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Abstract. We present a nonhydrostatic finite-volume global
atmospheric model formulation for numerical weather pre-
diction with the Integrated Forecasting System (IFS) at
ECMWF and compare it to the established operational
spectral-transform formulation. The novel Finite-Volume
Module of the IFS (henceforth IFS-FVM) integrates the fully
compressible equations using semi-implicit time stepping
and non-oscillatory forward-in-time (NFT) Eulerian advec-
tion, whereas the spectral-transform IFS solves the hydro-
static primitive equations (optionally the fully compressible
equations) using a semi-implicit semi-Lagrangian scheme.
The IFS-FVM complements the spectral-transform counter-
part by means of the finite-volume discretization with a lo-
cal low-volume communication footprint, fully conservative
and monotone advective transport, all-scale deep-atmosphere
fully compressible equations in a generalized height-based
vertical coordinate, and flexible horizontal meshes. Never-
theless, both the finite-volume and spectral-transform formu-
lations can share the same quasi-uniform horizontal grid with
co-located arrangement of variables, geospherical longitude–
latitude coordinates, and physics parameterizations, thereby
facilitating their comparison, coexistence, and combination
in the IFS.

We highlight the advanced semi-implicit NFT finite-
volume integration of the fully compressible equations
of IFS-FVM considering comprehensive moist-precipitating
dynamics with coupling to the IFS cloud parameterization by
means of a generic interface. These developments – includ-
ing a new horizontal–vertical split NFT MPDATA advective
transport scheme, variable time stepping, effective precondi-

tioning of the elliptic Helmholtz solver in the semi-implicit
scheme, and a computationally efficient implementation of
the median-dual finite-volume approach – provide a basis for
the efficacy of IFS-FVM and its application in global numer-
ical weather prediction. Here, numerical experiments focus
on relevant dry and moist-precipitating baroclinic instabil-
ity at various resolutions. We show that the presented semi-
implicit NFT finite-volume integration scheme on co-located
meshes of IFS-FVM can provide highly competitive solution
quality and computational performance to the proven semi-
implicit semi-Lagrangian integration scheme of the spectral-
transform IFS.

1 Introduction

Notwithstanding the achievements made over the last
decades (Bauer et al., 2015), numerical weather prediction
(NWP) faces the formidable challenge of resolving rather
than parameterizing essential small-scale forcings and cir-
culations in the multi-scale global flow – most notably pro-
cesses associated with the surface, convective clouds, grav-
ity waves, and troposphere–stratosphere interaction. While
there is a need for advancement in many aspects of global
NWP model infrastructures, prerequisites are the ability of
the numerical model formulations to accurately predict at-
mospheric flows throughout the large-scale hydrostatic and
small-scale nonhydrostatic regimes and to run efficiently on
emerging and future high-performance computing (HPC) ar-
chitectures.

Published by Copernicus Publications on behalf of the European Geosciences Union.



652 C. Kühnlein et al.: FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS

The spectral-transform (ST) – also known as pseudo-
spectral – method was introduced in NWP following the
work by Eliasen et al. (1970) and Orszag (1970). As a model
representation entirely in spectral (i.e. wavenumber) space
is impractical for NWP, the ST method maps between spec-
tral and grid-point space in order to solve different parts
of the governing equations in the space where the compu-
tations can be performed most efficiently. Typically, non-
linear terms and the physics parameterizations are computed
in grid-point space. Horizontal derivatives are computed in
spectral space with formally high accuracy, as are linear
terms of the discretized governing model equations – in par-
ticular, the constant-coefficient Helmholtz problem resulting
from the semi-implicit time stepping (Robert et al., 1972)
can be solved directly and accurately in spectral space. Fa-
cilitated by the ST method, the unconditional stability of the
semi-implicit scheme combined with semi-Lagrangian (SL)
advection in grid-point space permits very long time steps1

and high efficiency (Ritchie et al., 1995; Temperton et al.,
2001). In global models, the ST method typically uses a
spherical harmonics representation in spectral space and (re-
duced, i.e. quasi-uniform) Gaussian grids (Hortal and Sim-
mons, 1991; Wedi et al., 2015).

At ECMWF, the first forecast model using the ST method
became operational in 1983, and the technique is still suc-
cessfully applied today with the efficient SISL integration
of the hydrostatic primitive equations in the Integrated Fore-
casting System (IFS) (Wedi et al., 2015). Recent advances
helped to sustain the performance of the ST method (for de-
tails see Wedi et al., 2013, 2015; Wedi, 2014 and Sect. 2.2)
and enabled real-time medium-range global weather fore-
casts at ECMWF with ≈ 9 km horizontal grid spacings in
2016 (Malardel et al., 2016). Furthermore, current research
advanced the applicability of the ST method into the realm of
global convection-permitting forecasts with kilometre-scale
horizontal grid spacings (Wedi and Düben, 2017). While the
viability of the ST method at ECMWF is ensured for the
next decade, uncertainties concerning the scalability of the
non-local high-volume parallel communications in the STs
exist in the longer term (Wedi et al., 2013, 2015). These
scalability issues could be exacerbated from the time when
the increase in horizontal resolution makes the nonhydro-
static formulation based on the fully compressible equations
(Bubnová et al., 1995; Bénard et al., 2010) essential. This
is because the associated solution procedure in the IFS re-
quires – at least in its current implementation – a predictor–
corrector approach in the semi-implicit integration scheme
that involves a considerably larger number of STs per model

1The SL schemes are subject to a topological realizability condi-
tion based on the Lipschitz number which is related to the flow de-
formation (Smolarkiewicz and Pudykiewicz, 1992; Cossette et al.,
2014). However, in NWP this condition is typically much less
restrictive than the advective CFL stability condition of Eulerian
schemes; see e.g. Diamantakis and Magnusson (2016).

time step (Bénard et al., 2010; Wedi et al., 2015). Further-
more, the large overlap regions between parallel distributed-
memory partitions required in the SL scheme of IFS-ST can
also be an issue in the longer term.

The uncertainties concerning the SISL integration based
on the ST method with regard to emerging and future HPC
architectures is one of the main reasons for ECMWF and
its European partners to look into alternative nonhydro-
static, all-scale global model formulations and discretization
schemes to be incorporated in the IFS. With this objective
in mind, the Finite-Volume Module of the IFS (henceforth
IFS-FVM) is under development at ECMWF (Smolarkiewicz
et al., 2016, 2017; Kühnlein and Smolarkiewicz, 2017). An
important property of the finite-volume (FV) method ap-
plied in IFS-FVM is a compact spatial discretization stencil
in “grid-point” space, associated with a distributed-memory
communication footprint that is predominantly local and per-
formed using thin overlap regions with the nearest neigh-
bours, in contrast to the non-local high-volume communi-
cations required in IFS-ST. In addition, advantages of the
FV method are inherently local conservation and the ability
to operate in complex, unstructured-mesh geometries. The
lack of conservation is a common issue with standard SL
schemes and a shortcoming in the current operational IFS.
Conservation errors are presumed to contribute to significant
(moisture and temperature) biases in the upper troposphere
lower stratosphere region (Wedi et al., 2015), and a small
but systematic drift in air mass and tracer fields may affect
the forecast quality at longer (sub-)seasonal forecast ranges
(Thuburn, 2008; Diamantakis and Flemming, 2014). The
ability of FV methods to operate in complex, unstructured-
mesh geometries is of high relevance to global NWP. In
the global (spherical or spheroidal) domains, the FV tech-
nique provides ample freedom for implementing efficient
quasi-uniform resolution meshes that circumvent the polar
anisotropy of the classical regular longitude–latitude grids
commonly employed with finite-difference (FD) discretiza-
tion methods (Prusa et al., 2008; Wood et al., 2014). Flexi-
bility with respect to the mesh is also important for imple-
menting variable and/or adaptive resolution in atmospheric
modelling systems, in which locally finer mesh spacings in
sensitive regions (e.g. storm tracks) may provide an efficient
way towards a more accurate representation of multi-scale
interactions (Bacon et al., 2000; Weller et al., 2010; Kühn-
lein et al., 2012; Zarzycki et al., 2014).

By default, IFS-FVM employs 3-D semi-implicit inte-
grators for the nonhydrostatic fully compressible equations
(Smolarkiewicz et al., 2014). The all-scale integrators in IFS-
FVM are conceptually akin to the semi-implicit schemes
in IFS-ST but more general. In both formulations, accu-
rate and robust integration with large time steps is achieved
by 3-D implicit representation of fast acoustic and buoy-
ant modes supported by the fully compressible equations.
Furthermore, fully implicit representation of slow rotational
modes is another common feature of both IFS-FVM and IFS-
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ST (Temperton, 2011; Smolarkiewicz et al., 2016). Although
implicit time stepping is predominantly associated with com-
putational stability, there are indications for favourable bal-
ance and accuracy in multi-scale flows (Knoll et al., 2003;
Dörnbrack et al., 2005; Wedi and Smolarkiewicz, 2006). In
contrast to IFS-ST, IFS-FVM’s semi-implicit schemes do not
rely on constant coefficients of the operator that is repre-
sented implicitly, as is required with the spectral space rep-
resentation (Bénard et al., 2010). In IFS-ST, the operator
that is represented implicitly results from linearization of the
full non-linear governing equations about a horizontal refer-
ence state, and the semi-implicit integration then treats the
non-linear residual (i.e. full non-linear equations minus the
linear operator) explicitly (see Sect. 2.2). Constant coeffi-
cients effectively exclude orographic forcing from the lin-
ear operator of the semi-implicit scheme2, leaving the associ-
ated effects solely to the explicit non-linear residual. Further-
more, in the constant-coefficient semi-implicit scheme dif-
ferent (i.e. split) boundary conditions are applied in the linear
operator and the non-linear residual. Although still a research
issue, the constant-coefficient semi-implicit scheme may in-
cur reduced stability under more complex orography for fu-
ture high-resolution forecasts in the nonhydrostatic regime.

At ECMWF, the reign of the ST method with the SISL
integrators still continues, but future challenges, especially
with respect to HPC, nonhydrostatic modelling, and com-
plex orography, can be foreseen. The IFS-FVM represents
an alternative dynamical core formulation that can comple-
ment IFS-ST with regard to these issues. However, to make
IFS-FVM a useful option for global medium-range weather
forecasting at ECMWF, it needs to be shown that the model
formulation can provide (at least) comparable solution qual-
ity to the established IFS. In particular, a fundamental scien-
tific question is whether a second-order FV method on the
co-located meshes employed in IFS-FVM can sustain the
accuracy of the ST method of IFS-ST. Another important
question concerns the computational efficiency of IFS-FVM.
At ECMWF and generally in NWP, tight constraints exist
with regard to the runtime of the forecast models on the em-
ployed supercomputers. Therefore, we will evaluate the ba-
sic efficiency in terms of the time to solution of the current
IFS-FVM formulation relative to the operational hydrostatic
IFS-ST and its nonhydrostatic extension. In the present pa-
per, these issues are investigated using relevant atmospheric
flow benchmarks such as those defined in the context of the
Dynamical Core Model Intercomparison Project (DCMIP;
Ullrich et al., 2017). The DCMIP-2016 benchmarks involve
large-scale hydrostatic and small-scale nonhydrostatic flows
on the sphere and also emphasize the interaction of the dy-

2Including orography in the implicit part involves multiplica-
tions which are standardly performed in grid-point space in the con-
text of the ST method. In principle, one could carry out the nec-
essary multiplications in spectral space but this is usually avoided
because of computational complexity.

namical core with selected parameterizations of sub-grid-
scale physical processes. In the present paper IFS-FVM is
verified against the proven IFS-ST at ECMWF for the baro-
clinic instability benchmark in the hydrostatic regime, con-
sidering specific configurations and parameterizations of in-
terest at ECMWF. IFS-FVM also participates in the wider
DCMIP-2016 model intercomparison, and this includes the
nonhydrostatic supercell test case (Zarzycki et al., 2018).

The paper is organized as follows. Section 2 addresses the
IFS-FVM and IFS-ST model formulations and juxtaposes
their main formulation features. In particular, while Sect. 2.1
provides a description of the advanced semi-implicit finite-
volume integration scheme of the novel IFS-FVM, Sect. 2.2
briefly summarizes the established IFS-ST. Furthermore,
Sect. 2.3 discusses some basic aspects of the coupling to
physics parameterizations, and Sect. 2.4 describes the com-
mon octahedral reduced Gaussian grid applied at ECMWF.
Having described the model formulations, the IFS-FVM and
IFS-ST benchmark simulations are then compared in Sect. 3.
Section 4 concludes the paper.

2 IFS model formulations

The IFS comprises a comprehensive model infrastructure
to perform data assimilation and to run deterministic and
probabilistic global weather forecasts with various ranges
and resolutions, supplemented with preprocessing and post-
processing capabilities. The dynamical core lies at the heart
of the NWP model infrastructure.

2.1 Finite-Volume Module of the IFS

IFS-FVM solves the deep-atmosphere3, nonhydrostatic,
fully compressible equations with a generalized height-based
terrain-following vertical coordinate. Numerical integration
of the governing equations employs a centred two-time-level
semi-implicit scheme that provides unconditional stability in
3-D with respect to the fast acoustic and buoyant modes,
as well as slower rotational modes (Smolarkiewicz et al.,
2014, 2016). In Sect. 2.1.2, we extend the IFS-FVM semi-
implicit integration to comprehensive moist-precipitating dy-
namics coupled to the IFS cloud physics parameterizations
– this generalizes the simplified moist-precipitating dynam-
ics with different cloud physics coupling described in Smo-
larkiewicz et al. (2017). The IFS-FVM semi-implicit integra-
tion is combined with non-oscillatory forward-in-time (NFT)
Eulerian advection based on MPDATA (multidimensional
positive definite advection transport algorithm) (Kühnlein
and Smolarkiewicz, 2017). In the present work, new efficient
horizontal–vertical split NFT advective transport schemes
based on MPDATA are developed and applied (Sect. 2.1.2
and Appendix A). In addition, improved efficacy with the

3The shallow-atmosphere equations, the default in IFS-ST, are
available by means of a simple switch γ (Appendix C).
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Table 1. Summary of the main formulation features of IFS-FVM and IFS-ST. For IFS-ST, information about the hydrostatic formulation and
its nonhydrostatic extension is provided (see main text for description). Abbreviations are as follows: finite element (FE), finite difference
(FD), spectral transform (ST), finite volume (FV), two time level (2-TL), semi-implicit (SI), iterative-centred implicit (ICI). A summary of
variables is provided in Table D1.

Model aspect IFS-FVM IFS-ST IFS-ST (NH option)

Equation system fully compressible hydrostatic primitive fully compressible
Prognostic variables ρd, u, v, w, θ ′, ϕ′, rv, rl, rr, ri, rs lnps, u, v, Tv, qv, ql, qr, qi, qs lnπs, u, v, d4, Tv, q̂, qv, ql, qr, qi, qs
Horizontal coordinates λ, φ (lon–lat) λ, φ (lon–lat) λ, φ (lon–lat)
Vertical coordinate generalized height hybrid sigma–pressure hybrid sigma–pressure
Horizontal discretization unstructured finite volume (FV) spectral transform (ST) spectral transform (ST)
Vertical discretization structured FD–FV structured FE structured FD or FE
Horizontal staggering co-located co-located co-located
Vertical staggering co-located co-located co-located, Lorenz
Horizontal grid octahedral Gaussian or arbitrary octahedral Gaussian octahedral Gaussian
Time stepping scheme 2-TL SI 2-TL constant-coefficient SI 2-TL constant-coefficient SI with ICI
Advection conservative FV Eulerian non-conservative SL non-conservative SL

Eulerian NFT MPDATA advection is sought by rigorous
implementation of variable time stepping. The unstructured
horizontal spatial discretization uses the median-dual FV
approach of Szmelter and Smolarkiewicz (2010) combined
with a structured-grid FD–FV approach in the vertical direc-
tion (Smolarkiewicz et al., 2016). In Sect. 2.1.3, we present
a revised computationally efficient implementation of the
median-dual FV approach. High efficacy also results from ef-
fective preconditioning of the Krylov-subspace solver for the
Helmholtz problem arising in the semi-implicit time stepping
of the fully compressible equations addressed in Sect. 2.1.2
and Appendix B. To facilitate interoperability between the
different numerical methods in the IFS, IFS-FVM uses the
median-dual FV mesh built about the nodes of the octahe-
dral reduced Gaussian grid. However, the IFS-FVM numeri-
cal formulation is not restricted to this grid and offers capa-
bilities towards broad classes of meshes including adaptivity
(Szmelter and Smolarkiewicz, 2010; Kühnlein et al., 2012).
The IFS-FVM employs flexible parallel data structures pro-
vided by ECMWF’s Atlas library (Deconinck et al., 2017).
The main model formulation features of IFS-FVM are sum-
marized in Table 1 and shown alongside the corresponding
IFS-ST properties discussed below in Sect. 2.2.

2.1.1 Governing equations

Building on the formulation of moist-precipitating dynamics
described in Smolarkiewicz et al. (2017), the fully compress-
ible equations considered in IFS-FVM are given as

∂Gρd

∂t
+∇ · (vGρd)= 0 , (1a)

∂Gρdu

∂t
+∇ · (vGρdu)=

Gρd

[
− θρG̃∇ϕ′+g

(
1−

ϑ

θρa

(
θa+ θ

′
))

−f ×
(
u−

θρ

θρa
ua

)
+M′

+P u

]
, (1b)

∂Gρdθ
′

∂t
+∇ ·

(
vGρd θ

′
)
= Gρd

[
−G̃Tu · ∇θa+P

θ ′
]
, (1c)

∂Gρd rk

∂t
+∇ · (vGρd rk)= GρdP

rk , rk = rv , rl , rr , ri , rs (1d)

ϕ′ = cpd

[(
Rd

p0
ρd θ (1+ rv/ε)

)Rd/cvd

−πa

]
, (1e)

which describe the conservation laws of dry mass (Eq. 1a),
momentum (Eq. 1b), dry entropy (Eq. 1c), and water sub-
stance (Eq. 1d). A summary of variables and physical con-
stants is provided in Tables D1 and D2, respectively. Depen-
dent variables in Eqs. (1a)–(1e) are dry density ρd, three-
dimensional physical velocity vector u= [u,v,w]T, poten-
tial temperature perturbation θ ′, and a modified Exner pres-
sure perturbation ϕ′ ≡ cpdπ

′, as well as the water substance
mixing ratios rk = ρk/ρd (i.e. the ratio of the density of the
individual water substance category ρk to the density of dry
air ρd); with the current cloud parameterization of the IFS
(Forbes et al., 2010), five categories for water substance are
considered (vapour rv, liquid rl, rain rr, ice ri, snow rs),
each described by the respective PDE (Eq. 1d). An additional
prognostic equation for cloud fraction3a employed with the
IFS cloud parameterization is implemented as

∂Gρd 3a

∂t
+∇ · (vGρd 3a)= GρdP

3a . (2)

Furthermore, the thermodynamic variables are related by the
gas law (Eq. 1e); the Exner pressure is π = (p/p0)

Rd/cpd and
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the potential temperature is θ = T/π , where p is the total
pressure, p0 ≡ 105 Pa, and T is the (absolute) temperature.
In Sect. 2.1.2, the fully compressible system (1a)–(1e) is aug-
mented with the prognostic Helmholtz Eq. (17) derived from
the advective form of the gas law (Eq. 1e) for the implicit
(rather than explicit) solution with respect to the Exner pres-
sure perturbation ϕ′.

A quantity which appears in various right-hand-side
(RHS) terms of the momentum Eq. (1b) is the density po-
tential temperature θρ = θ ϑ , where ϑ ≡ (1+ rv/ε)/(1+ rt )
(Emanuel, 1994) with ε = Rd/Rv, and the total water mix-
ing ratio rt represents the sum over all the individual mixing
ratios:

rt =
∑
k

rk = rv+ rl+ rr+ ri+ rs . (3)

The multiplying factor ϑ appears explicitly in the buoyancy
term of Eq. (1b) in order to expose the potential tempera-
ture perturbation θ ′ for implicit coupling to the thermody-
namic Eq. (1c) (see Sect. 2.1.2). Note that a high-order ap-
proximation of the buoyancy term applied in Kurowski et al.
(2014) and Smolarkiewicz et al. (2017) for consistency with
soundproof models at mesoscales has been replaced here by
the full, unabbreviated form essential for the accurate repre-
sentation of moist-precipitating dynamics at planetary scales
(Sect. 3).

Another important aspect of the governing Eqs. (1a)–(1e)
is the underlying perturbation form. The perturbations of
potential temperature θ ′ = θ − θa and Exner pressure π ′ =
π −πa correspond to deviations from an ambient state (de-
noted by the subscript “a”) that satisfies a general balanced
subset of Eqs. (1a)–(1e). A straightforward example applied
in Sect. 3 of this paper is a stationary atmosphere ua(x),
θa(x), πa(x), rva(x) in thermal wind balance, which in terms
of the momentum Eq. (1b) is

0=−θρaG̃∇ϕa−g−f ×ua+M(ua) , (4)

where ϕa ≡ cpdπa and θρa = θa (1+rva/ε)/(1+rva). The per-
turbation form (1a)–(1e) is analytically equivalent to the fully
compressible equations for full variables but has favourable
properties for numerical integration; see Sect. 2.1.2 and
Prusa et al. (2008) and Smolarkiewicz et al. (2014). More-
over, there are other analytically equivalent perturbation
forms of the fully compressible equations implemented in
IFS-FVM, which may differ in the degree of implicitness
permitted in the integration (Smolarkiewicz et al., 2019). The
optimal specification of ambient states for NWP and climate
modelling is ongoing research. In general, ambient states can
be as simple as stationary vertical profiles in hydrostatic bal-
ance, but bespoke definitions designed for a particular class
of applications can substantially benefit the accuracy and ro-
bustness of the model integration.

All governing equations are formulated with respect to
generalized curvilinear coordinates embedded in a geospher-

ical framework. At the most elementary level, the general-
ized curvilinear coordinate formulation can be used to imple-
ment fixed terrain-following levels with appropriate bound-
ary conditions, but the model formulation optionally per-
mits quite general moving meshes in the vertical and the
horizontal directions. Symbols associated with the geomet-
ric aspects of the model are the transformed curvilinear co-
ordinates x = [x,y,z]T, the 3-D nabla operator ∇ with re-
spect to x, the Jacobian G of the coordinate transformations
(i.e. the square root of the determinant of the metric tensor),
a matrix of metric coefficients G̃, its transpose G̃T, and the
contravariant velocity v = ẋ = G̃Tu+ vg where vg ≡ ∂x/∂t

is the mesh velocity; see Prusa and Smolarkiewicz (2003)
and Kühnlein et al. (2012) for extended discussion. Fol-
lowing Smolarkiewicz et al. (2017), further symbols on the
RHS of the momentum Eq. (1b) denote the gravity vector
g = [0,0,−g]T, the Coriolis parameter f ≡ 2� with � the
angular velocity vector of the Earth’s rotation, and M′ sub-
sumes the metric forces due to the curvature of the sphere:

M′
(
u,ua,θρ/θρa

)
=M(u)− (θρ/θρa)M(ua) . (5)

Details about the specification of the curvilinear space, as
well as explicit expressions of the Coriolis term −f ×u, the
metric forces M, and the gravity g under shallow- or deep-
atmosphere equations, are given in Appendix C. Last but
not least, the symbols P u

= [P u,P v,Pw]T, P θ
′

, P rk on the
RHS of Eqs. (1a)–(1e) denote the respective forcings from
physics parameterizations.

Note that additional RHS terms not explicitly provided
in the governing Eqs. (1a)–(1e) may describe Rayleigh-
type damping and/or Laplacian diffusion applied especially
to model wave-absorbing layers at the domain boundaries;
see e.g. Prusa and Smolarkiewicz (2003) and Klemp et al.
(2008).

2.1.2 Semi-implicit numerical integration

To facilitate a compact description of the integration scheme,
each of the governing Eqs. (1a)–(1e), (2), (17) is accommo-
dated in a generalized conservation law form:

∂G9

∂t
+∇ · (V9)=G

(
R9
+P9

)
, (6)

in which 9 denotes the prognostic model variable, V the ad-
vector, G a generalized density, P9 represents the forcing
from physics parameterization, and R9 the remaining right-
hand side4; see Table 2 for the respective specifications of9,
V , G. The homogeneous mass continuity Eq. (1a) is a par-
ticular case of Eq. (6) and plays a fundamental role for the
conservative advective transport of all other scalar variables.
Note that because of the mass continuity Eq. (1a), the other
scalar conservation laws (Eq. 6) are equivalent to the La-
grangian form d9/dt =R9

+P9 , where d/dt = ∂/∂t+v ·∇

represents the total derivative.

4As an example,Rθ ′ ≡−G̃Tu ·∇θa when considering Eq. (1c).
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Table 2. Specification of prognostic model variables and corresponding parameters in the template scheme (7)–(8). Columns represent the
dependent variable 9, the advector V , a generalized density G, and a9 , b9 the weights for the incorporation of the RHS forcings R9 . The
rightmost column refers to the governing equation for each dependent variable 9.

Variable 9 V G a9 b9 Eq.

Dry density ρd vG G – – (1a)
Zonal physical velocity u vGρd Gρd 0.5 0.5 (1b)
Meridional physical velocity v vGρd Gρd 0.5 0.5 (1b)
Vertical physical velocity w vGρd Gρd 0.5 0.5 (1b)
Potential temperature perturbation θ ′ vGρd Gρd 0.5 0.5 (1c)
Water vapour mixing ratio rv vGρd Gρd – – (1d)
Liquid water mixing ratio rl vGρd Gρd – – (1d)
Rain water mixing ratio rr vGρd Gρd – – (1d)
Ice mixing ratio ri vGρd Gρd – – (1d)
Snow mixing ratio rs vGρd Gρd – – (1d)
Cloud fraction 3a vGρd Gρd – – (2)
Exner pressure perturbation ϕ′ vGρd Gρd (1−α) α (17)

Building on the earlier works by
Smolarkiewicz et al. (2014, 2016), the two-time-level
numerical integrators of IFS-FVM for Eq. (6) can be
subsumed in the following template scheme:

9n+1
i =Ai(9̃,V

n+1/2,Gn,Gn+1,δt)+ b9 δtR9
|
n+1
i

≡ 9̂i + b
9 δtR9

|
n+1
i , (7)

where

9̃ =9n+ a9 δtR9
|
n
+ δt P9 |n , (8)

and 9̂i =Ai(9̃,V
n+1/2,Gn,Gn+1,δt) in Eq. (7) symbol-

izes a flux-form Eulerian NFT advective transport scheme
based on MPDATA, as described in Kühnlein and Smo-
larkiewicz (2017) and Appendix A of the present paper. The
n, n+1/2, n+1 indices denote full and half-time levels, and
δt = tn+1

− tn is the time step increment of the semi-implicit
dynamics. The vector index i = (k, i) marks the node po-
sitions k and i of the vertical and horizontal computational
mesh, respectively, thereby revealing the 3-D co-located spa-
tial arrangement of all dependent variables underlying IFS-
FVM’s discretization. The definitions of the weights a9 and
b9 for the incorporation of the right-hand-side terms R9 at
tn and tn+1, respectively, are given in Table 2. Apart from the
incorporation of the physics parameterization P9 , the semi-
implicit scheme (7) with weights a9 ≡ b9 ≡ 0.5 is fully con-
gruent with the second-order trapezoidal-rule trajectory inte-
gral of the corresponding ordinary differential equation

d9
dt
=R9 (9)

of Eq. (6) (Smolarkiewicz and Margolin, 1993). Due to the
congruency of Eq. (7) with the ODE (Eq. 9), the advec-
tion operator 9̂i may equally represent a second-order accu-
rate semi-Lagrangian scheme (Smolarkiewicz et al., 2014).

In terms of the coupling to physics parameterizations for-
mally incorporated with first-order accuracy, the associated
forcing P9 |n = P9(tphys,1tphys) can optionally be evalu-
ated with an equal or longer time step1tphys =Nsδt (with in-
tegerNs = 1,2,3, . . .) than δt applied in Eq. (7); see Sect. 2.3
about physics–dynamics coupling.

There are two alternative implementations of the NFT
advective transport scheme Ai(9̃,V

n+1/2,Gn,Gn+1,δt)

based on MPDATA. First, the standard MPDATA formu-
lations for integrating the fully compressible equations in
the horizontally unstructured vertically structured discretiza-
tion framework of IFS-FVM are provided in Kühnlein and
Smolarkiewicz (2017). These schemes are fully multidimen-
sional (i.e. unsplit), equipped with non-oscillatory enhance-
ment (Smolarkiewicz and Grabowski, 1990; Smolarkiewicz
and Szmelter, 2005), and qualify for implicit large-eddy sim-
ulation (ILES) of high-Reynolds-number atmospheric flows;
e.g. Domaradzki et al. (2003), Piotrowski et al. (2009),
and Smolarkiewicz et al. (2013). Secondly, a more efficient
horizontal–vertical split advective transport scheme based on
MPDATA has been developed and is outlined in Appendix A.
All IFS-FVM results presented in Sect. 3 were obtained
with this horizontal–vertical split scheme. Note that the basic
unsplit and horizontal–vertical split MPDATA schemes are
second-order accurate given the advector V n+1/2 at the in-
termediate time level tn+1/2 provided as an O(δt2) estimate,
which is explained below.

Given the preceding discussion, the semi-implicit solution
procedure proceeds from an atmospheric state at tn to a state
at tn+1 as described in the following. The solution proce-
dure commences with the integration of the mass continuity
Eq. (1a) as

ρn+1
d i =Ai(ρ

n
d , (vG)

n+1/2,Gn,Gn+1,δt) , (10)

which straightforwardly returns the updated density ρn+1
d i .

The O(δt2) estimate for the advector (vG)n+1/2 in Eq. (10)
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is implemented here by linear extrapolation of the advective
velocities from the previous time levels tn−1 and tn; see Ap-
pendix A of Kühnlein et al. (2012) for the procedure account-
ing for a variable time step δt . In addition, the algorithm (10)
defines the advector V n+1/2

≡ (vGρd)
n+1/2 as face-normal

mass fluxes to the dual cell (vGρd)
⊥
|
n+1/2 for the advective

transport of all other scalar variables (see Table 2), a com-
mon approach to enable mass-compatible and monotonic so-
lutions; see Smolarkiewicz et al. (2016) and Kühnlein and
Smolarkiewicz (2017) for a discussion in the context of IFS-
FVM.

Given the tendencies from physics parameterization P θ
′

,
P u, P v , P rk , P3a formally evaluated at tn and the advec-
tive transport of all scalar variables θ̂ ′i , ûi ≡ (̂ui, v̂i, ŵi),
rk
n+1
i ≡ r̂ki , 3a

n+1
i ≡ 3̂ai – with the advected water content

mixing ratios r̂ki and cloud fraction 3̂ai already representing
the final solutions at tn+1 – the scheme (7)–(8) for the ther-
modynamic Eq. (1c) and momentum Eq. (1b) is implemented
as

θ ′i = θ̂
′
i − 0.5δt

[
G̃Tu · ∇θa

]
i

(11a)

ui = ûi + 0.5δt
[
− θ?ρG̃∇ϕ′+g

(
1−

ϑn+1

θρa

(
θa+ θ

′
))

−f ×
(
u−

θ?ρ

θρa
ua
)
+M′

(
u?,ua,

θ?ρ

θρa

)]
i

, (11b)

where

θ?ρ = θ
?ϑn+1

≡
θ?(1+ rn+1

v /ε)

(1+ rn+1
t )

. (12)

Due to the presence of non-linear terms, the discrete
system (11a)–(11b) is executed iteratively (Smolarkiewicz
and Dörnbrack, 2008; Smolarkiewicz et al., 2014), with
lagged quantities from the previous iteration denoted
by the superscript ?. Typically, it uses one correc-
tive iteration, which results in a predictor–corrector
approach. The predictor of Eqs. (11a)–(11b) alone
is second-order accurate, and the predictor–corrector
already closely approximates the corresponding trape-
zoidal integral (Smolarkiewicz and Szmelter, 2009;
Smolarkiewicz et al., 2014, 2019). With the respective
prognostic model variables θ ′ and u in Eqs. (11a)–(11b) the
n+ 1 time level index has been dropped, but the n+ 1 time
level index is retained with the coefficient ϑn+1 defined in
Eq. (12) that is composed of the already completed rn+1

k . At
the beginning of the iterative execution of Eqs. (11a)–(11b),
a first guess θ0 for θ? is provided as the explicit solution of
full potential temperature:

θ0
i = θ̂i =Ai

(
θn+ δtP θ

′

|
n, (vGρd)

⊥
|
n+1/2, (Gρd)

n,

(Gρd)
n+1,δt

)
, (13)

whereas a first guess u0 for u? is prescribed by linear extrap-
olation of u from the tn−1 and tn time levels (again taking
into account the variable time step δt).

From Eqs. (11a)–(11b), closed-form expressions for the
discrete velocity update are derived by eliminating Eq. (11a)
for θ ′i in the buoyancy term of Eq. (11b) – thereby imple-
menting 3-D fully implicit treatment of buoyant modes in
a moist-precipitating atmosphere – and gathering the terms
with linear dependence on ui on the left-hand side (LHS),
which results in

u+ 0.5δt f ×u− (0.5δt)2
g

θa
G̃Tu · ∇θa =

û− 0.5δt
[

g

θρa

(
θρa−ϑ

n+1θa−ϑ
n+1θ̂ ′

)
−f ×

θ?ρ

θρa
ua

−M′

(
u?,ua,

θ?ρ

θρa

)]
− 0.5δt θ?ρG̃∇ϕ′

≡ ̂̂u− 0.5δt θ?ρG̃∇ϕ′ . (14)

As all terms are co-located, the spatial mesh vector index i

has been omitted in Eq. (14). The RHS of Eq. (14) is com-
posed of all explicitly known terms, summarized as ̂̂u, and
the pressure gradient term with the lagged coefficient θ?ρ .
Defining L as the linear operator acting on u on the LHS
and L−1 its inverse, Eq. (14) can be symbolized as

Lu= ̂̂u− 0.5δt θ?ρG̃∇ϕ′ , (15)

and

u= ˇ̌u−C∇ϕ′ , (16)

respectively, where ˇ̌u= L−1̂̂u, and C= L−10.5δt θ?ρG̃ de-
notes a 3× 3 matrix of known coefficients. The solution al-
gorithm presented up to Eq. (16) still requires the Exner
pressure perturbation ϕ′ to be specified. A straightforward
computation may employ the gas law (Eq. 1e) using the
updated variables ρd, θ , and rv. However, the resulting 3-
D explicit acoustic integration is subject to very small time
steps (in order to maintain numerical stability) and thus in-
efficient for NWP. Therefore, a final step in IFS-FVM’s nu-
merical solution procedure is to augment the fully compress-
ible Eqs. (1a)–(1e) with an auxiliary 3-D implicit bound-
ary value problem for the pressure perturbation variable ϕ′

(Smolarkiewicz et al., 2014). The formulation of this implicit
boundary value problem originates from the advective (or
Lagrangian) form of the gas law (Eq. 1e) combined with the
respective advective forms of the mass continuity Eq. (1a),
thermodynamic Eq. (1c), and water vapour Eq. (1d) equa-
tions; see Smolarkiewicz et al. (2014, 2017) for further de-
tails. The governing equation for ϕ′ is then implemented in
conservation form consistent with Eqs. (1a)–(1e) and reads

www.geosci-model-dev.net/12/651/2019/ Geosci. Model Dev., 12, 651–676, 2019



658 C. Kühnlein et al.: FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS

∂Gρdϕ
′

∂t
+∇ ·

(
vGρdϕ

′
)
=

Gρd

[
−
Rd

cvd

ϕ

G
∇ · (G G̃Tu)−

1
Gρd
∇ · (Gρd G̃Tuϕa)

+
ϕa

Gρd
∇ · (Gρd G̃Tu)+

Rd

cvd
ϕ5

]
, (17)

where ϕ = ϕa+ϕ
′ and

5=

(
P θ
′

θ
+

P rv/ε

1+ rv/ε

)
. (18)

We interpret Eq. (17) in terms of the generalized transport
Eq. (6) for 9 ≡ ϕ′ (see Table 2), while setting

P ϕ
′

= (Rd/cvd)ϕ5 , (19)

and Rϕ′ as the remaining RHS consisting of the three di-
vergence operators. Importantly, the P ϕ

′

given by Eq. (19)
describes the pressure adjustment from the physics param-
eterization tendencies P θ

′

and P rv . We have implemented
the integration of Eq. (17) using the template semi-implicit
scheme (7) with parameters aϕ

′

= (1−α) and bϕ
′

= α, where
α ∈ [0.5,1.0]. In the limit α = 1.0, the template Eq. (7) rep-
resents the first-order backward Euler scheme with regard to
Rϕ′ . For α = 0.5, the template Eq. (7) becomes the second-
order trapezoidal scheme; in practice we may use weak off-
centring (e.g. α = 0.51) for regularization. For any specifi-
cation of α, coupling with the solution procedure of the fully
compressible Eqs. (1a)–(1e) is implemented through Eq. (16)
that enters into the three occurrences of u on the RHS of
Eq. (17) in Rϕ′

|
n+1. Furthermore, as indicated in Eq. (7),

the (explicit) forward Euler scheme is used with regard to
the forcing P ϕ

′

. Reorganizing terms finally yields the elliptic
Helmholtz equation for the pressure perturbation variable ϕ′

at the future time level tn+1, which can be written compactly
as

0=−
3∑
`=1

(
A?`

ζ`
∇ · ζ` G̃T( ˇ̌u−C∇ϕ′)

)
−B?(ϕ′− ϕ̂′)

≡ L(ϕ′)−R , (20)

where the spatial grid index i has been omitted again. The
summation ` in Eq. (20) is over the three divergence opera-
tors on the RHS of Eq. (17). The symbolic notations L(ϕ′)
and R refer to the implicit and explicit parts of the equation,
respectively. The coefficients A?`, ζ`, and B? are defined ac-
cordingly as

A?1 = 1, A?2 = A
?
3 =

cvd

Rd

ϕa

ϕ
, ζ1 = G, ζ2 = Gρdϕa,

ζ3 = Gρd, B
?
=

1
α δt

cvd

Rd ϕ
, (21)

and ϕ̂′ =A(ϕ′n+(1−α)δtRϕ′
|
n
+δtP ϕ

′

|
n, (vGρd)

⊥
|
n+1/2,

(Gρd)
n, (Gρd)

n+1,δt). The Helmholtz Eq. (20) extends
the implementations in Smolarkiewicz et al. (2016, 2017)
and Kühnlein and Smolarkiewicz (2017) that all used the
backward Euler scheme α = 1. The 3-D elliptic boundary
value problem (Eq. 20) is solved using a nonsymmetric
preconditioned generalized conjugate residual (GCR) ap-
proach; see Smolarkiewicz and Szmelter (2011) for a re-
cent discussion and Smolarkiewicz and Margolin (2000) and
Smolarkiewicz et al. (2004) for tutorials. The crux of the pre-
conditioning is the direct inversion of the vertical part of
the problem that dramatically reduces the condition num-
ber of the full linear operator L and enables rapid conver-
gence of the GCR solver. The preconditioner P ≈ L dis-
cards the off-diagonal entries of the matrix G̃TC. Inversion
of P then utilizes a weighted line Jacobi method explained
in Appendix B. In the GCR solver and the preconditioner
P , the coefficients A?2, A?3, and B? in Eq. (21) depend on
ϕ = ϕa+ϕ

′, lagged behind in the outer iteration of Eq. (11b).
Importantly, in the predictor step of the outer iteration, an im-
proved first guess for ϕ′, can be achieved by employing the
explicit forward Euler scheme for Eq. (17), obtained by set-
ting α = 0 in Eq. (7).

As far as the adiabatic dynamics is concerned, the O(δt2)
integration of Eq. (17) with the first-order backward Euler
scheme α = 1 maintains second-order accuracy of all vari-
ables except ϕ′ over a single time step because ϕ′ enters the
pressure gradient term of the momentum equation with the
factor 0.5δt , hence resulting in anO(δt3) integral. The accu-
mulation of first-order errors in ϕ′ can be mitigated by solv-
ing Eq. (17) with the weakly off-centred trapezoidal scheme
using α = 0.51; see Benacchio et al. (2014) for alternative
design and pertinent discussion. All IFS-FVM results pre-
sented in Sect. 3 were obtained with the backward Euler
scheme α = 1, as this has been the default in the earlier im-
plementations. However, using the extended-range forecast
of the baroclinic instability benchmark, we will demonstrate
that either α = 1 or α = 0.51 shows the same close agree-
ment with IFS-ST. Moreover, both choices α = 1 or α = 0.51
provide essentially identical computational performance.

Overall, the 3-D implicit scheme with respect to ϕ′ per-
mits time steps equivalent to soundproof models (Kurowski
et al., 2014; Smolarkiewicz et al., 2014; Kühnlein and Smo-
larkiewicz, 2017). Together with the full 3-D implicit incor-
poration of buoyant and rotational modes described above,
the semi-implicit integration is unconditionally stable with
respect to all waves supported by the fully compressible
Eqs. (1a)–(1e), and thus the semi-implicit model time step
δt can be selected according to the stability of the advective
transport scheme Ai(9̃,V

n+1/2,Gn,Gn+1,δt) in Eq. (7).

2.1.3 Spatial discretization

The discretization framework of IFS-FVM combines a
structured-grid FD–FV method in the vertical with an un-
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Figure 1. Schematic of the median-dual mesh in 2-D. The edge con-
necting nodes i and j of the primary polygonal mesh pierces, pre-
cisely in the edge centre, the face Sj shared by computational dual
cells surrounding nodes i and j . Open circles represent geometrical
barycentres of the primary mesh, solid black lines mark the primary
mesh, and blue lines indicate dual cells with control volumes Vi and
Vj , respectively.

structured5 FV approach in the horizontal (Smolarkiewicz
et al., 2016). The FV discretization and differentiation on the
spherical surfaces adopt the median-dual approach described
in Szmelter and Smolarkiewicz (2010). All dependent vari-
ables are co-located in the nodes in 3-D. The consistent spa-
tial discretization of the applied MPDATA schemes in IFS-
FVM, symbolized by the operatorAi in Eq. (7), is described
in Kühnlein and Smolarkiewicz (2017).

The schematic in Fig. 1 illustrates an arbitrary unstruc-
tured mesh on a 2-D horizontal plane. The median-dual FV
approach defines the control volume containing the node i by
connecting the barycentres of polygonal mesh cells encom-
passing the node i with the midpoints of the edges originat-
ing in the node i. All geometric elements such as cell volume
Vi , cell face area Sj , and face normals nj are evaluated from
vector calculus in the computational space, i.e. in terms of
x and y coordinates (see Sect. 2.1.1) on a zonally periodic
horizontal plane (Szmelter and Smolarkiewicz, 2010). The
unstructured FV discretization in the horizontal is combined
with the standard second-order FD–FV method on the verti-
cal structured grid with an independent coordinate z.

For a differentiable vector field A, the Gauss divergence
theorem

∫
�
∇ ·A=

∫
∂�

A ·n applied over the control volume
surrounding node i = (k, i) in 3-D computational space is
given as

(∇ ·A)i =
1
Vi

l(i)∑
j=1

A⊥k,jSj +
Azk+1/2,i −A

z
k−1/2,i

δz
, (22)

where l(i) numbers the edges connecting node (k, i) with its
horizontal neighbours (k,j), and Sj refers both to the face

5Note that although the presented IFS-FVM formulation as-
sumes an unstructured mesh with indirect addressing in the hori-
zontal, the model may exploit structured or semi-structured grids
on future HPC architectures.

per se and its surface area6. The geometric quantities Sj , Vi ,
and δz of the computational space are independent of height.
The fields A⊥k,j and Azk+1/2,i are interpreted as the mean nor-
mal components of the vector A at the horizontal and ver-
tical cell faces, respectively. Elementary approximations are
given as A⊥k,j = 0.5nj · (Ak,i +Ak,j ) in the horizontal and
Azk+1/2,i = 0.5(Azk+1,i +A

z
k,i) in the vertical (Szmelter and

Smolarkiewicz, 2010; Smolarkiewicz et al., 2016). However,
when applied in Eq. (22) without non-linear operations in-
volved at the faces, cancellation of the node value Ak,i oc-
curs, and this is exploited here to obtain a more efficient im-
plementation of the median-dual approach by simply using
A⊥k,j = 0.5nj ·Ak,j and Azk+1/2,i = 0.5Azk+1,i . Similarly, ap-
plying the same cancellation of the node value 9k,i of a dif-
ferentiable scalar field9, the 3-D nabla operator∇9 in com-
putational space interpreted in terms of the Gauss divergence
theorem is

(∇9)k,i =

(
1
Vi

l(i)∑
j=1

0.59k,jSxj ,
1
Vi

l(i)∑
j=1

0.59k,jS
y
j ,

0.5
9k+1,i −9k−1,i

δz

)
, (23)

where Sxj and Syj denote the x and y components of the
oriented surface element Sj = Sjnj . Given Eq. (22) and
Eq. (23) in the computational space, they are augmented with
metrics of the curvilinear coordinate framework to obtain the
respective physical divergence and gradient appearing in the
governing equations of Sect. 2.1.1 and 2.1.2, respectively.
For illustration, one example for the revised implementation
of the velocity divergence in the first term on the RHS of
Eq. (17) at the node (k, i) is(

1
G
∇ ·
(
G G̃Tu

))
k,i

=

0.5
Gk,i Vi

l(i)∑
j=1

Gk,j (G̃1
1 u)k,j S

x
j +Gk,j (G̃

2
2 v)k,j S

y
j

+
0.5
Gk,iδz

(
Gk+1,i

(
G̃3

1 u+ G̃
3
2 v+ G̃

3
3w
)
k+1,i

−Gk−1,i

(
G̃3

1 u+ G̃
3
2 v+ G̃

3
3w
)
k−1,i

)
. (24)

The details about the specification of the curvilinear coordi-
nate framework under shallow- and deep-atmosphere equa-
tions are described in Appendix C.

For IFS-FVM, the mesh generation and mesh data
structures, as well as the nearest-neighbour distributed-
memory communication using MPI, are handled by

6Note that in IFS-FVM, Sj and Vi have dimensions of length
and area, and the actual face areas and volumes of prismatic cells
are Sj δz and Viδz, respectively, in computational space (Smo-
larkiewicz et al., 2016).
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ECMWF’s Atlas library, comprehensively described in
Deconinck et al. (2017). Atlas is also designed to make use
of specific programming paradigms to support accelera-
tors, although these have not yet been explored with IFS-
FVM. For the quasi-uniform octahedral reduced Gaussian
grid (Sect. 2.4), the parallelization of Atlas adopts the equal-
region horizontal domain decomposition of IFS. The nearest-
neighbour communications enabling the FV stencil opera-
tions in the parallel horizontal domain are performed on over-
lap regions (halos) between partitions, as well as a “periodic
overlap” for the east–west boundary on the globe. With the
median-dual FV approach presented above, an overlap region
of one element is typically used.

In the present work, the programming of the discrete dif-
ferential operators (22) and (23) in the IFS-FVM modern
Fortran code has been comprehensively revised from earlier
implementations in Smolarkiewicz et al. (2016). While Smo-
larkiewicz et al. (2016) used a hybrid edge- and node-based
programming already different from the edge-based codes
described in Szmelter and Smolarkiewicz (2010), the cur-
rent IFS-FVM programming represents a purely node-based
implementation. When evaluating Eqs. (22) and (23), outer
loops over nodes of the co-located grid (re)compute the re-
quired quantities on edges “on the fly”. The code based on the
resulting longer, fused node-based loops performs a larger
overall number of computations as quantities on the edges
are computed more than once, but it is overall more efficient
as many intermediate memory stores are avoided and there
is a greater chance for data in cache to be reused. Due to the
underlying FD–FV discretization leading to stencil compu-
tations, IFS-FVM is naturally cache and memory-bandwidth
bound. The node-based programming improves the flop-per-
byte ratio and relaxes the dependency on relatively (com-
pared to pure computation) slow memory access. As a conse-
quence, it provides a significant gain in efficiency compared
to the hybrid edge- and node-based programming applied
in Smolarkiewicz et al. (2016). In addition, the fused loops
and data locality in the node-based code effectively enabled
the performance of the shared-memory parallelization with
OpenMP, as the threads may operate on more local mem-
ory regions and avoid thread conflicts and cache trashing. An
overall speed-up of IFS-FVM by a factor of ∼ 3–4 has been
found on ECMWF’s Cray XC40 by converting from the hy-
brid edge- and node-based to the purely node-based code.

We note that the GCR solver for the Helmholtz prob-
lem (20) uses global communications in the computation of
inner products (characteristic of Krylov-subspace methods)
and residual error norms. This has been implemented for the
present paper such that summation is first done locally for
each distributed-memory task, and the resulting single num-
bers are then reduced over all tasks.

2.2 Spectral-transform IFS

The spectral-transform IFS (denoted as IFS-ST in this paper)
that is operational at ECMWF is based on the hydrostatic
primitive equations (HPEs). The HPEs are formulated in a
hybrid sigma–pressure terrain-following vertical coordinate
following Simmons and Burridge (1981). The HPEs are inte-
grated numerically using the efficient centred two-time-level
SISL scheme, which permits long time steps due to the un-
conditional stability provided by the fully implicit treatment
of the fast acoustic7 and buoyant modes, and the 3-D SL ad-
vection (Ritchie et al., 1995; Temperton et al., 2001; Hortal,
2002). Therefore, the constant time step of the SISL integra-
tion in IFS-ST can be selected according to optimal efficacy
rather than stability. The ST method, which is applied along
model levels in the horizontal, is combined with a finite-
element (FE) approach to discretize the integral operator in
the vertical direction (Untch and Hortal, 2004)8. In 2002,
this vertical FE scheme of Untch and Hortal (2004) with a
co-located arrangement of prognostic variables replaced the
former FD scheme of Simmons and Burridge (1981) with
the Lorenz staggering. Prognostic variables of the HPEs and
other main formulation features of IFS-ST are given in Ta-
ble 1. Wedi et al. (2015) provide a recent overview of IFS-
ST and a comprehensive list of references, while the official
IFS documentation and changes with model cycles can be
found on the ECMWF website (https://www.ecmwf.int/, last
access: 6 February 2019).

The IFS-ST uses a discrete spherical harmonics repre-
sentation of the spectral space (Wedi et al., 2013). At ev-
ery time step, the model fields are transposed between grid-
point, Fourier, and spherical harmonics representation. Gen-
eral concerns about the computational efficiency of the Leg-
endre transforms between Fourier modes and spherical har-
monics (Williamson, 2007) could be mitigated by adopting
a fast Legendre transform (FLT; Wedi et al., 2013), which is
employed together with fast Fourier transforms (FFTs). Fur-
thermore, the increasing importance of non-linearities in the
RHS forcing terms in the governing equations and aliasing
at higher resolutions stimulated the adoption of a cubic trun-
cation of the spherical harmonics in the ST method (Wedi,
2014). The cubic versus the former linear truncation basi-
cally samples the highest wavenumber with four instead of
two grid points. Special treatment is required near the poles
with the reduced grids for which it always approaches the
linear truncation (Wedi, 2014). The extra sampling of a par-
ticular spectral resolution with a relatively larger grid size in
the cubic truncation led to substantial further improvement
in the efficiency and accuracy of the IFS-ST at ECMWF

7The HPEs analytically filter internal acoustic modes but sup-
port the external Lamb mode.

8The FE implementation of the discrete vertical integral opera-
tor is based on the Galerkin method using cubic B splines as basis
functions.

Geosci. Model Dev., 12, 651–676, 2019 www.geosci-model-dev.net/12/651/2019/

https://www.ecmwf.int/


C. Kühnlein et al.: FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS 661

(Wedi et al., 2015). The cubic truncation in combination
with the octahedral reduced Gaussian grid went operational
at ECMWF in 2016. The nomenclature for this grid config-
uration is defined as “TCo” (for “triangular-cubic” trunca-
tion and “octahedral” grid) followed by the number of waves
in spectral space (Malardel et al., 2016). The octahedral re-
duced Gaussian grid, which is also employed with IFS-FVM,
is reviewed in Sect. 2.4.

The semi-Lagrangian advection scheme in IFS-ST is
based on Ritchie et al. (1995). The SL trajectories are com-
puted with an iterative algorithm. At each iteration of the
algorithm, the wind at the midpoint in time and space is
re-evaluated using the second-order time-extrapolating algo-
rithm SETTLS (stable extrapolation two-time-level scheme;
Hortal, 2002). The two-time-level semi-implicit integration
of IFS-ST follows the template

Xn+1
A =XnD+N

n+1/2
M +

1
2

(
LnD+L

n+1
A

)
. (25)

Here, X represents the prognostic variables, the subscripts
A, M, and D denote the arrival, middle, and departure points,
respectively, and n and n+1 again refer to the current and fu-
ture time step. In addition, the operator L symbolizes the lin-
ear operator andN the non-linear residualN =M−L, with
M being the full non-linear model. The operator L results
from the linearization ofM with regard to a horizontally ho-
mogeneous reference state. Before the final semi-implicit so-
lution with Eq. (25) at each time step, the explicit guess of
the future model stateX is computed by replacing Ln+1

A with
LnA. Generally, XnD is interpolated at the departure point by
quasi-cubic interpolation. A horizontal quasi-monotonic in-
terpolation is used for the horizontal wind, the temperature,
and the surface pressure, and a 3-D quasi-monotonic limiter
is used for the specific humidity. All the other water con-
tent variables are estimated at the departure point using lin-
ear interpolation and thus no monotonic filter is needed. The
SL scheme in IFS-ST is applied to specific (per unit mass)
variables whose equations are written in advective form. It
is then intrinsically non-conservative (Malardel and Ricard,
2015), but global mass fixers have been developed for the at-
mospheric composition applications (Diamantakis and Flem-
ming, 2014; Diamantakis and Augusti-Panareda, 2017). No-
tably, with the cubic truncation and the octahedral reduced
Gaussian grid, global mass conservation is nearly exact in
IFS; see Wedi et al. (2015).

The IFS also includes various research options which are
not yet applied in the operational configuration, most no-
tably the nonhydrostatic (NH) formulation based on the fully
compressible equations (Bubnová et al., 1995; Bénard et al.,
2010), which has been made available to ECMWF by Météo-
France and the Aladin Consortium. The HPE and NH for-
mulations of IFS-ST employ the same SISL integrators, but
the NH extension requires a predictor–corrector approach
– the so-called iterative-centred implicit (ICI) scheme (Bé-
nard et al., 2010) – for stability in global configurations.

The ICI scheme in IFS-ST requires recomputation of the
semi-Lagrangian trajectory and interpolations in the correc-
tor step, which is not needed in the predictor–corrector ap-
proach of IFS-FVM (Sect. 2.1.2). The prognostic variables
and main characteristics of the NH formulation are also given
in Table 1. Furthermore, the NH formulation is currently re-
stricted to the vertical FD scheme by Bubnová et al. (1995).
By default, the HPE and NH formulations of IFS-ST use the
shallow-atmosphere approximation. In Sect. 3, we will com-
pare the computational performance of the HPE and NH for-
mulations of IFS-ST against IFS-FVM.

2.3 Some aspects of physics–dynamics coupling

The IFS physics parameterization package at ECMWF is
applied in the same configuration throughout the medium-
range, sub-seasonal, and seasonal forecasting systems. The
physics package includes parameterization of radiation,
moist convection, clouds and stratiform precipitation, sur-
face processes, sub-grid-scale turbulence, and orographic
and non-orographic gravity wave drag.

In IFS-ST, the physics–dynamics coupling employs the
SLAVEPP (semi-Lagrangian averaging of physical param-
eterization) scheme (Wedi, 1999). SLAVEPP targets second-
order accuracy by averaging tendencies from selected
physics parameterizations along the SL trajectory at the mid-
point in space–time between the departure point at tn and ar-
rival point at tn+1. Thereby, the tendencies at tn+1 use a pro-
visional first guess from the explicit dynamics as input, and
the final tendencies are applied at the arrival point of the SL
trajectory; see Wedi (1999) for details9. The basic approach
of the physics–dynamics coupling in the IFS uses sequen-
tial splitting of tendencies, i.e. the various processes are inte-
grated one after another, and the updated tendencies are used
as input to the subsequent process; see Beljaars et al. (2018)
for discussion. More details about the IFS physics parame-
terizations can be found in the general IFS documentation.

The physics–dynamics coupling in IFS-FVM differs from
IFS-ST. As explained in Sect. 2.1.2, the current implemen-
tation of IFS-FVM incorporates the tendencies from physics
parameterizations P9 by means of a first-order coupling at
tn. Therefore, the fields that enter the parameterizations are
from tn, and there is no averaging between tendencies from
tn and tn+1. While the incorporation of the tendencies from
physics parameterization deviates from IFS-ST, the sequen-
tial splitting between the various IFS physics parameteriza-
tions is kept exactly the same. Incorporating the physics pa-
rameterizations with first order at tn is motivated by the gen-
erally smaller time steps δt in IFS-FVM than in IFS-ST and
the desire to implement straightforward options for subcy-
cling of the dynamics (see below). In addition, numerical ex-

9SLAVEPP is applied to tendencies from radiation, moist con-
vection, and the cloud scheme, whereas tendencies from turbulence
and gravity wave drag parameterizations are incorporated with first
order at tn+1 (Wedi, 1999).
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Figure 2. The locations of the octahedral reduced Gaussian grid nodes are shown in (a), using for illustration the very coarse O24 grid
example with 24 latitudes between the pole and equator. Panel (b) depicts the associated edges of the primary mesh connecting the nodes
as applied in the context of the FV discretization of IFS-FVM. Panel (c) provides the local spacing of the FV dual mesh for the O1280 grid
corresponding to the highest-resolution deterministic forecast model currently at ECMWF.

perimentation with IFS-FVM so far has shown favourable re-
sults in terms of the incorporation of the physics at tn. Never-
theless, different forms of coupling IFS-FVM to the physics
parameterizations will be explored in the future.

The IFS-FVM code has its own interface to the IFS
physics parameterizations. Among others, it involves con-
version between IFS-FVM’s variables and those employed
in IFS-ST (see Table 1)10, interpolations to vertical inter-
faces, and the provision of local quantities describing the
mesh geometry, but also a number of technical aspects due
to some differences in the computational design of IFS-FVM
and IFS-ST. Some of these operations in the interface may
be removed at a later stage when the IFS physics param-
eterization package becomes more harmonized with IFS-
FVM. However, generally the coupling is facilitated by com-
mon features of IFS-FVM and IFS-ST, such as longitude–
latitude coordinates, the octahedral reduced Gaussian grid,
and the co-located arrangement of dependent variables. The
IFS-FVM interface to the physics parameterizations also in-
cludes an option for subcycling of the dynamics. The tem-
plate scheme (7) for one physics time step from tN to
tN +1tphys ≡ t

N
+Nsδt can be written as `= 1,Ns :

9i

(
tN + `δt

)
=Ai

(
9̃,V (tN + (`δt − 0.5)),

G(tN + (`− 1)δt),G(tN + `δt),δt
)

+ b9 δtR9
i

(
tN + `δt

)
, (26)

where

9̃ =9
(
tN + (`− 1)δt

)
+ a9 δtR9

(
tN + (`− 1)δt

)
+ δt P9

(
tN ,1tphys

)
. (27)

The physics tendency P9 is evaluated with the physics time
step 1tphys and is then reused for the Ns subcycling steps
with δt . The IFS-FVM has been coded rigorously with a vari-
able time stepping capability (Kühnlein and Smolarkiewicz,

10Examples are conversions between mixing ratios rk and spe-
cific water content variables qk or between quantities in the height-
versus pressure-based coordinate systems.

2017). In the case of the physics–dynamics coupling with
subcycling Eq. (26), we adapt the semi-implicit time step
δt only every Ns time steps with the corresponding physics
time step given as1tphys =Nsδt . Apart from radiation11, the
current operational IFS-ST evaluates the physics parameter-
izations at every semi-implicit time step δt . However, due
to the Eulerian versus SL advection, IFS-FVM uses con-
siderably smaller time steps than IFS-ST12, and therefore
physics–dynamics coupling may use some form of subcy-
cling as indicated above or other approaches, such as parallel
splitting, to remain competitive. The cost per time step of the
full IFS physics parameterization package can be up to 40 %
of the forecast model. For the idealized DCMIP experiments
considered in the present work, we focus on the parameteri-
zation of clouds and stratiform precipitation incorporated by
means of the general IFS-FVM and IFS-ST interfaces de-
scribed above.

2.4 Octahedral reduced Gaussian grid

As with the classical reduced Gaussian grid of Hortal and
Simmons (1991), the octahedral reduced Gaussian grid (or
simply “octahedral grid”) (Wedi et al., 2015; Malardel et al.,
2016; Smolarkiewicz et al., 2016) specifies the latitudes ac-
cording to the roots of the Legendre polynomials. The two
grids differ in the arrangement of the points along the lati-
tudes, which follows a simple rule for the octahedral grid:
starting with a minimum of ∼ 20 points on the first latitude
around the poles, four points are added with every latitude to-
wards the equator, whereby the spacing between points along
the individual latitudes is uniform and there are no points
at the equator. The octahedral grid is suitable for transfor-
mations involving spherical harmonics. Figure 2 depicts the
O24 octahedral grid nodes, together with the corresponding

11In the current high-resolution deterministic IFS forecasts on the
O1280 grid, the radiation scheme is called every hour, compared to
the semi-implicit model time step δt = 450 s, and is also run on the
coarser O400 grid.

12With the current formulations, the time step δt in IFS-FVM is
typically about a factor of 6–7 smaller than in IFS-ST.
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edges of the primary mesh as applied in IFS-FVM. Also
shown is the dual mesh spacing of the O1280 grid. Com-
pared to the classical reduced Gaussian grid of Hortal and
Simmons (1991), the octahedral grid provides a much more
uniform dual mesh resolution in the FV context (Malardel
et al., 2016). Negligible grid imprinting in IFS-FVM with
the octahedral grid will be shown by means of numerical ex-
periments in Sect. 3.

3 Benchmark simulation results

We study the solution quality and also the computational effi-
ciency of IFS-FVM in comparison to the established IFS-ST.
The hydrostatic IFS-ST represents a proven formulation for
global medium-range NWP at ECMWF, and the aim is to
reproduce its results with the novel IFS-FVM.

Baroclinic instability represents a common and relevant
test problem to evaluate the performance of global NWP
models in the large-scale hydrostatic regime. The underlying
processes are fundamental to the life cycle (i.e. formation to
decay) of high- and low-pressure systems in the mid-latitude
“storm tracks” of the Earth’s atmosphere. Here, we adopt the
experimental set-up for a baroclinic wave life cycle used in
the 2016 edition of DCMIP following Ullrich et al. (2014)
and the documentation available in Ullrich et al. (2016). Note
that the IFS is a highly optimized single-application model
for real-time numerical weather prediction, and adapting the
code to idealized configurations is not straightforward. Be-
cause of this and also a particular interest in requirements
and applications at ECMWF, we consider configurations and
physics parameterizations that depart from the test case spec-
ifications of DCMIP in Ullrich et al. (2016).

To study the accuracy of the novel nonhydrostatic IFS-
FVM based on the finite-volume discretization, we verify
its solution quality against IFS-ST based on the spectral-
transform approach. This comparison is performed in
Sect. 3.1 for dry adiabatic simulations of the baroclinic in-
stability, i.e. dynamical core only, and then in Sect. 3.2 un-
der consideration of moist-precipitating processes that in-
volve coupling to the prognostic single-moment bulk micro-
physics parameterization of the operational IFS at ECMWF
(Forbes et al., 2010). The computational efficiency of IFS-
FVM alongside the hydrostatic and nonhydrostatic IFS-ST
is studied in Sect. 3.3. Note that we use the nonhydrostatic
IFS-ST only when looking at the efficiency of the various
dynamical core formulations. In terms of the solution qual-
ity for the baroclinic instability, nonhydrostatic effects are
entirely negligible at the considered coarse resolutions (see
next paragraph), and therefore only results with the hydro-
static IFS-ST are shown and analysed.

We use two different sizes of the octahedral reduced Gaus-
sian grid for comparing the solution quality of IFS-FVM
and IFS-ST. Considered are very coarse (O160,TCo159) and
coarse (O320,TCo319) grids by current NWP standards, cor-

responding to about 64 and 32 km nominal horizontal grid
spacings, respectively; see Sect. 2.2 and 2.4 for the nomen-
clature that defines the grids. For the two horizontal grid
sizes, both IFS-FVM and IFS-ST employ 60 stretched verti-
cal levels. The height coordinate of IFS-FVM (Appendix C)
is specified exactly according to the computed height of the
hybrid sigma–pressure coordinate of IFS-ST at the initial
time of the simulation. The lowest full level is located at a
height of about 10 m, and the vertical spacing between model
levels ranges from about 12 m near the ground to 4 km near
the model top located at 48 km. In contrast to the height co-
ordinate levels in IFS-FVM, the hybrid sigma–pressure co-
ordinate levels in IFS-ST change with time, but overall the
vertical spacing remains quite similar in both models over
the course of the 15-day simulations. The similar spacing
is particularly true for the vertical levels near the surface,
where the terrain-following character of the hybrid sigma–
pressure coordinate dominates. Note that, as the maximum
local difference in height of the lowest full levels is found
to be smaller than 1 m over the 15-day baroclinic instabil-
ity simulation, output fields of IFS-FVM and IFS-ST may be
straightforwardly compared at this level without using inter-
polation13. For the comparison of computational efficiency in
Sect. 3.3, we employ the (O1280,TCo1279) horizontal grid,
corresponding to about 9 km spacing, with 137 stretched ver-
tical levels, again with a similar distribution in IFS-FVM and
IFS-ST. With regard to the time step size, IFS-ST uses con-
stant increments δt of 1800, 1200, and 450 s for the TCo159,
TCo319, and TCo1279 grids, respectively. In contrast, IFS-
FVM generally applies variable time stepping that targets
a maximum horizontal advective Courant number of 0.95
– the actual maximum 3-D Courant number can be signif-
icantly larger than 1 as this is permitted by the horizontal–
vertical split NFT advection in IFS-FVM (Appendix A). As
explained in Sect. 2.1.2, we have implemented the integra-
tion of Eq. (17) using an off-centred variant of the template
semi-implicit scheme (7). All IFS-FVM results presented in
this paper used the backward Euler scheme α = 1, as this has
been the default so far in previous implementations. How-
ever, one exception to this is the middle panel in Fig. 5, which
shows, for comparison to the default α = 1, the correspond-
ing result obtained with the weakly off-centred trapezoidal
scheme using α = 0.51.

All IFS-FVM and IFS-ST results presented in this section
were obtained without any explicit diffusion or regulariza-
tion.

For the dry and moist configurations, the baroclinic insta-
bility evolution starts from two zonal jet flows in the mid-
latitudes of each global hemisphere that are in thermal wind
balance with the meridional temperature gradient. The defi-
nition of the balanced initial state is given by analytical func-

13For instance, the 1 m height difference corresponds to about
0.1 hPa near the surface, which is negligible with regard to the sub-
sequent analysis.
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Figure 3. Dry baroclinic instability at day 10: panels (a)–(d) show pressure on the lowest full level (hPa) obtained with IFS-FVM and IFS-ST,
while (e) and (f) depict the corresponding difference between the solutions. Panels (a), (c), (e) and (b), (d), (f) are for the (O160,TCo159)
and (O320,TCo319) horizontal grids, respectively.

Figure 4. Dry baroclinic instability at day 10: panels (a)–(d) show meridional wind v (m s−1) along a zonal height cross section at 50◦ N
obtained with IFS-FVM and IFS-ST, while (e) and (f) depict the difference of v (m s−1) between their solutions. Panels (a), (c), (e)
and (b), (d), (f) are for the (O160,TCo159) and (O320,TCo319) horizontal grids, respectively.
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Figure 5. Dry baroclinic instability at day 15: pressure on the low-
est full level (hPa) obtained with IFS-FVM (default backward Euler
scheme with α = 1 or trapezoidal scheme with weak off-centring
α = 0.51 in the integration of Eq. (17) for the Exner pressure per-
turbation ϕ′) and IFS-ST using the (O320,TCo319) grid.

tions provided in Ullrich et al. (2014). Here, this balanced
zonal flow is also used to specify the ambient state variables
ua(y,z), θa(y,z), πa(y,z) of the governing fully compress-
ible Eqs. (1a)–(1e) that fulfil Eq. (4). A local zonal veloc-
ity perturbation in the form of a simple exponential bell (ta-
pered to zero in the vertical) excites the instability, leading to
eastward-propagating Rossby modes (Ullrich et al., 2016).
Here, we apply the triggering zonal velocity perturbation in
both the northern and southern global hemispheres. This dual
triggering departs from Ullrich et al. (2016), in which the per-
turbation was only applied in the Northern Hemisphere, but it
permits a clean evaluation of kinetic energy spectra relatively
early in the baroclinic wave evolution, enables the study of
the solution symmetry about the equator, and is more rele-
vant to real weather. Nevertheless, for reference we provide
one illustration in Fig. 6 for the set-up in which the triggering
of the baroclinic instability is applied in the Northern Hemi-
sphere only. After an initial period of linear growth, the insta-
bility enters the non-linear stage from 6–7 days of simulation

Figure 6. Dry baroclinic instability at day 15 when the triggering of
the baroclinic instability was applied in the Northern Hemisphere
only: pressure on the lowest full level (hPa) obtained with IFS-FVM
and IFS-ST using the (O320,TCo319) grid.

time. Our analysis will focus on simulation results at day 10
and day 15.

3.1 Results for dry simulations

Figures 3 and 4 present the horizontal cross section of near-
surface pressure and the zonal height cross section of merid-
ional wind, respectively, for the dry adiabatic simulations
at day 10. At this stage, a large-amplitude baroclinic wave
has developed and formed sharp fronts in the lower tropo-
sphere. Generally very close agreement is found between
the finite-volume (IFS-FVM) and spectral-transform (IFS-
ST) solutions. This is emphasized by the difference plots
in the bottom row of the horizontal and vertical cross sec-
tions in Figs. 3 and 4, respectively. The solutions show iden-
tical phase propagation and amplitude of the baroclinic wave
throughout the entire vertical depth of the simulation domain,
which applies to the very coarse (O160,TCo159) and coarse
(O320,TCo319) grids. Where present, differences between
IFS-FVM and IFS-ST become smaller with the higher reso-
lution. Figure 5 compares the pressure field much later into
the non-linear baroclinic instability evolution at day 15 for
the finer of the two grids. This depiction shows close agree-
ment between IFS-FVM (using the default α = 1 as well as
the α = 0.51) and IFS-ST also at this later stage. The vari-
ous dynamical core formulations provide visibly symmetric
solutions around the equator, and there are no signs of any
significant grid imprinting at the scale of the wavenumber-
four irregularities of the octahedral grid. The latter is cor-
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Figure 7. Dry baroclinic instability at day 15: kinetic energy spectra
obtained with IFS-FVM and IFS-ST using the (O320,TCo319) grid.
The blue vertical line indicates the spatial scale corresponding to
4 times the nominal grid spacing of the O320 octahedral grid, which
also represents the cubic truncation scale with TCo319 applied in
IFS-ST. The spectra are shown on model levels near the surface and
at ∼ 500 hPa.

roborated by Fig. 6 that shows the analogous result to Fig. 5
(again only α = 1 for IFS-FVM), but in contrast to all other
plots, the trigger of the baroclinic instability is applied in the
Northern Hemisphere only.

Kinetic energy spectra evaluated at day 15 in Fig. 7 reveal
a strikingly similar distribution of variance across wavenum-
bers from 1 to ∼ 200. As all the simulations are with-
out any explicit diffusion, the IFS-FVM spectra at the high
wavenumbers attest to the implicit scale-selective regulariza-
tion with artificial viscosity provided by the non-oscillatory
finite-volume MPDATA advection14. The slope of the IFS-
ST and IFS-FVM spectra with respect to wavenumber l is
somewhat shallower than l−3 at large scales. This is con-
sistent with results from other dynamical cores for this
baroclinic instability test case studied in the context of the
High-Impact Weather Prediction Project (HIWPP; Whitaker,
2014). The spectra of IFS-ST feature some accumulation of
energy near the scale of the triangular-cubic truncation, cor-
responding to 4 times the grid spacing. This increased en-
ergy at these scales does not grow and is to a large extent
controlled by the spectral filtering of the non-linear terms at
every time step, among other mechanisms of implicit dissi-
pation such as the semi-Lagrangian interpolation.

14The unsplit NFT MPDATA advection (Kühnlein and Smo-
larkiewicz, 2017) features lower implicit diffusion near the grid
scale than the split advection applied here.

3.2 Simulation results for moist-precipitating
configuration with the IFS cloud parameterization

Next we present results for the moist-precipitating baro-
clinic instability with coupling to the IFS cloud parameter-
ization. Figure 8 shows the instantaneous large-scale pre-
cipitation rate at the surface15 for the (O160,TCo159) and
(O320,TCo319) grids at day 10. For any of these grids,
both model formulations show five rainbands with essen-
tially identical phase, as emphasized by the overlay with
the 0.5 mm day−1 black contour line of the corresponding
other model formulation. The elongated rainbands are asso-
ciated with the lifting along sharp frontal zones. Precipitation
amounts are overall similar but somewhat higher local values
exist for IFS-FVM, particularly in the two easternmost rain-
bands when looking at the (O160,TCo159) grid. Figure 9 is
analogous to Fig. 8 but for day 15. As can be expected, the
spread between the different model formulations becomes
larger. However, there is still reasonably close agreement,
especially for the higher-resolution grid (O320,TCo319) in
the right column of Fig. 9. Here, the locations of the east-
ernmost frontal zone and associated rainband agree closely
considering the late stage of the baroclinic instability evo-
lution. Figure 10 supplements the precipitation plots with
the corresponding pressure field on day 15. In addition to
the standard configurations of IFS-FVM and IFS-ST, for
which the physics parameterization is evaluated every dy-
namic time step Ns = 1, Fig. 10 also provides the IFS-FVM
result with subcyling (middle panel) whereby the parameter-
izations are evaluated every Ns = 3 semi-implicit time step
δt ; see Sect. 2.3 for a discussion of the physics–dynamics
coupling. Again, the pressure fields of all three simulations
resemble each other closely, often even in the location and
magnitude of smaller structures, while the modified physics–
dynamics coupling frequency Ns = 3 to the cloud parame-
terization seems to have only a small impact on the solution.
Furthermore, none of the simulations show significant grid
imprinting in the pressure fields, but the solution symmetry
about the equator is broken in both IFS-FVM and IFS-ST as
a result of the incorporation of the cloud parameterization (in
contrast to the dry results shown before in Fig. 5). The anal-
ysis of the simulations is supplemented in Fig. 11 with the
time series of the minimum near-surface pressure (panel a)
and the area-integrated precipitation rate (panel b). The tem-
poral evolution of these two quantities is close between IFS-
FVM and IFS-ST. Particularly, the minimum near-surface
pressure agrees almost exactly at day 15, although small dif-
ferences occur over the course of the simulation. The onset
and subsequent increase in precipitation matches well in IFS-
FVM and IFS-ST, and the later variations in the precipitation
rate are similar, with no systematic underestimation or over-
estimation. Kinetic energy spectra evaluated at day 15 are

15The precipitation rate represents the liquid and rain (excluding
ice and snow) sedimentation flux at the surface.
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Figure 8. Moist-precipitating baroclinic instability at day 10: surface precipitation rate (mm day−1) obtained with IFS-FVM and IFS-ST
coupled to the same IFS cloud microphysics parameterization. The upper (lower) panels show shaded contours from the IFS-FVM (IFS-ST)
simulations, overlaid by the IFS-ST (IFS-FVM) black contour line of 0.5 mm day−1. Panels (a), (c) and (b), (d) are for the (O160,TCo159)
and (O320,TCo319) horizontal grids, respectively.

Figure 9. Moist-precipitating baroclinic instability at day 15: surface precipitation rate (mm day−1) obtained with IFS-FVM and IFS-ST
coupled to the same IFS cloud microphysics parameterization. The upper (lower) panels show shaded contours from the IFS-FVM (IFS-ST)
simulations, overlaid by the IFS-ST (IFS-FVM) black contour line of 0.5 mm day−1. Panels (a), (c) and (b), (d) are for the (O160,TCo159)
and (O320,TCo319) horizontal grids, respectively.

shown in Fig. 12. Compared to the spectra of the dry simu-
lations in Fig. 7, IFS-FVM and IFS-ST consistently show a
considerably larger kinetic energy in the scales smaller than
wavenumber≈ 120 in the mid-troposphere at about 500 hPa.
Overall, the presented consistent results of IFS-FVM and
IFS-ST attest to the quality of the presented dry and moist-
precipitating FV formulations along with the coupling to the
IFS physics parameterization.

3.3 Computational efficiency

The computational efficiency of NWP models is crucial. For
current HPC architectures and model resolutions, the oper-
ational IFS-ST at ECMWF represents one of the most effi-
cient dynamical core formulations for global NWP. The IFS-
FVM is envisaged for future applications in the nonhydro-
static regime running on future HPC architectures, but its
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Figure 10. Moist-precipitating baroclinic instability at day 15: pres-
sure on the lowest full level (hPa) obtained with IFS-FVM and IFS-
ST coupled to the same IFS cloud microphysics parameterization.
The IFS-FVM results in (a) and (b) employed the standard coupling
at every time step Ns = 1 or subcycling of dynamics for three time
steps Ns = 3, respectively. The simulations were performed with
the (O320,TCo319) grid.

computational performance on the current HPC facility at
ECMWF sheds some light on its potential; see also Kühnlein
and Smolarkiewicz (2019). Of interest is the relative perfor-
mance of IFS-FVM to both the hydrostatic IFS-ST and its
nonhydrostatic extension (see Sect. 2.2). In order to empha-
size elementary aspects of the dynamical cores, here we as-
sess the efficiency of the dry formulations only; i.e. no tracers
or moisture variables, no physics parameterizations or cou-
pled models, no I/O, and minimal diagnostics. Furthermore,
we use the baroclinic instability benchmark of Sect. 3.1 but
configured similar to HRES–ECMWF’s highest-resolution
deterministic forecast model.

Figure 13 highlights the runtimes of the three dif-
ferent dynamical core formulations. The HRES forecast
model configuration at ECMWF is currently based on the
O1280/TCo1279 horizontal grid (corresponding to about
9 km grid spacing; Fig. 2c) with 137 vertical levels and run

using 350 nodes (about one electrical group) on ECMWF’s
Cray XC40 supercomputer16. Importantly, while IFS-ST
used the constant time step of 450 s, IFS-FVM employed
variable time stepping according to the maximum permit-
ted advective Courant number; therefore, in order to obtain
realistic numbers for IFS-FVM, the timings were evaluated
between day 10 and 15 in the fully non-linear stage of the
baroclinic instability evolution.

Figure 13 reveals that the time to solution that can be
achieved with IFS-FVM for this configuration is only about
twice as large as the operational hydrostatic IFS-ST and com-
pares favourably with the nonhydrostatic IFS-ST. Although
these performance measures merely represent snapshots at
the current state of development, they highlight the potential
of the numerical integration schemes applied in IFS-FVM to
become competitive with state-of-the-art operational global
weather forecasting models. Important aspects are that the
FV method offers the prospect of better scalability and effi-
ciency with respect to future HPC and that IFS-FVM em-
ploys substantially smaller time steps (again, about a fac-
tor 6–7 smaller compared to IFS-ST), which can be benefi-
cial for accuracy. Further significant efficiency improvements
of the IFS-FVM dynamical core are in preparation, and the
work will be extended to physics–dynamics coupling with
the smaller time steps.

4 Conclusions

Supporting substantially higher resolution in global NWP
may ultimately demand local numerical discretizations to
solve the governing nonhydrostatic equations in NWP mod-
els in a computationally efficient manner. The IFS-FVM suc-
cessfully implements such a discretization and thus comple-
ments the operational hydrostatic IFS-ST and its nonhydro-
static extension at ECMWF. At the same time, the IFS-FVM
introduces several useful new features into the IFS, such
as conservative and monotone advective transport, deep-
atmosphere all-scale governing equations, and fully flexible
unstructured FV meshes with optional variable resolution or
meshes defined about the nodes of the operational octahedral
grid.

The paper highlighted the semi-implicit NFT finite-
volume integration of the fully compressible equations
of the novel IFS-FVM considering comprehensive moist-
precipitating dynamics with coupling to the IFS cloud pa-
rameterization by means of a generic interface applicable
for coupling to the full IFS physics parameterization pack-
age. Developments such as the new horizontal–vertical direc-
tionally split NFT advective transport scheme based on MP-

16Each node on this supercomputer consists of two Intel Xeon EP
E5-2695 v4 “Broadwell” processors, each with 18 cores, which for
the 350 compute nodes employed results in a total of 12 600 cores.
Here, a hybrid MPI–OpenMP parallelization with six threads was
used by all three dynamical cores.
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Figure 11. Moist-precipitating baroclinic instability: time series of minimum pressure on the lowest full level (a) and area-integrated rain
rate (b). The blue and red lines correspond to the IFS-FVM and IFS-ST results, respectively.

Figure 12. Moist-precipitating baroclinic instability at day 15: ki-
netic energy spectra obtained with IFS-FVM and IFS-ST using the
(O320,TCo319) grid. The blue vertical line indicates the spatial
scale corresponding to 4 times the nominal grid spacing of the O320
octahedral grid, which also represents the cubic truncation scale
with TCo319 applied in IFS-ST. The spectra are shown on model
levels near the surface and at ∼ 500 hPa.

DATA, variable time stepping, effective preconditioning of
the Krylov-subspace solver for the elliptic Helmholtz prob-
lem arising in the semi-implicit scheme, and an efficient
node-based implementation of the median-dual FV approach
provide a basis for the overall efficacy of IFS-FVM and ap-
plication in global NWP at ECMWF.

The IFS-ST is applied successfully for operational fore-
casting at ECMWF and is therefore considered an appro-
priate reference model. It was shown that the presented
semi-implicit NFT finite-volume integration scheme on co-
located meshes can achieve comparable solutions to the
proven spectral-transform IFS-ST. Here, the study focused
on medium- and extended-range simulation of the dry and
moist-precipitating baroclinic instability benchmark at vari-
ous resolutions. While the baroclinic instability benchmark
aims at global atmospheric dynamics in the hydrostatic

Figure 13. Elapsed time to run 1 day of the dry baroclinic instability
benchmark similar to the current HRES configuration at ECMWF,
i.e. the three different models – the nonhydrostatic IFS-FVM desig-
nated as FV(NH), the hydrostatic IFS-ST designated as ST(H), and
the nonhydrostatic IFS-ST designated as ST(NH) – are set up for the
O1280/TCo1279 horizontal grid (corresponding to about 9 km grid
spacing) with 137 stretched vertical levels and employ 350 nodes of
ECMWF’s Cray XC40.

regime, referenced supplementary studies with IFS-FVM
emphasize non-orographic and orographic flows in the non-
hydrostatic regime. In addition to solution quality, we have
demonstrated highly competitive computational efficiency
of the presented semi-implicit NFT finite-volume integra-
tion of IFS-FVM in comparison to the semi-implicit semi-
Lagrangian integration of IFS-ST.

Common aspects of the finite-volume and spectral-
transform model formulations are the octahedral reduced
Gaussian grid, the co-location of variables, the geospheri-
cal framework, and the physics parameterizations. Sharing
these properties facilitates the comparison of the different
discretizations and physics–dynamics coupling. Moreover, it
provides numerous benefits for the general IFS model in-
frastructure, data assimilation, and ensemble system. Ongo-
ing work advances IFS-FVM to full-physics global medium-
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range NWP at convection-resolving resolutions (Kühnlein
and Smolarkiewicz, 2019).

Code availability. Model codes developed at ECMWF are the in-
tellectual property of ECMWF and its member states, and therefore
the IFS code is not publicly available. Access to a reduced version
of the IFS code may be obtained from ECMWF under an OpenIFS
licence (see http://www.ecmwf.int/en/research/projects/openifs for
further information, last access: 6 February 2019).

Data availability. The model output data can be downloaded from
https://doi.org/10.5281/zenodo.1445597 (Kühnlein et al., 2018).
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Appendix A: Horizontal–vertical splitting of the NFT
advective transport

We consider the advection operator Ai in the two-time-
level semi-implicit integration scheme (7) to be direction-
ally split in the horizontal and vertical directions. This split-
ting is motivated by the observation that NWP models typ-
ically have a larger restriction on the time step in the verti-
cal than the horizontal direction. For example, in the current
operational configuration of the IFS run at TCo1279/L137
(≈ 9 km horizontal grid spacing and 137 stretched vertical
levels), the advective Courant numbers are up to a factor of 2
larger in the vertical than in the horizontal direction. The
horizontal–vertical splitting also accommodates IFS-FVM’s
unstructured horizontal discretization, enabling broad classes
of global meshes, and the structured grid in the (stiff) vertical
direction.

The proposed scheme implements mass-compatible
second-order Strang splitting as explained in the follow-
ing. The overall semi-implicit integration of the fully com-
pressible Eqs. (1a)–(1e) proceeds exactly as explained in
Sect. 2.1.2, but with the 3-D NFT advection operatorAi split
into purely horizontal Axyi and vertical Azi schemes, respec-
tively. For each model time step δt , these are applied in the
sequence Azi →Axyi →Azi using half-time steps in the two
vertical sweeps and the full time step in the horizontal part.
Specifically, the split scheme commences with the integra-
tion of the mass continuity Eq. (1a) as

ρ
[1]
d i=A

z
i (ρ

n
d , (v

zG)n+1/2,Gn,G[1],0.5δt) ,

ρ
[2]
d i=A

xy

i (ρ
[1]
d , (vhG)n+1/2,G[1],G[2],δt) ,

ρn+1
d i = ρ

[3]
d i=A

z
i (ρ
[2]
d , (vzG)n+1/2,G[2],Gn+1,0.5δt) , (A1)

which provides the updated densities ρ[1]d , ρ[2]d , ρn+1
d and

accumulates normal mass fluxes (vzGρd)
[1], (v⊥h Gρd)

[2],
(vzGρd)

[3] for the three sub-steps. For compatibility with
mass continuity, these quantities are then all employed in the
subsequent advective transport of scalar variables 9̃ (Eq. 8)
as

9
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z
i (9̃, (v

zGρd)
[1], (Gρd)

n, (Gρd)
[1],0.5δt) ,

9
[2]
i =A
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[1], (v⊥h Gρd)

[2], (Gρd)
[1], (Gρd)

[2],δt) ,

9
[3]
i =A

z
i (9
[2],(vzGρd)

[3],(Gρd)
[2],(Gρd)

n+1,0.5δt) , (A2)

where 9̂i ≡9
[3]
i . In Eqs. (A1) and (A2), the implementa-

tion of the horizontal advection transport Axy follows the
horizontal part of the unstructured-mesh FV MPDATA of
Kühnlein and Smolarkiewicz (2017). The vertical scheme
Az is a corresponding 1-D structured-grid MPDATA. Re-
sults from numerical experimentation relevant to NWP show
that the presented horizontally–vertically split NFT scheme
based on MPDATA can be considerably more efficient than
the standard fully multidimensional (unsplit) MPDATA of
Kühnlein and Smolarkiewicz (2017). This is particularly due

to the integration of the vertical parts Azi with δt/2 each,
which mitigates the vertical stability restriction while not
adding any significant computational cost17. Overall, the
horizontal–vertical splitting of Ai can enable a more than
twice larger time step in the integration than the unsplit for-
mulation. In addition, the split scheme facilitates the appli-
cation of higher-order, e.g. Waruszewski et al. (2018), and/or
flux-form semi-Lagrangian advective transport in the verti-
cal. While a detailed presentation and analysis will be pro-
vided in a future publication, results so far indicate a com-
parable solution quality of the split versus unsplit schemes
for global atmospheric flow benchmarks. All IFS-FVM re-
sults presented in this paper were obtained using the split
scheme (A1)–(A2) for Ai in Eqs. (7)–(8).

Appendix B: Weighted line Jacobi preconditioner

The bespoke preconditioner solves for the solution error e of
the pressure perturbation variable ϕ′:

P(e)= r̂, (B1)

where r̂ denotes the residual error of Eq. (20). The precondi-
tioning operator P is then decomposed into vertical and hor-
izontal parts (Smolarkiewicz and Margolin, 2000), and the
residual problem is solved iteratively according to

Pz(eµ+1)+Ph(e
µ)− r̂ = 0, (B2)

where µ numbers the iterations, of which there are typically
two. The vertical part Pz is inverted directly with a tridiag-
onal algorithm. The horizontal part Ph is lagged behind, ex-
cept for its diagonal entries. The actual implementation is
given as

Pz(eµ+1)+Ph(e
µ)+D(eµ+1

− eµ)− r̂ = 0 , (B3)

where D is the diagonal coefficient of Ph, specified as

Dk,i =−
1

4Vi

3∑
`=1

A?`k,i

ζ`k,i

l(i)∑
j=1

ζ`k,j

Vj

(
B11
k,jS

x
j

2
+B22

k,jS
y
j

2
)
, (B4)

with B11 and B22 referring to the diagonal entries of G̃TC.
Subsequently, Eq. (B3) is executed as

eµ+1
= ω

[
D+Pz

]−1(Deµ−Ph(e
µ)+ r̂

)
+(1−ω)eµ (B5)

with the weight ω = 0.7.

17Compared to the unsplit scheme, the particular horizontal–
vertical splitting also does not incur any additional parallel com-
munication in the context of the horizontal domain decomposition
of IFS-FVM.
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Appendix C: Geospherical framework, generalized
terrain-following vertical coordinate, shallow- and
deep-atmosphere equations

IFS-FVM’s ability to accommodate complex mesh geome-
tries results from two aspects of its formulation: the hori-
zontal unstructured-mesh FV discretization and generalized
curvilinear coordinate mappings embedded in a geospherical
framework (Prusa and Smolarkiewicz, 2003; Szmelter and
Smolarkiewicz, 2010).

In the geospherical curvilinear coordinate framework of
Prusa and Smolarkiewicz (2003), the vector u= [u,v,w]T

represents the physical velocity with zonal, meridional, and
vertical components aligned at every point of the spherical
shell with axes of a local Cartesian frame (marked with the
superscript “c”) tangent to the lower surface (r = a); here
r is the radial component of the vector radius, and a is the
radius of the sphere. Relations between the local Cartesian
and the geospherical frame are therefore dxc = r cosφ dλ,
dyc = r dφ, and zc = r − a, where λ and φ denote longitude
and latitude, respectively, in radians.

Consistent with Prusa and Smolarkiewicz (2003) (but not
with their notation), we define a set of geospherical coor-
dinates of the physical space Sp as x̃ = aλ, ỹ = aφ, z̃= zc
(̃x, ỹ, z̃ in units of metres). The latter are related to the curvi-
linear coordinates x = [x,y,z]T of the computational space
St (see Sect. 2.1.1) by the general transformation

(t,x)=
(̃
t,F (̃t , x̃)

)
, (C1)

where F (̃t , x̃) represents a bijective map between the phys-
ical and computational systems (Prusa and Smolarkiewicz,
2003; Kühnlein et al., 2012). A default mapping in IFS-FVM
uses no stretching with respect to the horizontal positions
of the unstructured computational mesh x ≡ x̃, y ≡ ỹ, com-
bined with a height-based terrain-following vertical coordi-
nate of the general form z= z(̃x, ỹ, z̃). The most straightfor-
ward specification of the mapping z= z(̃x, ỹ, z̃) is a basic
terrain-following vertical coordinate given by means of ana-
lytical functions; e.g. Gal-Chen and Somerville (1975). How-
ever, the implemented general form z= z(̃x, ỹ, z̃) admits
variable vertical stretching with horizontal location, implicit–
explicit smoothing of coordinate levels (Schär et al., 2002;
Klemp, 2011), and hybrid specifications. Further note that in
the numerical experiments of Sect. 3, IFS-FVM employed
the vertical levels defined by the height of the hybrid sigma–
pressure coordinate levels of IFS-ST. Overall, under the de-
scribed coordinate mappings, the 3× 3 coefficient matrix G̃
employed in the formalism of Sect. 2.1.1 is given as

G̃=

 G̃1
1 G̃2

1 G̃3
1

G̃1
2 G̃2

2 G̃3
2

G̃1
3 G̃2

3 G̃3
3

=
 (

0 cos(ỹ/a)
)−1 0

(
0 cos(ỹ/a)

)−1
∂z/∂x̃

0 0−1 0−1∂z/∂ỹ
0 0 ∂z/∂z̃

 , (C2)

where

0 = 1+ γ z̃/a , (C3)

with γ = 0 and γ = 1 for the shallow- and deep-atmosphere
form of the governing Eqs. (1a)–(1e), respectively, and the
indices 1, 2, and 3 correspond to x, y, and z components. The
corresponding Jacobian of the coordinate mappings G, which
appears in the system (1a)–(1e) as well as other equations, is

G = 02 cos(ỹ/a)(∂z/∂z̃)−1. (C4)

The inverse metrics ∂z/∂x̃, ∂z/∂ỹ and ∂z/∂z̃ in Eqs. (C2)
and (C4) are computed consistently with the FV discretiza-
tion of Sect. 2.1.3 and using the Kronecker-delta identity; e.g.
Kühnlein et al. (2012).

Furthermore, in the momentum Eq. (1b), the components
of the Coriolis acceleration are

−f ×u=
[
v f0 sin(ỹ/a)− γ wf0 cos(ỹ/a) ,

− uf0 sin(ỹ/a) ,γ uf0 cos(ỹ/a)
]T
, (C5)

where f0 = 2|�|, and the metric forcings due to the curvature
of the sphere (i.e. component-wise Christoffel terms associ-
ated with the advective derivative of the physical velocity)
are

M(u)= (0a)−1[ tan(ỹ/a)uv− γ uw ,− tan(ỹ/a)uu

− γ vw ,γ (uu+ v v)
]T
. (C6)

The buoyancy term of Eq. (1b) contains the gravitational ac-
celeration g, which is given as

g = g00
−2 . (C7)

Although not applied in the present paper, the optional time
dependence of the generalized curvilinear coordinates enters
through the mesh velocity vg , as indicated in Sect. 2.1.1; see
Prusa and Smolarkiewicz (2003) and Kühnlein et al. (2012)
for further discussion.
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Appendix D: Summary of variables and physical
constants

Table D1. List of variables.

Symbol Description Units

λ Longitude rad
φ Latitude rad
z Height with respect to mean sea level for which it is set to zero m
r Radial distance m
ps Surface hydrostatic pressure, used with the HPEs in IFS-ST Pa
πs Surface hydrostatic pressure, used with the fully compressible equations in IFS-ST Pa
u Zonal wind velocity m s−1

v Meridional wind velocity m s−1

w Vertical wind velocity m s−1

u 3-D wind vector m s−1

p Pressure Pa
ρ Total air density kg m−3

ρd Dry air density kg m−3

T Temperature K
Tv Virtual temperature K
θ Potential temperature K
θρ Density potential temperature K
d4 Vertical divergence variable, used with the fully compressible equations in IFS-ST s−1

q̂ Nonhydrostatic pressure departure, used with the fully compressible equations in IFS-ST 1
π Exner pressure 1
ϕ Normalized Exner pressure J kg−1 K−1

rk Mixing ratio moisture variables (vapour rv, liquid rl, rain rr, ice ri, snow rs) kg kg−1

qk Specific moisture variables (vapour qv, liquid ql, rain qr, ice qi, snow qs) kg kg−1

Table D2. List of physical constants.

Constant Description Value

g0 Gravitational acceleration at the Earth’s surface 9.80616 m s−2

a Earth’s mean radius 6.371229× 106 m
�≡ |�| Earth’s angular velocity 7.29212× 10−5 m−1

p0 Reference pressure 1000 hPa
cpd Specific heat capacity of dry air at constant pressure 1004.5 J kg−1 K−1

cvd Specific heat capacity of dry air at constant volume 717.5 J kg−1 K−1

Rd Gas constant for dry air 287.0 J kg−1 K−1

Rv Gas constant for water vapour 461.5 J kg−1 K−1

ε Ratio of Rd to Rv 0.622
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