerging from Hymenaea tree (Tavakilian et al., 1997). The Hymenaea genus is considered to be the producer of Chiapas amber (Poinar and Brown, 2002; Solórzano Kraemer, 2010) and Cerambycidae are known from this deposit, but are yet undescribed (Ross et al., 2016: fig. 15). Further living observations and collection of additional specimens might help to better understand both the biology and biogeography of Solepyris.

The age of Totolapa amber has been widely debated since its discovery, because its geological settings could not have been studied precisely in situ. It was first thought to be Eocene, based on the geological map of the central depression region of Chiapas (INEGI, 1985), which would largely predate the other amber deposits of Mexico, dated late Oligocenemiddle Miocene. Lambert et al. (1989) contradicted this hypothesis by showing that ambers from Simojovel and Totolapa are chemically similar and hence likely from a same paleobotanical source. Further taxonomic studies of included arthropods (e.g Barrios-Izás and Coty, 2016; Coty et al., 2014; Durán-Ruiz et al., 2013; Riquelme et al. 2014) revealed a paleofauna widely composed of extant genera of tropical to temperate affinities, which better correspond to a Miocene dating rather than Eocene. Our discovery of three modern genera of Bethylidae, of cosmopolitan or neotropical distribution, strengthens the proposal of a Miocene age for Totolapa amber.

Acknowledgments

We are in debt to David Coty for the generous donation of the material, discussion on the mining and geology of the deposit, and valuable comments on our work. We sincerely thank Manuel and Heriberto Ramirez, owners and miners of the Río Salado Mine, and their whole family for allowing David Coty's collecting on their property. We also thank Dr. Francisco Sour Tovar (Universidad Nacional Autónoma de México) and Dr. Mónica M. Solorzano-Kraemer (Senckenberg Research Institute, Germany), for advice and help with the final repository of the studied material. We finally express our gratitude to two anonymous reviewers for their comments on the first version of the manuscript. This work is part of Manuel Brazidec Ph.D. project on "The role of greenhouses on the diversification and evolution of chrysidoid wasps".

References

Azevedo, C.O., 2006. Two new genera of Sclerodermini (Hymenoptera: Bethylidae; Epyrinae) with large, scolebythid-like prosternums. Zootaxa 1191, 35-47.

Azevedo, C.O., 2009. A new species of Solepyris Azevedo (Hymenoptera, Bethylidae) from Brazil, with amended diagnosis of the genus. Revista Brasileira de Entomologia 53: 327330.

Azevedo, C.O., 2014. Synopsis of Bakeriella Kieffer, 1910 (Hymenoptera, Bethylidae). Zootaxa 3878, 501-535. http://dx.doi.org/10.11646/zootaxa.3878.6.1

Azevedo, C.O., Alencar, I.D.C.C, Ramos, M.S., Barbosa, D.N., Colombo, W.D., Vargas, J.M., Lim, J., 2018. Global guide of the flat wasps (Hymenoptera, Bethylidae). Zootaxa 4489, 1-294. https://doi.org/10.11646/zootaxa.4489.1.1

Barrios-Izás, M., Coty, D., 2016. A new fossil species of Caulophilus Wollaston, 1854 (Coleoptera: Curculionidae: Cossoninae) from Mexican amber. The Coleopterists Bulletin 70, 177-179. https://doi.org/10.1649/072.070.0126

Bouju, V., Perrichot, V., 2020. A review of amber and copal occurrences in Africa and their paleontological significance. BSGF-Earth Sciences Bulletin 191(17), 11 pp. https://doi.org/10.1051/bsgf/2020018

Brues, C.T., 1906. Fossil parasitic and phytophagous Hymenoptera from, Colorado. Bulletin of the American Museum of Natural History 22, 481-498.

Brues, C.T., 1910. The parasitic Hymenoptera of the Tertiary of Florissant, Colorado. Bulletin of the Museum of Comparative Zoology 44, 3-125.

Bryant D.D., 1983. A recently discovered amber source near Totolapa, Chiapas, Mexico. American Antiquity 48, 354-357.

Colombo, W.D., Perkovsky, E.E., Azevedo, C.O., 2022a. Synopsis of the rare genus Alongatepyris (Hymenoptera, Bethylidae), with description of the first extinct species from Dominican amber. Palaeoentomology 5, 57-65. https://doi.org/10.11646/palaeoentomology.5.1.6

Colombo, W.D., Tribull, C.M., Waichert, C., Azevedo, C.O., 2022b. Integrative taxonomy solves taxonomic impasses: a case study from Epyrinae (Hymenoptera, Bethylidae). Systematic Entomology. https://doi.org/10.1111/syen. 12544

Coty, D., Aria, C., Garrouste, R., Wils, P., Legendre, F., Nel, A., 2014. The first ant-termite syninclusion in amber with CT-scan analysis of taphonomy. PLoS ONE 9, e104410. https://doi.org/10.1371/journal.pone. 0104410

Coty, D., Nel, A., 2013. New fossil Pachygastrinae from Mexican amber (Diptera: Stratiomyidae). Annales de la Société Entomologique de France 49, 267-272. https://doi.org/10.1080/00379271.2013.845473

Durán-Ruiz, C., Riquelme, F., Coutiño-José, M., Carbot-Chanona, G., Castaño-Meneses, Ramos-Arias, M., 2013. Ants from the Miocene Totolapa amber (Chiapas, Mexico), with the first record of the genus Forelius (Hymenoptera, Formicidae). Canadian Journal of Earth Sciences 50, 495-502. https://doi.org/10.1139/cjes-2012-0166

Evans, H.E., 1964. A synopsis of the American Bethylidae (Hymenoptera, Aculeata). Bulletin of the Museum of Comparative Zoology 132, 1-222.

Evans, H.E., 1978. The Bethylidae of America North of Mexico. Memoirs of the American Entomological Institute 27, 1-332.

Gupta, A., Rajeshwari, S.K., Azevedo, C.O., 2017. Biology and description of Megaprosternum cleonarovorum sp. nov. (Hymenoptera: Bethylidae) a gregarious larval ectoparasitoid of Cleonaria bicolor Thomson (Coleoptera: Cerambycidae) from India. Zootaxa 4237, 78-90. https://doi.org/10.11646/zootaxa.4237.1.4

Harris, R.A., 1979. A glossary of surface sculpturing. Occasional Papers in Entomology, State of California Department of Food and Agriculture 28, 1-31.

Hegna, T.A., Lazo-Wasem, E.A., Serrano-Sánchez, M.d.L., Barragán, R., Vega, F.J., 2020. A new fossil talitrig amphipod from the lower early Miocene Chiapas amber documented with microCT scanning. Journal of South American Earth Sciences 98, 102462. https://doi.org/10.1016/j.jsames.2019.102462

INEGI, 1985. Carta géológica, E15-11 (Tuxtla Gutiérrez), escala 1:250,000. Mexico City, Mexico: SPP/INEGI, Instituto Nacional de Estadística, Geografia y informática.

Lambert, J.B., Frye, J.S., Lee Jr., T.A., Welch, C.J., Poinar Jr., G.O., 1989. Analysis of Mexican amber by Carbon-13 NMR Spectroscopy. Archeological Chemistry 4, 381-388. https://doi.org/10.1021/ba-1988-0220.ch021

Lanes, G.O., Kawada, R., Azevedo, C.O., Brothers, D.J., 2020. Revisited morphology applied for Systematics of flat wasps (Hymenoptera, Bethylidae). Zootaxa 4752, 1-127. https://doi.org/10.11646/zootaxa.4752.1.1.

Peñalver-Mollá, E., 1998. Estudio tafonómico y paleoecológico de los insectos del Mioceno de Rubielos de Mora (Teruel). Instituto de studios Turolenses, Teruel, 179 pp.

Perrilliat, M.C., Vega, F.J., Coutiño, M.A., 2010. Miocene mollusks from the Simojovel area in Chiapas, southwestern Mexico. Journal of South American Earth Sciences 30, 111-119. https://doi.org/10.1016/j.jsames.2010.04.005

Poinar Jr., G., Brown, A.E., 2002. Hymenaea mexicana sp. nov. (Leguminosae: Caesalpinioidea) from Mexican amber indicates Old World connections. Botanical Journal of the Linnean Society 139, 125-132. https://doi.org/10.1046/j.1095-8339.2002.00053.x

Ramos, M.S., Perkovsky, E.E., Rasnitsyn, A.P., Azevedo, C.O., 2014. Revision of Bethylinae fossils (Hymenoptera: Bethylidae) from Baltic, Rovno and Oise amber, with comments on the Tertiary fauna of the subfamily. Neues Jahrbuch fur Geologie und Paläontologie 271, 203-228. https://doi.org/10.1127/0077-7749/2014/0385

Riquelme, F., Menéndez-Acuña, M., 2017. Miocene spider Maevia eureka nov. sp. (Araneae: Salticidae). PeerJ 5, e3614. https://doi.org/10.7717/peerj. 3614

Riquelme, F., Ruvalcaba-Sil, J.L., Alvarado-Ortega, J., Estrada-Ruiz, E., Galicia-Chávez, Porras-Múzquiz, H., Stojanoff, V., Siddons, D.P., Miller, L., 2014. Amber from México: Coahuilite, Simojovelite and Bacalite. MRS Proceeding 1618, 169-180. https://doi.org/10.1557/opl.2014.466

Ross, A.J., Mellish, C.J.T., Crighton, B., York, P.V., 2016. A catalogue of the collections of Mexican amber at the Natural History Museum, London and National Museums Scotland, Edinburgh, UK. Boletín de la Sociedad Geológica Mexicana 68, 45-55.

Sanderson, M.W., Farr, T.H., 1960. Amber with insect and plant inclusions from the Dominican Republic. Science 131, 1313-1314.

Schmidt, A.R., Kaulfuss, U., Bannister, J.M., Baranov, V., Beimforde, C., Bleile, N., Borkent, A., Busch, A., Conran, J.G., Engel, M.S., Harvey, M., Kennedy, E.M., Kerr, P.H., Kettunen, E., Kiecksee, A.P., Lengeling, F., Lindqvist, J.K., Maraun, M., Mildenhall, D. C., Perrichot, V., Rikkinen, J., Sadowski, E.M., Seyfullah, L.J., Stebner, F., Szwedo, J., Ulbrich, P., Lee, D.E., 2018. Amber inclusions from New Zealand. Gondwana Research 56, 135-146. https://doi.org/10.1016/j.gr.2017.12.003

Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671-675. https://doi.org/10.1038/nmeth. 2089

Solórzano Kraemer, M.M., 2010. Mexican amber. In: Penney D. (Ed.), Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, 42-56.

Solórzano Kraemer, M.M., Delclòs, X., Slapham, M., Arillo, A., Peris, D., Jäger, P., Stebner, F., Peñalver, E., 2018. Arthropods in modern resin reveal if amber accurately recorded forest arthropod communities. Proceedings of the National Academy of Sciences of the USA 115, 6739-6744. https://doi.org. 10.1073/pnas. 1802138115

Solórzano Kraemer, M.M., Kraemer, A.S., Stebner, F., Bickel, D.J., Rust, J., 2015. Entrapment bias of arthropods in Miocene amber revealed by trapping experiments in a tropical forest in Chiapas, Mexico. PLoS ONE 10, e0118820.
https://doi.org/journal.pone. 0118820

Sorg, M., 1988. Zur Phylogenie und Systematik der Bethylidae (Insecta, Hymenoptera, Chrysidoidea). Sonderveröffentlichungen des Geologischen Instituts der Universität zu Köln 63, 1-146.

Snyder, T.E., 1960. Fossil termites from Tertiary amber of Chiapas, Mexico (Isoptera). Journal of Paleontology 34, 493-494.

Tavakilian, G., Berkov, A., Meurer-Grimes, B., Mori, S., 1997. Neotropical tree species and their faunas of xylophagous longicorns (Coleoptera: Cerambycidae) in French Guiana. The Botanical Review 63, 303-355.

Wang, B., Shi, G., Xu, C., Spicer, R.A., Perrichot, V., Schmidt, A.R., Feldberg, K., Heinrichs, J., Chény, C., Pang, H., Liu, X., Gao, T., Wang, Z., Ślipiński, A., Solórzano Kraemer, M.M., Heads, S.W., Thomas, M.J., Sadowski, E.-M., Szwedo, J., Azar, D., Nel, A., Liu, Y., Chen, J., Zhang, Qi, Zhang, Q., Luo, C., Yu, T., Zheng, D., Zhang, H., Engel, M.S., 2021. The mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia. Science Advances 7(18), eabg0625. https://doi.org/10.1126/sciadv.abg0625

Figure captions:

Figure 1. Goniozus cotyi sp. nov., holotype male FCMP-1464; A. habitus in dorsal view; B. habitus in lateral view; C. head and anterior mesosoma in lateral view (white arrow: parapsidal signum); D. line drawing of fore wing (abbreviations: $\mathrm{pr}=$ prestigma; $\mathrm{pt}=$ pterostigma). Scale bars: A, B, D = $1 \mathrm{~mm} ; \mathrm{C}=0.5 \mathrm{~mm}$. (2-column fitting image)

Figure 2. Bakeriella nanyhelae sp. nov., holotype female FCMP-1465; A. habitus in dorsal view; B. head and anterior mesosoma in dorsal view (arrow: septum separating scuto-
scutellar pits); C. habitus in lateral view; D. metasoma in lateral view; E. meso and metalegs in lateral view; F. head in frontal view. Scale bars: A, C = $2 \mathrm{~mm} ; \mathrm{B}, \mathrm{D}, \mathrm{E}=1$ $\mathrm{mm} ; \mathrm{F}=0.5 \mathrm{~mm}$. (2-column fitting image)

Figure 3. Solepyris electromexicanus sp. nov., holotype female FCMP-1466; A. habitus in dorsal view; B. mesosoma in dorsal view; C. mesosoma and metasoma in lateral view; D. mesosoma in ventral view (white arrows: anterior margin of prosternum; black arrows: mandibular teeth); E. dorsal surface of head in internal view; F. line drawing of fore wing; G. line drawing of right mandible in frontal view. Scale bars: A, C, F = $1 \mathrm{~mm} ; \mathrm{B}, \mathrm{D}, \mathrm{E}=$ $0.5 \mathrm{~mm} ; \mathrm{G}=0.25 \mathrm{~mm}$. (2-column fitting image)

Highlights

- Description of the three first species of Bethylidae in Miocene Mexican amber
- Diverse Goniozus and Bakeriella found to have a long occurrence in Neotropics
- New Solepyris helps discuss its particular disjunct biogeographical pattern
- Modern genera provide additional support for a Miocene age of Totolapa amber

Declaration of interests

区 The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
\square The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

