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Abstract. Soil moisture is a key variable for drought mon-
itoring, but soil moisture measurements networks are very
scarce. Land-surface models can provide a valuable alter-
native for simulating soil moisture dynamics, but only a
few countries have such modelling schemes implemented for
monitoring soil moisture at high spatial resolution. In this
study, a soil moisture accounting model (SMA) was regional-
ized over the Iberian Peninsula, taking as a reference the soil
moisture simulated by a high-resolution land-surface model.
To estimate the soil water holding capacity, the sole param-
eter required to run the SMA model, two approaches were
compared: the direct estimation from European soil maps
using pedotransfer functions or an indirect estimation by a
machine learning approach, random forests, using as predic-
tors altitude, temperature, precipitation, potential evapotran-
spiration and land use. Results showed that the random for-
est model estimates are more robust, especially for estimat-
ing low soil moisture levels. Consequently, the proposed ap-
proach can provide an efficient way to simulate daily soil
moisture and therefore monitor soil moisture droughts, in
contexts where high-resolution soil maps are not available,
as it relies on a set of covariates that can be reliably estimated
from global databases.

1 Introduction

Soil moisture droughts have strong impacts on vegetation
and agricultural production (Raymond et al., 2019; Tram-
blay et al., 2020; Vicente-Serrano et al., 2014; Pena-Gallardo
et al., 2019). There is a growing interest in simple indi-
cators to monitor drought events at short timescales that

could be related to impacts (Li et al., 2020; Noguera et al.,
2021). In particular, soil moisture indicators could be more
relevant than climatic ones to monitor potential impacts of
droughts on agriculture and natural vegetation (Piedallu et
al., 2013). Since actual soil moisture measurements remain
very scarce, soil moisture simulated from land-surface mod-
els is an interesting proxy to develop simplified method-
ologies that could be applied on data-sparse regions. Land-
surface models (LSMs) are valuable tools for a fine-scale
monitoring of drought events; however, their implementation
requires accurate forcing data and computational resources
(Almendra-Martín et al., 2021; Quintana-Seguí et al., 2019;
Barella-Ortiz and Quintana-Seguí, 2019). Global implemen-
tation also exists but with a coarser resolution and driven by
reanalysis data (Rodell et al., 2004; Muñoz Sabater, 2020)
that may not be adequate for local-scale applications. Only
very few countries have land-surface schemes implemented
at the national level to monitor droughts (Habets et al., 2008).

Remote sensing is another option which allows for moni-
toring soil moisture (Dorigo et al., 2017; Brocca et al., 2019).
Microwave sensors allow for the monitoring of surface soil
moisture (first 5 cm for L-band-based products and skin for
C-band-based products), without the interference of clouds.
However, surface soil moisture is not enough for most appli-
cations, which require root zone soil moisture, which is the
water resource in the soil available to plants. Furthermore,
passive L-band products, such as SMOS (Soil Moisture and
Ocean Salinity; Martínez-Fernández et al., 2016) or SMAP
(Soil Moisture Active Passive; Mishra et al., 2017), have a
low resolution, and active C-band products, such as Sentinel-
1 (Bauer-Marschallinger et al., 2019), which have a higher
resolution, suffer from higher noise and are more sensitive
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1326 Y. Tramblay and P. Quintana Seguí: Estimating soil moisture conditions for drought monitoring

to vegetation. Thus, even though remote sensing is very use-
ful, it still has problems to be surmounted. The resolution of
passive L-band products can be increased using optical data
(NDVI, normalized difference vegetation index; LST, land-
surface temperature), by means of downscaling algorithms
(Merlin et al., 2013; Fang et al., 2021), but then the resulting
product is sensitive to cloud cover. Also, some progress has
been made in deriving root zone soil moisture from surface
soil moisture estimations using an exponential filter (Stefan
et al., 2021) calibrated using the SURFEX LSM (Surface
Externalisée; Masson et al., 2013), but these products are in
their early stages and are not operational yet.

Simplified methodologies to estimate and monitor the sta-
tus of soil moisture are needed in contexts where LSM data
are not available and where remote sensing products fall
short, such as areas and time periods with dense vegetation
or high soil roughness which may affect their accuracy (Es-
corihuela and Quintana-Seguí, 2016). Different modelling
approaches have been proposed, either with conceptual soil
moisture accounting models or computational variants of the
antecedent precipitation index (Willgoose and Perera, 2001;
Javelle et al., 2010; Brocca et al., 2014; Zhao et al., 2019; Li
et al., 2020). The general availability of spatial estimates of
soil moisture content would help introduce soil moisture into
drought monitoring systems, improving their scope and use-
fulness. Furthermore, this would also facilitate the creation of
long-term reanalysis, based on meteorological forcing data,
and future climate change studies, without the need for run-
ning LSMs. However, to apply this model type at a regional
or national scale, there is a need to estimate their parameters
over the area of interest. For that purpose, regionalization
methods have been employed in hydrology for decades to
estimate the parameters of hydrological models in ungauged
basins (Blöschl and Sivapalan, 1995; He et al., 2011; Hra-
chowitz et al., 2013). Several methods exist, based on either
catchment similarity or the direct estimation of model pa-
rameters using regression techniques with physiographic at-
tributes. For soil moisture modelling, up to now only very
few studies have considered these approaches to apply soil
moisture accounting models at ungauged locations (Grillakis
et al., 2021) or estimate root zone soil moisture using ma-
chine learning methods (Carranza et al., 2021).

The goal of the present study is to regionalize a simple soil
moisture accounting (SMA) scheme that could be used to
monitor soil moisture droughts. The SMA model considered
in the present study requires a single parameter, the maxi-
mum soil water holding capacity. Two different approaches
are compared to estimate this parameter regionally: direct
estimation with soil maps or with a machine learning tech-
nique, namely random forests.

2 Study area and data

The study area of this work is the Iberian Peninsula,
which is located between the Mediterranean Sea and the
Atlantic Ocean and thus is influenced by both synoptic-
scale systems, which often come from the Atlantic side,
and mesoscale heavy-precipitation events, which often come
from the Mediterranean side. The Iberian Peninsula presents
a marked relief, with a large and high central plateau and dif-
ferent mountain ranges, which heavily influence the spatial
patterns of precipitation, enhancing it windward and decreas-
ing it leeward, generating areas of high precipitation in the
west, northwest and north and very dry areas on the central
plains and, especially, in the southeast. As a consequence the
Iberian Peninsula has a heterogeneous distribution of aver-
age annual rainfall, with values ranging from 2000 mm yr−1

to less than 100 mm yr−1. All this has a strong influence on
the spatial and temporal variability of soil moisture and soil
moisture regimes, having wet regimes in the west and north,
where the soil is hardly stressed, and semi-arid areas else-
where, with a wet (energy-limited) and a dry (water-limited)
season, with a dry down that might be interrupted by convec-
tive events. All this makes the modelling of soil moisture in
Iberia a rather challenging task.

Daily precipitation, temperature and potential evapotran-
spiration (PET) were retrieved from the SAFRAN-Spain
database (Quintana-Seguí et al., 2017). SAFRAN (Durand et
al., 1993) is a meteorological reanalysis that produces grid-
ded datasets by combining the outputs of a meteorological
model and all available observations using an optimal in-
terpolation algorithm. It has been implemented over France
(Quintana-Seguí et al., 2008) and recently over the Iberian
Peninsula (Quintana-Seguí et al., 2017) with a 5 km× 5 km
spatial resolution. The SAFRAN dataset used in this study
includes not only observations from the Spanish part of
the Iberian Peninsula but also ingested data from Portugal.
The SURFEX LSM (Masson et al., 2013) has been run us-
ing SAFRAN-Spain as the meteorological forcing dataset
and on the same grid, as was done in Quintana-Seguí et
al. (2019). SURFEX uses the ECOCLIMAP2 (Faroux et al.,
2013) physiographic database, and it uses the ISBA (Interac-
tion Sol-Biosphère-Atmosphère) scheme (Noilhan and Mah-
fouf, 1996) for natural surfaces. ISBA has different options;
we have used ISBA-DIF, the multi-layer diffusion version
(Boone, 2000; Habets et al., 2003). From this simulation, we
have extracted the soil moisture of the first 60 cm of the soil
by calculating the weighted average of the soil layers that
fall within this range. This simulated soil moisture over the
Iberian Peninsula is considered herein as the observed ref-
erence, in the absence of dense monitoring networks of soil
moisture (Martínez-Fernández et al., 2016). From the ECO-
CLIMAP2 database, elevation and land cover data have also
been retrieved and aggregated into the following nine cate-
gories: water, bare, ice/snow, urban, forest, grass, dry crops,
irrigated crops and wetlands.
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We also use the European Soil Database (ESDB) produced
by the European Soil Data Centre (Panagos et al., 2012).
The ESDB contains information on soil characteristics, in-
cluding soil depth and texture for topsoil (0–30 cm) and sub-
soil (30–70 cm) layers at a grid resolution of 1 km. The total
available water content (TAWC) is a volumetric parameter
describing the water content between the field capacity and
permanent wilting point, as a function of the available water
content, presence of coarse fragments and depth (Reynolds
et al., 2000). In the ESDB, water content at the field capacity
and permanent wilting point were determined following the
equation from van Genuchten (1980) to estimate the soil wa-
ter retention curve (Hiederer, 2013). The parameters of the
equation are provided by a pedotransfer function (Wösten
et al., 1999) for the volumetric soil water content computed
from the soil water retention curve. The pedotransfer func-
tion uses soil texture, organic carbon content and bulk den-
sity to determine the parameters of the soil water retention
curve (Hiederer, 2013).

3 Methods

3.1 Soil moisture accounting model

The soil moisture model considered here has been previ-
ously applied in several studies for applications related to soil
moisture monitoring (Anctil et al., 2004; Javelle et al., 2010;
Tramblay et al., 2012, 2014). It consists in the SMA part of
the GR4J model (Génie Rural à 4 paramètres Journalier; Per-
rin et al., 2003), driven by precipitation and PET, which rep-
resents a conceptual formulation of the impact of precipita-
tion and PET on the soil water balance, using a soil reservoir
of fixed depth A. This parameter represents the maximum
capacity of that reservoir, which can be assumed to be equiv-
alent to the soil water holding capacity (Perrin et al., 2003;
Javelle et al., 2010; Tramblay et al., 2014).

The soil reservoir has a net outflow when PET exceed rain-
fall.

If Pt ≤ PETt ,

S∗ = St−1−
St−1 (2A− St−1) tanh

(
PETt−Pt

A

)
A+ (A− St−1) tanh

(
PETt−Pt

A

) . (1)

In all the other cases it has a net inflow.
If Pt ≤ PETt ,

S∗ = St−1+

(
A2
− S2

t−1
)

tanh
(

Pt−PETt

A

)
(A+ St−1) tanh

(
Pt−PETt
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) , (2)

where S∗ can never exceed the maximum reservoir capacity.
Finally, the outflow from the storage reservoir due to perco-
lation is taken into account using

St = S∗

[
1+

(
4S∗

9A

)4
]− 1

4

. (3)

The level of the soil reservoir is given by S/A, ranging be-
tween 0 and 1, which provides a soil wetness index (SWI)
for the catchment. The outputs of SURFEX soil moisture are
first normalized with the maximum and minimum values to
obtain an SWI consistent with the SMA model output. Then,
the SMA model parameter A is calibrated using this normal-
ized SURFEX soil moisture as a reference. The SMA model
is calibrated for each grid cell independently using soil mois-
ture simulated with SURFEX covering the full Iberian Penin-
sula domain. The Nelder–Mead simplex algorithm is used for
the calibration with the Nash efficiency criterion. To region-
ally estimate the values of A, two different methods are com-
pared: the direct estimation of A with TAWC from ESDB soil
maps or its indirect estimation with machine learning meth-
ods, namely random forests using 5 km× 5 km grid physio-
graphic and climatic properties.

3.2 Regionalization with soil maps

The first approach consists in using the total available wa-
ter content from the ESDB to estimate the A parameter for
each grid cell. In the present work, the TAWC of subsoil and
topsoil layers have been added and averaged at the scale of
5 km× 5 km, matching the spatial resolution of the SAFRAN
grid. Then, these estimates have been used to set the A pa-
rameter of the SMA model. Thus, this regionalization ap-
proach is based on the a priori estimation of the A parameter
from soil maps solely.

3.3 Regionalization with random forests

Random forests (RFs; Breiman, 2001) belong to the class of
machine learning techniques. RFs are based on a bootstrap
aggregation (Breiman, 1996) of classification and regression
trees (Breiman et al., 2017). They generate a bootstrap sam-
ple from the original data and trains a tree model using this
sample. The procedure is repeated many times, and the bag-
ging’s prediction is the average of the predictions. Among
the many advantages of RFs, they are fast, non-parametric,
robust to noise in the predictor variables, able to capture non-
linear dependencies between predictors and dependent vari-
ables, and can simultaneously incorporate continuous and
categorical variables (Tyralis et al., 2019). The drawbacks are
that they are complex to interpret and cannot extrapolate out-
side the training range. Given their advantages, this algorithm
is particularly suited for the estimation of spatial variables
such as soil properties (Booker and Woods, 2014; Hengl et
al., 2018; Gagkas and Lilly, 2019; Stein et al., 2021). In the
present work, an RF model is generated to estimate the values
of the A parameter of the SMA model, representing the soil
water holding capacity, with the properties of the 5× 5 km
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Table 1. Contingency table of the comparison between forecasts
and observations or any two analyses. The symbols a–d are the dif-
ferent numbers of cases observed to occur in each category.

Observations

Forecast 1 0

1 a (hit) b (false alarm)
0 c (miss) d (correct rejection)

grid cells, namely altitude, land cover, mean annual precipi-
tation, temperature and PET, using random forests.

To estimate the reliability of the method, the 5 km× 5 km
grid cells covering the Iberian Peninsula have been split ran-
domly into a training sample containing 70 % of the cells
(15 636 data points) and a testing sample with the remaining
30 % cells (6701 data points). The random selection of the
training and testing sets have been performed using a Latin
hypercube sampling (McKay et al., 1979) to ensure homo-
geneous sampling over the Iberian Peninsula. Given that the
RF trees cannot be interpreted directly, as for example the
weights in a linear regression, we additionally implemented
an out-of-bag predictor importance estimation by permuta-
tion (Loh and Shih, 1997) to measure how influential the pre-
dictor variables in the model are at predicting the response.
The influence of a predictor increases with the value of this
measure. If a predictor is influential in prediction, then per-
muting its values should affect the model error. If a predictor
is not influential, then permuting its values should have little
to no effect on the model error.

3.4 Validation on the ability to detect dry soil moisture
conditions

To compare the efficiency of the two methods compared
to estimate the A parameter of the SMA model, the SMA
model was run using the two methods, and all daily values
of soil moisture below the 10th percentile were extracted,
corresponding to dry soil conditions. Only the grid cells in
the testing sample were considered for this validation. We
computed different verification scores to assess the relative
efficiency of the two methods to reproduce daily soil mois-
ture below the 10th percentile using the ISBA simulated soil
moisture as a benchmark: the probability of detection (POD),
the false-alarm ratio (FAR) and the Heidke skill score (HSS)
summarizing the global efficiency to detect dry periods (Jol-
liffe and Stephenson, 2011). These scores are based on the
contingency table between forecasts (or simulated values in
the case of the present study) and observations (Table 1).

POD is the probability of detection (Eq. 1); FAR is the
number of false alarms per the total number of warnings or
alarms (Eq. 2); and HSS is a skill score ranging from −∞
to 1 (Eq. 3), for categorical forecasts where the proportion

of correct measure is scaled with the reference value from
correct forecasts due to chance.

POD= a/(a+ c) (4)
FAR= b/(a+ b) (5)
HSS= 2(ad − bc)/(a+ b)(b+ d)+ (a+ c)(c+ d) (6)

4 Results

4.1 Calibration of the SMA model

The calibration results of the SMA model against SURFEX
soil moisture provide very good model performance, with
a mean Nash coefficient equal to 0.94, indicating its abil-
ity to reproduce the soil moisture dynamics as simulated
by SURFEX. Nash values below 0.5 are found for 1.21 %
of grid cells (n= 273); these are only for areas located in
the mountainous range affected by snow processes above
1500 m a.s.l. (Fig. 1). This outcome is expected; since the
SMA model does not include a snow module, it cannot repro-
duce snow dynamics in these areas. However, high-elevation
areas with seasonal snow cover are not the areas most at risk
of soil moisture droughts for agricultural activities in Spain.
The calibrated values of the A parameter of the SMA model
range from 60 to 250 mm, depending on the location (Fig. 2).
There is no significant correlation between A and the mean
annual precipitation or the aridity index (P/PET). This high-
lights the interplays between soil properties and climate to
explain the spatial variability of the soil water holding ca-
pacity.

4.2 Regional estimation of the A parameter

The values of the calibrated A parameter are related to the
properties of the 5 km× 5 km grid cells using random forests.
First, an out-of-bag predictor importance estimation by per-
mutation is applied to compute the overall performance
of RFs and estimate the relative influence of each predic-
tor. When using the A out-of-bag estimates to run the SMA
model, the loss of performance is very small; the decrease
in Nash values in validation is on average equal to −0.0019
(with a maximum decrease of −0.04). This is due to the low
sensitivity of the SMA model to the value of A, given that the
error in the estimation of A is in the range of 10 mm (RMSE
of 13.18 mm). This type of validation mimics the case when
the estimation at one single location is required, yet since all
the remaining points are used for the estimation, it makes the
approach in that case very robust. The relative importance
for each predictor is plotted in Fig. 3, indicating that precip-
itation and potential evapotranspiration are the two most im-
portant predictors, followed by altitude. On the contrary, the
land cover attributes for each grid cell are the least important
predictors, and removing them from the RF model does not
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Figure 1. Efficiency of the SMA model to reproduce the soil wetness index obtained from simulated SURFEX soil moisture.

Figure 2. Map of the calibrated values of the A parameter of the
SMA model.

Figure 3. Relative importance of each predictor (Alt: altitude,
P : precipitation, PET: potential evapotranspiration, T : temperature
and LC: land cover class) in the random forest method.

significantly change the results. This shows the relative im-
portance of climatic variables in the spatial variability of the
soil moisture holding capacity.

To estimate the robustness of the method, we applied a
split-sample validation into a testing and a training sample.

The results are presented for the testing set (Fig. 4). The per-
formance in terms of Nash for the SMA model with A esti-
mated by random forests or soil map is very similar, with a
mean Nash value equal to 0.86 (median of 0.89) with RFs
and 0.81 (median of 0.85) with soil maps. The Nash val-
ues in validation (testing set) are low, or even negative, only
for mountainous ranges, as expected. Overall, the spatial pat-
terns of the Nash coefficients obtained with RFs or the ESDB
are very similar too. There are no significant relationships be-
tween model efficiency and the aridity index or the presence
of irrigated areas, as identified in the ECOCLIMAP2 land
cover database.

4.3 Estimation of dry soil conditions

A further validation is made for daily soil moisture below
the 10th percentile corresponding to dry soil conditions. We
computed the probability of detection (POD), the false-alarm
ratio (FAR) and the Heidke skill score (HSS) summariz-
ing the global efficiency to detect dry periods. For both ap-
proaches to estimate A, the mean POD is very high, close
to 97 %, while FAR is close to 3 %. But these average re-
sults hide some discrepancy in the different regions (Fig. 5):
the efficiency is the highest for the northwestern region, the
wettest areas of Spain, with the most important increase of
HSS and POD, associated with a decrease in FAR, using
random forests, while in the southern and central parts of
Spain, the performance is lower on average and very sim-
ilar to the two regionalization approaches. For the wettest
parts of the Iberian Peninsula, POD remains higher than
94 %, and FAR is lower than 6 %; it is the region where
the main improvements with RFs are observed. As shown
in Fig. 5, the results with random forests mostly follow the
climate conditions, with improved estimations in the wettest
regions of the northern and northwestern parts of Spain. For
the estimation with EU soil maps, the results seem related
to soil depth and, to a lesser extent, land cover. Indeed,
higher scores are found in regions with shallow soils, such as
those of plutonic (Galicia, western parts of the Extremadu-
ran mountainous ranges and Douro basin) or metamorphic
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Figure 4. Nash efficiency coefficient obtained for the testing set, with the A parameter of the SMA model estimated with either RFs (a) or
the European Soil Database (b).

Figure 5. Validation results in terms of HSS, POD and FAR with A estimated with either random forests or the European Soil Database.

origins (western Cantabrian Range, northern Iberian Range,
eastern-central regions and Sierra Morena in Andalucia) and
also sedimentary regions with shallow limestones (eastern
Cantabrian mountains, Basque Country and southern Iberian
Range). On the other hand, lower scores are found in regions
with the deepest soils (Guadalquivir floodplains, mid Tagus
River, upper Douro, piedmonts of the Cantabrian Mountains
in Leon and Palencia, and most of middle Navarre). The ex-
ception is regions such as Biscay or coastal Portugal, with
a dense forest cover (mostly Pinus radiata or P. pinaster),

where soil depth is probably overestimated. On average, the
RF estimation method outperforms the approach based on
the ESDB (Fig. 6), with more stable results in terms of HSS,
since all values obtained with RFs are above 0.4, while with
the ESDB for the grid cells, the HSS scores drops to values
close to zero.

Nat. Hazards Earth Syst. Sci., 22, 1325–1334, 2022 https://doi.org/10.5194/nhess-22-1325-2022
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Figure 6. Boxplot of the HSS score obtained with random forests
or the European Soil Database soil maps. The limits of the box rep-
resent the 25th and 75 percentiles; the line in the middle refers to
the median; and the limits of the whiskers extend to the minimum
and maximum values.

5 Summary and conclusions

In this study, a simple model allowing for the monitoring
of soil moisture conditions was regionalized over the entire
Iberian Peninsula, taking as a reference the soil moisture sim-
ulated by a high-resolution land-surface model. Two differ-
ent regionalization methods have been compared, either by
the direct estimation of the soil water holding capacity from
European soil maps or by random forests, using covariates
such as altitude, temperature, precipitation, potential evap-
otranspiration and land cover. Results have shown that the
estimation by random forests is more robust notably to esti-
mate low soil moisture levels. Despite similar average perfor-
mance between the two methods, the use of soil maps to set
the water holding capacity reveals less stable results in some
cases, most probably related to the uncertainties in the pedo-
transfer functions used. While these pedotransfer functions
are process-based predictive functions of certain soil prop-
erties, random forests are not based on physical processes
and are tailored to provide the best estimates in a statistical
sense. Therefore, they provide a valuable alternative in con-
texts where high-resolution soil maps are not available, since
they rely on a set of covariates that can be reliably estimated
from global databases, such as satellite or reanalysis products
(Funk et al., 2015; Hersbach et al., 2020; Muñoz Sabater,
2020).

It should be noted that the results presented herein are
highly dependent on the quality of land-surface simulations,
in the absence of dense monitoring networks of in situ soil
moisture data; thus these results suffer from the same limita-
tions as LSMs, notably, the lack of human process represen-
tation in these models (notably irrigation). However, new re-
mote sensing irrigation estimates are being developed (Mas-
sari et al., 2021); as a consequence, once the RF model is
trained, irrigation estimates could be added to the precipi-
tation forcing data in order to include the human impacts
on soil moisture estimations. The results show that this ap-

proach could allow for cheaply extending the value of high-
resolution LSM simulations to areas where no LSM is im-
plemented (i.e. northern Africa), as long as the climate con-
ditions belong to the range of values used to train the model,
mostly in terms of precipitation and potential evapotranspi-
ration ranges. Thus, the model train over the Iberian Penin-
sula could be applied to other similar areas such as north-
ern Africa, Italy or Greece. As a perspective, other simula-
tions from countries where high-resolution LSM simulations
are available, such as France or the USA, could be added to
the database in order to expand the coverage over different
physiographic and climate contexts (Ma et al., 2021). Con-
sequently, the benefits of LSM simulations of soil moisture
could be expanded to other areas, provided those suitable
forcing datasets are available. Furthermore, if public mete-
orological and hydrological organizations were to create soil
moisture observation networks, cleverly designed to cover
the most relevant climates of their countries, this approach
could be used to train the model using these observations
and then regionalize the results to the rest of the territory,
thus, converting an in situ observation dataset into a gridded
dataset with a much greater spatial coverage.
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