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Abstract : 
 
The diversity, toxicity and seasonality of Pseudo-nitzschia sp. were investigated from February to 
November 2012 in the southern Bight of the North Sea (SBNS) along the French coast. The 
identification of Pseudo-nitzschia species in this area was addressed for the first time in this study. Our 
results revealed a low species richness (3 distinct species) in association with moderate (102 pg mL

−1
) 

to high (263 pg mL
−1

) domoic acid (DA) levels in autumn and spring, respectively. 

Pseudo-nitzschia succession corresponded to the dominance of P. delicatissima in April–May (86% of 
total diatoms) as a co-occurring species of the Phaeocystis globosa bloom. Following the Phaeocystis 
bloom (May–September), P. pungens dominated markedly over P. fraudulenta and P. delicatissima and 
was the only species present in autumn, although at low abundance (<1000 cell L

−1
). The results of this 

study support the idea that Pseudo-nitzschia seasonality in the SBNS relies principally on temperature 
and nutrient availability (DIN and silicates), which, in turn, depend on locally fluctuating environmental 
conditions (rainfalls and winds). This study highlights the potential for the SBNS to be a potential risk 
area in regard to the possible impacts of DA on marine resources and the DA transfer through marine 
food webs. This is of particular concern since DA concentration in seawater was not systematically 
correlated to potentially toxic Pseudo-nitzschia abundance. 
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Highlights 

► Low Pseudo-nitzschia sp. diversity (three species) in the southern North Sea. ► Domoic acid levels 
reached 263 pg mL

−1
 in May 2012, 83% as dissolved DA. ► Strong species seasonality driven by 

temperature and nutrient availability (DIN and silicates). ► Autumnal DA concentrations could be 
attributed to P. pungens. ► DA concentration was not systematically correlated to Pseudo-nitzschia 
spp. abundance. 

 

Keywords : Pseudo-nitzschia, Southern North Sea, Domoic acid, Phaeocystis globosa, Harmful algal 
blooms (HAB) 
 
 

 

 



1 Introduction 39 

The cosmopolitan diatom genus Pseudo-nitzschia sp. comprises more than 50 species 40 

amongst which 24 are known to produce Domoic Acid (DA; Gai et al., 2018; Lundholm, 41 

2018), a potent neurotoxin responsible for Amnesic Shellfish Poisoning (ASP). Since the first 42 

reports of ASP in 1987 at Prince Edward Island, shellfish stocks have been systematically 43 

monitored to prevent any outbreaks of ASP among humans. Since then, alert indicators such 44 

as DA concentration and/or Pseudo-nitzschia sp. abundance monitoring have been shown to 45 

be efficient tools, as no human poisoning has ever been reported (Trainer et al., 2012). 46 

However, DA poisoning of marine mammals and seabirds can still occur when they feed on 47 

DA-contaminated planktivorous prey (e.g. anchovies and sardines; Du et al., 2016; Gibble et 48 

al., 2018; Jensen et al., 2015; Lefebvre et al., 2002; Louw et al., 2018; Scholin et al., 2000; 49 

Sierra-Beltran et al., 1997; Stauffer et al., 2012). The trend of increasing abundance of 50 

Pseudo-nitzschia over the past decade has raised scientific awareness and concerns about 51 

public health (e.g. Hernández-Fariñas et al., 2014; Lefebvre et al., 2014; Lundholm et al., 52 

2010; Parsons et al., 2002; Trainer et al., 2012) emphasizing the need to assess its dynamics, 53 

and investigate potential DA production in exploited coastal areas. In the English Channel, 54 

occurrence of DA in king scallop (Pecten maximus) has been reported several times from 55 

south western regions such as the Bay of Seine and the Bay of Brest (Husson et al., 2016). In 56 

the Eastern English Channel-North Sea (EEC-NS), reported ASP events were mainly 57 

concentrated in the northern regions (Scotland, Norway, Denmark; Trainer et al., 2012) 58 

although Pseudo-nitzschia sp. cells are present year-round in the southern regions (Bresnan et 59 

al., 2015; Hernández-Fariñas et al., 2014; Schapira et al., 2008; Seuront et al., 2006). Thus, 60 

reports of DA and shellfish closures were not recorded in the EEC-NS until 2014, when king 61 

scallop stocks off the Bay of Somme (France) were contaminated with DA, which represented 62 

the northernmost ASP alert of France (Lefebvre A., pers. com.). Existing studies and 63 



monitoring surveys often limit the detection of Pseudo-nitzschia sp. to the genus level or to 64 

morphological features measurable by optical microscopy, i.e. valve width, distinguishing 65 

large species (width > 3 µm, Pseudo-nitzschia complex seriata), from narrow ones (width < 3 66 

µm, P. delicatissima complex). This distinction by size categories has already made possible 67 

seasonal studies within this genus (Bresnan et al., 2015; Brown and Bresnan, 2008; Fehling et 68 

al., 2004; Thorel et al., 2017) as well as allowing for analysis of the short and long-term 69 

changes in Pseudo-nitzschia with regard to environmental parameters (Díaz et al., 2014; 70 

Husson et al., 2016; McKibben et al., 2015). 71 

In the Eastern English Channel and Southern Bight of the North Sea, phytoplankton studies 72 

have largely focused on spring bloom periods, revealing that diatoms and the 73 

prymnesiophytes Phaeocystis globosa form the bulk of phytoplankton biomass (Bonato et al., 74 

2015; Schapira et al., 2008; Seuront et al., 2006). However, there is still a clear lack of 75 

knowledge in this region regarding Pseudo-nitzschia species diversity and seasonality in 76 

relation to environmental parameters and DA levels. Finally, studies defining Pseudo-77 

nitzschia species nutrient and physical requirements and biotic interactions at the regional 78 

scale are scarce but crucial to predict proliferation and associated toxicity. Recently, Husson 79 

et al. (2016) identified the environmental niche of Pseudo-nitzschia sp. in six distinct bays 80 

from Brest to the Seine estuary. In this study, additional data focusing on Pseudo-nitzschia 81 

seasonality and diversity in the EEC-NS ecosystem over an annual cycle is provided. The aim 82 

is to define their importance in the seasonal phytoplankton succession and to estimate 83 

associated DA concentrations with regard to environmental forcing and hydro-biological 84 

conditions. 85 

2 Material and Methods 86 

2.1 Sampling strategy 87 



The sampling station (~ 10 m depth) was located along the French coast of the southern North 88 

Sea, in Dunkirk harbor (51°1’12’’ N, 1°9’0’’E, Figure 1). The inner part of this harbor forms 89 

a small semi-enclosed embayment where semi-diurnal macrotidal tides prevail and enable 90 

important water exchanges with coastal waters of the southern North Sea. Sampling was 91 

conducted fortnightly from February 22 to November 14 2012 during flood (within 2 hours 92 

before high tide) to consider only neritic plankton communities although benthic communities 93 

could be re-suspended during high mixing periods. 94 

Temperature (°C) and salinity were measured with an Aanderaa Instruments probe, turbidity 95 

(Turb) with an Eutech instruments waterproof probe, pH with a HANNA pH probe, and 96 

dissolved oxygen (dO2, mg L-1) with a Handy Polaris Oxyguard probe at each sampling date. 97 

Seawater samples were collected at one meter depth using a Niskin bottle. For inorganic 98 

nutrients, seawater samples (frozen at -20 °C until analysis) were analyzed by either 99 

fluorimetry (NH4
+; Trilogy, Turner Designs; Holmes et al., 1999) or by the use of an 100 

autoanalyzer (Alliance Integral Futura) for NO2
-, NO3

-, HPO4
2-, Si(OH)4 following standard 101 

protocols (Bendschneider and Robinson, 1952; Mullin and Riley, 1955; Murphy and Riley, 102 

1962). The surface solar irradiance (ssi) was derived from the bi-directional reflectance 103 

measured by MSG (METEOSAT Second Generation) and provided by the OSI SAF (Le 104 

Borgne et al., 2006). Winds (hourly measurements) and rainfall (daily) data were obtained 105 

from the Dunkirk Meteo France station (www.meteofrance.fr). 106 

2.2 Phytoplankton standing stock and community composition 107 

Phytoplankton biomass was assessed from chlorophyll a and pheopigment concentrations. 108 

Seawater samples (250 to 500 mL) were filtered on glass fiber filters (Whatman GF/F) under 109 

low vacuum and frozen at -20 °C until analysis (within 2 months after collection). Pigments 110 

were extracted in 90 % acetone overnight at 4°C and chlorophyll a, and pheopigments 111 

concentrations were estimated following Lorenzen (1966) using a pre-calibrated (chlorophyll 112 



a from Anacystis nidulans, Sigma) fluorometer (Trilogy, Turner designs). For phytoplankton 113 

community analyses, 250 mL samples were preserved in the field with lugol/glutaraldehyde 114 

fixative (2 % final concentration, Verity et al., 2007) and stored at 4 °C in the dark until 115 

analysis (within 3 months after collection). At the laboratory, 5 to 10 mL subsamples were 116 

settled in Hydrobios counting chambers. Phytoplankton cells were identified and enumerated 117 

using an inverted microscope (Nikon Eclipse TE2000-S, magnification ×200, ×400) under 118 

phase contrast illumination. On average 942 ± 568 cells per sample were identified and 119 

counted. For Phaeocystis globosa, total cells were enumerated without stage distinction (i.e. 120 

isolated, colonial stages). Under optical microscopy, Pseudo-nitzschia cells were categorized 121 

on the basis of cell width. More specifically, Pseudo-nitzschia cells with frustule width up to 122 

3µm were placed in the P. delicatissima complex while those with frustules above 3µm were 123 

placed in the P. seriata complex as was done in several studies (Bresnan et al., 2015; Fehling 124 

et al., 2004; Hasle and Syvertsen, 1997; Thorel et al., 2017). 125 

When Pseudo-nitzschia sp. cell concentrations were higher than 103 cell L-1, Scanning 126 

Electron Microscopic (SEM) analyses were carried out for species identification, covering the 127 

whole study period (April 4, May 2, May 16, June 1, September 5, October 3). In short, 10 to 128 

100 mL of homogenized preserved samples were filtered on polycarbonate filters (24 mm 129 

diam.; 0.8 µm porosity) and rinsed with Milli-Q water to eliminate salts. Filters containing 130 

diatom frustules were acid cleaned (2 - 3 mL HCl 37%) in Teflon beakers overnight at room 131 

temperature and rinsed in a Milli-Q water bath. Acid and water baths were filtered once again 132 

using same filter to limit cell loss during the acidification and rinsing steps. Thereafter, filters 133 

were placed on aluminium stubs with double sticky carbon tabs and air-dried during 12 h 134 

under laminar flow. LAstly, dried filters were metallized under argon flow with Au/Pd during 135 

90 s (Polaron SC 7620). Quantified measures based on literature review (e.g., valve length 136 

and width, number of fibulae and of interstriae in 10 µm) allowed for the discrimination of the 137 



species within Pseudo-nitzschia seriata complex (width > 3 µm) and P. delicatissima 138 

complex (width < 3 µm; see Table 1), but species variety could not be inferred from our 139 

study. At least 50 Pseudo-nitzschia sp. cells per sample were identified via SEM analyses. 140 

When present in lower numbers, the entire filter was scanned for Pseudo-nitzschia frustules 141 

and identification was carried out on available material. Dissolved and particulate domoic 142 

acid (DA; pg mL-1) concentrations were measured using ASP ELISA kits (Biosense, Bergen, 143 

Norway) following the provided procedure. Total DA concentration (tDA i.e., dissolved + 144 

particulate DA) was measured from 5 mL of natural seawater samples stored at -20 °C until 145 

analysis. For dissolved DA, collected seawater samples (5 mL) were filtered under low 146 

vacuum pressure (< 50 mm Hg) on 0.2 µm cellulose acetate filters before being frozen (-20 147 

°C). On the day of the analysis, samples were thawed at 4 °C and dissolved DA samples were 148 

directly processed. For total DA samples, sonication on ice was carried out in order to disrupt 149 

cells, and samples were filtered on 0.2 µm cellulose acetate before the assay. Particulate DA 150 

was obtained by subtracting dissolved DA from total DA. Given the limit of Pseudo-nitzschia 151 

cell counts via microscopy, DA cell quota were computed only when Pseudo-nitzschia cell 152 

abundance reached 103 cell L-1 (i.e. at least 5-10 Pseudo-nitzschia cells were counted). 153 

2.3 Data analyses 154 

In order to efficiently synthesize the environmental context of the survey and identify forcing 155 

parameters, a Principal Component Analysis (PCA) was applied to the environmental data 156 

matrix (11 parameters x 16 dates, Legendre and Legendre, 1998). Wind speed data from three 157 

days before the sampling date were averaged. Rainfalls were summed over 3 days before the 158 

sampling date in order to take into account watershed run-offs.  159 

Nutrients concentrations of DIN (i.e. the sum of NH4
+, NO2

-and NO3
- concentrations), HPO4

2- 160 

and Si(OH)4 concentrations were depicted in the PCA plots as N, P and Si, respectively. 161 

Nutrient ratios (S/P, Si/N and Si/P) were considered as illustrative variables to highlight 162 



potential nutrient limitations. Prior to the analysis, all data were tested for normality (Shapiro 163 

test) and log(x+1) transformed. 164 

Pseudo-nitzschia complex raw abundances were plotted on each PCA graph to give a picture 165 

of species seasonality. Only variables significantly correlated to at least one principal 166 

component (PC) of the PCA are presented and discussed (Spearman test, p-value <0.05). 167 

Correlation coefficients will be referred to as r’PC1, r’PC2, r’PC3 for the first three principal 168 

components of the PCA (Table 2). Additionally, correlations between Pseudo-nitzschia 169 

complexes abundances and domoic acid concentrations have been assessed. Since data did not 170 

fit the normality, correlations were tested using Spearman test (significance threshold was set 171 

at p-value<0.05). Statistivs were performed using R software packages (R Core Team, 2012) 172 

 3 Results 173 

3.1 Environmental conditions 174 

The present study began in the cold snap of February 2012 (temperature of minus 10°C) that 175 

had not occurred in the area since 1991 (MeteoFrance data; regional bulletin, 176 

www.meteofrance.fr). The following spring was cooler (-1.0 °C) and drier (half as much 177 

rainfall) than average (Figure 2A, 2C). Stormy weather dominated the summer months (June-178 

July) and autumn. Autumn 2012 was characterized by strong southwestern and northeastern 179 

winds (up to 100 km h-1), excess precipitations (+30%) and a rapid drop in temperature. 180 

Seawater surface temperature followed a typical seasonal evolution increasing from 4.9 °C in 181 

February to 19.0 °C in August. By contrast, as measured by flood tide, salinity remained 182 

stable with an average of 34.2 ± 0.3 (min: 33.4, max = 35.0; Figure 2A). The mean annual pH 183 

value was 8.1 ± 0.3 and decreased continuously over the study period from February (8.6) to 184 

November (7.6; Figure 2B). The mean annual dissolved oxygen concentration (dO2) was 8.1 ± 185 

1.3 mg L-1 with the highest values recorded in winter and late autumn , and the lowest (6.4 mg 186 

L-1) in late summer (Figure 2B). A slight increase in dO2 concentrations coincided with the 187 



spring bloom development in May. Turbidity averaged at 6.9 ± 3.2 NTU (Figure 2C). The 188 

lowest turbidity values were measured in April and June (2.9 NTU) and the highest in May 189 

and September (14.3 and 12.1 NTU, respectively). 190 

With the exception of NH4
+, all concentrations of nutrients decreased rapidly to reach their 191 

annual minima of 0.01, 0.35 and 0.30 µmol L-1 for NO2
-+NO3

-, HPO4
2- and Si(OH)4, 192 

respectively, in April (Figure 3). Thereafter, HPO4
2- concentration varied between 0.5 and 1.0 193 

µmol L-1 and the maximal values followed storm events (July and November). NO2
-+NO3

- 194 

concentrations remained stable below 5 µmol L-1 from April to October and increased to high 195 

values at the end of the survey (11.7 µmol L-1) although they did not reach the previous winter 196 

maxima of 22.5 µmol L-1. Silicate concentrations decreased from 7.5 to 0.3 between February 197 

and late March. A second minimal value (0.2 µmol L-1) was recorded in June. The silicate 198 

concentrations increased continuously during summer and reached 7.5 µmol L-1 at the end of 199 

the survey. NH4
+ concentrations were highly variable from February to June ranging between 200 

1.0 and 3.8 µmol L-1. Thereafter, concentrations remained between 2.0 to 4.0 µmol L-1. 201 

3.2 Phytoplankton standing stock, seasonality and domoic acid levels 202 

The phytoplankton bloom, started at the end of February 2012 and lasted until early June. It 203 

was characterized by three successive peaks in chlorophyll a concentrations (from 4.0 to 9.5 204 

µg chla L-1; Figure 4A), and phytoplankton abundance (from 8.2×105 to 3.6×106 cells L-1; 205 

Figure 4B). From July to November, chlorophyll a concentrations (2.3 ± 0.7 µg L-1) along 206 

with phytoplankton abundance (1.9 ± 0.7×105 cells L-1) remained relatively stable and low. 207 

Pheopigment concentrations followed the same pattern as chlorophyll a (Figure 5A) and 208 

represented 22 to 49 % of total pigments. Four periods could be identified based on 209 

phytoplankton community composition (Figure 4C): Period 1 (P1, February 20 – April 5) was 210 

characterized by the dominance of small diatoms (5-20 µm in width/length; Thalassiosira sp., 211 

Skeletonema costatum, Asterionellopsis glacialis and Chaetoceros sp.), either as isolated cells 212 



or in forming colonies, and phytoplankton abundance peaked at 8.2×105 cells L-1. Period 2 213 

(P2, April 5 to May 20) corresponded to the P. globosa bloom with abundances ranging from 214 

1.8 to 3.6×106 cells L-1 (Figure 4B). This bloom co-occurred with high abundances of 215 

Chaetoceros sp. (8.7×104 cells L-1, 64 % of the diatom community at the beginning of P2), 216 

and Pseudo-nitzschia sp. (2.1×105 cells L-1 equivalent to 25% and 86% of the phytoplankton 217 

and the diatom communities, respectively;at the end of P2). Period 3 is the post-bloom period 218 

(P3, from May 20 to September 8). Both fine walled summer diatoms such as Guinardia sp. 219 

(i.e. G. delicatula, G. flaccida, and G. striata), and highly silicified spring diatoms such as 220 

Chaetoceros sp. and Thalassiosira sp. composed the bulk of the diatom community in 221 

association with small Cryptophytes. Period 4 (P4, from September 8 to November 16) 222 

revealed the occurrence of intermediate sized diatoms (30 - 40 µm in length/width; Delphineis 223 

sp.) as well as diatoms in forming colonies (e.g., Thalassiosira sp.) which remained in low 224 

number (1.2 ± 0.5×105 cells L-1). 225 

SEM analyses revealed a low diversity of Pseudo-nitzschia sp. in the area with three distinct 226 

species namely P. delicatissima (belonging to the P. delicatissima complex), P. fraudulenta, 227 

and P. pungens (both belonging to the P. seriata complex, see Table 1 and Figure 5). No 228 

overlap between the two complexes was found in terms of species morphological features 229 

since the width of P. delicatissima width was below 2 µm, and the widths of P. pungens and 230 

P. seriata were above 2.7 µm (Table 1). P. delicatissima represented up to 99 % of SEM-231 

identified frustules during the P. globosa bloom period (P2, Mid-May) and outnumbered 232 

other diatoms. By contrast, at the beginning of the post-bloom period (P3), the percentage of 233 

Pseudo-nitzschia sp. to total diatoms decreased to 10 % of total diatoms. P. pungens markedly 234 

dominated (54 % of the SEM-identified frustules) over P. fraudulenta and P. delicatissima 235 

(33 % and 13 %, respectively). In autumn (P4), all the identified Pseudo-nitzschia sp. 236 



frustules belonged to the P. pungens species (< 103 cells L-1 representing < 1% of total 237 

diatoms). 238 

Domoic acid was mostly present as dissolved DA throughout the survey averaging 83 ± 16 % 239 

of the total DA (tDA). Particulate domoic acid (pDA) was detected in May (end of P2) and 240 

was still measurable at the end of P4. pDA punctually represented 10 to 40 % of tDA (Figure 241 

6). tDA concentration followed Pseudo-nitzschia sp. dynamics, particularly during the P. 242 

globosa bloom and post-bloom periods (P2 and P3, Figure 7). tDA maxima (263 pg mL-1) 243 

corresponded to the co-occurrence of P. seriata complex and P. delicatissima complex, 244 

reaching 2.8×104 and 7.5×105 cells L-1 in early May (P2), respectively. Thereafter, tDA 245 

decreased to 118 and 110 pg mL-1 at the end of P2 and beginning of P3, which coincided with 246 

the highest abundance of P. delicatissima complex and P. seriata complex, respectively. In 247 

autumn, tDA concentrations remained high (102 ± 39 pg mL-1) despite low abundances of P. 248 

seriata complex (i.e. P. pungens), as suggested by the absence of correlation between tDA 249 

and Pseudo-nitzschia abundances. When measurable, DA cell quota ranged between 0.016 pg 250 

cell-1 in May and 7.9 pg cell-1 in September. 251 

3.3 Abundance of Pseudo-nitzschia in relation to environmental factors 252 

PCA confirmed the clear seasonal pattern of environmental variables and allowed to 253 

synthesize their relation with the temporal variability of Pseudo-nitzschia (Figure 7). The first 254 

three principal components (PC) explained 75.82 % of the total variance (PC1: 35.01 %, PC2: 255 

28.77 %, PC3: 12.04 %). Considering coefficients in the linear combination of variables, 256 

period P1 was mainly characterized by high DIN (r’PC1 = 0.88) and dO2 (r’PC2 = -0.75) 257 

concentrations, high N/P ratios (r’PC1 = 0.66; r’PC2 = -0.50) and low temperature and salinity 258 

(r’PC2=0.73 and 0.64, respectively; Table 2). P2 (bloom period) was more related to high ssi 259 

(r’PC1 =-0.74), pH (r’PC2= -0.64), and increases in temperature and salinity (r’PC2=0.73 and 260 

0.64), low nutrient stocks, particularly Si(OH)4 and HPO4
2- (r’PC1=0.69 and 0.87), and to a 261 



lesser extent low Si/P ratio (r’PC2 =0.44, Table 2). Additionally, punctual storm events in May 262 

characterized by high rainfalls (r’PC3=0.61) and by strong winds (r’PC3=0.43) led to a prompt 263 

increase in turbidity (Figures 3 and 7B). High temperature, DIN limitations illustrated by low 264 

N/P, and increasing Si/P ratio and Si(OH)4 concentrations characterized periods P3 and P4 265 

(Table 2). 266 

The plotting of Pseudo-nitzschia abundance on the PCA graphs illustrated the importance of 267 

high rainfall, increasing pH, ssi in the initiation of the P. delicatissima complex bloom 268 

(Figures 7A and 7B). The seasonality of the P. seriata complex was essentially shown by 269 

their high abundance in June (beginning of P3) and their disappearance in August and 270 

September (end of P3; Figures 7C and 7D). The highest abundance of P. seriata complex was 271 

observed at low nutrient levels (particularly DIN and Si(OH)4), increasing surface solar 272 

irradiance and high pH. From September to November 2012 (P4), rainfalls and wind speed 273 

decreased, and P. seriata complex persisted at low abundance in increasing concentrations of 274 

Si(OH)4, decreasing pH and concentrations of dO2. Finally, as illustrated by the distribution of 275 

abundance values on the PCA plots, both complexes were present under Si(OH)4 limitation 276 

and the  P. seriata complex seemed to tolerate higher variable environmental conditions (e.g. 277 

nutrients) as compared to the P. delicatissima complex. 278 

4 Discussion  279 

4.1 Specificity of the 2012 spring bloom  280 

In the southern North Sea - Eastern English Channel ecosystem, the phenology of 281 

phytoplankton communities is generally characterized by a phytoplankton spring bloom 282 

dominated by Phaeocystis globosa (Gentilhomme and Lizon, 1998; Lefebvre et al., 2011; 283 

Schapira et al., 2008). In 2012, the spring bloom appeared to be of low magnitude and short 284 

duration compared to other studies (~ 20 µg L-1 in Breton et al., 2000 and Kesaulya et al., 285 

2008 ; ~ 50 µg L-1 in Lefebvre et al., 2011; Seuront et al., 2006), as exemplified by low 286 



chlorophyll a values (9.5 µg L-1, Figure 4A). This small bloom magnitude was confirmed by 287 

the low P. globosa abundance (between 0.019 and 3.7×106 cell L-1 in this study vs 5.5 to 288 

100×106 cell L-1 in Gómez and Souissi, 2008; Seuront et al., 2006; Widdicombe et al., 2010) 289 

and its low contribution to total phytoplankton abundance (50 % vs 74-90% between 1992 and 290 

2011, Hernández-Fariñas et al., 2014). P. globosa dynamics can exhibit high interannual 291 

variability (Lamy et al., 2006; Lefebvre et al., 2011) and the year 2012 appeared as a low 292 

Phaeocystis year. The co-occurrence of the P. delicatissima complex and P. globosa 293 

development (Figure 4; Period P2) is often described: P. delicatissima complex is a co-294 

occurring species of P. globosa bloom (Grattepanche et al., 2011; Hernández-Fariñas et al., 295 

2014; Monchy et al., 2012; Sazhin et al., 2007) and may serve as solid substrate during the 296 

transitional phase from free-living cells to colonial stages (Peperzak and Gäbler-Schwarz, 297 

2012; Rousseau et al., 2007; Verity et al., 2007). 298 

4.2 Environmental factors drive Pseudo-nitzschia diversity and seasonality.  299 

Three species of Pseudo-nitzschia were identified in 2012 in the Southern North Sea (P. 300 

delicatissima, P. pungens and P. fraudulenta) by using SEM imagery and measurements. 301 

These results are congruent with recent published data from adjacent areas (Eastern English 302 

Channel - Thorel et al., 2017, Northern North Sea - Bresnan et al., 2015). Identification was 303 

based on a literature review and best matches with species morphometric issues are specified 304 

in Table 1. The identification of Pseudo-nitzschia species is a tricky issue since some species 305 

can have very similar morphological characteristics (e.g. P. delicatissima with P. dolorosa, P. 306 

decipiens or P. fraudulenta with P. subfraudulenta, Amato et al., 2007; Orsini et al., 2004; 307 

Quijano-Scheggia et al., 2009). Further studies are therefore needed to confirm these 308 

identifications using molecular tools (e.g. Pugliese et al. 2017). 309 

The seasonality of Pseudo-nitzschia species within the Eastern English Channel – North Sea 310 

(EEC-NS) ecosystem resulted in two distinct periods of abundance (spring and autumn) 311 



during which a very small number of Pseudo-nitzschia species was observed. The three 312 

identified species (P. delicatissima, P. pungens, and P. fraudulenta) are considered to be 313 

cosmopolites (see Table 3; Hasle 2002 and Lelong et al. 2012 for reviews). They are also 314 

known to have different but variable hydrological preferences depending on their ecosystem 315 

inhabited, and genetic strains. Temperature and salinity values recorded in 2012 (4.9-19.0°C 316 

and 33.6-35.0, respectively; Figure 2A) are consistent with the euryhaline features of Pseudo-317 

nitzschia spp. Most species are indeed able to grow at salinities comprised between 1 and > 318 

30, occurring and growing more efficiently at high salinity (Cho et al., 2001; Husson et al., 319 

2016; Thessen et al., 2005). Prior studies have also demonstrated a wide temperature range for 320 

Pseudo-nitzschia spp. (Dortch et al., 1997; Louw et al., 2016; Tas and Lundholm, 2016). In 321 

particular, P. delicatissima, which was dominant in May (P2, 86% of the diatom community 322 

and 99 % of identified frustules) seemed to better grow at temperatures ranging between 10-323 

12 °C (Table 3; Fehling et al. 2006). P. pungens and P. fraudulenta were commonly present 324 

in summer (June) and autumn (October) when days were longer and temperatures higher 325 

(Table 3). However, P. pungens seems to have a wider environmental tolerance than P. 326 

fraudulenta (Klein et al., 2010) as it can peak at temperatures up to 21.0 °C (Terenko and 327 

Terenko, 2012). The increasing relative contribution of P. pungens to Pseudo-nitzschia 328 

species between June (54 %) and October (100 %) may be explained by two non-conflicting 329 

hypotheses. Firstly, the P. pungens population may comprise different varieties exhibiting 330 

different temperature preferences (e.g. Kim et al. 2015). Secondly, it can present varying 331 

responses to temperature increases (Thessen et al., 2009). 332 

P. delicatissima development began in February (P1) under high DIN concentrations, high 333 

N/P ratios and low temperature (i.e. late winter conditions; Figure 7A, 7B). It is well known 334 

that high abundances of Pseudo-nitzschia spp. are found in areas enriched with nutrients 335 

(Parsons et al., 2002; Tas et al., 2016) which can originate from upwelling (Díaz et al., 2014), 336 



mixing events and riverine inputs (Trainer et al., 2012). Paradoxically, the highest abundance 337 

of P. delicatissima in May (P2) occurred after a decrease in DIN concentrations and rather 338 

suggested nutrient limiting conditions. Pulses of DIN (Figure 3A) following rainfall events in 339 

May (Figure 2C) could have favored the species rapid growth and bloom, a phenomenon 340 

which has already been shown in estuarine systems (Tas et al., 2016; Tas and Lundholm, 341 

2016). The results of this study also demonstrated that the maximum abundance of the P. 342 

delicatissima complex e occurred at high pH levels and dO2 concentrations (P2, Figure 7). 343 

Lundholm et al. (2004) suggested that high pH values (8.7 - 9.1) can inhibit the growth of 344 

most Pseudo-nitzschia species. Such high values were never recorded during our study (7.6 to 345 

8.6; Figure 3) and no significant relationships could be established between pH values and 346 

Pseudo-nitzschia abundance. Rather than being associated solely with the P. delicatissima 347 

complex, variability in dO2 is likely associated with the photosynthetic activity of the whole 348 

phytoplankton community including the Phaeocystis sp. bloom (P2). 349 

High amount of particulate matter (i.e., high turbidity) linked to water mixing and river inputs 350 

can limit light availability and consequently inhibit photosynthesis and growth. This light 351 

attenuation can result in the limitation of both the spatial and temporal distribution of Pseudo-352 

nitzschia as demonstrated in estuarine and coastal systems (Dursun et al., 2016; Tas et al., 353 

2016). These studies are consistent with the P. seriata complex distribution pattern in the 354 

Southern Bight of the North Sea (SBNS), the species being abundant when turbidity was low 355 

(e.g. in June, Figure 2C, 7D). P. delicatissima could have benefited from the storm event 356 

(high wind and rainfall) which occurred in May and particularly from the subsequent pulses of 357 

DIN and Si(OH)4 (Figures 3A and 7B).  358 

The P. seriata species complex was the most abundant (beginning of P3) in low DIN and 359 

SiOH4 concentrations resulting in low Si/N ratios (figure 7C). These conditions may have 360 

been caused by the lag effect of P. delicatissima and the associated P. globosa bloom having 361 



already drawn down the nutrients. The P. seriata species complex was still persisting at low 362 

abundance in the area from the end of the summer to the fall (end of P3 and P4). PCA plots 363 

suggest that the growth of the P. seriata complex may benefit from nutrient pulses of silicate, 364 

phosphate and DIN but that it tends to be limited at that time of the year by decreasing 365 

temperature and irradiance (Figure 7C, 7D). 366 

Silicate limitations were already proven to increase Pseudo-nitzschia abundance and toxicity 367 

(Anderson et al., 2010; Thorel et al., 2017). For instance, P. multiseries was able to 368 

outcompete other phytoplankton species when silicate was low compared to nitrogen 369 

(Sommer, 1994). Laboratory culture conditions conducive to DA production generally include 370 

limitation by silicate or phosphate during the stationary phase (reviewed by Bates et al., 1989; 371 

Trainer et al., 2012, 2008). This could explain this study findings of the high domoic acid 372 

concentration in spring (P2, May, Figure 6) which coincided with low Si and DIN 373 

concentrations along with low Si/P ratios (Figure 7A- C). However, no significant correlation 374 

could be demonstrated between nutrients stocks and DA concentrations. Consequently, more 375 

targeted studies (e.g., nutrient uptake experiments) are required in order to properly evaluate 376 

the nitrogen nutritional status and nitrogen preference (i.e., NO2
-+NO3

− vs NH4
+ vs urea) for 377 

Pseudo-nitzschia populations, and thus the potential influence of nitrogen on bloom dynamics 378 

and toxicity in the EEC-NS. 379 

4.3 Domoic acid concentrations and Pseudo-nitzschia species 380 

The existence of toxigenic and non-toxigenic strains of the same species has been mentioned 381 

recurrently for several Pseudo-nitzschia species (e.g. Sahraoui et al. 2011; Thessen et al. 382 

2009; Villac et al. 1993)Sahraoui et al., 2011; Thessen et al., 2009; Villac et al., 1993). Total 383 

DA concentrations measured during this study (max. 263 pg mL-1) were higher than several 384 

published values in the EEC-NS ecosystem (up to 7 pg mL-1; Downes-Tettmar et al. 2013; 385 

Klein et al. 2010) but remained lower than recent measurements in the Bay of Seine (1.4 ×103 386 



pg mL-1, Thorel et al. 2017), and other ecosystems such as Monterey Bay (10×103 pg mL-1; 387 

Walz et al. 1994), the Gulf of Mexico (3.3×103 pg mL-1, Liefer et al. 2013) or Luanda Bay, 388 

Angola (1.4×103 pg mL-1, Blanco et al. 2010). 389 

Although Pseudo-nitzschia abundance matched high DA concentration in spring, this 390 

observation did not hold for the end of summer and autumn periods (Figure 6). Other species 391 

(i.e. Nitzschia navis-vargnica and N. bizertensis) are known to produce DA in south-east Asia 392 

and Tunisia, respectively (Bouchouicha-Smida et al., 2015; Kotaki et al., 2000; Lundholm and 393 

Moestrup, 2000; Tan et al., 2016). Since neither species has been detected in North Atlantic 394 

waters (including the English Channel and the North Sea) or been observed during this 2012 395 

survey, it is likely that DA originate exclusively from Pseudo-nitzschia species. 396 

Consequently, this result supports other studies where DA concentration in seawater 397 

(particulate and dissolved) or in shellfish does not always depend on Pseudo-nitzschia 398 

abundance (e.g. Bates et al. 1998; Bresnan et al. 2017; Klein et al. 2010; Lelong et al. 2012; 399 

Walz et al. 1994). During P2 and P3, high tDA concentrations coincided with the co-400 

occurrence of two or three Pseudo-nitzschia species (i.e., P. delicatissima and P. pungens 401 

during P2 and P. delicatissima, P. pungens and P. fraudulenta during P3). Since these three 402 

species have been proven at least once to produce DA (Lelong et al., 2012), the formal 403 

identification of the species responsible for DA concentration cannot be addressed with 404 

certainty. Consistent with Downes-Tettmar et al. (2013), P. pungens was certainly toxic as it 405 

was the only Pseudo-nitzschia sp. present in autumn when DA concentrations reached 101 pg 406 

mL-1. P. delicatissima and P. fraudulenta were demonstrated to be weakly toxigenic in 407 

different ecosystems (Almandoz et al., 2017; Parsons et al., 2012; Rhodes et al., 1998). 408 

Additionally, in the northern North Sea, P. delicatissima cells have not been observed to 409 

produce DA (Scottish Waters, (Fehling et al., 2006, 2004). The DA cell quotas estimated for 410 

the three samples in which particulate DA was associated with Pseudo-nitzschia abundance > 411 



103 cell L-1 ranged between 0.016 and 7.9 pg. cell-1. These DA cell quotas are comparable to 412 

values obtained for batch cultures of P. fraudulenta (0.03 pg.cell-1, Rhodes et al. 1998; 0.16 413 

pg.cell-1, Thessen et al. 2009) and P. pungens (0.2 to 10 pg. cell-1; Lelong et al. 2012). They 414 

are also congruent with DA cell quotas inferred from in situ surveys for P. fraudulenta (0.002 415 

to 0.120 pg. cell-1; Almandoz et al. 2017) and P. delicatissima (1.52 to 5.54 pg. cell-1, Parsons 416 

et al. 2012). 417 

4.4 DA implications in the ecosystem and challenges for future surveys 418 

In this study, the high proportion of dissolved domoic acid year round (~83%) may have two 419 

main implications regarding phytoplankton communities succession and marine resources. 420 

Dissolved domoic acid can indeed act as an effective Fe chelator, increasing its bioavailability 421 

and providing a competitive advantage to Pseudo-nitzschia sp. over other phytoplankton 422 

species for Fe assimilation (Prince et al., 2013; Rue and Bruland, 2001; Trick et al., 2010; 423 

Zabaglo et al., 2016). Other studies suggest that DA synthesis requires available Fe (e.g. 424 

Sobrinho et al. 2017). In both cases, accumulated iron in the polysaccharidic matrix of P. 425 

globosa (Schoemann et al., 2005) could have benefitted Pseudo-nitzschia sp. growth and DA 426 

production and could well explain its appearance every year, during and after the P. globosa 427 

bloom.  428 

Regarding marine resources, dissolved DA is reported to alter bivalve larvae growth (Liu et 429 

al., 2007) and immunity (De Rijcke et al., 2015) and these effects could spread to population 430 

recruitment and picking activities. Dissolved DA is also reported to inhibit herbivorous 431 

feeding as shown for krill (Bargu et al., 2006) and copepod species (Tammilehto et al., 2015) 432 

modifying matter and energy fluxes within the trophic web. These elements suggest the 433 

potential for dissolved DA to impact marine resources throughout the year and to trigger long-434 

term effects regarding growth and recruitment.  435 



Despite its absence in spring, particulate DA appeared at significant level (10-40%) over a 436 

wide temporal window (May to December). During this period, Pseudo-nitzschia sp. could 437 

provide a non-negligible food source from which particulate DA could be directly transferred 438 

to higher trophic levels such as exploited filter feeders namely mussels or king scallops in the 439 

EEC-NS (Ambiaud and Lefebvre, 2017). Phytoplankton consumers such as Noctiluca 440 

scintillans and copepods could act as DA vectors/inducers (Escalera et al., 2007; Fock and 441 

Greve, 2002; Leandro et al., 2010; Maneiro et al., 2005; Tammilehto et al., 2015) and were 442 

shown to dominate the zooplankton community when particulate DA reached 40% of total 443 

DA in the summer. Our data suggest that the SBNS could be an at-risk area regarding DA 444 

contamination and/or exposure of marine resources to dissolved DA: the phytoplankton 445 

abundance alert threshold was reached at least once for the P. delicatissima complex during 446 

the 2012 survey (i.e. >300 000 cells L-1, (EC) No 853/2004 2004; (EC) No 854/2004 2004) 447 

concomitantly with significant DA concentrations in seawater. However, high domoic acid 448 

concentration was not always associated with high Pseudo-nitzschia abundance. This study at 449 

the seasonal scale allowed the identification of risky periods regarding species diversity and 450 

DA forms and concentrations in the SBNS ecosystem. Given the inter-annual variability of 451 

Pseudo-nitzschia species occurrence (e.g. Thorel et al. 2017), long term monitoring is 452 

fundamental to assess whether the species seasonality persist over years and whether it is 453 

always associated to the same toxigenic species and environmental parameters. 454 
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 792 

Figure 1. A – Location of the study area. B – Location of the sampling station (black dot) in 793 
Dunkirk harbor (Southern Bight of the North Sea). 794 
 795 



 796 

Figure 2. Time series of meteorological and hydrological parameters. A. Temperature (°C) 797 
and salinity, B. pH and dO2 (mg L-1), C. Turbidity (NTU) and cumulated rainfalls over three 798 
days (bars, mm) during the 2012 survey. 799 
  800 



 801 

Figure 3. time series of nutrient concentrations (µmol L-1). A. NO2-+NO3-, NH4+ and total 802 
dissolved inorganic nitrogen (DIN = NO2-+NO3- + NH4+). B. HPO42-. C. Si(OH)4. during the 803 
2012 survey. 804 

  805 



 806 

Figure 4. Time series of A. Chlorophyll a () and pheopigment () concentrations (µg L-1); 807 

B. Abundance (cell L-1) of total phytoplankton (), diatoms (△), Phaeocystis globosa (◻) and 808 
other phytoplankton groups (×); and C. relative abundance of diatom genus (%) during the 809 
2012 survey. 810 
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 812 

 813 

Figure 5. SEM micrographs of the three identified Pseudo-nitzschia species. A-B: Pseudo-814 
nitzschia delicatissima; C-d: Pseudo-nitzschia pungens; E-F: Pseudo-nitzschia fraudulenta. 815 
Scale bars: A, C, E = 1µm, B, D, F = 10µm. 816 



 817 

Figure 6: Time series of Pseudo-nitzschia complex delicatissima () and P. complex seriata 818 
(×) abundances (cell L-1), and particulate and dissolved domoic acid (DA, pg mL-1) during the 819 
2012 survey. Stars below the x axis indicate the dates of SEM analyses for Pseudo-nitzschia 820 
sp. diversity. 821 

  822 



 823 

Figure 7: PCA plots of environmental variables. A and C. Plane defined by the two first axes 824 
of the PCA (PC1 and PC2) B and D. plane defined by the first (PC1) and third axis (PC3) of 825 
the PCA (B and D).  Points correspond to sampling dates. The colors of the circles correspond 826 
to the periods (P1 to P4) determined from phytoplankton communities composition. Circles 827 
size is proportional to Pseudo-nitzschia abundance (cell L-1) for P. complex delicatissima (A 828 
and B) and P. complex seriata (C and D). Black arrows represent variables significantly 829 
correlated to at least one represented PC.830 



Table 1. Morphological features of Pseudo-nitzschia species and comparison with literature values (min-max). * correspond to one frustule analysed and 
presenting outliers in poroids features (among >300 identified frustules) 
 

Species  
Width 
 µm 

Length  
µm 

Central  
Interspace 

Fibulae  
10 µm-1 

Interstriae  
10 µm-1 

Rows of  
poroids 

Poroids  
1 µm-1 Reference  

P. delicatissima 1.3-2 N/A + 22-29 33-43 2 8-11 Amato et al., 2005 
 1.7-2.8 N/A + 20-27 24-40 2 8-14 Fehling et al., 2006 
 1.1-2 40-78 + 19-25 36-40 2 10-12 Skov et al., 1999 
 1.0-1.5 42-66 + 20-23 env 40 2 10-12 Hasle et al., 1996 
 1.7-2.3 17-48 + 18-36 37-44 2 7.5-13.4 Kaczmarska et al., 2008 
 1.3-1.6 48-49 - 22-23 36-40 2 8-9 Klein et al., 2010 
 1.5-2.0 19-76 N/A 19-26 35-40 2 12 Lundholm et al., 2006 
 1.3-1.6 34-46 + 24-28 41-45 2 7-11 Moschandreou and Nikolaidis, 2010 
 1.0-2.4 19-78 + 19-30 33-42 2 8-12.5 Quijano-Scheggia et al., 2010 
 1.4-2.6 31-48 + 20-28 38-41 2 8-12 Fernandes et al 2014 
 1.1-1.7 40.7-67.1 + 18-27 34-44 2(3*) 10-14(18*) This study 
P. fraudulenta 4.3-5.1 N/A + 20-24 22-26 2-3 5-6 Fehling et al., 2006 
 4.5-10 50-119 + 12-24 18-24 2-3 5-7 Skov et al., 1999 
 5-6 73-117 + 19-23 19-23 2-3 4-5 Hasle et al., 1996 
 3-4.5 63-99 + 15-17 14-15 2 N/A Hernández-Becerril, 1998 
 5.1-5.6 56.8-81 - 21-22 22-24 2-3 6-7 Klein et al., 2010 
 4-7 71-101 N/A 18-30 19-28 2-3 6-7 Ljubešić et al., 2011 
 4.4-5.8 48-80 + 22-24 21-24 2 5-6 Moschandreou and Nikolaidis, 2010 
 2.9-7.1 38.9-131.5 + 12-24 18-24 2 4-7 Quijano-Scheggia et al., 2010 
 5.2-6.2 64-84 + 20-23 22-23 2 5-6 Fernandes et al. 2014 
 5.2-6.1 75.0-98.8 + 19-23 17-23 2-3 6-7 This study 
P. pungens 3.1 N/A - 12 12 2 3-4 Fehling et al., 2006 
 2.4-5.3 74-174 - 9-16 9-16 1-2 3-4 Skov et al., 1999 
 2.9-4.5 74-142 - 9-15 9-15 2 3-4 Hasle et al., 1996 
 3-4 94-109 - 10-11 10-12 2 N/A Hernández-Becerril, 1998 
 2.9-3.3 61-106 - 11-13 11-14 2-3 2-4 Klein et al., 2010 
 3.9-5.7 88-105  10-17 8-15 2 2-4 Ljubešić et al., 2011 
 2.5-3.6 77-101 - 11-13 11-13 2 2-4 Moschandreou and Nikolaidis, 2010 
 2-4.8 37-156 - 9-13 9-15 2 1-5 Quijano-Scheggia et al., 2010 
 4-4.5 75-130 - 9-13 N/A 2 3-4 Stonik et al., 2001 
 3.0-4.1 72-149 - 11-13 10-12 2 3-4 Fernandes et al 2014 
 2.7-4.7 95.9-135.5 - 10-15 10-15 2-3 2-4 This study 

 



Table 2. Spearman correlation coefficient between principal components (PCx), environmental parameters, 
Pseudo-nitzschia complexes abundances and domoic acid concentration. 

Parameters PC1 PC2 PC3 

Main variables       

Temperature (T) -0.18 0.73** -0.45+ 

Salinity (S) -0.39 0.64** 0.13 

pH 0.43+ -0.64** 0.29 

dO2 0.22 -0.75*** 0.26 

Turbidity 0.498* 0.22 0.15 

Rainfalls -0.29 0.55* 0.61* 

Windspeed 0.61* 0.51* 0.47 

Surface Solar Irradiance (ssi) -0.74** -0.06 -0.15 

DIN 0.88*** -0.29 -0.25 

PO42- 0.87*** 0.28 -0.15 

Si(OH)4 0.69*** 0.37 -0.38 

        

Supplementary variables       

Si/P 0.26 0.44 -0.38 

Si/N -0.23 0.69** -0.19 

N/P 0.66** -0.50* -0.20 

        

Pseudo-nitzschia and DA        

P. delicatissima complex -0.27 -0.33 0.47+ 

P. seriata complex -0.31 -0.07 0.50* 

tDA -0.30 0.12 0.20 
(* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001) 

 



Table 3. Environmental features of Pseudo-nitzschia spp. identified during the 2012 survey and literature values. 

Species Location Temperature Salinity DIN PO4 Si Abundance DA Reference 
  °C  µmol L-1 µmol L-1 µmol L-1 cells L-1    
P. delicatissima Southern Adriatic Sea 

 8.79-29.91, 
R<0 R>0 no significant pattern nd nd Caroppo et al., 2005 

 Western Scottland ~8°C nd ~3µM ~0.3µM ~2.5µM 1.6⋅105 nd Fehling et al., 2006 
 Louisiana nd nd no significant pattern 1⋅106 5.5pg cell-1 Parsons et al., 2013 

 NE Spanish Coast R>0 
36.8±1.1, 
R<0 R>0 nd nd 17.6±5.2⋅105 nd 

Quijano-Scheggia et al., 
2008 

 Bay of Fundy nd nd R>0 
no significant 
correlation nd nd Kaczmarska et al., 2007 

 Gulf of maine nd nd nd nd nd nd 
111-390 pg 
mL-1 Fernandes et al., 2014 

 Black Sea 16-17.5 14.5-15.7 nd nd nd 1.5-3.1⋅106  nd  
P. delicatissima complex Western English Channel déc-15 

34.9±0.4, 
R>0 nd R<0 nd 2,5⋅105 

0.2-0.4 pg 
mL-1 

Downes-Tettmar et al., 
2013 

 Galicia – Spain ~ 13.1 ~35.6 ~2.1 ~0.22 ~3 6.6⋅105 not detected Díaz et al., 2014 

 
Southern Bight of the 
North Sea 9-12 34.2±0.2 3.5±2.5 0.39±0.04 1.6±0.8 33⋅103-7.5⋅105 

92-229pg 
mL-1 This study 

        decreasing           
P. pungens Louisiana nd nd R<0 R>0 no corr 50000 nd Parsons et al., 2013 

 NE Spanish Coast nd nd no pattern nd nd nd nd 
Quijano-Scheggia et al., 
2008 

 Gulf of Maine nd nd Nd nd nd nd 
40-1100 pg 
mL-1 Fernandes et al., 2014 

 Bay of Fundy nd nd R<0 R>0 nd nd nd Kaczmarska et al., 2007 

 Western English Channel 12-16 34.9±0.4 R<0 R<0 R<0 25000 
0.2-0.4 pg 
mL-1 

Downes-Tettmar et al., 
2013 

 Sea of Marmara,Turkey 11.6-22.8 21.6 nd nd 1.8 4.8⋅105 nd 
Tas and Lundholm, 
2016 

 Sea of Marmara,Turkey 7.4-26.3 15.9-19.9 Nd Nd Nd 1.6-1.7⋅104 1.0pg mL-1 Tas et al., 2016 

P. fraudulenta California 18.5-26.5 nd 0-3 nd 2.9-35.5 5-13 105 detected 
Gárate-Lizárraga et al., 
2007 

 
North Western 
Mediterannean Sea nd R>0 R<0 nd nd nd nd 

Quijano-Scheggia et al., 
2008 

                    
P. seriata complex Western Scottland 12-13 nd ~0.3 ~0.25 ~3 110000 nd Fehling et al., 2006 
including P. pungens, P. 
fraudulenta 

Southern Bight of the 
North Sea 15.4±0.3 34.50±0.03 2.4±1.8 0.56±0.17 2.2±2.8 

9.2⋅103-
2.8⋅104 

82-108pg 
mL-1 This study 

    decreasing  increasing    
Min-max, mean ± standard deviation, R<0 and R>0: negative and positive correlation with diatom abundance, respectively., nd = no data 
 



 


