
HAL Id: insu-03665079
https://insu.hal.science/insu-03665079

Submitted on 11 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Improving ocean modeling software NEMO 4.0
benchmarking and communication efficiency

Gaston Irrmann, Sébastien Masson, Éric Maisonnave, David Guibert, Erwan
Raffin

To cite this version:
Gaston Irrmann, Sébastien Masson, Éric Maisonnave, David Guibert, Erwan Raffin. Improving ocean
modeling software NEMO 4.0 benchmarking and communication efficiency. Geoscientific Model De-
velopment, 2022, 15, pp.1567-1582. �10.5194/gmd-15-1567-2022�. �insu-03665079�

https://insu.hal.science/insu-03665079
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Geosci. Model Dev., 15, 1567–1582, 2022
https://doi.org/10.5194/gmd-15-1567-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Improving ocean modeling software NEMO 4.0 benchmarking and
communication efficiency
Gaston Irrmann1,3, Sébastien Masson1, Éric Maisonnave2, David Guibert3, and Erwan Raffin3

1LOCEAN-IPSL, Sorbonne Universités (UPMC)/IRD/CNRS/MNHN, UMR7159, Paris, France
2CERFACS/CNRS, CECI, Toulouse, France
3CEPP – Center for Excellence in Performance Programming, Atos, 35700 Rennes, France

Correspondence: Gaston Irrmann (gaston.irrmann@locean-ipsl.upmc.fr)

Received: 17 September 2021 – Discussion started: 21 October 2021
Revised: 6 January 2022 – Accepted: 8 January 2022 – Published: 22 February 2022

Abstract. Communications in distributed memory super-
computers are still limiting scalability of geophysical mod-
els. Considering the recent trends of the semiconductor in-
dustry, we think this problem is here to stay. We present the
optimizations that have been implemented in the 4.0 version
of the ocean model NEMO to improve its scalability. Thanks
to the collaboration of oceanographers and HPC experts,
we identified and removed the unnecessary communications
in two bottleneck routines, the computation of free surface
pressure gradient, and the forcing in the straight or unstruc-
tured open boundaries. Since a wrong parallel decomposition
choice could undermine computing performance, we impose
its automatic definition in all cases, including when subdo-
mains containing land points only are excluded from the de-
composition. For a smaller audience of developers and ven-
dors, we propose a new benchmark configuration, which is
easy to use while offering the full complexity of operational
versions.

1 Introduction

There is no longer a need to justify the importance of cli-
mate research for our societies (Masson-Delmotte et al.,
2018). Climate studies explore a complex system driven
by a large variety of interactions from physical to bio-geo-
chemical processes over the ocean, atmosphere, land surface
and cryosphere. Numerical modeling is an essential tool in
climate research, which supplements the sparse observations
in time and space. Numerical experiments are a unique way
to test hypotheses, to investigate which processes are at stake,

to quantify their impacts on the climate and its variability
and, last but not least, to perform climate change forecasts
(Flato et al., 2013). The numerical performance of climate
models is key and must be kept at the best possible level in
order to minimize the time-to-solution but also the energy-
to-solution. Models must continuously evolve in order to take
advantage of new machines. Exascale is expected in the com-
ing years (the supercomputer Fugaku, ranked number 1 of
November 2020 TOP 500 list, achieved a Linpack perfor-
mance of 0.44 EFlop s−1) but the growing complexity of the
supercomputers makes it harder and harder for model devel-
opers to catch up with the expected performance.

Scalability is a major issue as models will have to achieve
good scaling performance on hundreds of thousands or even
millions of mixed tasks and threads (Etiemble, 2018). In ad-
dition to the hardware constraint, the community interest in
better representing fine-spatial-scale phenomena pushes for
finer and finer spatial resolution which can only be achieved
through an increase in the parallel decomposition of the prob-
lem. The costly communications between parallel processes
must thus be minimized in order to keep the time restitution
of the numerical experiments at its best level.

With that perspective, this document focuses on the
“NEMO” model (Nucleus for European Modelling of the
Ocean, Madec et al., 2017), a framework for research activ-
ities and forecasting services in ocean and climate sciences,
developed by a European consortium. The constant improve-
ment of the model physics on the one hand and the evolu-
tion of the supercomputer technology on the other hand re-
quire that model computing performance must be continu-
ally reviewed and improved. It is delicate work to optimize

Published by Copernicus Publications on behalf of the European Geosciences Union.

1568 G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency

a model like NEMO, which is used by a large community,
the profiles of which range from PhD students to experts in
climate physics and modeling or operational oceanography.
This work must improve the performance while preserving
the code accessibility for climate scientists who use and de-
velop it but are not necessarily experts in computing sci-
ences. This optimization work lies within this framework and
we gathered, in this study, authors with very complementary
profiles: oceanographers, NEMO developers, specialized en-
gineers in climate modeling and frontier simulations, and
pure HPC engineers. This work complements the report of
Maisonnave and Masson (2019) by presenting the new HPC
optimizations that have been implemented in NEMO 4.0, the
current reference version of the code.

The tendency to increase the number of cores on super-
computers might translate to an increase in cores per share
memory node, the total machine node number, or both. In
NEMO, parallel subdomains are not sharing memory and the
MPI library is required to exchange the model variables at
their boundaries. Thus, the work of this study focuses on the
reduction of the MPI communication cost, for both inter-
mode and intra-node communications. We expect that the
need for such reduction will continue in future, independent
of hardware evolution.

We first describe the new features that have been added
to the code in order to support the optimization work (see
Sect. 2). This includes an automatic definition of the do-
main decomposition (Sect. 2.1), which minimizes the subdo-
main size for a given maximum number of cores while stay-
ing compatible with the removal subdomains containing only
land points. We next present, in Sect. 2.2, the new benchmark
test case that was specifically designed to be extremely sim-
ple to be deployed while being able to represent all physi-
cal options and configurations of NEMO. The optimization
work by itself is detailed in Sect. 3. A significant reduction
of the number of communications is first proposed in the
computation of free surface pressure gradient (Sect. 3.1). The
second set of optimization concerns the communications in
the handling of the straight or unstructured open boundaries
(Sect. 3.2). The last section (Sect. 4) discusses and concludes
this work.

2 A benchmarking environment

This section of the paper details the code modifications intro-
duced in NEMO 4.0 to provide a benchmarking environment
aimed at facilitating numerical performance tests and opti-
mizations.

2.1 Optimum dynamic sub-domain decomposition

The MPI implementation in NEMO uses a decomposition
along the horizontal plane. Each of the horizontal dimensions
is divided by jpni (for the i dimension) or jpnj (for the j di-

mension) segments, so that the MPI tasks can be distributed
over jpni× jpnj rectangular and horizontal subdomains (see
chapter 8.3 in Madec et al., 2017). Land-only subdomains
(i.e., subdomains containing only land points) can be sup-
pressed from the computational domain. If so, the number
of MPI tasks will be smaller than jpni× jpnj (see Fig. 8.6
in Madec et al., 2017). Note that, as NEMO configurations
can contain “under ice shelf seas”, land points are defined as
points with land-masking values at all levels and not only at
the surface.

The choice of the domain decomposition proposed by de-
fault in NEMO up until version 3.6 was very basic as 2 was
the only prime factor considered when looking at divisors of
the number of MPI tasks. Tintó et al. (2017) underlined this
deficiency. In their Fig. 4, they demonstrated that the choice
of the domain decomposition is a key factor to get the ap-
propriate model scalability. In their test with ORCA025 con-
figuration on 4096 cores, the number of simulated years per
day is almost multiplied by a factor of 2 when using their
optimum domain decomposition instead of the default one.
Benchmarking NEMO with the default domain decomposi-
tion would therefore be completely misleading. Tintó et al.
(2017) proposed a strategy to optimize the choice of the do-
main decomposition in a preprocessing phase. Finding the
best domain decomposition is thus the starting point of any
work dedicated to NEMO’s numerical performance.

We detail in this section how we implemented a similar ap-
proach, but online in the initialization phase of NEMO. Our
idea is to propose, by default, the best domain decomposition
for a given number of MPI tasks and avoid the waste of CPU
resources by non-expert users.

2.1.1 Optimal domain decomposition research
algorithm

Our method is based on the minimization of the size of the
MPI subdomains while taking into account the fact that land-
only subdomains can be excluded from the computation. The
algorithm we wrote can be summarized in three steps:

1. We first have to get the land fraction (LF: the total
number of land points divided by the total number of
points, thus between 0 and 1) of the configuration we
are running. The land fraction will provide the maxi-
mum number of subdomains that could be potentially
removed from the computational domain. If we want
to run the model on Nmpi processes we must look
for a domain decomposition generating a maximum of
Nsubmax = bNmpi/(1−LF)c subdomains, as we will not
be able to remove more than Nmpi×LF land-only sub-
domains.

2. We next have to provide the best domain decomposition
defined by the following rules: (a) it generates a maxi-
mum of Nsubmax subdomains, (b) it gives the smallest
subdomain size for a given value Nsub of subdomains

Geosci. Model Dev., 15, 1567–1582, 2022 https://doi.org/10.5194/gmd-15-1567-2022

G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency 1569

and (c) no other domain decomposition with less sub-
domains has a subdomain which is smaller or equal in
size. This last constraint requires in fact that we build
the list of best domain decompositions incrementally,
from Nsub= 1 to Nsub= Nsubmax.

3. Having this list, we have to test the largest value of Nsub
that is listed and check if, once we remove its land-
only subdomains, the number of remaining ocean sub-
domains is lower than or equal to Nmpi. If it is not the
case, we discard this choice and test the next domain
decomposition listed (in a decreasing order of number
of subdomains) until it fits the limit of Nmpi processes.

Note that in a few cases, a non-optimal domain decomposi-
tion could allow more land-only subdomains to be removed
than the selected optimal decomposition and become a better
choice. Taking into account this possibility would increase
10-fold the number of domain decompositions to be tested,
which would make the selection extremely costly and, in
practice, impossible to use. We consider that the probability
of facing such a case becomes extremely unlikely as we in-
crease the number of subdomains (which is the usual target)
as smaller subdomains fit the coastline better. We therefore
ignore this possibility and consider only optimal decomposi-
tion when looking at land-only subdomains.

If the optimal decomposition found has a number of ocean
subdomains Nsub smaller than Nmpi, we print a warning
message saying that the user provides more MPI tasks than
needed, and we simply keep in the computational domain
(Nmpi−Nsub) land-only subdomains in order to fit the re-
quired number of Nmpi MPI tasks. This simple trick, which
may look quite useless for simple configurations, is in fact re-
quired when using AGRIF (Debreu et al., 2008) because (as
it is implemented today in NEMO) each parent and child do-
main shares the same number of MPI tasks that can therefore
rarely be optimized to each domain at the same time.

The next two sub-sections detail the keys parts of steps (1),
(3) and (2).

2.1.2 Getting land–sea mask information

We need to read the global land–sea information for two pur-
poses: get the land fraction (step 1) and find the number
of land-only subdomains in a given domain decomposition
(step 3). By default, reading NetCDF configuration files in
NEMO can be trivially done via a dedicated Fortran module
(“iom”). This solution was used up until and including re-
vision 3.6 but has a major drawback: each MPI process was
reading the whole global land–sea mask. This potentially im-
plies an extremely large memory allocation followed by a
massive disk access. This is clearly not the proper strategy
when aiming at running very large domains on large numbers
of MPI processes with limited memory. The difficulty here
lies in the minimization of the memory used to get the infor-
mation needed from the global land–sea mask. To overcome

this issue, the general idea is to dedicate some processes to
read only zonal stripes of the land–sea mask file. This solu-
tion requires less memory and will ensure the continuity of
the data to be read, which optimizes the reading process. The
number of processes used to do this work and the width of
the stripe of data we read differ in steps (1) and (3).

To compute the total number of ocean points in step (1)
we use as many MPI processes as available to read the file
with two limits: (i) each process must read at least 2 lines,
and (ii) we use no more than 100 processes to avoid saturat-
ing the file system by accessing the same input file with too
many processes (an arbitrary value that could be changed).
The total number of ocean points in the simulation is then
added among MPI processes using a collective communica-
tion.

When looking at the land-only subdomains in a jpni× jpnj
domain decomposition for step (3), we need the number of
ocean points in each of the jpni× jpnj subdomains. In this
case, we read jpnj stripes of the land–sea mask correspond-
ing to stripes of subdomains. This work is distributed among
min(100, jpnj)MPI processes accessing the input file concur-
rently. A process reads one stripe of data or several stripes if
we use fewer than jpnj processes. A global communication is
then used to compute the number of subdomains containing
at least one ocean point.

2.1.3 Getting the best domain decomposition sorted
from 1 to Nsubmax subdomains

The second step of our algorithm starts with the simple fact
that domain decomposition uses Euclidean division: the di-
vision of the horizontal domain by the number of processes
along i and j directions rarely results in whole numbers.
In consequence, some MPI subdomains will potentially be
1 point larger in the i and/or j direction than others. In-
creasing the number of processes does not always reduce the
size of the largest MPI subdomains, especially when using a
large number of processes compared to the global domain
size. Table 1 illustrates this point with a simple example:
a 1D domain of 10 points (jpiglo) distributed among jpni
tasks with jpni ranging from 1 to 9. Because of the halos
required for MPI communications, the total domain size is
(jpiglo+ 2 · jpni− 2) that must be divided by jpni. One can
see that using jpni= 4 to 7 will always provide the same size
for the largest subdomains: 4. Only specific values of jpni (1,
2, 3, 4 and 8) will end up in a reduction of the largest subdo-
main size and correspond to the optimized values of jpni that
should be chosen. Using other values would simply increase
the number of MPI subdomains that are smaller without af-
fecting the size of the largest subdomain.

This result must be extended to the 2D domain decomposi-
tion used in NEMO. When searching all couples (jpni, jpnj)
that should be considered when looking for the optimal de-
composition, we can quickly reduce their number by select-
ing jpni and jpnj only among the values suitable for the 1D

https://doi.org/10.5194/gmd-15-1567-2022 Geosci. Model Dev., 15, 1567–1582, 2022

1570 G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency

Table 1. Example of 1D 10-point domain decomposition.

jpiglo 10

jpni 1 2 3 4 5 6 7 8 9
jpiglo+ 2jpni−2 10 12 14 16 18 20 22 24 26
(jpiglo+ 2jpni−2)/jpni 10 6.0 4.66 4.0 3.6 3.33 3.14 3.0 2.88
jpimax 10 6 5 4 4 4 4 3 3

decomposition of jpiglo along the i direction and jpjglo along
the j direction. The number of these values corresponds
roughly to the number of divisors of jpiglo and jpjglo, which
can be approximated by 2

√
jpiglo and 2

√
jpjglo. This first

selection is thus providing about 2
√

jpiglo× jpjglo couples
(jpni, jpnj) instead of the (jpiglo× jpjglo) couples that could
be defined by default. Next, we discard from the list of cou-
ples (jpni, jpnj) all cases ending up with more subdomains
than Nsubmax provided by the previous step.

The final part of this second step is to build the list
of optimal decompositions, each one defined by a couple
(jpni, jpnj), with a number of subdomains (jpni× jpnj) rang-
ing from 1 to a maximum of Nsubmax. This work is done with
an iterative algorithm starting with the couple (jpni, jpnj)=
(1,1). The recurrence relation to find elementN+1 knowing
element N of the list of optimal decompositions is the fol-
lowing: first, we keep only the couples (jpni, jpnj) for which
the maximum subdomain size is smaller than the maximum
subdomain size found for the elementN . Next, we define the
element N + 1 as the couple (jpni, jpnj) that gives the small-
est number of subdomains (jpni×jpnj). It rarely happens that
several couples (jpni, jpnj) correspond to this definition. If
the situation arises, we decide to keep the couple with the
smaller subdomain perimeter to minimize the volume of data
exchanged during the communications. This choice is quite
arbitrary as NEMO scalability is limited by the number of
communications but not by their volume. Limiting the sub-
domain perimeter should therefore have a very limited effect.
We stop the iteration process once there is no longer a couple
with a subdomain size smaller than the one selected at rank
N .

Once this list of the best domain decomposition sorted
from 1 to Nsubmax subdomains is established, it remains only
to follow the third step of our algorithm to get the best sub-
domain decomposition (see Sect. 2.1.1).

2.1.4 Additional optimization to minimize the impact
of the North Pole folding

The former work of Maisonnave and Masson (2019) showed
that the specific North Pole folding used in global config-
urations (the tripolar ORCA family grids; Madec and Im-
bard, 1996) is a source of load imbalance as the processes
located along the northern boundary of the domain must per-
form additional communications. Maisonnave and Masson
(2019) reduced the extra cost of theses communications by

Figure 1. Example of ORCA025 domain decomposition along the
j direction (1021 points): (a) j size of the largest MPI subdomains
(jpjmax, in grey) and of the northern MPI subdomains (jpjnorth, in
orange) according to the optimum number of MPI subdomains in
the j direction (jpnj); (b) ratio jpjnorth/jpjmax in %.

minimizing the number of array lines involved in these spe-
cific communications. This development decreased the addi-
tional work load of the northern processes. We decided to go
one step further by minimizing the size along the j direction
of the northern MPI subdomains so they have less to com-
pute and can perform their specific communications without
creating (too much) load imbalance.

This optimization takes advantage of the Euclidean divi-
sion of the global domain used to define the MPI subdo-
mains (see Table 1). In the large majority of cases, this di-
vision has a non-zero remainder (r) which means that some
subdomains must be bigger than the others. The idea is sim-
ply to set the j size of all MPI subdomains, except for the
northern ones, to the largest value given by the Euclidean
division (jpjmax) and to attribute the remaining points along
the j direction to the northern subdomains. By default, the
domain is split along the j direction with the following j de-
composition: r × jpjmax+ (jpnj− r)(jpjmax− 1). If the con-
figuration includes the North Pole folding, we switch to the
following j decomposition: (jpnj− 1)jpjmax+ jpjnorth with
jpjnorth = jpjmax− jpnj+ r . This trick allows us to minimize
the j size of the northern subdomains without changing the
size of the largest MPI subdomains. Note that a minimum
of 4 or 5 points is required for jpjnorth in order to perform
the North Pole folding around the F point (jperio= 6) or the
T point (jperio= 4).

Geosci. Model Dev., 15, 1567–1582, 2022 https://doi.org/10.5194/gmd-15-1567-2022

G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency 1571

Figure 1 illustrates this optimization applied to the
ORCA025 grid, which contains 1021 points along the j di-
rection. Note that, following the results illustrated in Table 1,
we kept only the optimal values of jpnj, and hence the occur-
rence of discrete values along this axis. When jpnj is small
(< 20 in the ORCA025 case), jpjnorth remains close to jpjmax
and their ratio is higher than 90 %. This optimization seems
here to be insufficient, but communications are usually not a
bottleneck when using large MPI subdomains (jpjmax ∼ 100
and above). The ratio jpjnorth/jpjmax is generally smaller for
larger values of jpnj (> 20). It reaches a minimum of 20 % for
jpnj= 36, but the main drawback of this simple optimization
is that the ratio can reach very large values (> 90%) even
for very large values of jpnj. The benefit of this optimization
may therefore significantly vary even when slightly chang-
ing the j decomposition. This optimization is a first step to
improving NEMO performances when using a configuration
with the North Pole folding, and we are still exploring other
pathways to find an optimization that would be adapted to
all j decompositions. We could, for example, set the j size
of the northern MPI subdomains before computing the j de-
composition of the remaining part of the domain. This solu-
tion would, however, require a criterion to specify the most
appropriate j size, which will necessitate further benchmark-
ing work to quantify the remaining load imbalance and its de-
pendency on the domain size, on the number of subdomains
and very likely on the machine and its libraries.

2.2 The BENCH configuration

On top of finding the best domain decomposition, explor-
ing the code numerical performance requires a proper bench-
mark. Preferably one that is easy to install and configure
while keeping the code usage close to production mode.

The NEMO framework proposes various configurations
based on a core ocean model: e.g., global (ORCA family) or
regional grids, with different vertical and horizontal spatial
resolutions. Different components can moreover be added
to the ocean dynamical core: sea ice (i.e., SI3) and/or bio-
geo-chemistry (i.e., TOP-PISCES). A comprehensive perfor-
mance analysis must thus be able to scrutinize the subrou-
tines of every module to deliver a relevant message about the
computing performance of the NEMO model to the whole
user community. On the other hand, as pointed out by the for-
mer RAPS consortium (Mozdzynski, 2012), performing such
benchmarking exercise must be kept simple, since it is often
done by people with basic knowledge of NEMO or physical
oceanography (e.g., HPC experts and hardware vendors).

We detail in this section a new NEMO configuration we
specifically developed to simplify future benchmarking ac-
tivities by responding to the double constraint of (1) be light
and trivial to use and (2) allow any NEMO configuration
to be tested (size, periodicity pattern, components, physical
parameterizations. . .). At the opposite of the dwarf concept
(Müller et al., 2019), this configuration encompasses the full

complexity of the model and helps to address the current is-
sues of the community. This BENCH configuration was used
in Maisonnave and Masson (2019) to assess the performance
of the global configuration (ORCA family). We use it in the
current study section to continue this work and but also to
improve the performance of the regional configurations.

2.2.1 BENCH general description

This new configuration, called BENCH, is made available in
the tests/BENCH directory of the NEMO distribution.

BENCH is based on a flat-bottom rectangular cuboid,
which allows any input configuration file to be by-passed and
gives the possibility to define the domain dimensions sim-
ply via namelist parameters (nn_isize, nn_jsize and nn_ksize
in namusr_def). Note that the horizontal grid resolution is
fixed (100 km), whatever grid size is defined, which limits the
growth of instabilities and allows the same time step length
to be kept in all tests.

Initial conditions and forcing fields do not correspond to
any reality and have been specifically designed (1) to ensure
the maximum robustness and (2) to facilitate BENCH han-
dling as they do not require any input file. In consequence,
BENCH results are meaningless from a physical point of
view and should be used only for benchmarking purposes.
The model temperature and salinity are almost constant ev-
erywhere with a light stratification which keeps the vertical
stability of the model. We add on each point of each horizon-
tal level a perturbation small enough to keep the solution very
stable while letting the oceanic adjustment processes occur to
maintain the associated amount of calculations at a realistic
level. This perturbation also guarantees that each point of the
domain has a unique initial value of temperature and salinity,
which facilitates the detection of potential MPI issues. We
apply a zero forcing at the surface, except for the wind stress
which is small and slowly spatially varying.

To make it as simple as possible to use, the BENCH con-
figuration does not need any input file, so that a full simula-
tion can be performed by downloading only the source code.
In addition, the lack of input (or output) files prevents any
disk access perturbation of our performance measurement.
However, output can be activated as in any NEMO simula-
tion, for example to test the performance of the XIOS (Meur-
desoif, 2018) output suite.

2.2.2 BENCH flexibility

Any NEMO numerical scheme and parameterization can be
used in BENCH. To help the user in his namelist choices and
to test diverse applications, a selection of namelist parame-
ters is provided with BENCH to confer to the benchmarks the
numerical properties corresponding to popular global config-
urations: ORCA1, ORCA025 and ORCA12.

The SI3 sea-ice and TOP-PISCES modules can be turned
on or off by choosing the appropriate namelist parameters

https://doi.org/10.5194/gmd-15-1567-2022 Geosci. Model Dev., 15, 1567–1582, 2022

1572 G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency

and CPP keys when compiling. The initial temperature and
salinity definition was designed in such a way that if SI3 is
activated in the simulation, the sea ice will cover about one-
fifth of the domain, which corresponds approximately to the
annual ratio of ORCA ocean grid points covered by sea ice.

Any closed or periodical conditions can be used
in BENCH and specified through a namelist parame-
ter (nn_perio in namusr_def). The user can choose be-
tween closed boundaries, east–west periodical conditions, bi-
periodic conditions (nn_perio= 7) or even the North Pole
folding used in the global configuration ORCA (nn_perio=
4 or 6). Note that bi-periodic conditions ensure that all MPI
subdomains have the same number of neighbor subdomains
if there are no land points; it is a convenient way to reduce
load imbalance. The specificity of the periodical conditions
in ORCA global grids has a big impact on performance. This
motivated the possibility to use them in the BENCH con-
figuration: a simple change of nn_perio definition gives to
BENCH the ORCA periodic characteristics and reproduces
the same communication pattern between subdomains lo-
cated on the northernmost part of the grid.

The above section describes the main BENCH features
that are set by default, but we must keep in mind that each of
them can be modified through namelist parameters if needed.
By default, BENCH is not using any input file to define the
configuration, the initial conditions or the forcing fields. We
could, however, decide to specify some input files if it was
required by the feature to be tested.

2.2.3 BENCH grid size, MPI domain decomposition
and land-only subdomains

Like in any other NEMO configuration, BENCH compu-
tations can be distributed on a set of MPI processes. The
BENCH grid size is defined in the namelist with two dif-
ferent options. If nn_isize and nn_jsize are positive, they
simply define the total grid size on which the domain de-
composition will be applied. This is the usual case, the size
of each MPI subdomains is comparable (but not necessarily
equal) for each MPI task and computed by the code accord-
ing to chosen pattern of domain decomposition. If nn_isize
and nn_jsize are negative, the absolute value of these param-
eters will now define the MPI subdomain size. In this case,
the size of the global domain is computed by the code to fit
the prescribed subdomain size. These options force each MPI
subdomain to have the exact same size, whatever number of
MPI processes is used, which facilitates the measurement of
the model’s weak scalability.

In NEMO, calculations are almost always performed at
each grid point, and a mask is then applied to take into
account land grid points if there are any. Consequently,
the amount of calculations is the same with or without
bathymetry, and it follows that the computing performance
of BENCH and a realistic configuration are extremely close.
However, we must underline that the absence of continents

Figure 2. Time to solution (in hour per simulated year) as a function
of the subdomain size (grid point number per subdomain side) on
the BENCH configuration. The grid is the same as a global ocean
grid at 1◦ resolution (ORCA1). The configuration includes the SI3
sea-ice model. The STD case (red line) is without any bathymetry,
the LSR case (dark blue line) has a bathymetry and land-only sub-
domains are removed. In each case, the waiting time is also plotted
(orange and light blue).

in the default usage of BENCH prevents the testing of
the removal of subdomains entirely covered by land points
(Molines, 2004). Note that it is possible to test a realis-
tic bathymetry and the removal of land-only subdomains
in BENCH by using any NEMO configuration input file
in BENCH (as in all NEMO configurations). In this case,
the user can simply define ln_read_cfg= .true. and provide
the configuration file name in the variable cn_domcf in the
namelist block namcfg. A comparison of the BENCH scal-
ability, without (named STD) or with land-only subdomains
removal (named LSR), displayed in Fig. 2, was performed to
assess the removal impact.

Configurations that remove land-only subdomains might
have smaller subdomains than configurations that do not
when using the same number of MPI processes. A fair
comparison of computing performance must hence be done
with identical subdomain size. Therefore, the performance
of Fig. 2 is not given as a function of the number of re-
sources used, like in usual scalability plots, but as a function
of the number of grid points in the side of a subdomain (mean
of the root square of the subdomain area). Performance is
slightly better in the LSR case. The other information dis-
played in Fig. 2, the simulation waiting time, represents the
total elapsed time spent in MPI communications. The waiting
time encompasses data transfer, overhead of the MPI library
and computation load imbalance. The comparison of waiting

Geosci. Model Dev., 15, 1567–1582, 2022 https://doi.org/10.5194/gmd-15-1567-2022

G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency 1573

time between STD and LSR helps to understand the origin of
the small overall performance discrepancy. In the LSR case,
some subdomains have land-only neighbors that they do not
communicate with; this can explain LSR’s shorter waiting
time and some of the difference regarding the time to solu-
tion. However, scalability regimes, slopes and limits, for both
time to solution and waiting time, are practically the same in
STD and LSR. As already mentioned (Ticco et al., 2020),
BENCH is able to reproduce the computation performance
of any usual NEMO configuration and provides a simplified
alternative for benchmarking work.

Since the 4.0 version release, the BENCH configuration
was tested on various platforms and showed good numeri-
cal stability properties (Maisonnave and Masson, 2019). The
stability of the BENCH configuration allows us to perform
innovative benchmarks to easily test the potential impact of
future optimization of MPI communications. BENCH can in-
deed run for quite a large number of time steps even if we
artificially decide to skip MPI communications. For exam-
ple, it is possible to examine the code scalability without any
communication by simply adding a RETURN command at the
beginning of NEMO communication routine. If we add an
IF test with a modulo to decide if this RETURN command is
applied or not, one can have an idea of what the code perfor-
mance would be if we could reduce the communications by
a factor of N . Likewise, one can test the potential benefits of
plenty of ideas without getting too deep into the implemen-
tation.

2.3 Dedicated tool for communication cost
measurement

The last piece of the puzzle that we implemented to set up an
effective benchmarking environment in NEMO is to collect
and summarize information related to the performance of the
MPI part of the code.

In NEMO, MPI communications are wrapped in a small
number of high-level routines co-located in a single For-
tran file (lib_mpp.F90). These routines provide functional-
ities for halo exchange and global averages or min/max oper-
ations between all subdomains. With very little code changes
in this file, it is possible to identify and characterize the whole
MPI communication pattern. This instrumentation does not
replace external solutions, based on automatic instrumenta-
tion, e.g., with “Extrae-Paraver” (Prims et al., 2018) or “In-
tel Trace Analyzer and Collector” (Koldunov et al., 2019),
which provide a comprehensive timeline of exchanges. The
amount of information collected by our solution is much
smaller and the possibilities of analysis reduced, but we are
able to deliver, without any external library, additional com-
puting cost or additional postprocessing, simplified informa-
tion on any kind of machine.

A counter of the time spent in MPI routines is incremented
at any call of an MPI send or receive operation (named
“waiting time”). A second counter handles MPI collective

operations (named “waiting global time”). Additionally, a
third counter is incremented outside these MPI-related op-
erations (named “computation time”). On each process, only
three data are collected into three floats: the cumulative time
spent sending and receiving, gathering MPI messages, and
the complementary period spent in other operations.

After a few time steps, we are able to produce a dedicated
output file called communication_report.txt. It contains the
list of subroutines exchanging halos, how many exchanges
each perform per time step and the list subroutines using col-
lective communications. The total number of exchanged ha-
los, the number of 3D halos, and their maximum size are also
provided.

At the end of the simulation, we also produce a sepa-
rated counting, per MPI process, of the total duration of
(i) halo exchanges for 2D and 3D as well as simple and multi-
ple arrays, (ii) collective communications needed to produce
global sum, min and max, (iii) any other model operation
independent from MPI (named “computing”) and (iv) the
whole simulation. These numbers exclude the first and last
time steps, so that any possible initialization or finalization
operations were excluded from the counting. This analysis
is output jointly to the existing information related to the
per-subroutine timing (timing.output file). This analysis can
be found below the information related to the per-subroutine
timing in the timing.output file.

3 Reducing or removing unnecessary MPI
communications

This section presents the code optimizations that were done
following the implementation of the benchmarking environ-
ment described in the previous section.

In a former study (Maisonnave and Masson, 2019) relied
on the measurement tool (Sect. 2.3) to assess the perfor-
mance of the BENCH configuration (Sect. 2.2). This work
focused only on global configurations with grid sizes equiv-
alent to 1 to 1/12◦ horizontal resolution that may or may
not include sea-ice and bio-geo-chemistry modules. Maison-
nave and Masson (2019) modified various NEMO subrou-
tines to reduce (or group) MPI exchanges with a focus on
the North Pole folding. In this section, we propose to com-
plement the work of Maisonnave and Masson (2019) by im-
proving NEMO’s scalability in regional configurations in-
stead of global configurations. This implies the configura-
tion the BENCH namelist in a regional setup including open
boundaries, as detailed in the Appendix A. We also deacti-
vated the sea-ice component which was deeply rewritten in
NEMO version 4 and necessitates a dedicated work on its
performance.

As evidenced by Tintó et al. (2019), the MPI efficiency
in NEMO is not limited by the volume of data to be trans-
ferred between processes but by the number of communica-
tions itself. Regrouping the communications that cannot be

https://doi.org/10.5194/gmd-15-1567-2022 Geosci. Model Dev., 15, 1567–1582, 2022

1574 G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency

removed is therefore a good strategy to improve NEMO’s
performance. Our goal is thus to find the parts of the code
which do the most communications and then figure out how
we can reduce this number either by removing unnecessary
communications or by grouping indispensable communica-
tions. Note that following the development of Tintó et al.
(2019) a Fortran generic interface has been added to NEMO
that makes the grouping of multiple communications ex-
tremely easy.

In the configuration we are testing (BENCH with no pe-
riodicity, open boundaries and no sea-ice), almost 90 % of
communications are in two routines: the surface pressure gra-
dient computation (44 %) and the open boundary conditions
(45 %). The following optimizations will therefore focus on
those two parts of the code. Note that in both cases, the in-
volved communications transfer a very limited volume of
data (from a single scalar to a 1-dimension array) which jus-
tifies even more the strategy proposed by Tintó et al. (2019).

3.1 Free surface computation optimization

In most of the configurations based on NEMO, including
in our BENCH test, the surface pressure gradient term in
the prognostic ocean dynamics equation is computed using
a “forward–backward” time-splitting formulation (Shchep-
etkin and McWilliams, 2005). At each time step n of the
model, a simplified 2D dynamic is resolved at a much smaller
sub-time step 1t∗ resulting in a sub-time step m, with m
ranging from 1 to M(≈ 50). This 2D dynamic will then be
averaged to obtain the surface pressure gradient term.

In the previous NEMO version, each sub-time step com-
pletes the following computations.

ηm+
1
2 = (3

2 +β)η
m
− (1

2 + 2β)ηm−1
+βηm−2

Uh
m+ 1

2 = (3
2 +β)Uh

m
− (1

2 + 2β)Uh
m−1
+βUh

m−2

Ũh
m+ 1

2 =Dm+
1
2Uh

m+ 1
21e

Communication 1 on Ũh
m+ 1

2

ηm+1
= ηm−1t∗[div(Ũhm+

1
2)+P −E]

Communication 2 on ηm+1

η′ = δηm+1
+ (1− δ− γ − ε)ηm+ γ ηm−1

+ εηm−2

Uh
m+1
=

1
Dm+1 [D

mUh
m
+1t∗

(
(1− r)g gradx(η

′)

−Dm+
1
2 f k×Uh

m+ 1
2 +G

)
]

Communication 3 on Uh
m+1

Here, η is the sea surface height, Uh is the speed integrated
over the vertical, Ũh is the flux, Dm =H + ηm is the height
of the water column, 1e is the length of the cell, P is pre-
cipitation, E is evaporation, g is the gravity acceleration, f
is the Coriolis frequency, k is the vertical unit vector and G
is a forcing term. β, r , δ, γ and ε are constants.

NEMO uses a staggered Arakawa C grid; that is to say
that some variables are evaluated at different locations. Zonal

Figure 3. The MPI subdomain is bounded by the grid, the interior
of the MPI subdomain is highlighted in blue while the ghost cells

are in white. Black arrows show U and V points where ηm+
1
2 (and

therefore Ũh
m+ 1

2) can be directly computed and grey arrows point
where they cannot be computed without communication. Red dots

show T points where div(Ũh
m+ 1

2) can be directly computed.

velocities are evaluated at the middle of the eastern grid
edges, meridional velocities at the middle of the northern
grid edges and sea surface height at the grid center. Due
to this feature, spatial interpolations are sometimes needed
to get variables at another location than the one they were
initially defined on. For instance, ηm+

1
2 must be interpo-

lated from T to U and V points to be used in the equation

Ũh
m+ 1

2 =Dm+
1
2Uh

m+ 1
21e = (H +ηm+

1
2)Uh

m+ 1
21e. Since

adjacent points on both sides of the grid cells are needed in
the interpolation, ηm+

1
2 cannot be directly interpolated on

eastern U -point ghost cells (grey arrows in Fig. 3). Similarly,
ηm+

1
2 cannot be interpolated on northern V -point ghost cells.

It entails that Ũhm+
1
2 is not directly computed on eastern U -

point and northern V -point ghost cells. “Communication 1”
is therefore used to update Ũhm+

1
2 on those ghost cells.

The computation of div(Ũhm+
1
2) defined at T points re-

quires values of Ũhm+
1
2 on adjacent U and V points. It

therefore cannot be completed on western and southern
ghost cells, and “Communication 2” updates the field on
those cells. Similarly, gradx(η

′) cannot be computed over the
whole MPI subdomain, hence the “Communication 3”.

A careful examination of this algorithm is, however, show-
ing that this communication sequence can be improved. As
detailed in Fig. 3, the computation of div(Ũhm+

1
2) (red dots)

defined at T points only demands correct values at the four
adjacent U and V points (black arrows). Values of ηm+

1
2 on

U and V points of northern and eastern ghost cells are not
needed in the computation of div(Ũhm+

1
2) on the interior of

Geosci. Model Dev., 15, 1567–1582, 2022 https://doi.org/10.5194/gmd-15-1567-2022

G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency 1575

the MPI subdomain. Communication 1 on Ũhm+
1
2 can hence

be delayed and grouped together with Communication 2 on
ηm+1. Note that the communication on Ũhm+

1
2 cannot be re-

moved altogether as the variable is also used for other pur-
poses that are not detailed here.

Following this improvement, the number of communica-
tions per sub-time step in the time-splitting formulation has
been reduced from 3 to 2. This translates to a reduction from
135 (44 %) to 90 (29 %) communications per time step in the
surface pressure gradient routine for the examined configu-
ration.

3.2 Open-boundary communication optimization

Configurations with open boundaries require fields on the
boundaries to be changed frequently. In the previous NEMO
version, a communication had to be carried out after the com-
putation of boundary conditions to update values that are
both on open boundaries and on ghost cells. In the config-
uration we tested, with open boundaries and no sea ice, 45 %
of the number of communications was due to open bound-
aries.

Boundary conditions in NEMO are often based on the
Neumann condition, ∂φ

∂n
= 0, where φ is the field on which

the condition is applied and n the outgoing normal, or the
Sommerfeld condition ∂φ

∂t
+c

∂φ
∂n
= 0, where c is the speed of

the transport through the boundary. For both boundary con-
ditions the only spatial derivative involved is ∂φ

∂n
. The focus is

therefore to find the best way to compute ∂φ
∂n

in various cases.
NEMO allows two kinds of open boundaries: straight open

boundaries and unstructured open boundaries. As straight
open boundaries along domain edges are far more common
and easier to address, we will examine them first.

3.2.1 Straight open boundaries along domain edges

Figure 4a shows schematic representation of the BENCH
configuration with straight open boundaries on every side
that will be used to explain the optimizations performed in
this part of the code. The code structure of NEMO requires
domains to be bordered by land points (in brown) on all di-
rections except when cyclic conditions are applied. The four
open boundaries (red stripes on each side of the domain) are
thus located next to the land points, on the second and before
last rows and columns of the global domain.

Let us consider an MPI subdomain located on the east-
ern side of the global domain, represented by the red square
in Fig. 4a and detailed in Fig. 4b. Originally, the treatment
of the open boundaries was performed only in the inner
domain (red stripes over blue cells), and a communication
phase was used to update the value on the ghost cells (red
stripes over white cells). In the case of a straight longitudi-
nal boundary with the exterior of the computational domain
on the east, ∂φ

∂n
|(x,y) will be calculated at a point (xi,yi) by

φ(xi−1,yi)−φ(xi ,yi)
1xi,i−1

, where 1xi,i−1 is the distance between xi
and xi−1. When such conditions are applied, only values de-
fined at points orthogonal to the open boundary are needed,
yet such points are inside the MPI subdomain, even when
(xi,yi) is on a ghost cell (red stripes over white cells in
Fig. 4b). Moreover, in the code, fields are always updated
on ghost cells before open boundary conditions are applied;
hence the entire field on the MPI subdomain is properly de-
fined and can be used. The computation of the boundary con-
dition is thus possible over the whole boundary including on
ghost cells. There is no need for any communication update.
When straight open boundaries along domain edges are used,
this optimization gets rid of all the communications linked
with open boundary computation.

3.2.2 Unstructured open boundaries

Unstructured open boundaries allow the user to define any
boundary shape. Figure 5a shows an example of such an open
boundary defined next to land points. A possible use of an
unstructured open boundary is the following: a user could
want the simulation not to include ocean points where the
ocean is too shallow and instead define an unstructured open
boundary delimiting an area of low depth (for instance in
the vicinity of an island). The shallow ocean points will be
defined as land points in the domain definition, but exchange
of water masses and properties will be possible through the
unstructured open boundary.

Depending on the MPI decomposition, open boundary
cells can end up on ghost cells and facing the outside of
the MPI subdomain, hence rendering direct computation
of the boundary condition impossible. For example, in the
MPI subdomain Fig. 5b, to compute the boundary condition
∂φ
∂n
|(x,y)=(xi ,yi) on some points (xi,yi) highlighted by a red

arrow would require the value of φ on a point ((xi+1,yi)) out-
side of the MPI subdomain. Note that straight open bound-
aries can potentially be defined anywhere in the domain (and
not only along the domain edges). In this case it is also possi-
ble that a straight open boundary would be just tangential to
the MPI domain decomposition. In such rare case, applying
the open boundary conditions would also require a MPI com-
munication. These rare cases are in fact treated in the same
manner as for the unstructured open boundaries and are thus
automatically included in the procedure we implemented for
unstructured open boundaries.

We chose to detect points where direct computation (i.e.,
without a communication phase) will be impossible during
the initialization of the model and trigger communications
only for MPI subdomains where at least one such point is
present. This allows for the previous optimization to be com-
patible with unstructured open boundaries. Points on a corner
of an unstructured open boundary also require specific atten-
tion when tracking points that could need a communication
phase. Indeed, on an outside corner, several points can be
considered orthogonal to the open boundary. The choice of

https://doi.org/10.5194/gmd-15-1567-2022 Geosci. Model Dev., 15, 1567–1582, 2022

1576 G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency

Figure 4. On the left, a configuration with straight open boundaries, the red line delimits a possible MPI subdomain detailed on the right.
Brown cells are land cells and red hatched cells are open boundary cells. On the right, inner domain cells are in blue; red dots mark T
points constituting the open boundary ((xi ,yi)) and red arrows the points orthogonal to the boundary ((xi−1,yi)) used in the computing of
∂φ
∂n
|(x,y)=(xi ,yi).

Figure 5. (a) A configuration with straight open boundaries on the eastern and southern sides and unstructured open boundaries on the
western and northern sides; the red line delimits a possible MPI subdomain detailed in panel (b). Brown cells are land cells and red hatched
cells are open boundary cells. Red dots mark some T points of the open boundary ((xi ,yi)) and red arrows the points orthogonal to the
boundary used in the computing of ∂φ

∂n
|(x,y)=(xi ,yi).

the neighboring points involved in this computation will tell
us if the treatment of the corner requires a MPI communi-
cation or not. When reviewing the corner-point treatment in
older NEMO version, we realized that the method chosen in
some cases did not ensure symmetry properties (a reflection
symmetry could change the results). We therefore decided to
first correct this problem in the physical application of the
Neumann condition of corner points before finding and list-
ing those which require a MPI communication. This first step
is detailed in the next paragraph even if, formally, this is not
a performance optimization.

Applying the Neumann condition, ∂φ
∂n
= 0, to an open

boundary point equates to setting that point to the value of
one (or the average value of several) of its neighbors that
are orthogonal to the open boundary. The selected method
must have reflection and rotation symmetry properties and
allow the open boundary point to be set to the most realistic
value possible. The method used is illustrated in Fig. 6 where
contour lines of a field φ are in blue with the φ = 0 contour
line passing through the T point of an open boundary cell
(red dot) on an outside corner of the open boundary. Contour
lines are straight and the field is increasing linearly in diag-
onal or orthogonal directions. Red arrows indicate the best

Geosci. Model Dev., 15, 1567–1582, 2022 https://doi.org/10.5194/gmd-15-1567-2022

G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency 1577

Figure 6. Brown cells are land cells and red hatched cells are open
boundary cells. Red dots mark points from the open boundary and
red arrows the best points to use to compute the Neumann condition,
blue lines are contour lines of φ with the value of the contour line
highlighted in blue.

choice for the Neumann condition. In Fig. 6 the best choice
is to take the average of the values of the closest available
points. Here, applying the Neumann condition is done by
setting φ(xi,yi) to φ(xi+1,yi)+φ(xi ,yi−1)

2 . Indeed, if only one of
those two points were used, there would not be good symme-
try properties (cases 1, 3 and 4), and if the top right point was
also taken into the average, the result would be a bit better in
case 1 for a nonlinear field but worse in cases 2, 3 and 4.

Using the same method, we finally summarized all Neu-
mann conditions and their neighbor contributions in five
cases shown in Fig. 7. All other possible dispositions are ro-
tations of one of these 5 cases. Thanks to this classification,
we have next been able to figure out, from the model ini-
tialization phase, the communication pattern required by the
treatment of the Neumann conditions. Based on this informa-
tion we can restrict the number of communication phases to
their strict minimum.

3.3 Performance improvement

The performance is estimated using a realistic simulation
of the West Atlantic between 100 and 31◦W and 8◦ S and
31◦ N. It includes continents and straight open boundaries on
the north, east and south. The simulation is to the 32th of a
degree with 2188× 1300= 2844400 mesh cells and 75 ver-
tical levels. To reduce the impact of the file system on the
measurements, the simulation does not produce any output.

In this test case, which is representative of the very large
majority of uses, the open boundaries are straight and located
along the edge of the domain. The communications related

Figure 7. Brown cells are land cells and red hatched cells are open
boundary cells. Red dots mark points from the open boundary and
red arrows the points used in the computing of ∂φ

∂n
|(x,y)=(xi ,yi) for

the Neumann condition.

Figure 8. Comparison between the number of communications
needed at each time step in NEMO before (blue) and after the opti-
mizations of this section were carried out (orange) for a configura-
tion with open boundaries and without ice.

to open boundaries have therefore been completely removed,
and the communications related to the surface pressure gra-
dient are reduced by a third. As a result, in this configuration,
the total number of communications per time step has been
reduced by about 60 % (Fig. 8).

The number of cores used is in line with the optimum dy-
namic sub-domain decomposition described in Sect. 2.1. For
each core number, 3 simulations of 1080 time steps were con-
ducted, and the computing time was retrieved at each time
step of the model. Figure 9 shows that there are many out-

https://doi.org/10.5194/gmd-15-1567-2022 Geosci. Model Dev., 15, 1567–1582, 2022

1578 G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency

Figure 9. Computing time (in seconds) per time step for a West
Atlantic simulation run with 2049 cores. The grey (orange) dashed
line shows the mean (median) computing time of one time step.

liers in the computing time that shift the mean to higher val-
ues while the median is not sensible to it. As the exact same
instructions are run at every time step, the outliers are likely
to be a consequence of instabilities of the supercomputer or
preemption. A finer analysis showed that the slowdowns oc-
cur on random cores of the simulation. Since the median ef-
fectively filters out outliers it corresponds to the computing
time one would get on an extremely stable supercomputer
with no preemption.

Figure 10 shows the improvement of NEMO strong scal-
ing brought by our optimizations. In this figure, the model
performance is quantified by the number of years that can
be simulated during a 24 h period (simulated years per day,
SYPD). For small numbers of cores, the optimizations have
no noticeable effect, as the time spent in communications is
very small. However, as the number of cores rises, each MPI
subdomain gets smaller, the computational load diminishes,
and the communication load becomes predominant. Here the
optimizations bring clear improvements: the number of sim-
ulated years per day is higher in the optimized version of
the code (orange curves are above the corresponding blue
curves). The scalability curves built by considering the 1080
time steps (solid lines) are nevertheless quite noisy, and the
improvement is not as good as expected: 20 % at best with a
negative value around 30 000 cores.

Filtering out the outliers by using the median gives re-
sults that are better and more robust. The resulting scala-
bility curves (dashed lines) are less noisy. Moreover, if we
except the last point, the distance between the two dashed
lines is steadily increasing as we use more cores. The impact
of our optimizations is therefore greater at greater core num-
ber. The number of SYPD is, for example, increased by 35 %
for 37 600 cores when using the optimized version. One can
also note that the optimized version that ran on 23 000 cores

Figure 10. Strong scaling performance: simulated years per day
(SYPD) as a function of the number of cores used in the simula-
tion.

simulates the same number of SYPD as the old version on
37 600 cores, which represents a reduction of resource usage
of nearly 40 %.

The differences between filtered and unfiltered results are
possibly linked to instabilities. As each core has similar
chances of suffering from instabilities or going into preemp-
tion, at higher core number slower cores are more common.
Since communications tend to synchronize cores, a single
slow core slows down the whole run. The median gets rid of
time steps in which preemption or great instabilities occur. It
indicates the performance we could get on a “perfect” ma-
chine which would not present any “anomalies” during the
execution of the code. Such a machine unfortunately does not
exist. The trend in new machine architecture with increas-
ing complexity and heterogeneity suggests that performance
“anomalies” during the model integration may occur more
and more often to become a common feature. Our results
point out this new constraint which is already eroding a sig-
nificant part of our optimization gains (from 40 % to 20 %)
and will need to be taken into account in the future optimiza-
tions of the code.

4 Conclusions

We presented in this paper the new HPC optimizations that
have been implemented in NEMO 4.0, the current reference
version of the code. The different skills we gathered among
the co-authors allowed us to improve NEMO performance
while facilitating its use. The automatic and optimized do-
main decomposition is a key feature to perform a proper
benchmarking work, but it also benefits all users by selecting
the optimum use of the available resources. This new feature
also points out a possible waste of resources to the users,
making them aware of the critical impact of the choice of the

Geosci. Model Dev., 15, 1567–1582, 2022 https://doi.org/10.5194/gmd-15-1567-2022

G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency 1579

domain decomposition on the code performance. The new
BENCH test case results from a close collaboration between
ocean physicist and HPC engineers. We distorted the model
input, boundary and forcing conditions to ensure enough sta-
bility to do benchmark simulations in any configuration with
as few input files as possible (basically the namelist files).
Note that the stability of this configuration even allows devel-
opers to carry out some unorthodox HPC tests. For example,
artificially suppressing a part of the MPI communications to
test the potential benefit of further optimizations before cod-
ing them.

In this 4.0 release, code optimization was targeting the
scalability by reducing the number of communications. The
present paper focuses on two parts of the code: (1) the com-
putation of the surface pressure gradient that amounted to
about 150 communications per model time step and (2) the
treatment of the open boundaries conditions that was also do-
ing a similar number of communications. We managed to re-
duce the communications by 30 % in the routine computing
the surface pressure gradient. The results are even more spec-
tacular in the part of the code dealing with the open bound-
aries as we managed to suppress all communications in the
very large majority of cases. Note that this optimization work
also gave us the opportunity to improve the algorithm used
in the treatment of some unstructured open boundaries with
a tricky geometry. Several conclusions can be drawn from
the analysis of the performance improvements obtained with
this very large reduction (from ∼ 300 to ∼ 125, that is to say
∼ 60 %) of the total number of communications per model
time step. First, as expected, this optimization has an impact
only once we use enough cores (> 500 in our case), so the
communications have a significant weight in the total elapsed
time of the simulation. Second, the elapsed time required to
perform one model time step is far from being constant as
it should be in theory. Some time steps are much longer to
compute than the median time step. This significant spread
in the model time step duration requires that we use the me-
dian instead of the mean value when comparing performance
of different simulations.

These results are suggesting further investigations for fu-
ture optimizations. The large variability of the elapsed time
needed for one time step suggests that the performance of
the machines is definitely not constant. They are, in fact,
varying in time and between the cores in a manner that is
much larger than what we originally expected. This behav-
ior can be explained by many things (preemption, network
load, etc.). Benchmarks on different machines are suggest-
ing that this heterogeneity in the functioning of supercom-
puters will get more common as we start using more cores.
Code optimizations will have to take this new constraint into
account. We will have to adapt our codes in order to absorb
or limit the effects of asynchrony that will appear during the
execution on the different cores. The way we perform the
communication phase in NEMO, with blocking communi-
cations between, first, east–west neighbors and, next, north–

Figure 11. NEMO domain decomposition with the dispatch of the
MPI processes among the different nodes. In this schematic repre-
sentation, each square represents one MPI process of NEMO. We
consider that NEMO is distributed over 216 MPI processes and that
each node has 9 cores. The distribution of the MPI processes on the
cores is represented by their color: processes on the same node have
the same color. (a) Default dispatch of the MPI processes in lines;
(b) optimized dispatch of the MPI processes in squares.

south neighbors will have to be revisited, for example with
non-blocking sending and receiving or with new features
such as neighbor collective communications. In recent ar-
chitecture, the number of cores inside a node has increased.
This leads to a two-level parallelism where the communica-
tion speed and latency differs for inter-node exchanges and
intra-node exchanges. Inter-node communications are prob-
ably slower and possibly a source of asynchrony. A pos-
sible optimization could therefore be to minimize the ratio
of inter-node to intra-node communications. Figure 11 illus-
trates this idea. The domain decomposition of NEMO is rep-
resented with each square being an MPI process and each
node a rectangle of the same color. In this representation,
the perimeter of a “rectangle-node” directly gives the num-
ber of inter-node communications (if we say to simplify that
the domain is bi-periodic and each MPI process always has
four neighbors). If we make the hypothesis that each node
can host x2 MPI processes, these x2 processes are placed by
default on a “line node” with a perimeter of 2x2

+ 2. In this
case, the ratio of inter-node to intra-node communications
is (2x2

+ 2)/4x2. Now, if we distribute the x2 processes on
a “square node”, the number of inter-node communications
becomes 4x and the ratio 4x/4x2

= 1/x. If we take x = 8
for 64-core nodes, we get a reduction of −75 % of the num-
ber of inter-node communications when comparing the line-
node dispatch (130) with the square-node dispatch (32). The
ratio of inter-node versus intra-node communications drops
from 50 % to 12.5 %. These numbers are of course given for
ideal cases where the number of cores per node is a square.
We should also consider additional constraints like the re-
moval of MPI processes containing only land points, the use
of some of the cores per node for XIOS, the IO server used
and NEMO. The optimal dispatch of MPI processes in a real
application is not so trivial but the aforementioned strategy
is an easy way to minimize the inter-node communications.
This could be an advantage when we will be confronted with
the occurrence of more and more asynchrony.

https://doi.org/10.5194/gmd-15-1567-2022 Geosci. Model Dev., 15, 1567–1582, 2022

1580 G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency

Appendix A: Namelist configuration to use BENCH
with open boundaries

The BENCH configuration (see Sect. 2.2) was used by
Maisonnave and Masson (2019) in its global configuration
including the east–west periodicity and the North Pole fold-
ing. As detailed in Sect. 2.2.2, the BENCH configuration
can be adapted to any purpose using the configuration file:
namelist_cfg.

This appendix shows the parameters to be modified or
added in namelist_cfg in order to use the BENCH configu-
ration with straight open boundaries used in Sect. 3.

Geosci. Model Dev., 15, 1567–1582, 2022 https://doi.org/10.5194/gmd-15-1567-2022

G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency 1581

Code availability. The NEMO source code and all the code
developments described in this paper are freely available on
NEMO svn depository at https://forge.ipsl.jussieu.fr/nemo/browser/
NEMO/releases/r4.0 (last access: 1 February 2022) or alterna-
tively here: https://doi.org/10.5281/zenodo.5566313 (NEMO Sys-
tem Team, 2021).

Data availability. The data to reproduce the research can be ac-
cessed here: https://doi.org/10.5281/zenodo.6047624 (Irrmann and
Jouanno, 2022).

Author contributions. SM and ER supervised this work. SM de-
veloped the optimization of the sub-domain decomposition. The
BENCH configuration was introduced by SM and EM. The reduc-
tion of MPI communications and the subsequent analysis was exe-
cuted by GI and SM. DG implemented the reduction of inter node
communication. All the authors have contributed to the writing of
this paper.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors acknowledge the Météo-France,
TGCC and IDRIS supercomputer administration for having facil-
itated the scalability tests.

Financial support. This research has been supported by the Eu-
ropean Commission, H2020 Research Infrastructures (ESiWACE
(grant no. 675191)).

Review statement. This paper was edited by Xiaomeng Huang and
reviewed by two anonymous referees.

References

Debreu, L., Vouland, C., and Blayo, E.: AGRIF: Adaptive
Grid Refinement In Fortran, Comput. Geosci., 34, 8–13,
https://doi.org/10.1016/j.cageo.2007.01.009, 2008.

Etiemble, D.: 45-year CPU evolution: one law and two equations,
CoRR, abs/1803.00254, http://arxiv.org/abs/1803.00254 (last ac-
cess: 1 March 2018), 2018.

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.,
Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., For-
est, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V.,
Reason, C., and Rummukainen, M.: Evaluation of Climate
Models, book section 9, Cambridge University Press, Cam-

bridge, United Kingdom and New York, NY, USA, 741–866,
https://doi.org/10.1017/CBO9781107415324.020, 2013.

Irrmann, G. and Jouanno, J.: West Atlantic sim-
ulation input files and run, Zenodo [data set],
https://doi.org/10.5281/zenodo.6047624, 2022.

Koldunov, N. V., Aizinger, V., Rakowsky, N., Scholz, P., Sidorenko,
D., Danilov, S., and Jung, T.: Scalability and some opti-
mization of the Finite-volumE Sea ice–Ocean Model, Ver-
sion 2.0 (FESOM2), Geosci. Model Dev., 12, 3991–4012,
https://doi.org/10.5194/gmd-12-3991-2019, 2019.

Madec, G. and Imbard, M.: A global ocean mesh to over-
come the North Pole singularity, Clim. Dynam., 12, 381–388,
https://doi.org/10.1007/BF00211684, 1996.

Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruci-
aferri, D., Calvert, D., Chanut, J., Clementi, E., Coward, A., Del-
rosso, D., Ethé, C., Flavoni, S., Graham, T., Harle, J., Iovino, D.,
Lea, D., Lévy, C.,Lovato, T., Martin, N., Masson, S., Mocavero,
S., Paul, J., Rousset, C., Storkey, D., Storto, A., Vancoppenolle,
M.: NEMO ocean engine, in: Notes du Pôle de modélisation de
l’Institut Pierre-Simon Laplace (IPSL) (v3.6-patch, Number 27),
Zenodo, https://doi.org/10.5281/zenodo.3248739, 2017.

Maisonnave, E. and Masson, S.: NEMO 4.0 performance: how
to identify and reduce unnecessary communications, Tech.
rep., TR/CMGC/19/19, CECI, UMR CERFACS/CNRS No5318,
France, 2019.

Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea,
J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pid-
cock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X.,
Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Water-
field, T. (Eds.): IPCC, 2018: Global Warming of 1.5 ◦C, IPCC
Special Report on the impacts of global warming of 1.5 ◦C above
pre-industrial levels and related global greenhouse gas emission
pathways, in the context of strengthening the global response to
the threat of climate change, sustainable development, and efforts
to eradicate poverty, ISBN 978-92-9169-151-7, 2018.

Meurdesoif, Y.: Xios fortran reference guide, https://forge.ipsl.
jussieu.fr/ioserver (last access: 9 July 2018), 2018.

Molines, J.-M.: How to set up an MPP configuration with NEMO
OPA9, Tech. rep., Drakkar technical report, Grenoble, 8 pp.,
2004.

Mozdzynski, G.: RAPS Introduction, https://www.ecmwf.int/node/
14020 (last access: October 2012), 2012.

Müller, A., Deconinck, W., Kühnlein, C., Mengaldo, G., Lange,
M., Wedi, N., Bauer, P., Smolarkiewicz, P. K., Diamantakis,
M., Lock, S.-J., Hamrud, M., Saarinen, S., Mozdzynski, G.,
Thiemert, D., Glinton, M., Bénard, P., Voitus, F., Colavolpe,
C., Marguinaud, P., Zheng, Y., Van Bever, J., Degrauwe, D.,
Smet, G., Termonia, P., Nielsen, K. P., Sass, B. H., Poulsen, J.
W., Berg, P., Osuna, C., Fuhrer, O., Clement, V., Baldauf, M.,
Gillard, M., Szmelter, J., O’Brien, E., McKinstry, A., Robin-
son, O., Shukla, P., Lysaght, M., Kulczewski, M., Ciznicki, M.,
Piątek, W., Ciesielski, S., Błażewicz, M., Kurowski, K., Procyk,
M., Spychala, P., Bosak, B., Piotrowski, Z. P., Wyszogrodzki, A.,
Raffin, E., Mazauric, C., Guibert, D., Douriez, L., Vigouroux,
X., Gray, A., Messmer, P., Macfaden, A. J., and New, N.: The ES-
CAPE project: Energy-efficient Scalable Algorithms for Weather
Prediction at Exascale, Geosci. Model Dev., 12, 4425–4441,
https://doi.org/10.5194/gmd-12-4425-2019, 2019.

https://doi.org/10.5194/gmd-15-1567-2022 Geosci. Model Dev., 15, 1567–1582, 2022

https://forge.ipsl.jussieu.fr/nemo/browser/NEMO/releases/r4.0
https://forge.ipsl.jussieu.fr/nemo/browser/NEMO/releases/r4.0
https://doi.org/10.5281/zenodo.5566313
https://doi.org/10.5281/zenodo.6047624
https://doi.org/10.1016/j.cageo.2007.01.009
http://arxiv.org/abs/1803.00254
https://doi.org/10.1017/CBO9781107415324.020
https://doi.org/10.5281/zenodo.6047624
https://doi.org/10.5194/gmd-12-3991-2019
https://doi.org/10.1007/BF00211684
https://doi.org/10.5281/zenodo.3248739
https://forge.ipsl.jussieu.fr/ioserver
https://forge.ipsl.jussieu.fr/ioserver
https://www.ecmwf.int/node/14020
https://www.ecmwf.int/node/14020
https://doi.org/10.5194/gmd-12-4425-2019

1582 G. Irrmann et al.: Improving NEMO 4.0 benchmarking and communication efficiency

NEMO System Team: NEMO release-4.0 (release 4.0), Zenodo
[code], https://doi.org/10.5281/zenodo.5566313, 2021.

Prims, O. T., Castrillo, M., Acosta, M. C., Mula-Valls, O., Lorente,
A. S., Serradell, K., Cortés, A., and Doblas-Reyes, F. J.:
Finding, analysing and solving MPI communication bottle-
necks in Earth System models, J. Computat. Sci., 36, 100864,
https://doi.org/10.1016/j.jocs.2018.04.015, 2018.

Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic
modeling system (ROMS): a split-explicit, free-surface,
topography-following-coordinate oceanic model, Ocean Model.,
9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002,
2005.

Ticco, S. V. P., Acosta, M. C., Castrillo, M., Tintó, O., and Ser-
radell, K.: Keeping computational performance analysis simple:
an evaluation of the NEMO BENCH test, Tech. rep., Partnership
for Advanced Computing in Europe, PRACE white paper avail-
able online, 11 pp., 2020.

Tintó, O., Acosta, M., Castrillo, M., Cortés, A., Sanchez, A.,
Serradell, K., and Doblas-Reyes, F. J.: Optimizing domain
decomposition in an ocean model: the case of NEMO, interna-
tional Conference on Computational Science, ICCS 2017, 12–
14 June 2017, Zurich, Switzerland, Procedia Computer Science,
108, 776–785, https://doi.org/10.1016/j.procs.2017.05.257,
2017.

Tintó, O., Castrillo, M., Acosta, M. C., Mula-Valls, O., Sanchez,
A., Serradell, K., Cortés, A., and Doblas-Reyes, F. J.: Find-
ing, analysing and solving MPI communication bottlenecks
in Earth System models, J. Computat. Sci., 36, 100864,
https://doi.org/10.1016/j.jocs.2018.04.015, 2019.

Geosci. Model Dev., 15, 1567–1582, 2022 https://doi.org/10.5194/gmd-15-1567-2022

https://doi.org/10.5281/zenodo.5566313
https://doi.org/10.1016/j.jocs.2018.04.015
https://doi.org/10.1016/j.ocemod.2004.08.002
https://doi.org/10.1016/j.procs.2017.05.257
https://doi.org/10.1016/j.jocs.2018.04.015

	Abstract
	Introduction
	A benchmarking environment
	Optimum dynamic sub-domain decomposition
	Optimal domain decomposition research algorithm
	Getting land–sea mask information
	Getting the best domain decomposition sorted from 1 to Nsubmax subdomains
	Additional optimization to minimize the impact of the North Pole folding

	The BENCH configuration
	BENCH general description
	BENCH flexibility
	BENCH grid size, MPI domain decomposition and land-only subdomains

	Dedicated tool for communication cost measurement

	Reducing or removing unnecessary MPI communications
	Free surface computation optimization
	Open-boundary communication optimization
	Straight open boundaries along domain edges
	Unstructured open boundaries

	Performance improvement

	Conclusions
	Appendix A: Namelist configuration to use BENCH with open boundaries
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

