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A B S T R A C T   

Drought monitoring is essential to determine, at short time intervals, the main characteristics of drought events, 
such as their duration, severity, and spatial distribution. To ensure that drought monitoring represents a useful 
tool for governmental plans aimed at preventing or minimizing drought impacts, up-to-date information must be 
instantaneously accessible and it must provide high spatial and temporal resolution. This study presents a system 
that allows the automatic tracking of meteorological droughts in the Spanish territory, based on an open and 
easy-to-use online platform (https://monitordesequia.csic.es/monitor). This drought monitoring system provides 
two drought synthetic indices: the Standardised Precipitation Index (SPI) and the Standardised Precipitation 
Evapotranspiration Index (SPEI). Information is provided on a quasi-weekly basis, in a grid format, with a spatial 
resolution of 1.1*1.1 km, and with data from 1961 to the present time. This drought monitor is updated based on 
the real-time information gathered from automatic stations, which in turn requires historic information to 
identify and track drought events. The drought indices are obtained from data processing (quality control, 
temporal series reconstruction, homogenisation, interpolation, and validation) using climatic variables 
(maximum and minimum temperatures, solar radiation, rainfall, dew point, and wind speed) which are provided 
by the Spanish Meteorology Agency and the Ministry of Agriculture of the Spanish Government. We performed a 
validation of the drought indices for the whole historical period (1961–2020). This allowed us to observe a strong 
spatial agreement between the indices obtained with the historical dataset and the indices from the monitoring 
dataset, especially for mainland Spain and the Balearic Islands (Pearson’s r, SPI and SPEI >0.99). The presented 
real-time drought monitoring system represents a relevant and useful tool that allows for quick and effective 
actions to prevent and mitigate the effects of drought on society and ecosystems.   

1. Introduction 

Drought monitoring (DM) refers to the real-time quantification of 
drought severity over a territory (Wood et al., 2015). A drought moni
toring system (DMS) must thus allow the determination of drought onset 
and characterisation of its spatial extent and severity at any given 
moment. DMSs are a prerequisite for implementing drought plans since 
any institutional decisions (e.g., alarm declaration, water restrictions, 

subsidies, etcetera) need to be based on accurate and objective infor
mation (Wilhite, 2009). Therefore, DMSs are also fundamental tools to 
improve drought adaptation and develop mitigation measures (Bokal 
et al., 2014; Dracup, 1991). Other desirable characteristics of drought 
monitoring systems are having an open and user-friendly platform 
(Bachmair et al., 2016a, 2016b) or data retrieval and analysis capacities 
to help decision support tools (Hervás-Gámez and Delgado-Ramos, 
2019; Pulwarty and Sivakumar, 2014; Wilhite, 2007). 
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A preferred approach to drought monitoring is through impact 
metrics such as crop failure, livestock income given pasture loss, forest 
growth reduction, economic loss, etc. Nevertheless, drought impacts are 
challenging to quantify, and their data are usually lacking in real-time 
(Wilhite et al., 2007). For this reason, it is widespread to base drought 
monitoring systems on information sources that are available in near 
real-time and with high updating frequency. Examples of such data 
sources are climate-based metrics (Abatzoglou et al., 2017; Beguería 
et al., 2014; McRoberts and Nielsen-Gammon, 2012); numerical 
modelling of hydroclimatic variables, such as soil moisture, based on 
climate information (Lorenz et al., 2017; Sheffield et al., 2014; Zhang 
et al., 2017b; Zink et al., 2016); or remote sensing data (Adedeji et al., 
2020; AghaKouchak et al., 2015; Atzberger, 2013; Yan et al., 2016). 

Currently, there are several drought monitoring systems worldwide 
(Hao et al., 2017b; Heim and Brewer, 2012). Some of them have global 
(Beguería et al., 2014; Hao et al., 2014; Nijssen et al., 2014; Pozzi et al., 
2013; Turco et al., 2020; Wood et al., 2015) or continental coverages 
(Abatzoglou et al., 2017; Fang et al., 2021; Sheffield et al., 2014). Such 
systems usually rely on low-spatial resolution data. Despite their unique 
capacity to provide a general picture of drought conditions over large 
areas, these systems offer excessively coarse information of little use for 

operative drought management on the national and local scales. 
Drought episodes frequently have a local character, so low-spatial res
olution information does a lousy job of identifying their spatial extent, 
duration, and severity. Moreover, global and continental drought 
monitoring systems are usually based on low-spatial density information 
and rarely use all the existing hydroclimatic information sources. This 
makes necessary the development of high-spatial-resolution systems at 
national scales useful for operational decision-making (Abatzoglou 
et al., 2017; McRoberts and Nielsen-Gammon, 2012; Shah and Mishra, 
2022; Zink et al., 2016). 

An optimum approach to drought monitoring is through expert- 
based systems (Svoboda et al., 2001), in which different physical in
formation (climate, hydrology, crop impacts, etcetera) is integrated, 
merged, interpreted, and distilled to provide a general picture of the 
drought severity. Such systems usually inform of the likely drought 
impacts at different levels (agricultural, hydrological, and ecological). 
Also, drought monitoring systems based on local and sectorial needs 
have been developed with the help of expert-based assessment (Fergu
son et al., 2016). Nevertheless, most regions of the world lack the 
necessary resources to maintain this kind of system, which demands an 
extensive network of observers and, in general, strong personnel effort 
(Svoboda et al., 2002). 

In any case, drought has a climatic origin in the vast majority of 
cases. Its major impacts are related to conditions characterised by 
reduced rainfall, which may be aggravated by the increase in atmo
spheric evaporative demand (Vicente-Serrano et al., 2020a). For these 
reasons, the development of drought monitoring systems based on real- 
time climatic information is a common approach. Climate variables are 
usually transformed into synthetic indices, the so-called drought indices 
(Heim, 2002; Mishra and Singh, 2010; Mukherjee et al., 2018), which 
typically show strong relationships with a large variety of drought im
pacts (Bachmair et al., 2018; Bachmair et al., 2015; Bachmair et al., 
2016a, 2016b; Hannaford et al., 2015; Ji and Peters, 2003; Quiring and 

Fig. 1. Spatial distribution of meteorological data series available in Spain in the period 1961–2020, for different variables used in the drought monitor.  

Table 1 
Number of meteorological stations available for Spain for different meteoro
logical variables, including the number of total stations and the number of sta
tions that receive information in real-time (automated network).   

Total Real-time 

Solar Radiation 813 583 
Max. Temp 5611 1238 
Min. Temp. 5551 1238 
Relative Hum. 1614 1237 
Precipitation 11,139 1236 
Wind speed 1436 1123  
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Fig. 2. Evolution of the number of meteorological stations that provide data in real-time for the different variables. Grey horizontal lines represent the number of 
stations in the final dataset after reconstruction of the stations. 

Fig. 3. Spatial distribution of the meteorological variables available in real-time to calculate the drought indices.  
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Papakryiakou, 2003; Tian et al., 2018; Vicente-Serrano et al., 2012). 
Despite the availability of real-time climate information thanks to 

automatic weather stations networks, the development of drought 
monitoring systems based on drought indices is still a complex task. 
Implementing a fully automatic drought monitoring system, which de
mands little maintenance effort, is necessary to solve several technical 
problems. This study describes the development of an automated 
Spanish drought monitoring system at high spatial resolution (1.1 × 1.1 
km) and weekly frequency based on climatic drought indices. The sys
tem can determine a single point’s drought severity even without direct 
climatic data, and it can also determine and monitor the development of 
drought episodes from a spatial perspective. A similar procedure to the 
one described here could be applied to other regions where real-time 
information is available from a network of automatic meteorological 
stations. 

2. Data 

Spain has a very dense network of weather stations. The historical 
network managed by the Spanish Meteorological Agency (AEMET) 
contains thousands of conventional meteorological stations and was 
reinforced by the installation of automatic weather stations (AWS) 
during the last two decades. In addition, the Ministry of Agriculture of 
Spain has developed a network of AWS over the previous two decades 
for agricultural purposes (SIAR). Fig. 1 shows the spatial distribution of 
the stations available for the different meteorological variables, 
including more than 10,000 precipitation stations and 5000 tempera
ture stations, among other variables (Table 1). Precipitation is the pri
mary variable determining drought severity (Tomas-Burguera et al., 
2020), while the remaining variables allow for accurate quantification 
of the atmospheric evaporative demand (AED). The AED can be obtained 
using a physically-based approach, such as the FAO-56 Penman- 
Monteith equation (Pereira et al., 2015), and it is relevant mainly for 
assessing drought severity in a warming scenario (Dai et al., 2018; 
Vicente-Serrano et al., 2020a). 

Despite the high density of stations of the whole network, the 
number of stations reporting at real-time is much smaller (Table 1). The 
automated network has been developed mainly during the last two de
cades. A few principal stations have been reporting real-time data using 
telephonic connections since the 1960s. Still, the vast majority of real- 
time stations are automatic stations installed since 2000 (Fig. 2). 

We used all the meteorological information available during the 
period 1961–2020. However, for better understanding, the dataset can 
be split into two: on the one hand, the data from the automated network 
providing real-time meteorological data, required to update the drought 
monitor every week and keep the system operational; and, on the other 
hand, a long-term gridded dataset allowing comparing the current 
conditions with those of a sufficiently long period. However, all the data 
underwent a similar process of quality control and homogenisation, as 
described below. 

Daily data of the different meteorological variables for the period 
1961–2020 were quality-controlled according to a protocol that filters 
any suspicious data (Tomas Burguera et al., 2016). The data was after
wards summarised at a quasi-weekly temporal frequency. As drought 
indices are relative metrics and their calculation requires homogeneous 
periods, it was impossible to use calendar weeks as the reference periods 
since the first day of each year can fall on different days, which propa
gates throughout the entire year. The occurrence of leap years also in
creases the inhomogeneity of the weeks between years, adding 
difficulties to this comparison. For this reason, each month was divided 
into four artificial “weekly” periods: the first from the 1st to the 8th day, 
the second from the 9th to the 15th day, the third from the 16th to the 
22nd day, and the fourth from the 23rd day to the end of the month. This 
approach enabled interannual comparison, which is essential for 
calculating drought indices. Once the “weekly” series were available, 
the fragmentary series were reconstructed using a gap-filling approach 
(Beguería et al., 2019) and finally homogenised. During homogenisa
tion, the short-term series (< 25 years) were not considered candidate 
series to reconstruct. This was the case for most real-time (automated) 
meteorological stations since their data series are generally short. 
However, the described approach allowed obtaining long-term, gap-free 
and homogeneous time series starting in 1961. Finally, a gridded 
“weekly” dataset of the different meteorological variables based on long- 
term meteorological stations was generated at a spatial resolution of 1.1 
× 1.1 km by Universal Kriging. A detailed description of the quality- 
control and homogenisation processes and the generation and valida
tion of the gridded dataset set can be found in Vicente-Serrano et al. 
(2017a). 

3. Methods 

3.1. Processing, reconstruction and mapping of automatic meteorological 
series 

Standardised drought indices are the preferred approach for quan
tifying drought severity (Heim, 2002; Mukherjee et al., 2018). In order 
to calculate standardised drought indices, data series of a certain length 
are required. This is so because standardisation of non-standard vari
ables relies on parametric fitting and requires a minimum sample size to 
obtain reliable distribution parameters. Also, as the objective is to get a 
reliable characterisation of the climate of each site, the data series 
should be long enough not to be affected by internal climate variability 
(e.g. the dominance of dry or humid conditions during a short period). 
Usually, the minimum length of the series is set at 30 years (WMO, 
2012), but some authors recommend at least 50 years (Guttman, 1999). 

The need for long time series makes the calculation of drought 
indices from short automated network records impossible. As automated 
network data is fundamental for building a real-time monitoring system, 
it was necessary to undertake a data reconstruction to extend the length 
of the series. For this purpose, we used the long-term gridded data set 
described above. 

We used two real-time networks: AEMET and SIAR. It is important to 
note that both network objectives are different. The AEMET network 
looks to maximise the climate representation of the stations, whereas the 
SIAR network focuses on evaluating crop water requirements. For this 
reason, SIAR stations are restricted to cultivated areas, while AEMET 
stations are located anywhere. We selected the available real-time 

Table 2 
Mean values of statistics comparing reconstructed and observed values of the 
variables in mainland Spain and the Balearic and Canary Islands: coefficient of 
determination (R2), agreement index (D), mean absolute error (MAE) as a 
measure of goodness of fit; the mean error (ME).    

R2 D MAE ME 

Mainland Spain 
and Balearic 

Sunshine dur. 
(hrs.) 

0.92 0.98 0.68 0.02 

Max. Temp. (◦C) 0.99 1 0.51 − 0.01 
Min. Temp. (◦C) 0.98 1 0.56 − 0.04 
Dew Point Temp. 
(◦C) 

0.95 0.99 0.71 0.00 

Precipitation 
(mm)/corrected 

0.83/ 
0.88 

0.94/ 
0.96 

5.57/ 
4.11 

− 3.38/ 
− 1.14 

Wind speed (km h- 
1) 

0.77 0.94 0.28 0.01 

Canary Islands Sunshine dur. 
(hrs.) 

078 0.94 0.73 0.02 

Max. Temp. (◦C) 0.99 0.99 0.51 − 0.01 
Min. Temp. (◦C) 0.95 0.99 0.55 − 0.03 
Dew Point Temp. 
(◦C) 

0.93 0.98 0.58 − 0.05 

Precipitation 
(mm) 

0.84 0.94 4.12 − 3.22 

Wind speed (km h- 
1) 

0.75 0.93 0.36 − 0.03  
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stations without operative problems during the year 2020, i.e. without 
gaps or anomalous values detected during the quality control (Tomas 
Burguera et al., 2016). Moreover, we discarded real-time stations with 
less than six years of data to have enough overlapping period with the 
long-term historical gridded variables to evaluate their quality. This 
pool of real-time stations was summarised into quasi weekly temporal 

frequency as we did with the gridded variables. We selected for recon
struction the series with a better agreement with the historical gridded 
variables. Therefore, we selected the series with Pearson’s correlation 
coefficient above 0.8 and the refined Willmott’s agreement index (D) 
(Willmott et al., 2012) above 0.83, 0.88, 0.88, 0.84, 0.87, and 0.78 for 
precipitation, Tmax, Tmin, dew point, sunshine duration, and wind 
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Fig. 4. Average D statistic for the different “weekly” periods of the year. Blue; gridded dataset obtained from the historical dataset obtained with all the series, Red: 
gridded dataset generated from the reconstructed real-time series from 1961 to 2020. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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speed, respectively. The agreement index (D) is a relative and bounded 
measure of model validity that scales with the magnitude of the vari
ables, retains mean information and does not amplify outliers, allowing 
comparability independently of the different magnitudes between var
iables and seasons. D varies between 0 and 1, with the latter repre
senting a perfect agreement between the observed and predicted data. 
The stations selected for the reconstruction process are shown in Fig. 3. 

For each series selected for reconstruction, we generated a reference 
series following the gap-filling approach detailed in Beguería et al. 
(2019). We used the closest nine pixels of the historical gridded vari
ables, weighed by the Pearson’s correlation coefficient with the candi
date series. Then we imputed the values of the reference series to the 
missing values of the real-time series. Finally, these series were homo
genised by the Standard Normal Homogeneity Test (Alexandersson, 
1986). The reference series provides values for the missing data and the 
observed ones, thus allowing us to assess the quality of the reconstruc
tion process. Table 2 shows a set of evaluation statistics for each variable 
to evaluate the accuracy of the reconstruction process. These include the 
coefficient of determination (R2), agreement index (D) and mean abso
lute error (MAE) as measures of goodness of fit and the mean error (ME) 
as a measure of bias. 

All variables in continental Spain, the Balearic Islands, and the Ca
nary Islands showed suitable goodness of fit values, with R2 above 0.75 
and D values above 0.93, being particularly high for sunshine duration, 
maximum, minimum, and dew point temperature. The MAE shows 
lower values for maximum than for minimum temperature, but in both 
cases, they are below 0.6 ◦C. The MAE of dew point temperature is also 
below 0.6 ◦C in the Canary Islands and 0.7 ◦C in mainland Spain and the 
Balearic Islands. The MAE values are also low for sunshine duration and 
wind speed. None of these variables (maximum, minimum, dew point 
temperatures, sunshine duration, and wind speed) show bias, with ME 
close to 0. 

On the other hand, precipitation had an MAE of 5.5 mm and 4.1 mm 
for the continental and the Canary Islands, respectively. This MAE could 
be acceptable considering that it is an error for the sum of weekly pre
cipitation. The ME, however, indicates signs of bias in the reconstruction 
of precipitation in mainland Spain and the Balearic Islands, with a value 
of − 3.38 mm. This negative bias in the reconstructed part of the series 

generates a slight and artificial trend towards drier conditions that could 
affect the computation of SPI and SPEI. The artificial trend started 
around 2000 and increased in accordance with the availability of real- 
time data. 

The origin of this bias is difficult to identify, but there are probably 
two important sources of error. One is the short length of the over
lapping period between real-time stations and the gridded historical 
data at some stations. However, it is unclear how this would translate 
into bias and not just into general bad fitting (higher MAE). The other, 
more fundamental source of error is the differences in precipitation 
capture between automatic and manual stations. We must consider that 
the historical grid is vastly based on manual stations, while all the real- 
time stations are automatic. A growing number of studies report pre
cipitation underestimation of automatic gauges with respect to their 
manual counterparts. In general, this underestimation is around 5–10%, 
but it is highly variable in time and space and therefore challenging to 
correct (Brandsma, 2014; Legates and DeLiberty, 1993; Talchabhadel 
et al., 2016; Valík et al., 2021). The leading cause of this underestima
tion is the different effects of systematic errors on manual and automatic 
stations, such as evaporation losses, wetting and wind (Sevruk et al., 
2009). Fortunately, we can determine each real-time station’s “natural” 
evolution in its corresponding pixel of the gridded dataset. So we used 
this information to correct the spurious trend in real-time re
constructions in the last decades. Therefore, we computed bias- 
correction coefficients for each real-time station and each week of the 
year based on the ratio between the mean precipitation of the gridded 
data and the real-time station in the same grid point for the period 
2000–2020. This bias-correction factor is also applied weekly to the 
precipitation occurred after 2020 to avoid inhomogeneities. This 
correction reduced bias by around 60%, resulting in an ME of − 1.14 mm 
per week, a value deemed acceptable for developing the monitoring 
system (Table 2). 

Fig. 3 shows the spatial distribution of the real-time series available 
for the different meteorological variables after reconstruction. Except 
for wind speed, the variables had good spatial coverage and high spatial 
density in the critical meteorological variables of precipitation, air 
temperature, and dew point temperature. This is essential as in Spain, 
meteorological drought is mostly precipitation-driven (Noguera et al., 
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Fig. 5. Average decadal values of D for the different meteorological variables. Blue: Mainland Spain and the Balearic Islands, Red: Canary Islands. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2021). However, the AED intensifies the severity of droughts caused by 
precipitation deficits, particularly in dry areas and in summer (Tomas- 
Burguera et al., 2020). The observed changes in AED over the last de
cades are driven mainly by changes in air temperature and relative 
humidity (Tomas-Burguera et al., 2020; Vicente-Serrano et al., 2014a; 
Vicente-Serrano et al., 2020a). 

Once long-term automatic series were available for 1961–2020, they 
were interpolated at a spatial resolution of 1.1 × 1.1 km using Universal 
Kriging considering elevation, latitude, longitude and distance to the sea 
as co-variables. Validation was carried out using a leave-one-out jac
knife approach (Phillips et al., 1992). Fig. 4 shows the average D statistic 
for the 48 “weekly” periods and the different variables. The plots allow 
comparing the mean D statistic from the historical gridded data using 

the available meteorological stations (in blue) and the reconstructed 
real-time meteorological stations (in red). The results are shown for both 
mainland Spain and the Canary Islands. In general, the average values of 
D are close to one, particularly for precipitation, air temperature, dew 
point temperature, and solar radiation. There are slight differences in 
the average D statistic between the grid dataset using all the available 
stations and the reconstructed real-time stations. The main exception is 
found in the Canary Islands, where the interpolation for precipitation 
and dew point temperature show more problems with datasets of 
automatic stations. The complex relief in the Canary Islands and the 
substantial differences in the climate and atmospheric influences among 
islands challenge establishing reliable interpolations using the limited 
availability of stations. In any case, an important issue is that the quality 

Fig. 6. Summary of the procedure for developing the drought monitoring system.  
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of the historical gridded datasets does not show the same temporal bias 
as the D statistics, and they show comparable values across different 
decades (Fig. 5). 

3.2. Computation of drought indices and automatic updating 

Different drought monitoring systems are based exclusively on real- 
time precipitation data (McRoberts and Nielsen-Gammon, 2012). 
Relying only on precipitation simplifies the data availability problem 
vastly while maintaining the main operative characteristics of a drought 
monitoring system, as rainfall controls the availability of water 

resources, such as soil moisture, surface water, and groundwater (Alfieri 
et al., 2007; Bloomfield and Marchant, 2013; Folland et al., 2015; 
Lakshmi et al., 2018; Leuzinger and Körner, 2010; Lorenzo-Lacruz et al., 
2017; Manning et al., 2018). Drought monitoring based on precipitation 
data commonly uses the Standardised Precipitation Index (SPI), which 
the World Meteorological Organization also recommends as the refer
ence drought index for operative purposes (Hayes et al., 2011; WMO, 
2012). This explains why the Spanish drought monitoring system in
cludes the SPI as one of the primary metrics. 

Nevertheless, global warming has increased the AED worldwide 
(Vicente-Serrano et al., 2020a; Wang et al., 2012), particularly in Spain 

Fig. 7. a) Evolution of the average 3- and 12-month SPI in mainland Spain and the Balearic Islands and in the Canary Islands by means of the historical (left) and the 
monitoring (right) datasets, b) same as a) but with the SPEI. 
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(Tomas-Burguera et al., 2020). Increasing AED reinforces the severity of 
drought events associated with precipitation deficits (Vicente-Serrano 
et al., 2014b). For this reason, the drought monitoring system also in
cludes the Standardised Precipitation Evapotranspiration Index (SPEI). 
The SPEI is based on the difference between precipitation and the AED, 
which is standardised on different time scales (Beguería et al., 2014; 
Vicente-Serrano et al., 2010). The SPEI is sensitive to the AED mainly 
during periods of precipitation deficit or dry seasons, and particularly in 
areas characterised by low precipitation (Tomas-Burguera et al., 2020). 

The information must be updated at a high frequency to make the 
drought monitoring system operational. This is especially relevant 
during the phases of development and reinforcement of drought, when 
knowing the evolution of the spatial extent and severity of the drought is 
helpful for water and land management. For this reason, the monitoring 
system would not be operative if, for each new “weekly” data available, 
a recalculation of the entire time series of the drought indices would be 
necessary to generate the new values for the last week. Moreover, 
considering a retrospective assessment, it is not helpful that the past 
values of the indices changed, although minimally, as a consequence of 
adding new data. To overcome this problem, we calculated the drought 
indices using a fixed reference period, from which the probability dis
tribution parameters required to calculate the drought indices are 
computed. Then, the stored parameters are used to calculate the new 
indices as soon as new data becomes available (McRoberts and Nielsen- 
Gammon, 2012). This approach speeds up the process tremendously and 
makes it possible that the arrival of new data does not alter the previous 
values of the drought index. We used the reference period 1961–2020 to 
calculate the parameters of the Gamma and log-logistic distributions 
that are used to calculate the SPI and the SPEI, respectively (Stagge 

et al., 2015; Vicente-Serrano and Beguería, 2016). A set of parameters 
were obtained for each of the 48 periods of the year and for different 
time scales (1-, 3-, 6-, 9-, 12-, and 24-months). 

Once the set of parameters was obtained for each grid cell and every 
weekly period, the system was ready to process new data. Every day, the 
meteorological data received from the Spanish Meteorological Agency 
and the Ministry of Agriculture is subject to automatic quality control 
(Tomas Burguera et al., 2016). Data gaps are filled at the end of the 
corresponding weekly period (Beguería et al., 2019), and weekly data 
aggregates are calculated. The data for the different variables are 
interpolated using Universal Kriging and the drought indices (SPI and 
SPEI) are calculated using the distribution parameters for the reference 
period. The maps are finally published on the web tool. The current 
temporal gap between new data availability and the publication of the 
drought indices maps is only two days. Fig. 6 summarises the procedure 
for developing a drought monitoring system that can serve as a guide for 
the reader. 

3.3. Determination of areas under drought and drought duration 

Although the values of the drought indices allow characterising the 
severity and spatial extent of drought conditions at any given moment, 
the characteristics of drought events such as their duration, spatial 
extent, and magnitude since the beginning of the drought are also of 
great concern. Therefore, we have included a method for identifying and 
tracking drought episodes since their onset. We considered a threshold 
equal to − 1.28 of SPI/SPEI, corresponding to a return period of one in 
ten years, as the threshold value to determine the start of the drought 
event in a particular grid cell. Then, if the index values in the same grid 

Fig. 8. Evolution of the surface area affected by different categories of drought severity (severe: red, moderate: orange, mild: yellow) in mainland Spain and the 
Balearic Islands with historical and monitoring datasets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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cell remain below this threshold, the system computes the episode’s 
duration (in weeks) since its beginning and the cumulative drought 
magnitude (the sum of the drought index values). This allows visualising 
the spatial distribution of the total drought magnitude and duration 
since the beginning of the drought episode in each gridded cell, which 
constitutes an excellent way of assessing the spatial extent and evolution 
of a drought (Tallaksen et al., 1997; Van Loon, 2015). 

3.4. Analysis 

We compared the drought indices obtained from the time series of 
reconstructed automatic stations with the drought indices obtained from 
all the available meteorological stations, based on a carefully quality- 
controlled and homogenised dataset. Both datasets share common 
spatial and temporal resolutions, and the comparison considered the 
common period of 1961–2020. 

First, we compared the spatial patterns of drought for each of the 
2880 “weekly” periods. This allowed calculating Pearson’s r correlation 
coefficients at each grid cell between the values of the drought indices 
from the historical dataset and the drought indices from the automatic 
stations dataset. To know if there is a spatial agreement in the identifi
cation of drought conditions, we classified the values of the indices as 
severe (SPI or SPEI < − 1.65), moderate (− 1.65 < SPI or SPEI < − 1.28), 
mild drought (− 1.28 < SPI or SPEI < − 0.84) and no drought (SPI or SPEI 
> − 0.84). A comparison between these categories was made by using a 
cross-tabulation and calculating the value of the coefficient of contin
gency (CC) in relation to the maximum CC in a matrix of 4 × 4 categories 
(De Luis et al., 2003). For each week, this approach allowed an assess
ment of the performance of drought conditions using real-time meteo
rological stations. 

The third approach was temporal, and Pearson’s r correlations and 
coefficients of contingency were calculated between both datasets for 
each time series. This allows identifying areas where there is more or 
less agreement between both datasets when determining the temporal 
evolution of the drought indices and the different categories of drought 
severity. Finally, we also calculated the relationship between the evo
lution of the area affected by severe, moderate and mild droughts. The 
comparison was based on both SPI and SPEI on 3- and 12-month time 
scales, and it was developed separately using the datasets of continental 
Spain and the Canary Islands. 

4. Results 

Fig. 7 compares the average drought evolution over Spain with the 
historical data set using all the available stations and the dataset from 
the reconstructed meteorological stations. The average series shows 
strong agreement between the indices obtained from the historical 
dataset and the indices from the monitoring dataset. In particular, for 
the mainland Spain and the Balearic Islands datasets, the correlation 
between the SPI series and the SPEI series is >0.99, independently of the 
drought time scale. The agreement is lower in the Canary Islands, but 
correlations are still very high (0.92–0.93 for the SPI series and 0.96 for 
the SPEI series). The temporal patterns of the main drought episodes and 
the drought severity are well recorded in the monitoring dataset. 

There is also a high agreement between the area affected by different 
categories of drought severity, both in the mainland Spain and the 
Balearic Islands (Fig. 8) and in the Canary Islands (Fig. 9). Thus, the 
Pearson’s r correlations are higher than 0.97 in all of the cases. The 
spatial extent of the drought episodes identified by the drought moni
toring system closely resembles those from the historical dataset 

Fig. 9. Evolution of the surface area affected by different categories of drought severity (severe: red, moderate: orange, mild: yellow) in the Canary Islands with 
historical and monitoring datasets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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generated by the totality of the available meteorological stations. This 
result validates the monitoring system not only in its capacity to identify 
the spatial and temporal patterns of drought but also the main categories 
of drought severity. Thus, both large-scale droughts affecting most of the 
region and regional drought events that affected smaller parts were very 
well recorded by the drought monitoring system. 

The spatial patterns of temporal correlation between the SPI and 
SPEI of both datasets show that in most of mainland Spain and the 
Balearic Islands, correlations and coefficients of contingency are very 
high. In the Canary Islands, the agreement between both datasets is 
lower, and it is higher in the SPEI than in the SPI. There are no spatial 
patterns that may characterise areas with lower relationships (Fig. 10). 
These results reinforce that, independently of the region under analysis, 
the relationship between both datasets is strong. The drought indices 
from the monitor dataset allow quasi-perfect identification of the 
drought evolution in relation to the historical dataset characterised by a 
higher number of stations. 

Nevertheless, it is not only the high temporal agreement between the 
historical and the monitoring datasets, but the high spatial agreement 
between both datasets as well. Fig. 11 shows box plots with Pearson’s r 
correlations between the spatial distribution of the SPI and SPEI values 
during the dry periods in which at least 30% of the territory was affected 
by moderate droughts. It also shows the Contingency Coefficients, which 
relate to the spatial agreement between the different categories of 
drought severity. In mainland Spain and the Balearic Islands, the box 
plots demonstrate that the spatial patterns of the drought indices and the 
distribution of the drought severity categories identified with the 

monitoring dataset show a strong resemblance with the spatial patterns 
identified with the high-quality historical dataset. There are few dif
ferences between SPI and SPEI, and the agreement tends to be slightly 
better at the 3-month than at the 12-month time scale. Given the strong 
spatial complexity of the relief and the climate influences in Spain, the 
spatial agreement between both datasets is lower. Given the difficulties 
in mapping precipitation in the region, this is more evident with the SPI. 
Nevertheless, the SPEI provides better spatial agreement, suggesting 
that including the AED in the calculations reduces the spatial uncer
tainty when developing the monitoring dataset. 

The close relationship between the drought indices obtained from 
the historical and the monitoring datasets is illustrated in Figs. 12 and 
13. As illustrated, two examples of the spatiotemporal evolution of the 
12-month SPEI during the drought events that affected Spain in 2001 
and 2012 are presented. Both drought episodes were very different in 
terms of drought spatial extent and severity. In 2001, a drought episode 
started in the North and Western Iberian Peninsula in December, and it 
intensified and expanded to other areas in January and February. The 
severity, spatial extent, and temporal evolution of the drought condi
tions identified in the historical dataset are very well represented by the 
monitoring dataset. The drought episode of 2012 affected most of Spain. 
This widespread expansion of drought conditions was well identified by 
the drought monitoring dataset. The existing spatial differences during 
the months of this drought episode were well recorded. 

The Spanish Drought Monitoring System (Monitor de Sequía Meteor
ológica de España) is available at https://monitordesequia.csic.es/mo 
nitor. The web tool has two main components. On the one hand, the 

Fig. 10. Left: Spatial distribution of Pearson’s r correlations between the SPI and SPEI series of historical and monitoring datasets in mainland Spain and the Balearic 
Islands (top) and the Canary Islands (bottom). Right: Same as left, but spatial distribution of the coefficients of contingency. 
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web tool includes an interactive map box in which the user may select 
the drought index (SPI, SPEI, and the drought duration and magnitude 
according to the drought index), the time scale of the drought index (1, 
3, 6, 12 or 24 months) and the date (Fig. 14). The home map in the web 
tool is always the latest week available, but users may also visualise all 
the weekly maps from 1961 to the present. This can be useful for 
comparing the spatial extent and severity of a particular drought event 
and determining how drought severity and spatial extent evolve over 
time. Users may apply zooms to the maps, consult the values by the 
cursor location, and visualise the system over the whole screen. The 
second part of the web tool allows the selection of a point on the map, 
and then, automatically, a plot is displayed with the time series of the 
selected drought index at the chosen grid cell. This time series changes 
when different drought indices or time scales are chosen. The plot is also 
interactive as the user may consult the index values at any week of the 
time series and zoom to specific periods. Finally, there is a button to 
download the time series of the selected coordinates. The data is 
downloaded in text format as comma-separated values (csv), including 
all the data series (two indices, six-time scales and drought duration and 
intensity). 

The web tool allows monitoring the development of a drought 
episode, determining the drought severity and spatial extent changes. 

This is illustrated by the last intense drought event that affected conti
nental Spain in 2017 (Fig. 15). On the time scale of 12-months, this 
drought event started in May in the north of Spain, and it expanded to 
the west and centre of Spain over the following weeks. The maps of the 
12-month SPEI illustrate the development of the drought event spatially 
and how the drought conditions intensified over several regions of 
Spain. At the same time, the information about the drought duration 
since the beginning of the event allows determining those areas that are 
being affected by drought conditions during more prolonged periods, 
which is helpful in determining where the most substantial impacts can 
be recorded. In this particular event, at the end of May 2017, large areas 
of northern Spain were affected by drought for more than ten weeks. 

5. Discussion and conclusions 

This study has shown a procedure for developing an automatic 
drought monitoring system based on meteorological drought indices 
useful for assessing drought severity at a high temporal frequency and 
high spatial resolution. This system can improve drought preparedness 
across Spain in an operative, automatic and non-expensive way. This 
approach is necessary nowadays to mitigate drought impacts and 
establish better adaptation measures (Wilhite, 2002). 
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Fig. 11. Left: Box-plots showing the values of Pearson’s r correlations between SPI and SPEI series obtained from historical and monitoring datasets in mainland 
Spain and the Balearic Islands (Top) and the Canary Islands (Bottom). Right: Box-plots showing the coefficients of contingency between different categories of 
drought (i.e. severe, moderate and mild) calculated from SPI and SPEI series obtained from historical and monitoring datasets in mainland Spain and the Balearic 
Islands (Top) and the Canary Islands (Bottom). 
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5.1. The use of drought indices in drought monitoring services 

The use of drought indices for assessing drought severity has been 
criticised (Berg and Sheffield, 2018; Seneviratne and Ciais, 2017). Some 
authors have deemed drought indices an inferior approach as compared 
to the outputs from earth-surface models, sometimes coupled with bio
physical models, which try to reproduce the evolution of drought 
severity based on simulated soil moisture and runoff (Cammalleri et al., 
2015; Fang et al., 2021; Nijssen et al., 2014). These variables would be 
more directly related to drought-related impacts due to shortages in 
water availability to supply the water needs of natural vegetation, crops, 
and human societies in general. Nevertheless, soil moisture and runoff 
models still show substantial uncertainties. From a hydrological stand
point, models tend to fail in the reproduction of the severity and dura
tion of low-flow periods (Tallaksen and Stahl, 2014), and studies 
showing the relationship between soil moisture observations and sim
ulations show low general agreement (Ford and Quiring, 2019; Yuan 
and Quiring, 2017). For these reasons, although climatic drought indices 
are indirect metrics of soil moisture and water availability, they are 
strongly correlated with usable water sources like soil moisture, 
streamflow, and reservoir storage (Bloomfield et al., 2018; Burke, 2011; 
López-Moreno et al., 2013; Lorenzo-Lacruz et al., 2017; Scaini et al., 
2015; Wang et al., 2016; Yuan et al., 2020). Therefore, they often exhibit 
a higher correlation with observations of these variables than the out
puts from earth-surface models (Yuan et al., 2020). 

Moreover, from a plant perspective, it is necessary to stress that soil 

water availability is not the unique driver that controls plant water 
stress, with implications for assessing agricultural and ecological 
drought conditions. AED increases plant stress, particularly during low 
soil water availability (Vicente-Serrano et al., 2020a, 2020b). Increased 
AED, combined with low water availability, enhances plant mortality 
risk (Grossiord et al., 2020; McDowell and Allen, 2015; Williams et al., 
2013), but it also affects plant physiology by controlling stomatal 
closure and carbon uptake (Breshears et al., 2013; Eamus et al., 2013). 
These plant stress conditions are not considered in drought monitoring 
metrics that do not consider anomalies in the AED. On the contrary, 
drought indices like the SPEI account for both necessary elements: water 
supply through precipitation and atmospheric demand. Moreover, the 
meteorological drought indices used in the Spanish drought monitoring 
system are obtained from a high density of real-time observations, and 
spatial interpolation shows high quality demonstrated by accuracy sta
tistics, which confers high reliability for assessing drought conditions. 

Previous studies analysing the performance of the drought indices 
used here have demonstrated their utility to monitor particularly severe 
drought events as in 1996 in the US (Hayes et al., 1999), 2012–2016 in 
California (Abatzoglou et al., 2017), and in 2017 in western Europe 
(García-Herrera et al., 2019). This is due to the strong relationship be
tween the drought severity quantified with the climatic drought indices 
and various drought impacts (Bachmair et al., 2016a, 2016b; Wang 
et al., 2020). Thus, a strong relationship between crop yields and SPI and 
SPEI has been found in different regions of the world (Páscoa et al., 
2017; Potopová et al., 2016). Vegetation activity, leaf area and 

Fig. 12. Spatio-temporal evolution of the weekly 12-month SPEI between December 2001 and February 2002 with the historical data set and the drought moni
toring dataset. 
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secondary tree growth are also closely related to these drought indices 
(Bachmair et al., 2018; Bhuyan-Erhardt et al., 2019; Zhang et al., 2017a) 
but also streamflow variability (Abatzoglou et al., 2014; Lorenzo-Lacruz 
et al., 2013), reservoir storages (Vicente-Serrano and López-Moreno, 
2005) and groundwater (Bloomfield et al., 2018; Lorenzo-Lacruz et al., 
2017). In particular, in Spain, different studies have shown that drought- 
related impacts are well identified by the SPI and the SPEI, including 
forest growth (Peña-Gallardo et al., 2018; Vicente-Serrano, 2021); 
vegetation activity (Gouveia et al., 2016; Gouveia et al., 2012; Vicente- 
Serrano et al., 2019); crop yields (Páscoa et al., 2017; Peña-Gallardo 
et al., 2019; Ribeiro et al., 2019); streamflow (López-Moreno et al., 
2013; Lorenzo-Lacruz et al., 2013; Lorenzo-Lacruz et al., 2010; Vicente- 
Serrano et al., 2014b); reservoir storage (Lorenzo-Lacruz et al., 2010; 
Vicente-Serrano et al., 2017b; Vicente-Serrano, 2021); or groundwater 
(Lorenzo-Lacruz et al., 2017). Notably, the SPEI has shown a better 
performance to identify drought-related impacts than the SPI in envi
ronmental, hydrological and agricultural systems (Peña-Gallardo et al., 
2019; Peña-Gallardo et al., 2018; Vicente-Serrano et al., 2014b), sug
gesting a role of the AED to intensify drought severity. All these previous 
results suggest that the assessment and monitoring of drought conditions 
based on these indices are highly operative to identify different drought 
types and their related impacts. The use of varying time scales of the two 
indices used here includes the necessary flexibility to assess different 
drought types considering the diversity of geographic, climatic, envi
ronmental and hydrological characteristics. For these reasons, the 
drought monitoring system developed for Spain is valuable for assessing 

meteorological drought conditions and determining the possible prop
agation of the drought impacts throughout the hydrological cycle and 
across different environmental systems and socio-economic sectors. 

5.2. Challenges to develop drought monitoring systems 

The main challenge in developing the Spanish drought monitoring 
system was to generate a robust dataset based on short series obtained 
from automatic meteorological stations with sufficient length to calcu
late the climatic drought indices with the necessary robustness. We have 
demonstrated that the application of techniques for reconstruction of 
climate series (Beguería et al., 2019) based on the whole number of 
available historical meteorological stations has allowed us to obtain 
homogeneous long-term series that extend to the short-term available 
automatic stations and that would enable us to develop high spatial 
resolution gridded data sets affected by minor errors. This is an essential 
task before making the system operative, as long-term datasets allow 
calculating the necessary distribution parameters to calculate the 
drought indices in real-time automatically. Moreover, the web tool 
developed needed to be interactive and intuitive, with several func
tionalities and options, but always well explained to the users. Intuitive 
systems are essential to make the information accessible to various 
stakeholders and end-users (Noel et al., 2020; Sheffield et al., 2014) to 
make the system usable independently of the training on drought 
monitoring. 

The procedure described in this article could be easily implemented 

Fig. 13. Spatio-temporal evolution of the weekly 12-month SPEI between May 2012 and July 2012 with the historical data set and the drought monitoring dataset.  
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Fig. 14. Web-tool for the drought monitoring system in Spain.  
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in other regions where a network of automatic meteorological stations 
exists together with a historical dataset of meteorological stations with a 
length of at least 30–40 years. This approach has been stressed by other 
studies that developed drought automatic monitoring tools and software 
packages (Hao et al., 2017a; Mol et al., 2017). It has the potential to 
create a high-spatial and temporal resolution drought monitoring sys
tem at a low cost, with minor maintenance, and automatic updating. In 
addition, it has the flexibility to assess drought severity across different 
environmental systems and socio-economic sectors, providing similar or 
better performance than costly systems in which the primary data inputs 
are from a network of observers or satellite systems. Future development 
tasks should include a quantitative sectorial evaluation of the perfor
mance of the climatic drought indices and time scales to relate the 
quantitative values to specific drought types spatially and to develop a 
synthetic metric that may also be generated automatically for each 
drought type (agricultural, ecological, and hydrological) (Hannaford 
et al., 2015), to contribute to better and earlier identification of drought 
impacts and more efficient mitigation. 
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M., Nieto, R., Gimeno, L., Sorí, R., Yiou, P., 2019. The European 2016/2017 drought. 
J. Clim. 32, 3169–3187. 

Gouveia, C.M., Bastos, A., Trigo, R.M., Dacamara, C.C., 2012. Drought impacts on 
vegetation in the pre- and post-fire events over Iberian Peninsula. Nat. Hazards Earth 
Syst. Sci. 12, 3123–3137. https://doi.org/10.5194/nhess-12-3123-2012. 
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