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An inverse approach integrating flowmeter and pumping test data for three-dimensional aquifer characterization

Coupling flowmeter and pumping test data for low-cost 3D aquifer characterizations 2.

3D hydraulic conductivity distribution is assessed from an inverse approach 3. The effectiveness of integrating the two datasets is studied with 3D synthetic models

Introduction

The characterization of hydraulic properties, such as hydraulic conductivity and specific storage, is very important in groundwater modeling and water resources management [START_REF] Hubbard | Introduction to Hydrogeophysics[END_REF]. Contaminant transport has always been strongly dependent on the accuracy of the hydraulic properties' characterization. A minor change in hydraulic properties may alter transport behaviors significantly [START_REF] Zheng | Analysis of Solute Transport in Flow Fields Influenced by Preferential Flowpaths at the Decimeter Scale[END_REF]. Because direct measurements of hydraulic properties are limited in real-world applications, early analytical analysis of aquifer hydraulic response to pumping/injection often adopts a homogeneous assumption (e.g., Theis 1935, Cooper and[START_REF] Cooper | A generalized graphical method for evaluating formation constants and summarizing well-field history[END_REF]. It may be enough to infer the bulk aquifer property; however, it cannot capture most of the transient behavior of the tested aquifer. In addition to pumping tests, several other hydraulic testing methods, such as slug tests [START_REF] Yeh | Observation and Three-Dimensional Simulation of Chloride Plumes in a Sandy Aquifer Under Forced-Gradient Conditions[END_REF] and flowmeter tests [START_REF] Rehfeldt | Field study of dispersion in a heterogeneous aquifer: 3. Geostatistical analysis of hydraulic conductivity[END_REF][START_REF] Klepikova | Inverse modeling of flow tomography experiments in fractured media[END_REF][START_REF] Tamayo-Mas | Mansour Impact of model complexity and multi-scale data integration on the estimation of hydrogeological parameters in a dual-porosity aquifer Hydrogeol[END_REF], are being used to provide non-redundant information (with respect to pumping tests) about the aquifer.

Hydraulic tomography (HT) has been developed over the last two decades (e.g., [START_REF] Gottlieb | Identification of the permeability distribution in soil by hydraulic tomography[END_REF][START_REF] Butler | Pumping tests in networks of multilevel sampling wells: Motivation and methodology[END_REF][START_REF] Bohling | Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities[END_REF][START_REF] Bohling | Inherent Limitations of Hydraulic Tomography[END_REF][START_REF] Yeh | Hydraulic tomography: Development of a new aquifer test method[END_REF][START_REF] Zhu | Characterization of aquifer heterogeneity using transient hydraulic tomography[END_REF][START_REF] Zhu | Analysis of hydraulic tomography using temporal moments of drawdown recovery data[END_REF][START_REF] Liu | Effectiveness of hydraulic tomography: Sandbox experiments[END_REF], Liu et al., 2007[START_REF] Illman | Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study[END_REF][START_REF] Cardiff | A potential-based inversion of unconfined steadystate hydraulic tomography[END_REF][START_REF] Zha | Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium[END_REF]. This approach has shown a great potential for reconstructing detailed spatial distributions of hydraulic parameters comparing to the traditional analytical solutions. Hydraulic tomography yields a detailed two-or three-dimensional map of hydraulic heterogeneity for regions within between the testing boreholes where constraining hydraulic head responses to cross-hole pumping are collected. The efficiency of HT has been demonstrated in many laboratory-scale (e.g., [START_REF] Liu | Laboratory sandbox validation of transient hydraulic tomography[END_REF], Illman et al., 2007[START_REF] Illman | Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study[END_REF][START_REF] Zhao | On the importance of geological data for hy-draulic tomography analysis: laboratory sandbox study[END_REF][START_REF] Zhao | On the Importance of Geological Data for Three-dimensional Steady-State Hydraulic Tomography Analysis at a Highly Heterogeneous Aquifer-Aquitard System[END_REF] and field-scale studies (e.g., [START_REF] Bohling | A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities[END_REF][START_REF] Brauchler | A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography[END_REF][START_REF] Brauchler | Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in unconsolidated sediments[END_REF][START_REF] Berg | Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system[END_REF][START_REF] Cardiff | A field proof-of-concept of aquifer imaging using 3-D transient hydraulic tomography with modular, temporarily-emplaced equipment[END_REF], Fischer et al., 2020).

For a full 3D hydraulic tomography, using only one observation from each testing well is not sufficient and packer tests are often required (Bholing et al. 2007[START_REF] Berg | Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system[END_REF], Zha et al. 2016[START_REF] Zha | Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach[END_REF][START_REF] Cardiff | A field proof-of-concept of aquifer imaging using 3-D transient hydraulic tomography with modular, temporarily-emplaced equipment[END_REF][START_REF] Zhao | On the Importance of Geological Data for Three-dimensional Steady-State Hydraulic Tomography Analysis at a Highly Heterogeneous Aquifer-Aquitard System[END_REF][START_REF] Wen | Redundant and Nonredundant Information for Model Calibration or Hydraulic Tomography[END_REF]. However, packer tests, which are costly and complex to set up, are not always available in each experiment site.

Without packer tests, pumping tests data remain insufficient to capture the three-dimensional aquifer behavior and may lead to erroneous characterization and sometimes model instability in layered aquifers.

In recent years, other information such as geological and geophysical data have been used to constrain the inverse process of HT (e.g., [START_REF] Zha | Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach[END_REF][START_REF] Tso | The relative importance of head, flux, and prior information in hydraulic tomography analysis[END_REF][START_REF] Soueid Ahmed | Image-guided inversion in steadystate hydraulic tomography[END_REF]. The most widely-used geostatistics-based inverse modelling approaches are the quasi-linear geostatistical approach [START_REF] Kitanidis | Quasi-linear geostatistical theory for inversing[END_REF] and the successive linear estimator (SLE) [START_REF] Yeh | An iterative stochastic inverse method: Conditional effective transmissivity and hydraulic head fields[END_REF]. To improve efficiency when dealing with highly parameterized inverse problems, different approaches were developed, including principle component geostatistical approach [START_REF] Kitanidis | Principal Component Geostatistical Approach for large dimensional inverse problems[END_REF], reducedorder SLE [START_REF] Zha | A reduced-order successive linear estimator for geostatistical inversion and its application in hydraulic tomography[END_REF]) and the use of geostatistical reduced order models (Liu et al. 2013).

Previous works have highlighted the benefits of incorporating site-specific geologic structure information into groundwater models when HT data are limited [START_REF] Zha | Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach[END_REF][START_REF] Tso | The relative importance of head, flux, and prior information in hydraulic tomography analysis[END_REF]. [START_REF] Zha | Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach[END_REF] worked on quantitative incorporation of site-specific information into groundwater models and introduced a general method to derive conditional mean and conditional covariance, that can be used in HT analysis as prior information. [START_REF] Tso | The relative importance of head, flux, and prior information in hydraulic tomography analysis[END_REF] also concluded that only incorporating a qualitative facies trend information already yields a better conductivity estimate. Such improvement can also be seen in hydraulic conductivity estimates through laboratory/ field applications [START_REF] Zhao | On the importance of geological data for hy-draulic tomography analysis: laboratory sandbox study[END_REF]Illman 2017). De [START_REF] Clercq | The use of electrical resistivity tomograms as a parameterization for the hydraulic characterization of a contaminated aquifer[END_REF] used electrical resistivity maps to structure the distribution of the hydraulic properties in a 3D HT.

Flowmeter surveys characterize the vertical inflow profile of a given well [START_REF] Paillet | Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations[END_REF][START_REF] Molz | Borehole flowmeters: Field application and data analysis[END_REF][START_REF] Zlotnik | Estimation of hydraulic conductivity from borehole flowmeter tests consideringhead losses[END_REF][START_REF] Williams | Using flowmeter pulse tests to define hydraulic connections in the subsurface: A fractured shale example[END_REF][START_REF] Day-Lewis | A Computer Program for Flow-Log Analysis of Single Holes (FLASH)[END_REF]. They are a widely used approach to determine vertical profiles of hydraulic conductivities at well locations.

Complex geological medias are often layered systems and flowmeter analysis has shown its efficiency to detect the main layers contributing to the total pumped flux [START_REF] Day-Lewis | A Computer Program for Flow-Log Analysis of Single Holes (FLASH)[END_REF][START_REF] Paillet | Integrating Borehole Logs and Aquifer Tests in Aquifer Characterization[END_REF]. Flowmeter profiling can also be used to detect the well crossing fractures that contribute to flow [START_REF] Day-Lewis | A Computer Program for Flow-Log Analysis of Single Holes (FLASH)[END_REF][START_REF] Roubinet | Development of a new semi-analytical model for crossborehole flow experiments in fractured media[END_REF]. Flowmeter tests are easy and cheap but bulky and the investigated height is limited due to the space taken by the pump and the generated drawdown.

Flowmeter tests may provide a new set of information and have been included in inverse modelling problems. For instance, [START_REF] Fienen | An application of Bayesian inverse methods to vertical de-convolution of hydraulic conductivity in a heterogeneousaquifer at Oak Ridge National Laboratory[END_REF] used a Bayesian inverse approach to interpret the vertical hydraulic conductivity in a heterogeneous fractured aquifer. Other applications used the interpreted hydraulic conductivity values from flowmeter tests in the transmissivity map to constrain the geostatistical inversions (e.g., [START_REF] Rehfeldt | Field study of dispersion in a heterogeneous aquifer: 3. Geostatistical analysis of hydraulic conductivity[END_REF][START_REF] Chen | Estimating thehydraulic conductivity at the South Oyster Site from geo-physical tomographic data using Bayesian techniquesbased on the normal linear regression model[END_REF]. In other studies, flux measurements have also been used as observation data additional to hydraulic heads in hydraulic tomography [START_REF] Li | Three-Dimensional Geostatistical Inversion of Flowmeter and Pumping Test Data[END_REF][START_REF] Zha | Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium[END_REF][START_REF] Tso | The relative importance of head, flux, and prior information in hydraulic tomography analysis[END_REF].

Combining different hydraulic tests that characterize different parts of the aquifer may lead into a good characterization; for example, combining flowmeter tests data that give vertical information with pumping tests data that give lateral information might be a good alternative to obtain a threedimensional characterization of the aquifer without packer tests. In this paper, we integrate vertical hydrogeological information obtained from flowmeter surveys and horizontal information from crosshole pumping tests to achieve a 3D transient hydraulic tomographic (THT) characterization of sedimentary layered rocks. The flowmeter data are incorporated to HT through the construction of conditional initial mean and covariance of model parameter. We first validate the proposed inversion framework using synthetic data from a two-dimensional cross-section model and a three-dimensional model. We then apply the inverse approach to a real-world study in an experimental site composed of layered porous rocks. In the end, we analyze the data fitting effectiveness and geological coherence of the inverted hydraulic conductivity fields.

Methodology

The objective of the study is to integrate two sets of data to obtain spatialized hydraulic conductivity estimates through hydraulic tomography. The first dataset corresponds to drawdown responses to pumping tests that give information about lateral variation of hydraulic properties. The second dataset consists in flowmeter logs measured in every well of the site that give vertical information (see Figure 1 for datasets scheme). Flowmeter logs are first interpreted and converted into hydraulic conductivity profiles. Then, the interpreted hydraulic conductivity profiles are interpolated using a triangular-base bilinear or trilinear interpolation in order to obtain a continuous two-or three-dimensional hydraulic conductivity map between the wells and we use 'nearest neighbors' interpolation for the rest of the inversion domain where the linear interpolation cannot be evaluated. After that, an inverse modelling approach is used to reconstruct the hydraulic conductivity distribution using interpolated map as a prior information. We use the principal component geostatistical approach, a deterministic iterative procedure that updates the conditional mean and the conditional covariance by matching model responses to the pumping tests observations. 

Groundwater flow model

We solve the problem of three-dimensional transient fluid flow through a confined, saturated and heterogeneous porous media. The system is solved in transient regime and is described by the following equations:
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where is the gradient operator, Ss is the specific storage which assumed constant in this study, h is the hydraulic head, K the hydraulic conductivity, Q the source term and h0 is the initial hydraulic head which remains constant at the boundary conditions . The forward flow model is solved using a finite element method using unstructured mesh (See Figure R3 in supplementary materials).

Flowmeter analysis

The applied approach of flowmeter data analyses is described in [START_REF] Molz | The Impeller Meter for measuring aquifer permeability variations: Evaluation and comparison with other tests[END_REF], which is based on the study of flow in a layered, stratified aquifer by [START_REF] Javandel | A method of analyzing transient fluid flow in multilayered aquifer[END_REF]. Assuming that the idealized aquifer is layered and the flow quickly becomes horizontal even with high contrast of hydraulic conductivity between the layers. The flow of a given layer is proportional to the hydraulic conductivity of that layer and the sum of the different flow rates into the well is equal to the pump flow rate during the pumping test.

During our flowmeter test, water is extracted from an open hole well and, once steady state is reached, a spinner flowmeter is swept along the well from the bottom of the well to the top and a vertical flow rate profile is measured. In most common cases, when the pump is located at the top, the flow rate log will have the trend of an increasing curve starting from a zero value at the bottom to a max value at the top, that will correspond to the total extracted flux from the well. The increase in flow rate over a certain depth increment is correlated to the relative hydraulic conductivity profile; higher the hydraulic conductivity, stronger the rate increase. Flowmeter tests therefore provide relative values of hydraulic conductivity distribution along the borehole. In order to extract the absolute values, an effective value of hydraulic conductivity of the well (obtainable from the interpretation single hole of a pumping tests) will be used. Single-hole flowmeter data can be analyzed to estimate conductivity profiles along boreholes and characterize aquifer compartmentalization [START_REF] Molz | The Impeller Meter for measuring aquifer permeability variations: Evaluation and comparison with other tests[END_REF][START_REF] Kabala | Measuring distributions of hydraulic conductivity and specific storativity by the double flowmeter test[END_REF][START_REF] Paillet | Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations[END_REF].

If a well is subject to a pumping with a pump placed at the top of the well working at the rate Qp, the underground layers connected to that well will contribute to the total extracted flux. Their contribution is proportional to their hydraulic conductivity. For the following equations, b (m) refers to the aquifer thickness, z0 (m) the reference level of the borehole bottom, and z (m) the height above the bottom (Figure 2). In an idealized layered aquifer, the flow into the well from a given layer is proportional to the transmissivity of that layer:
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where α (m) is a constant of proportionality, ∆Qi (m 3 /s) corresponds to the induced flow increments observed in the borehole along the i th increment of height ∆zi (m) that has a hydraulic conductivity Ki (m/s). The average horizontal hydraulic conductivity $ %&' can be expressed by:
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The cumulative flow Qcum(b) over the aquifer thickness can be expressed as follows:
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By substituting the sum, α can be solved as:
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Then, the hydraulic conductivity of each layer can be quantified by: 
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Principal component geostatistical approach

In order to optimize the hydraulic conductivity field in the model we use the principal component geostatistical approach (PCGA) [START_REF] Kitanidis | Principal Component Geostatistical Approach for large dimensional inverse problems[END_REF]. The observation equation that links the m unknown hydraulic conductivities, stored in a vector s, to the observation data (hydraulic heads) stored in a matrix y is [START_REF] Kitanidis | Quasi-linear geostatistical theory for inversing[END_REF]:

3 = + ), (8) 
where () is the forward model, ) is the observation error with a random normal distribution with mean 0 and variance R, which is usually the error measurement multiplied by the identity matrix. The prior probability of is a Gaussian distribution with mean 45 generalized by a covariance matrix .

X is a m-vector of ones and 5 represents the mean hydraulic conductivity value. The posterior probability density function (objective function L) of and 5 is given by: L = 6 7 83 -9 :
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The optimization of the hydraulic conductivity values is obtained by minimizing this objective function through an iterative method.

Inversion process requires the calculation of the sensitivity matrix (Jacobian matrix) which require as much forward model simulations as unknowns m. Despite the computer science advancement, the forward model itself can be time consuming when dealing with high dimensional problems (3D simulations, fine mesh, presence of complex structures). In order to bypass this difficulty, the principal component geostatistical approach which avoids the full Jacobian matrix calculation, was proposed. The reduced order successive linear estimator ROSLE [START_REF] Zha | A reduced-order successive linear estimator for geostatistical inversion and its application in hydraulic tomography[END_REF] based on SLE [START_REF] Yeh | An iterative stochastic inverse method: Conditional effective transmissivity and hydraulic head fields[END_REF] can be one alternative to the PCGA. These methods use a singular value decomposition and then a truncation based on the eigenvalues and Eigen functions of the covariance matrix Q. The covariance matrix can be rewritten with its decomposed form as:
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where V's columns correspond to the eigenvectors of the covariance matrix and S is a diagonal matrix of its eigenvalues λ which are decreasingly organized. The eigenvectors and eigenvalues are then krank truncated. The k first eigenvalues and its corresponding eigenvectors are kept. The compressed covariance can be calculated as:
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where
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It can be also written as a sum:
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The accuracy of the low-rank covariance depends on the truncation number. However, it is already shown that a much smaller truncation number than the number of unknowns (k<<m) can be used [START_REF] Kitanidis | Principal Component Geostatistical Approach for large dimensional inverse problems[END_REF]. The quasi-Linear geostatistical approach [START_REF] Kitanidis | Quasi-linear geostatistical theory for inversing[END_REF] updates the actual best estimate C for the next iteration as:
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where H is the Jacobian matrix and the accentuation-bar denotes the best estimate. 5 D and @ C are solved from the following linear system:
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The minimized objective function L can also be written as:

J = 6 7 K3 -845 + E : @9L : ; <6 K3 -845 + E : @9L + 6 7 @ : E E : @. ( 17 
)
In PCGA, the sensitivity matrix H is not fully calculated and an alternative way to approximate it is proposed.

In order to estimate HQ and HQH T , k forward runs are needed to be solved in additional to the forward run of the actual best estimate, the forward models are used to calculate η defined as follows:

M ! = E@ ! ≈ 6 N [ + N@ ! - ], (18) 
δ is the finite difference interval from the Taylor series expansion [START_REF] Kitanidis | Principal Component Geostatistical Approach for large dimensional inverse problems[END_REF]. Then HQ and HQH T are defined as:
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In order to estimate HX, one (columns of X) forward run is needed, following:
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In order to estimate QR̅ , one forward run is needed in addition to the forward model of the actual best estimate, following:

E C = 6 N [ C + N C -C ] + T N ≈ 6 N [ C + N C -C ]. (22) 
In total, each iteration requires k+3 forward runs; 1 forward run of the actual best estimate, 1 forward run to estimate QR̅ , 1 forward run to estimate HX and k forward models to estimate HQ and HQH T .

The above steps are repeated iteratively until convergence of the objective function value is reached.

Prior information

The approach of conditional mean and conditional covariance using geological information as presented in [START_REF] Zha | Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach[END_REF] work is used in this study. The two main prior information are the initial guess and the initial covariance matrix. The prior input of the inversion is constructed using interpreted flowmeter data. The 3D interpolated conductivity is mapped into inversion grid, stored in s, and used as an initial guess for the first iteration instead of using an initial mean.; an interpolation or/and an extrapolation might be often used. It also allows identifying the main facies and constructing the prior covariance accordingly [START_REF] Zha | Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach[END_REF]). However, the covariance matrix Q is constructed as a sum of different covariance sub-matrixes [START_REF] Zha | Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach[END_REF]: a) a covariance matrix that defines the different facies (layers) will be of high importance and its construction is achieved only by using a strong correlation between the cells that belong to the same facies, b) another covariance matrix that defines the correlation between the cells of the same facies, defined as an intrafacies covariance, c) a third covariance matrix, defined as an inter-facies covariance, can be used on the global inverted domain. By conditioning the prior covariance with facies information distinguished from flowmeter data, we try to incorporate the vertical information into the inversion process and constrain its convergence path.

Validation of concept

The main objective of the paper is the use of two different datasets which are easily available to better characterize the hydraulic conductivity of a multi-layered sedimentary structure constitutive of the aquifer. The first dataset corresponds to flowmeter data along the profile of each well. Flowmeter logs are obtained by pumping in the top of each well and the flowmeter tool is swept under the pump to get the flow contribution along the borehole. The second dataset corresponds to measured hydraulic response (drawdowns) to pumping tests. Here we try to perform a 3D inversion of the hydraulic conductivity field to characterize the aquifer on the basis of pumping tests data and incorporating flowmeter information. In order to validate this concept, the proposed inverse approach is first applied on two synthetic cases. The first case is performed in 2D and the second one in 3D.

2D synthetic case

By using a two-dimensional random field generator tool (Paul Constantine 2021), a random hydraulic conductivity field is generated following an exponential correlation function using the parameters of standard deviation σ=1.5, the correlation length in x direction Lx=100 m, the correlation length in y direction Ly=5 m. With such set of parameters, the obtained hydraulic conductivity field displays multi-layered hydraulic properties (see Figure 3.a). We consider the obtained 2D map as a vertical cross-section of an aquifer centered on the inverted domain which is extended using a buffer area until the boundary conditions. The dimensions of the inverted domain are 70 m by 50 m; the dimensions of the buffer area are 700 m by 50 m. The lateral boundaries are set to constant zero hydraulic head while the upper and lower boundaries are set to no flow condition. The initial condition is set to zero hydraulic head in the whole domain. For forward flow simulations, we use the subsurface flow module of Comsol Multiphysics (COMSOL AB 2018). We assume the aquifer to be confined. The specific storage is assumed constant and a value of Ss = 10 -4 m -1 was used.

The wells are modeled explicitly with a radius of rw=0.1 m. We attribute to wells a high hydraulic conductivity (K=1 m.s -1 ) and a low specific storage (10 -10 m -1 ) (see Figure S1 in supplementary material). The spacing of wells in the x direction is 15m (Figure 3a). We simulate five cross-hole pumping tests, which are considered as the 'data' for inversion. The location of selected wells is indicated in Figure S4. We simulate flowmeter data for each well by using a point source at the top of the well and applying a steady-state pumping flow rate. Once the steady-state flow regime is reached, we evaluate the vertical velocity along a line in the middle of the well. In our flow simulations, extra fine meshes are adopted to discretize the well domain (Figure R3). Examples of simulated flowmeter measurements for the 2D case can be found in supplementary material (Figure R2). The hydraulic conductivity profiles are then interpolated using a triangular-base bilinear interpolation to obtain a hydraulic conductivity map for areas within between the wells. For the rest of the inversion domain where the linear interpolation cannot be evaluated, we use a nearest neighbors' extrapolation.

In the next step, we construct a nested covariance using the interpolated hydraulic conductivity map.

The nested covariance is constructed by the combination of multiscale correlated heterogeneities [START_REF] Zha | Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach[END_REF]. For example, a geological facies from another survey can be used a soft constraint added into the initial covariance matrix for HT. The interface between different facies or zones may exhibit an abrupt change of hydraulic properties. On the other hand, the variability inside a particular facies or zone (compared to its large-scale mean) can be described by a zero mean and a small-scale covariance function.

The covariance matrix used in HT of the 2D study is either calculated using a covariance model similar to the one used to generate the true random field (Figures 3b and3c), or built from a nested covariance which is a sum of different covariance matrices: a covariance matrix built using a covariance model similar to the one used to generate the true random field plus a covariance matrix defining the important facies of flowmeter interpreted map (Figure 3e and3f). The first covariance matrix is simply calculated using an exponential covariance model with standard deviation=1.5, correlation length in x direction Lx=100 m and correlation length in y direction Ly=5 m. For the second covariance matrix that defines the facies, we simply identify the facies from flowmeter map (Figure 3g) and we build a binary covariance that correlates the cells that belong to the same facies.

In the inverse problem, a structured grid is used to discretize the model domain. For the twodimensional cases, the number of grid blocks in x and y directions are nx = 30 and ny = 15 respectively (See Figure R3). As a result, the total number of unknown K parameters is 450. For PCGA setup, we use a truncation number of k=20 for a number of unknowns n=30*15, R=0.001*Id where Id is the identity matrix, and δ=0.0001 for the finite difference interval. The specific storage was kept constant in the inversion and the value is the same as in the forward simulation, i.e., Ss = 10 -4 m -1 . Figure 3 shows the results of the two-dimensional validation case. Figure 3a corresponds to the generated, considered true, hydraulic conductivity field. Figure 3b is the inverted hydraulic conductivity field using a classical hydraulic tomography that used similar covariance information as in the generation of the random field. Figure 3d shows the interpreted hydraulic conductivity from flowmeter analysis. to initialize both the parameter and the covariance matrix which was updated during inversion iterations.

The flowmeter interpretation allows the detection of the main layers in the system (Figure 3d) while the attempt of an inversion using only pumping tests data couldn't assess the vertical profiles of hydraulic conductivity (Figure 3b). Figure 3c, 3e and 3f show better K estimates. Flowmeter data clearly carry non-redundant information on the vertical hydraulic conductivity profiles along the wells.

By only using the obtained hydraulic conductivity map from flowmeter interpretation as an initial guess, the inverted conductivity already contains vertical profile information and show different layers (Figure 3c). The inverted hydraulic conductivity shown in (Figure 3e) is also representative of a layered system but clearly not better than the inverted hydraulic conductivity shown in (Figure 3c).

On the contrary, when the nested covariance has the freedom to update through inversion iterations, the best parameter estimate was obtained compared to all other configurations (Figure 3f). 

3D synthetic case

We extend the approach to a three-dimensional synthetic case and try to show if flowmeter data can provide the vertical information for a 3D aquifer characterization instead of packer tests. Similar to the simplified two-dimensional case, we use a three-dimensional random field generator (Rass et al.

2019) to generate a three-dimensional synthetic hydraulic conductivity map using the following parameters (Correlation function: exponential, standard deviation = 1.5, Lx=100 m, Ly=100 m and Lz= 5 m). Such parameters provide a hydraulic conductivity map that is representative of a multilayered system. The dimensions of the inverted domain are length=70 m, width=70 m and height=30 m; the lateral dimensions of the buffer area are length=700 m and width=700 m; the buffer was not extended in the vertical direction. The outer boundaries are set to constant zero hydraulic head while the upper and lower boundaries (top and bottom) are set to no flow condition. The initial condition is set to zero hydraulic head in the whole domain. The specific storage is assumed constant and a value of Ss = 10 -4 m -1 was used.

As for the two-dimensional case, we simulate flowmeter and cross-hole datasets by modelling explicit wells and point source pump (the point source in the top for the flowmeter simulation and in the middle for cross-hole tests simulations). Extra fine meshes are adopted to discretize the well domain (Figure R3). See Figure R2 in supplementary material for an example of simulated flowmeter measurements for the 3D case. Five cross-hole pumping tests data are simulated and considered as the 'data' for the inversions. The location of selected wells is indicated in Figure S4. As for the 2D cases, the total number of observations for the 3D cases is 100. The flowmeter data are interpreted and the hydraulic conductivity profiles are then interpolated using a triangular-base trilinear interpolation to fill the area between the wells. The rest of the inversion domain where the linear interpolation cannot be evaluated, we use a nearest neighbors' extrapolation.

We construct a nested covariance using the interpreted flowmeter map as described for the twodimensional case. In the inverse problem, a structured grid is used to discretize the model domain. For the three-dimensional cases, the number of grid blocks in x, y and z directions are nx = 20, ny = 20, nz = 8 respectively (See Figure R3). For PCGA setup, we use a truncation number of k=30 for a number of unknowns n=20*20*8, R=0.001*Id where Id is the identity matrix and δ=0.0001 for the finite difference interval. The specific storage was kept constant (Ss = 10 -4 m -1 ) in the inversion and we focus on the characterization of K fields.

Figure 5 shows the results of the three-dimensional validation case. Figure 5c corresponds to the generated, considered true, hydraulic conductivity field. Figure 5a is the inverted hydraulic conductivity field using a classical hydraulic tomography that used same covariance information as in the random field generation. Figure 5b shows the interpreted hydraulic conductivity from flowmeter analysis. Figures 5d and5e show the inverted hydraulic conductivity by integrating flowmeter interpretations into prior information of the inversion; Figure 5d used the interpreted hydraulic conductivity in Figure 5b to initialize only the parameter; Figure 5e used the interpreted hydraulic conductivity in Figure 5b to initialize both the parameter and the covariance matrix which was updated during inversion iterations.

The results of the 3D validation case agree with the observed results of the 2D validation case. The flowmeter interpretation allows vaguely the detection of the main layers in the system (Figure 5b)

while the attempt of an inversion using only pumping tests data couldn't assess the vertical profiles of hydraulic conductivity (Figure 5a). Figures 5d and5e show better characterization in the vertical profiles due to non-redundant added information brought by flowmeter data. Using the flowmeter's interpreted hydraulic conductivity as an initial guess in the inversion already improves considerably the results (Figure 5d). Also, as seen in the 2D validation case, the best K estimate was obtained when flowmeter interpretation was used to initialize both the parameter and the covariance matrix (Figure 5e). These results obtained with the 3D synthetic case are similar to the ones obtained with the 2D synthetic case, and thus confirm that adding flowmeter information allows improving the hydraulic permeability field. This conclusion is consistent with the fact that flux, in addition to hydraulic head measurements, enhance K values estimate [START_REF] Yeh | Well Definedness, Scale Consistency, and Resolution Issues in Groundwater Model Parameter Identification[END_REF](Yeh et al. ( , 2015a(Yeh et al. ( , 2015b)), Mao et al. (2013aMao et al. ( , 2013b)), [START_REF] Tso | The relative importance of head, flux, and prior information in hydraulic tomography analysis[END_REF].

To better evaluate the quality of the estimated hydraulic conductivity field, we simulate a transient pumping test in well P6 (see Figure 5c) using this inverted hydraulic conductivity map and compare the simulated drawdowns to the simulated drawdowns obtained with the true hydraulic conductivity field (see Figure 6). Figure 6 compares different drawdowns obtained on 5 boreholes in response to a pumping test in the new added prediction well P6. The drawdowns were simulated by using different hydraulic conductivity fields; the curves represented by solid red lines correspond to simulated drawdowns using true hydraulic conductivity; the curves represented by dotted black lines correspond to simulated drawdowns using inverted hydraulic conductivity obtained from hydraulic tomography using other pumping tests observation data (Figure 5a); the curves represented by dashed black lines correspond to simulated drawdowns using inverted hydraulic conductivity obtained from hydraulic tomography using other pumping tests observation data and conditioned by flowmeter data (Figure 5e). The results clearly show that the dashed lines (HT + flowmeter data) are closer to the solid red lines (true drawdown) compared to the dotted lines (classical HT). Such observation confirms that incorporating flowmeter data in the hydraulic tomography leads to better K estimates.

We also show a scatter plot of true hydraulic conductivity and estimated hydraulic conductivity in Figure 7. Each scatter plot has a linear model of data fitting represented by a red dashed line with a linear regression expression and a coefficient of determination. The solid line is the first bisector line of y=x. Figure 7a shows the result of using pumping tests and an exponential covariance model.

Figure 7b presents the result of hydraulic conductivity comparison based on flowmeter interpretation.

The small bias toward high absolute values of hydraulic conductivities indicates that the effective hydraulic conductivity is overestimated by the interpolation of flowmeter profiles. When the interpreted hydraulic conductivity distribution from flowmeter is used as initial guess for the inversion, we observe that the characterization of hydraulic conductivity becomes considerably better (compare Figure 7c to Figure 7a). The incorporation of multiscale heterogeneity with the nested covariance model generates a different representation, but the hydraulic conductivity estimates is considerably improved as well (Figure 7d). This demonstrates the importance of integrating flowmeter data. 

Application

In this section, the approach is applied to an experimental field site on the basis of real field data. The experimental site is located in Southern France, 20 km northeast of Montpellier (Figure 8a). The site's aquifer is composed of mollusc shells of late Burdigalian. The deposit is a dune system constructed during Miocene's tidal currents. Within the experimental site, 13 vertical wells were drilled in a square of 50 m by 50 m in which full-diameter cores were obtained in borehole P6, P8 and P12

(Figure 8b). The wells have a depth of 30m and are fully-penetrating wells, since they crosscut the whole late Burdigalian, down to the roof of the mid Burdigalian which presents a very low permeability. The hydraulic conductivity measured using 330 one-inch diameter cores plugged from the full-diameter cores spans four orders of magnitude (10 -8 to 10 -4 ). The preliminary analysis of hydrodynamic response to pumping test and slug tests (Wang et al., 2019) showed a pretty high lateral heterogeneity of the hydraulic conductivity field. Besides, both the well logs and laboratory measurements on cores, showed that the spatial distribution of the hydraulic conductivity field is constrained by a multilayered system (Figure 8c). 

Flowmeter implementation and analysis

A series of spinner flowmeter tests are performed in the experimental site. The flowmeter tests are performed in each well. As described in the methodology, the flow log is obtained in a well subject to a pumping where the pump is positioned close to the surface. We also point out that the pump needs to remain under water and, depending on the generated drawdown, the investigated depth will be limited. To maximize the investigated depth, a small pumping flow rate was used. A series of flowmeter sweeps are performed inside a PVC with static water in order to realize the tool calibration of spin-velocity conversion. The log of flow rate can be obtained by taking into consideration the well diameter changes along the depth. An example of flowmeter measurements and interpretation for hydraulic conductivity distribution may be found in the supplementary material (Figure S3).

Considering that the total pumping flow rate comes under the pump, we can estimate the hydraulic conductivity log of the well as a function of the flow rate contribution of the different layers, once the effective hydraulic conductivity of the investigated depth of the aquifer is determined.

With the estimated hydraulic conductivity logs from the different wells, we fill the remaining space between them by interpolation, assuming that the distribution of the hydraulic properties in layers is continuous and correlated. A 3D hydraulic conductivity field is obtained.

Pumping tests data

13 pumping tests were performed in our experimental site during summer 2016. During each test, the transient responses are measured in all the wells for all the tests. The pumping tests were long enough to reach a pseudo-steady state response. We randomly choose 5 cross hole pumping tests to use as observations for the following application. Different times from early and middle parts of the response were sampled and used as the HT observations. We didn't sample from late time to avoid any instability that may come from the biased modelling of the uncertain regional heterogeneity and boundary conditions. From the well test analysis, the estimated effective permeability and specific storage of the test site are Keff = 1.34e-4 m.s -1 and Ss = 2.65e-5 m -1 , which are used in the inversions.

Hydraulic tomography

The dimensions of the inverted domain are length=50 m, width=50 m and height=20 m; the dimensions of the buffer area are length=200 m, width=200 m and height=20 m. The outer boundaries are set to constant hydraulic head h0=25 m while the upper and lower boundaries (top and bottom) are set to no flow condition. The initial condition is set to a constant hydraulic head h0=25 m in the whole domain. A covariance matrix is constructed using the hydraulic conductivity field. In fact, a nested covariance function for multiscale heterogeneity is used in order to perform the inversion. It allows to incorporate geological information to constrain the results [START_REF] Zha | Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach[END_REF]. The nested covariance matrix constructed based on flowmeter data interpolation can be found in Figure S5. The statistical parameter used for the generating the covariance is provided in Table S2. Different facies are determined and, in each facies, a correlation is defined. The main objective is not to perfectly reproduce the drawdown responses, but to obtain a more realistic hydraulic property distribution with a good fitting of the observed drawdowns. The initial guess is constructed from flowmeter interpreted hydraulic conductivity field. A similar interpolation method as adopted in the synthetic inversion is used to interpolate the flowmeter data. The covariance matrix is built accordingly to flowmeter results; layers information is prioritized. The covariance is a result of a sum of different covariance matrices, one defines the layers, another represents the variance and correlation length inside each layer and the last one defines the variance and the correlation length of the whole domain.

For the experimental field case, we performed two inversion runs, the first one by a classical hydraulic tomography approach and we used only observation from the pumping tests, while in the second run, flowmeter interpretations were used to initialize the parameter and the covariance matrix.

Figure 7 shows the inverted hydraulic conductivity for both cases; Figure 7a 

Discussion

Incorporating flowmeter data into hydraulic tomography allows to obtain a better K estimate in the synthetic validation cases. For the 2D validation case, the results (see Figure 3) show that initializing the parameter and the covariance matrix with flowmeter interpretation data provides better K estimates. The initial parameter value can play an important role on converging to a different K estimate solution. Such an effect can be observed on the inverted hydraulic conductivity when flowmeter estimate was used to initialize the parameter (Figure 3c). On the other hand, the initial covariance matrix can also contain layers' information by correlating the cells that belong to the same layer. However, the correlation constraint can be strong on the K estimate especially when the covariance remains unchanged and equal to the initial (Figure 3e). The covariance of unknown parameter can be updated to derive the residual covariance, the continuous updating of residual covariance allows to correctly address the uncertainty and enhance convergence of the inverse solution [START_REF] Zha | A reduced-order successive linear estimator for geostatistical inversion and its application in hydraulic tomography[END_REF] which can be confirmed with the results in Figure 3f.

The approach of integrating flowmeter data was also tested using synthetic case in three dimensions and results (see Figure 5) are in total agreement with the 2D case observations. For this case, we also showed the quality of the result by simulating drawdown curves in a prediction well (which was not included in observation wells) using the inverted hydraulic conductivity field and compared them with the true observed drawdown (see Figure 6). It clearly shows how flowmeter data adds a nonredundant vertical profile information and, thus, enhance considerably the K estimates. In the present study, we focused on reconstructing K distributions by keeping Ss as a constant. Although previous studies have shown that the selection of Ss value may impact the K estimates (Castagna et al., 2011;Zhao et al., 2021), our interpretation of field site single-hole and cross-hole pumping tests did not indicate a strong variation of Ss. For this reason, we think the treatment is reasonable. However, in the future, we attempt to perform a full inversion to simultaneously estimate the spatial distribution of both K and Ss. These would require more pumping test data points to be sampled and used in the inversion as the inclusion of Ss distribution would double the number of unknown parameters, which increases drastically the underdetermined-ness of the inversion problem.

Figure 9 summarizes the results of the approach applied to a real field case. The two inverted hydraulic conductivity fields are totally different from each other while their data fitting are quite similar. K estimates obtained from HT conditioned by flowmeter data exhibits a multilayered system with more geological realism comparing to K estimates obtained from classical HT without any additional profile information. The same layering system has been observed in other measurements (core analysis, logs, permeameter measurements, etc.).

The data fitting in both inversions is relatively similar (RMSE = 0.0912 for HT using pumping tests data and RMSE = 0.0874 for HT using pumping tests and flowmeter data). However, the prediction of transient drawdowns becomes significantly better using K estimate obtained with the incorporation of flux measurements data. For further validation, we sampled hydraulic conductivity values from inversion results and we compared them to some available permeameter measurements at the same locations. Within the 13 wells available in the experimental site, three (PC6, PC8 and PC12) were cored. Cores allowed to obtain a permeability log from laboratory permeameter measurements along the wells. Figure 8 shows a comparison of extracted conductivity from THT results and laboratory permeability measurements (converted into hydraulic conductivity using water density ρ=1000 kg m -3 , water viscosity µ=0.001 kg m -1 s -1 and gravity acceleration g=9.81 m s -2 ) of plugs on the cored wells as well as the flowmeter interpreted hydraulic conductivity. 
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 1 Figure 1: Data usage scheme. Red dashes correspond to flowmeter log data and green surface
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 2 Figure 2: Flowmeter setup scheme with an interpretation example. Qcum is the cumulative flow rate

  For cross-hole pumping tests dataset to be used in HT, we simulate the transient hydraulic heads using a point source in the middle of explicitly modelled wells. The black dots shown in Figure 3 are the position of the points to be used as point source for the pumping tests and the monitoring points. For hydraulic head data, we sample at five different time steps covering the early to middle times for all pumping tests. The total number of drawdown data used for inversions are 5 (number of time steps) * 5 (number of pumping tests) * 4 (number of observation wells) = 100. The simulated vertical velocity curves are converted into hydraulic conductivity distributions following the procedure described as follows (An example of the manipulation is provided in the supplementary information file). -Step1:Discretize the vertical velocity profile into depth intervals ∆z -Step2:In each interval, evaluate the change in velocity ∆vi corresponding to the change in depth ∆zi -Step3:Use Equation 7 to estimate Ki for each ∆zi -Step4:Hydraulic conductivity profile is obtained in each well.
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 3 Figure 3: Two-dimensional validation case -results of HT using different prior information. a) true
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 4 Figure 4: Scatterplots of true hydraulic conductivity versus estimated hydraulic conductivity for the
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 5 Figure 5: Three-dimensional validation case -results of HT using different prior information; b)
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 6 Figure 6: Hydraulic head response to simulated pumping tests in the new added well P6. Solid red,
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 7 Figure 7: Two-dimensional validation case -scatterplots of true hydraulic conductivity versus
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 8 Figure 8: Experimental site composed of a multilayered system. a) geo-localization map, b) well

  Figure7shows the inverted hydraulic conductivity for both cases; Figure7acorresponds to the
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 9 Figure 9: Inverted hydraulic conductivity map and observation data fitting results from hydraulic
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 10 Figure 10: Hydraulic conductivity profiles for wells PC6, PC8 and PC12 of the experimental site.
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 10 Figure10strengthen the fact that flowmeter data enhance HT results, especially in the vertical profiles
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Our work is in agreement with other previous works in terms of how flux measurements enhance hydraulic tomography results. The work of [START_REF] Li | Three-Dimensional Geostatistical Inversion of Flowmeter and Pumping Test Data[END_REF] showed that inverting both steady state hydraulic head measurements and flux measurements data leads to better hydraulic conductivity estimates. They used both data in the inverse process as conditioning observations. However, in this work, only transient hydraulic head measurements are used to condition the inversion and flowmeter tests data are used to initialize the prior inputs of the inversion. Our results show that incorporating flowmeter data in the initial parameter and the prior covariance matrix may be sufficient to enhance considerably the K estimates. [START_REF] Zha | Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium[END_REF] and [START_REF] Tso | The relative importance of head, flux, and prior information in hydraulic tomography analysis[END_REF] 2016) investigated a porous media instead. However, both studies were not tested on any real case study.

Summary and conclusions

In this study, we performed a transient hydraulic tomography of cross-hole pumping tests by integrating flowmeter data in prior inputs on an experimental site and managed a 3D imaging of the aquifer system that was coherent with geological observations and existing permeability measurements. We used flowmeter data as source of the vertical information additional to pumping tests that provides the lateral information. In order to incorporate the vertical data into hydraulic tomography, flowmeter tests are interpreted separately to obtain a prior K estimate which was used to initialize the parameter and the covariance matrix. While, the pumping tests observations were used to condition the inversion convergence process. Using different initial parameters and initial covariance matrices showed that the prior inputs of the inversion are important and can modify the result considerably. Also, the non-packer pumping tests do not contain vertical information: the inverted hydraulic conductivity using only pumping tests was generally constant along the vertical profile. The