
HAL Id: insu-03665309
https://insu.hal.science/insu-03665309

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

An inverse approach integrating flowmeter and pumping
test data for three-dimensional aquifer characterization
Mohammed Aliouache, Xiaoguang Wang, Pierre Fischer, Gerard Massonnat,

Herve Jourde

To cite this version:
Mohammed Aliouache, Xiaoguang Wang, Pierre Fischer, Gerard Massonnat, Herve Jourde. An inverse
approach integrating flowmeter and pumping test data for three-dimensional aquifer characterization.
Journal of Hydrology, 2021, 603, �10.1016/j.jhydrol.2021.126939�. �insu-03665309�

https://insu.hal.science/insu-03665309
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1 

An inverse approach integrating flowmeter and pumping test data for three-dimensional 1 

aquifer characterization 2 

Mohammed Aliouachea, Xiaoguang Wanga,b,*, Pierre Fischera, Gerard Massonnatc, Herve Jourdea 3 

a Laboratories Hydrosciences Montpellier, UMR 5151 CNRS-UM-IRD, Montpellier, France, 34000 4 

b Chengdu University of Technology, Sichuan, China, 610059 5 

c CSTJF-PAU Total Energies, Avenue Larribau, Pau, France, 64000 6 

 7 

*Correspondence: Xiaoguang Wang (wangxiaoguang@cdut.edu.cn, 8 

xiaoguang.wang@umontpellier.fr)  9 

Highlights 10 

1. Coupling flowmeter and pumping test data for low-cost 3D aquifer characterizations 11 

2. 3D hydraulic conductivity distribution is assessed from an inverse approach 12 

3. The effectiveness of integrating the two datasets is studied with 3D synthetic models  13 

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022169421009896
Manuscript_9e1e9d13b1c6cb4a9baafa7534bdbb74

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022169421009896
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0022169421009896


2 

 

Abstract 14 

The accurate characterization of the underground depositional structure and hydraulic property 15 

distribution is essential to understand flow and solute transport in heterogeneous rocks or soils. 16 

Hydraulic tomography was shown to be an efficient technique to infer the spatial distribution of 17 

hydraulic properties. Due to the fact that information about the sedimentary structures’ distribution is 18 

not always available to allow a three-dimensional characterization, many of existing field applications 19 

of hydraulic tomography have been limited to two-dimensional imaging along horizontal layer or 20 

vertical profiles where hydraulic data were collected.  21 

In this work, we explore the potential of combining tomographic pumping and flowmeter tests 22 

responses in an inverse approach for three-dimensional aquifer characterization. The tomographic 23 

pumping data provide information about the lateral hydraulic connections between boreholes, while 24 

the flowmeter data constrain the vertical heterogeneity structure. The inverse approach is first 25 

validated using two synthetics models composed of multi-layered depositional structures and 26 

heterogeneous hydraulic properties within each layer. It is shown that adding the information 27 

provided by the flowmeter profiles, the inverted model exhibits more realistic depositional features. 28 

We then apply the proposed approach to characterize the 3D hydraulic conductivity field controlled 29 

by sedimentary structure of an experimental site in layered porous rocks. The inverted hydraulic 30 

conductivity field is in a good agreement with permeability measurement on drilled cores. The 31 

proposed method offers an efficient and low-cost approach for rapid assessment of the hydraulic 32 

properties in 3D and could be extrapolated to other field applications.   33 
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1. Introduction 34 

 The characterization of hydraulic properties, such as hydraulic conductivity and specific storage, is 35 

very important in groundwater modeling and water resources management (Hubbard and Rubin, 36 

2005). Contaminant transport has always been strongly dependent on the accuracy of the hydraulic 37 

properties' characterization. A minor change in hydraulic properties may alter transport behaviors 38 

significantly (Zheng and Gorelick, 2003). Because direct measurements of hydraulic properties are 39 

limited in real-world applications, early analytical analysis of aquifer hydraulic response to 40 

pumping/injection often adopts a homogeneous assumption (e.g., Theis 1935, Cooper and Jacob 41 

1946). It may be enough to infer the bulk aquifer property; however, it cannot capture most of the 42 

transient behavior of the tested aquifer.  In addition to pumping tests, several other hydraulic testing 43 

methods, such as slug tests (Yeh et al., 1995) and flowmeter tests (Rehfeldt et al., 1992, Klepikova et 44 

al., 2013, Tamayo-Mas et al., 2018), are being used to provide non-redundant information (with 45 

respect to pumping tests) about the aquifer. 46 

Hydraulic tomography (HT) has been developed over the last two decades (e.g., Gottlieb and Dietrich, 47 

1995, Butler et al., 1999, Bohling et al., 2002, Bohling and Butler, 2010, Yeh and Liu, 2000, Zhu and 48 

Yeh, 2005, Zhu and Yeh, 2006, Liu et al., 2002, Liu et al., 2007, Illman et al., 2010, Cardiff et al., 49 

2009, Zha et al. 2014). This approach has shown a great potential for reconstructing detailed spatial 50 

distributions of hydraulic parameters comparing to the traditional analytical solutions. Hydraulic 51 

tomography yields a detailed two- or three-dimensional map of hydraulic heterogeneity for regions 52 

within between the testing boreholes where constraining hydraulic head responses to cross-hole 53 

pumping are collected. The efficiency of HT has been demonstrated in many laboratory-scale (e.g., 54 

Liu et al., 2007, Illman et al., 2007, Illman et al., 2010, Zhao et al., 2016, Zhao and Illman 2017) and 55 

field-scale studies (e.g., Bohling et al., 2007, Brauchler et al., 2011, Brauchler et al., 2013, Berg and 56 

Illman, 2011, Cardiff et al., 2012, Fischer et al., 2020).  57 

For a full 3D hydraulic tomography, using only one observation from each testing well is not 58 

sufficient and packer tests are often required (Bholing et al. 2007, Berg and Illman 2011, Zha et al. 59 
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2016, Zha et al. 2017, Cardiff et al. 2012, Zhao and Illman 2017, Wen et al. 2020). However, packer 60 

tests, which are costly and complex to set up, are not always available in each experiment site. 61 

Without packer tests, pumping tests data remain insufficient to capture the three-dimensional aquifer 62 

behavior and may lead to erroneous characterization and sometimes model instability in layered 63 

aquifers.  64 

In recent years, other information such as geological and geophysical data have been used to constrain 65 

the inverse process of HT (e.g., Zha et al. 2017, Tso et al. 2016, Soueid Ahmed et al. 2015). The most 66 

widely-used geostatistics-based inverse modelling approaches are the quasi-linear geostatistical 67 

approach (Kitanidis 1995) and the successive linear estimator (SLE) (Yeh et al. 1996).  To improve 68 

efficiency when dealing with highly parameterized inverse problems, different approaches were 69 

developed, including principle component geostatistical approach (Kitanidis and Lee 2014), reduced-70 

order SLE (Zha et al. 2018) and the use of geostatistical reduced order models (Liu et al. 2013). 71 

Previous works have highlighted the benefits of incorporating site-specific geologic structure 72 

information into groundwater models when HT data are limited (Zha et al. 2017, Tso et al. 2016). Zha 73 

et al. (2017) worked on quantitative incorporation of site-specific information into groundwater 74 

models and introduced a general method to derive conditional mean and conditional covariance, that 75 

can be used in HT analysis as prior information. Tso et al. (2016) also concluded that only 76 

incorporating a qualitative facies trend information already yields a better conductivity estimate. Such 77 

improvement can also be seen in hydraulic conductivity estimates through laboratory/ field 78 

applications (Zhao et al. 2016, Zhao and Illman 2017). De Clercq et al. (2020) used electrical 79 

resistivity maps to structure the distribution of the hydraulic properties in a 3D HT. 80 

Flowmeter surveys characterize the vertical inflow profile of a given well (Paillet et al. 1998, Molz et 81 

al. 1994, Zlotnik and Zurbuchen 2003, Williams and Paillet. 2002, Day-Lewis et al. 2011). They are a 82 

widely used approach to determine vertical profiles of hydraulic conductivities at well locations. 83 

Complex geological medias are often layered systems and flowmeter analysis has shown its efficiency 84 

to detect the main layers contributing to the total pumped flux (Day-Lewis et al. 2011, Paillet and 85 

Reese 2000). Flowmeter profiling can also be used to detect the well crossing fractures that contribute 86 
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to flow (Day-Lewis et al. 2011, Roubinet et al. 2015). Flowmeter tests are easy and cheap but bulky 87 

and the investigated height is limited due to the space taken by the pump and the generated drawdown. 88 

Flowmeter tests may provide a new set of information and have been included in inverse modelling 89 

problems. For instance, Fienen et al. (2004) used a Bayesian inverse approach to interpret the vertical 90 

hydraulic conductivity in a heterogeneous fractured aquifer. Other applications used the interpreted 91 

hydraulic conductivity values from flowmeter tests in the transmissivity map to constrain the 92 

geostatistical inversions (e.g., Rehfeldt et al. 1992; Chen et al. 2001). In other studies, flux 93 

measurements have also been used as observation data additional to hydraulic heads in hydraulic 94 

tomography (Li et al. 2008, Zha et al. 2014, Tso et al. 2016).  95 

Combining different hydraulic tests that characterize different parts of the aquifer may lead into a 96 

good characterization; for example, combining flowmeter tests data that give vertical information with 97 

pumping tests data that give lateral information might be a good alternative to obtain a three-98 

dimensional characterization of the aquifer without packer tests. In this paper, we integrate vertical 99 

hydrogeological information obtained from flowmeter surveys and horizontal information from cross-100 

hole pumping tests to achieve a 3D transient hydraulic tomographic (THT) characterization of 101 

sedimentary layered rocks. The flowmeter data are incorporated to HT through the construction of 102 

conditional initial mean and covariance of model parameter. We first validate the proposed inversion 103 

framework using synthetic data from a two-dimensional cross-section model and a three-dimensional 104 

model. We then apply the inverse approach to a real-world study in an experimental site composed of 105 

layered porous rocks. In the end, we analyze the data fitting effectiveness and geological coherence of 106 

the inverted hydraulic conductivity fields.  107 

2. Methodology 108 

The objective of the study is to integrate two sets of data to obtain spatialized hydraulic conductivity 109 

estimates through hydraulic tomography. The first dataset corresponds to drawdown responses to 110 

pumping tests that give information about lateral variation of hydraulic properties. The second dataset 111 

consists in flowmeter logs measured in every well of the site that give vertical information (see Figure 112 
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1 for datasets scheme). Flowmeter logs are first interpreted and converted into hydraulic conductivity 113 

profiles. Then, the interpreted hydraulic conductivity profiles are interpolated using a triangular-base 114 

bilinear or trilinear interpolation in order to obtain a continuous two- or three-dimensional hydraulic 115 

conductivity map between the wells and we use ‘nearest neighbors’ interpolation for the rest of the 116 

inversion domain where the linear interpolation cannot be evaluated. After that, an inverse modelling 117 

approach is used to reconstruct the hydraulic conductivity distribution using interpolated map as a 118 

prior information. We use the principal component geostatistical approach, a deterministic iterative 119 

procedure that updates the conditional mean and the conditional covariance by matching model 120 

responses to the pumping tests observations.  121 

 122 

Figure 1: Data usage scheme. Red dashes correspond to flowmeter log data and green surface 123 

corresponds to cross-hole pumping tests data. The wells are open hole and the drawdowns are 124 

sampled at the green z-level. 125 

2.1 Groundwater flow model 126 
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We solve the problem of three-dimensional transient fluid flow through a confined, saturated and 127 

heterogeneous porous media. The system is solved in transient regime and is described by the 128 

following equations: 129 

�� ��
�� +  �	−���� = �,                                                           (1) 130 

with 131 

�|��� = ��, �|� = ��,                                                                (2) 132 

where � is the gradient operator, Ss is the specific storage which assumed constant in this study, h is 133 

the hydraulic head, K the hydraulic conductivity, Q the source term and h0 is the initial hydraulic head 134 

which remains constant at the boundary conditions �. The forward flow model is solved using a finite 135 

element method using unstructured mesh (See Figure R3 in supplementary materials).   136 

2.2 Flowmeter analysis 137 

The applied approach of flowmeter data analyses is described in Molz et al. (1989), which is based on 138 

the study of flow in a layered, stratified aquifer by Javandel and Witherspoon (1969). Assuming that 139 

the idealized aquifer is layered and the flow quickly becomes horizontal even with high contrast of 140 

hydraulic conductivity between the layers. The flow of a given layer is proportional to the hydraulic 141 

conductivity of that layer and the sum of the different flow rates into the well is equal to the pump 142 

flow rate during the pumping test.  143 

During our flowmeter test, water is extracted from an open hole well and, once steady state is reached, 144 

a spinner flowmeter is swept along the well from the bottom of the well to the top and a vertical flow 145 

rate profile is measured. In most common cases, when the pump is located at the top, the flow rate log 146 

will have the trend of an increasing curve starting from a zero value at the bottom to a max value at 147 

the top, that will correspond to the total extracted flux from the well. The increase in flow rate over a 148 

certain depth increment is correlated to the relative hydraulic conductivity profile; higher the 149 

hydraulic conductivity, stronger the rate increase. Flowmeter tests therefore provide relative values of 150 
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hydraulic conductivity distribution along the borehole. In order to extract the absolute values, an 151 

effective value of hydraulic conductivity of the well (obtainable from the interpretation single hole of 152 

a pumping tests) will be used. Single‐hole flowmeter data can be analyzed to estimate conductivity 153 

profiles along boreholes and characterize aquifer compartmentalization (Molz et al. 1989; Kabala 154 

1994; Paillet et al. 1998).  155 

If a well is subject to a pumping with a pump placed at the top of the well working at the rate Qp, the 156 

underground layers connected to that well will contribute to the total extracted flux. Their contribution 157 

is proportional to their hydraulic conductivity. For the following equations, b (m) refers to the aquifer 158 

thickness, z0 (m) the reference level of the borehole bottom, and z (m) the height above the bottom 159 

(Figure 2). In an idealized layered aquifer, the flow into the well from a given layer is proportional to 160 

the transmissivity of that layer: 161 

∆�! = "∆#!�! ,                                                                             (3) 162 

where α (m) is a constant of proportionality, ∆Qi (m3/s) corresponds to the induced flow increments 163 

observed in the borehole along the ith increment of height ∆zi (m) that has a hydraulic conductivity Ki 164 

(m/s). The average horizontal hydraulic conductivity $%&' can be expressed by: 165 

�()* = ∑ �!∆#!
,  .                                                                            (4) 166 

The cumulative flow Qcum(b) over the aquifer thickness can be expressed as follows: 167 

�-./	,� = 0 �	#�1#,
#�  = �2 = ∑ ∆�!! = " ∑ ∆#!�!! = "�()*,  .                         (5) 168 

By substituting the sum, α can be solved as: 169 

" = �2
�()*, .                                                                            (6) 170 

Then, the hydraulic conductivity of each layer can be quantified by: 171 
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�! = ∆�!�()*,
�2∆#!   .                                                                    (7) 172 

173 
Figure 2: Flowmeter setup scheme with an interpretation example. Qcum is the cumulative flow rate 174 

and Krel is the interpreted relative permeability from flow log. 175 

2.2 Principal component geostatistical approach  176 

In order to optimize the hydraulic conductivity field in the model we use the principal component 177 

geostatistical approach (PCGA) (Kitanidis and Lee 2014). The observation equation that links the m 178 

unknown hydraulic conductivities, stored in a vector s, to the observation data (hydraulic heads) 179 

stored in a matrix y is (Kitanidis 1995): 180 

3 = �	�� + ),                                                                     (8) 181 

where �() is the forward model, ) is the observation error with a random normal distribution with 182 

mean 0 and variance R, which is usually the error measurement multiplied by the identity matrix. The 183 

prior probability of � is a Gaussian distribution with mean 45 generalized by a covariance matrix �. 184 

X is a m-vector of ones and 5  represents the mean hydraulic conductivity value. The posterior 185 

probability density function (objective function L) of � and 5 is given by: 186 
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                   L =  
6
7 83 − �	��9:;<683 − �	��9 + 6

7 	� − 45�:�<6	� − 45� .                          (9) 187 

The optimization of the hydraulic conductivity values is obtained by minimizing this objective 188 

function through an iterative method. 189 

Inversion process requires the calculation of the sensitivity matrix (Jacobian matrix) which require as 190 

much forward model simulations as unknowns m.  Despite the computer science advancement, the 191 

forward model itself can be time consuming when dealing with high dimensional problems (3D 192 

simulations, fine mesh, presence of complex structures). In order to bypass this difficulty, the 193 

principal component geostatistical approach which avoids the full Jacobian matrix calculation, was 194 

proposed. The reduced order successive linear estimator ROSLE (Zha et al. 2018) based on SLE (Yeh, 195 

1996) can be one alternative to the PCGA. These methods use a singular value decomposition and 196 

then a truncation based on the eigenvalues and Eigen functions of the covariance matrix Q. The 197 

covariance matrix can be rewritten with its decomposed form as:  198 

� = =�=: ,                                                                    (10) 199 

where V‘s columns correspond to the eigenvectors of the covariance matrix and S is a diagonal matrix 200 

of its eigenvalues λ which are decreasingly organized. The eigenvectors and eigenvalues are then k-201 

rank truncated. The k first eigenvalues and its corresponding eigenvectors are kept. The compressed 202 

covariance can be calculated as: 203 

�> = =>�>=>: ,                                                                    (11) 204 

where 205 

�> ≈ � ,                                                                    (12) 206 

It can be also written as a sum: 207 

�> = =>�>=>: = ∑ @!@!:>!�6 ,                                                       (13) 208 
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where 209 

@! = AB!=!.                                                                     (14) 210 

The accuracy of the low-rank covariance depends on the truncation number. However, it is already 211 

shown that a much smaller truncation number than the number of unknowns (k<<m) can be used 212 

(Kitanidis and Lee, 2014). The quasi-Linear geostatistical approach (Kitanidis, 1995) updates the 213 

actual best estimate �C for the next iteration as:   214 

�C = 45D + �E:@C ,                                                                    (15) 215 

where H is the Jacobian matrix and the accentuation-bar denotes the best estimate. 5D and @C are solved 216 

from the following linear system:   217 

FE�E: + ; E4
	E4�: � G F@C

5DG = H3 − �	�C� + E�C� I.                                                (16) 218 

The minimized objective function L can also be written as: 219 

J = 6
7 K3 − �845 + �E:@9L: ;<6 K3 − �845 + �E:@9L + 6

7 @:E�E:@.                         (17) 220 

In PCGA, the sensitivity matrix H is not fully calculated and an alternative way to approximate it is 221 

proposed.  222 

In order to estimate HQ and HQHT, k forward runs are needed to be solved in additional to the 223 

forward run of the actual best estimate, the forward models are used to calculate η defined as follows:   224 

M! = E@! ≈ 6
N [�	� + N@!� − �	��],                                                      (18) 225 

δ is the finite difference interval from the Taylor series expansion (Kitanidis and Lee, 2014). Then 226 

HQ and HQHT are defined as: 227 

E� ≈ E�> = E ∑ @!>!�6 @!: = ∑ 	E@!�>!�6 @!: = ∑ M!>!�6 @!:,                                   (19) 228 
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E�E: ≈ E�>E: = E[∑ @!>!�6 @!:]E: = ∑ 	E@!�	E@!�:>!�6 = ∑ M!>!�6 M!:.                        (20) 229 

In order to estimate HX, one (columns of X) forward run is needed, following: 230 

E4! ≈ 6
N [�	�C + N4!� − �	�C�] .                                                        (21) 231 

In order to estimate QR̅, one forward run is needed in addition to the forward model of the actual best 232 

estimate, following:   233 

E�C = 6
N [�	�C + N�C� − �	�C�] + T	N� ≈ 6

N [�	�C + N�C� − �	�C�].                           (22) 234 

In total, each iteration requires k+3 forward runs; 1 forward run of the actual best estimate, 1 forward 235 

run to estimate QR̅, 1 forward run to estimate HX and k forward models to estimate HQ and HQHT. 236 

The above steps are repeated iteratively until convergence of the objective function value is reached. 237 

2.3 Prior information 238 

The approach of conditional mean and conditional covariance using geological information as 239 

presented in Zha et al. (2017) work is used in this study. The two main prior information are the initial 240 

guess and the initial covariance matrix. The prior input of the inversion is constructed using 241 

interpreted flowmeter data. The 3D interpolated conductivity is mapped into inversion grid, stored in s, 242 

and used as an initial guess for the first iteration instead of using an initial mean.; an interpolation 243 

or/and an extrapolation might be often used. It also allows identifying the main facies and 244 

constructing the prior covariance accordingly (Zha et al. 2017). However, the covariance matrix Q is 245 

constructed as a sum of different covariance sub-matrixes (Zha et al., 2017): a) a covariance matrix 246 

that defines the different facies (layers) will be of high importance and its construction is achieved 247 

only by using a strong correlation between the cells that belong to the same facies, b) another 248 

covariance matrix that defines the correlation between the cells of the same facies, defined as an intra-249 

facies covariance, c) a third covariance matrix, defined as an inter-facies covariance, can be used on 250 

the global inverted domain. By conditioning the prior covariance with facies information 251 



13 

 

distinguished from flowmeter data, we try to incorporate the vertical information into the inversion 252 

process and constrain its convergence path. 253 

3. Validation of concept 254 

The main objective of the paper is the use of two different datasets which are easily available to better 255 

characterize the hydraulic conductivity of a multi-layered sedimentary structure constitutive of the 256 

aquifer. The first dataset corresponds to flowmeter data along the profile of each well. Flowmeter logs 257 

are obtained by pumping in the top of each well and the flowmeter tool is swept under the pump to get 258 

the flow contribution along the borehole. The second dataset corresponds to measured hydraulic 259 

response (drawdowns) to pumping tests. Here we try to perform a 3D inversion of the hydraulic 260 

conductivity field to characterize the aquifer on the basis of pumping tests data and incorporating 261 

flowmeter information. In order to validate this concept, the proposed inverse approach is first applied 262 

on two synthetic cases. The first case is performed in 2D and the second one in 3D.  263 

3.1. 2D synthetic case 264 

By using a two-dimensional random field generator tool (Paul Constantine 2021), a random hydraulic 265 

conductivity field is generated following an exponential correlation function using the parameters of 266 

standard deviation σ=1.5, the correlation length in x direction Lx=100 m, the correlation length in y 267 

direction Ly=5 m. With such set of parameters, the obtained hydraulic conductivity field displays 268 

multi-layered hydraulic properties (see Figure 3.a). We consider the obtained 2D map as a vertical 269 

cross-section of an aquifer centered on the inverted domain which is extended using a buffer area until 270 

the boundary conditions. The dimensions of the inverted domain are 70 m by 50 m; the dimensions of 271 

the buffer area are 700 m by 50 m. The lateral boundaries are set to constant zero hydraulic head 272 

while the upper and lower boundaries are set to no flow condition. The initial condition is set to zero 273 

hydraulic head in the whole domain. For forward flow simulations, we use the subsurface flow 274 

module of Comsol Multiphysics (COMSOL AB 2018). We assume the aquifer to be confined. The 275 

specific storage is assumed constant and a value of Ss = 10-4 m-1 was used.  276 

The wells are modeled explicitly with a radius of rw=0.1 m. We attribute to wells a high hydraulic 277 

conductivity (K=1 m.s-1) and a low specific storage (10-10 m-1) (see Figure S1 in supplementary 278 
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material). The spacing of wells in the x direction is 15m (Figure 3a). We simulate five cross-hole 279 

pumping tests, which are considered as the ‘data’ for inversion. The location of selected wells is 280 

indicated in Figure S4. We simulate flowmeter data for each well by using a point source at the top of 281 

the well and applying a steady-state pumping flow rate. Once the steady-state flow regime is reached, 282 

we evaluate the vertical velocity along a line in the middle of the well. In our flow simulations, extra 283 

fine meshes are adopted to discretize the well domain (Figure R3).  Examples of simulated flowmeter 284 

measurements for the 2D case can be found in supplementary material (Figure R2). For cross-hole 285 

pumping tests dataset to be used in HT, we simulate the transient hydraulic heads using a point source 286 

in the middle of explicitly modelled wells. The black dots shown in Figure 3 are the position of the 287 

points to be used as point source for the pumping tests and the monitoring points. For hydraulic head 288 

data, we sample at five different time steps covering the early to middle times for all pumping tests. 289 

The total number of drawdown data used for inversions are 5 (number of time steps) * 5 (number of 290 

pumping tests) * 4 (number of observation wells) = 100. 291 

The simulated vertical velocity curves are converted into hydraulic conductivity distributions 292 

following the procedure described as follows (An example of the manipulation is provided in the 293 

supplementary information file).   294 

- Step1：Discretize the vertical velocity profile into depth intervals ∆z 295 

- Step2：In each interval, evaluate the change in velocity ∆vi corresponding to the change in 296 

depth ∆zi 297 

- Step3：Use Equation 7 to estimate Ki for each ∆zi  298 

- Step4：Hydraulic conductivity profile is obtained in each well.  299 

The hydraulic conductivity profiles are then interpolated using a triangular-base bilinear interpolation 300 

to obtain a hydraulic conductivity map for areas within between the wells. For the rest of the inversion 301 

domain where the linear interpolation cannot be evaluated, we use a nearest neighbors’ extrapolation. 302 

In the next step, we construct a nested covariance using the interpolated hydraulic conductivity map. 303 

The nested covariance is constructed by the combination of multiscale correlated heterogeneities (Zha 304 

et al. 2017). For example, a geological facies from another survey can be used a soft constraint added 305 
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into the initial covariance matrix for HT. The interface between different facies or zones may exhibit 306 

an abrupt change of hydraulic properties. On the other hand, the variability inside a particular facies or 307 

zone (compared to its large-scale mean) can be described by a zero mean and a small-scale covariance 308 

function.     309 

The covariance matrix used in HT of the 2D study is either calculated using a covariance model 310 

similar to the one used to generate the true random field (Figures 3b and 3c), or built from a nested 311 

covariance which is a sum of different covariance matrices: a covariance matrix built using a 312 

covariance model similar to the one used to generate the true random field plus a covariance matrix 313 

defining the important facies of flowmeter interpreted map (Figure 3e and 3f). The first covariance 314 

matrix is simply calculated using an exponential covariance model with standard deviation=1.5, 315 

correlation length in x direction Lx=100 m and correlation length in y direction Ly=5 m. For the 316 

second covariance matrix that defines the facies, we simply identify the facies from flowmeter map 317 

(Figure 3g) and we build a binary covariance that correlates the cells that belong to the same facies.  318 

In the inverse problem, a structured grid is used to discretize the model domain. For the two-319 

dimensional cases, the number of grid blocks in x and y directions are nx = 30 and ny = 15 respectively 320 

(See Figure R3). As a result, the total number of unknown K parameters is 450. For PCGA setup, we 321 

use a truncation number of k=20 for a number of unknowns n=30*15, R=0.001*Id where Id is the 322 

identity matrix, and δ=0.0001 for the finite difference interval. The specific storage was kept constant 323 

in the inversion and the value is the same as in the forward simulation, i.e., Ss = 10-4 m-1. Figure 3 324 

shows the results of the two-dimensional validation case. Figure 3a corresponds to the generated, 325 

considered true, hydraulic conductivity field. Figure 3b is the inverted hydraulic conductivity field 326 

using a classical hydraulic tomography that used similar covariance information as in the generation 327 

of the random field. Figure 3d shows the interpreted hydraulic conductivity from flowmeter analysis. 328 

Figures 3c, 3e and 3f show the inverted hydraulic conductivity by integrating flowmeter 329 

interpretations into prior information of the inversion; Figure 3c used the interpreted hydraulic 330 

conductivity in Figure 3d to initialize only the parameter; Figure 3e used the interpreted hydraulic 331 

conductivity in Figure 3d to initialize both the parameter and the covariance matrix which remained 332 

constant during inversion iterations; Figure 3f used the interpreted hydraulic conductivity in Figure 3d 333 
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to initialize both the parameter and the covariance matrix which was updated during inversion 334 

iterations. 335 

The flowmeter interpretation allows the detection of the main layers in the system (Figure 3d) while 336 

the attempt of an inversion using only pumping tests data couldn’t assess the vertical profiles of 337 

hydraulic conductivity (Figure 3b). Figure 3c, 3e and 3f show better K estimates. Flowmeter data 338 

clearly carry non-redundant information on the vertical hydraulic conductivity profiles along the wells. 339 

By only using the obtained hydraulic conductivity map from flowmeter interpretation as an initial 340 

guess, the inverted conductivity already contains vertical profile information and show different layers 341 

(Figure 3c). The inverted hydraulic conductivity shown in (Figure 3e) is also representative of a 342 

layered system but clearly not better than the inverted hydraulic conductivity shown in (Figure 3c).  343 

On the contrary, when the nested covariance has the freedom to update through inversion iterations, 344 

the best parameter estimate was obtained compared to all other configurations (Figure 3f). 345 
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 346 

Figure 3: Two-dimensional validation case – results of HT using different prior information. a) true 347 

hydraulic conductivity, d) interpreted hydraulic conductivity from flowmeter tests, b, c, e and f are 348 

inverted hydraulic conductivities using different prior models. Ki and Qi correspond to the initial 349 

hydraulic conductivity and initial covariance matrix respectively, g) is the constructed facies from 350 

flowmeter analyses to use in order to construct the nested covariance. 351 

Figure 4 shows a scatter plot of true hydraulic conductivity and estimated hydraulic conductivity 352 

shown in Figure 3. In each scatter plot we plot a linear model of data fitting (red dashed line) and 353 

calculated the coefficient of determination, i.e., R2 shown in Figure 4. The solid line is the first 354 

bisector line of y=x. Figures 4a and 4b present results of using pumping tests and an exponential 355 

covariance model for inversion. The difference is that in Figure 4a the initial guess of hydraulic 356 

conductivity was assumed constant while in Figure 4b the hydraulic conductivity distribution 357 

constructed by interpolating measured flowmeter profiles was used as the initial model. When the 358 
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flowmeter data are integrated, the inverted hydraulic conductivities represent the true model better (R2 359 

of Figure 4b is lower than that of Figure 4a). On the other hand, Figure 4c confirms that the flowmeter 360 

data can capture the true K distribution to some extent indicated by the strong linear trend and high 361 

value of R2. However, the variance of the hydraulic conductivity estimates seems underestimated. The 362 

improved hydraulic conductivity estimation is obtained when flowmeter data are used to construct 363 

both the initial model and the covariance model (Figure 4d). Comparing results shown in Figures 4d 364 

and 4e indicates that allowing the update of the nested covariance improves the estimation 365 

considerably. 366 

 367 

Figure 4: Scatterplots of true hydraulic conductivity versus estimated hydraulic conductivity for the 368 

different cases of the two-dimensional synthetic case. c) scatter plot of true K versus interpreted K 369 

from flowmeter. a, b, d and e are scatter plots of true K versus inverted K using different prior models.  370 

3.2. 3D synthetic case 371 

We extend the approach to a three-dimensional synthetic case and try to show if flowmeter data can 372 

provide the vertical information for a 3D aquifer characterization instead of packer tests. Similar to 373 

the simplified two-dimensional case, we use a three-dimensional random field generator (Rass et al. 374 

2019) to generate a three-dimensional synthetic hydraulic conductivity map using the following 375 

parameters (Correlation function: exponential, standard deviation = 1.5, Lx=100 m, Ly=100 m and Lz= 376 
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5 m). Such parameters provide a hydraulic conductivity map that is representative of a multilayered 377 

system. The dimensions of the inverted domain are length=70 m, width=70 m and height=30 m; the 378 

lateral dimensions of the buffer area are length=700 m and width=700 m; the buffer was not extended 379 

in the vertical direction. The outer boundaries are set to constant zero hydraulic head while the upper 380 

and lower boundaries (top and bottom) are set to no flow condition. The initial condition is set to zero 381 

hydraulic head in the whole domain. The specific storage is assumed constant and a value of Ss = 10-4 382 

m-1 was used.  383 

As for the two-dimensional case, we simulate flowmeter and cross-hole datasets by modelling explicit 384 

wells and point source pump (the point source in the top for the flowmeter simulation and in the 385 

middle for cross-hole tests simulations). Extra fine meshes are adopted to discretize the well domain 386 

(Figure R3). See Figure R2 in supplementary material for an example of simulated flowmeter 387 

measurements for the 3D case. Five cross-hole pumping tests data are simulated and considered as the 388 

‘data’ for the inversions. The location of selected wells is indicated in Figure S4. As for the 2D cases, 389 

the total number of observations for the 3D cases is 100. The flowmeter data are interpreted and the 390 

hydraulic conductivity profiles are then interpolated using a triangular-base trilinear interpolation to 391 

fill the area between the wells. The rest of the inversion domain where the linear interpolation cannot 392 

be evaluated, we use a nearest neighbors’ extrapolation. 393 

We construct a nested covariance using the interpreted flowmeter map as described for the two-394 

dimensional case. In the inverse problem, a structured grid is used to discretize the model domain. For 395 

the three-dimensional cases, the number of grid blocks in x, y and z directions are nx = 20, ny = 20, nz 396 

= 8 respectively (See Figure R3). For PCGA setup, we use a truncation number of k=30 for a number 397 

of unknowns n=20*20*8, R=0.001*Id where Id is the identity matrix and δ=0.0001 for the finite 398 

difference interval. The specific storage was kept constant (Ss = 10-4 m-1) in the inversion and we 399 

focus on the characterization of K fields. 400 

Figure 5 shows the results of the three-dimensional validation case. Figure 5c corresponds to the 401 

generated, considered true, hydraulic conductivity field. Figure 5a is the inverted hydraulic 402 

conductivity field using a classical hydraulic tomography that used same covariance information as in 403 

the random field generation. Figure 5b shows the interpreted hydraulic conductivity from flowmeter 404 
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analysis. Figures 5d and 5e show the inverted hydraulic conductivity by integrating flowmeter 405 

interpretations into prior information of the inversion; Figure 5d used the interpreted hydraulic 406 

conductivity in Figure 5b to initialize only the parameter; Figure 5e used the interpreted hydraulic 407 

conductivity in Figure 5b to initialize both the parameter and the covariance matrix which was 408 

updated during inversion iterations. 409 

The results of the 3D validation case agree with the observed results of the 2D validation case. The 410 

flowmeter interpretation allows vaguely the detection of the main layers in the system (Figure 5b) 411 

while the attempt of an inversion using only pumping tests data couldn’t assess the vertical profiles of 412 

hydraulic conductivity (Figure 5a). Figures 5d and 5e show better characterization in the vertical 413 

profiles due to non-redundant added information brought by flowmeter data. Using the flowmeter’s 414 

interpreted hydraulic conductivity as an initial guess in the inversion already improves considerably 415 

the results (Figure 5d). Also, as seen in the 2D validation case, the best K estimate was obtained when 416 

flowmeter interpretation was used to initialize both the parameter and the covariance matrix (Figure 417 

5e). 418 
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 419 

Figure 5: Three-dimensional validation case - results of HT using different prior information; b) 420 

interpreted hydraulic conductivity from flowmeter tests, c) true hydraulic conductivity, a, d and e are 421 

inverted hydraulic conductivities using different prior models. Ki and Qi correspond to the initial 422 

hydraulic conductivity and initial covariance matrix respectively.  423 

These results obtained with the 3D synthetic case are similar to the ones obtained with the 2D 424 

synthetic case, and thus confirm that adding flowmeter information allows improving the hydraulic 425 

permeability field. This conclusion is consistent with the fact that flux, in addition to hydraulic head 426 

measurements, enhance K values estimate (Yeh et al. (2011, 2015a, 2015b), Mao et al. (2013a, 427 

2013b), Tso et al. 2016).  428 

To better evaluate the quality of the estimated hydraulic conductivity field, we simulate a transient 429 

pumping test in well P6 (see Figure 5c) using this inverted hydraulic conductivity map and compare 430 

the simulated drawdowns to the simulated drawdowns obtained with the true hydraulic conductivity 431 

field (see Figure 6).  432 
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 433 

Figure 6: Hydraulic head response to simulated pumping tests in the new added well P6. Solid red, 434 

dotted and dashed black curves correspond to the simulated drawdowns using respectively the true 435 

conductivity, the hydraulic conductivity map obtained from hydraulic tomography and the hydraulic 436 

conductivity map obtained from the hydraulic tomography conditioned by flowmeter analysis data. 437 

Figure 6 compares different drawdowns obtained on 5 boreholes in response to a pumping test in the 438 

new added prediction well P6. The drawdowns were simulated by using different hydraulic 439 

conductivity fields; the curves represented by solid red lines correspond to simulated drawdowns 440 

using true hydraulic conductivity; the curves represented by dotted black lines correspond to 441 

simulated drawdowns using inverted hydraulic conductivity obtained from hydraulic tomography 442 

using other pumping tests observation data (Figure 5a); the curves represented by dashed black lines 443 

correspond to simulated drawdowns using inverted hydraulic conductivity obtained from hydraulic 444 

tomography using other pumping tests observation data and conditioned by flowmeter data (Figure 445 

5e). The results clearly show that the dashed lines (HT + flowmeter data) are closer to the solid red 446 

lines (true drawdown) compared to the dotted lines (classical HT). Such observation confirms that 447 

incorporating flowmeter data in the hydraulic tomography leads to better K estimates. 448 

We also show a scatter plot of true hydraulic conductivity and estimated hydraulic conductivity in 449 

Figure 7. Each scatter plot has a linear model of data fitting represented by a red dashed line with a 450 
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linear regression expression and a coefficient of determination. The solid line is the first bisector line 451 

of y=x. Figure 7a shows the result of using pumping tests and an exponential covariance model. 452 

Figure 7b presents the result of hydraulic conductivity comparison based on flowmeter interpretation. 453 

The small bias toward high absolute values of hydraulic conductivities indicates that the effective 454 

hydraulic conductivity is overestimated by the interpolation of flowmeter profiles. When the 455 

interpreted hydraulic conductivity distribution from flowmeter is used as initial guess for the inversion, 456 

we observe that the characterization of hydraulic conductivity becomes considerably better (compare 457 

Figure 7c to Figure 7a). The incorporation of multiscale heterogeneity with the nested covariance 458 

model generates a different representation, but the hydraulic conductivity estimates is considerably 459 

improved as well (Figure 7d). This demonstrates the importance of integrating flowmeter data.  460 

 461 

Figure 7: Two-dimensional validation case – scatterplots of true hydraulic conductivity versus 462 

estimated hydraulic conductivity for the different cases of the two-dimensional synthetic case.  b) 463 

scatter plot of true K versus interpreted K from flowmeter. a, c and d are scatter plots of true K versus 464 

inverted K using different prior models. 465 
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4. Application 466 

In this section, the approach is applied to an experimental field site on the basis of real field data. The 467 

experimental site is located in Southern France, 20 km northeast of Montpellier (Figure 8a). The site’s 468 

aquifer is composed of mollusc shells of late Burdigalian. The deposit is a dune system constructed 469 

during Miocene’s tidal currents. Within the experimental site, 13 vertical wells were drilled in a 470 

square of 50 m by 50 m in which full-diameter cores were obtained in borehole P6, P8 and P12 471 

(Figure 8b). The wells have a depth of 30m and are fully-penetrating wells, since they crosscut the 472 

whole late Burdigalian, down to the roof of the mid Burdigalian which presents a very low 473 

permeability. The hydraulic conductivity measured using 330 one-inch diameter cores plugged from 474 

the full-diameter cores spans four orders of magnitude (10-8 to 10-4). The preliminary analysis of 475 

hydrodynamic response to pumping test and slug tests (Wang et al., 2019) showed a pretty high lateral 476 

heterogeneity of the hydraulic conductivity field. Besides, both the well logs and laboratory 477 

measurements on cores, showed that the spatial distribution of the hydraulic conductivity field is 478 

constrained by a multilayered system (Figure 8c).  479 

 480 

Figure 8: Experimental site composed of a multilayered system. a) geo-localization map, b) well 481 

pattern, c) log of P6 obtained from the core analysis. 482 
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4.1. Flowmeter implementation and analysis  483 

A series of spinner flowmeter tests are performed in the experimental site. The flowmeter tests are 484 

performed in each well. As described in the methodology, the flow log is obtained in a well subject to 485 

a pumping where the pump is positioned close to the surface. We also point out that the pump needs 486 

to remain under water and, depending on the generated drawdown, the investigated depth will be 487 

limited. To maximize the investigated depth, a small pumping flow rate was used. A series of 488 

flowmeter sweeps are performed inside a PVC with static water in order to realize the tool calibration 489 

of spin-velocity conversion. The log of flow rate can be obtained by taking into consideration the well 490 

diameter changes along the depth. An example of flowmeter measurements and interpretation for 491 

hydraulic conductivity distribution may be found in the supplementary material (Figure S3). 492 

Considering that the total pumping flow rate comes under the pump, we can estimate the hydraulic 493 

conductivity log of the well as a function of the flow rate contribution of the different layers, once the 494 

effective hydraulic conductivity of the investigated depth of the aquifer is determined.  495 

With the estimated hydraulic conductivity logs from the different wells, we fill the remaining space 496 

between them by interpolation, assuming that the distribution of the hydraulic properties in layers is 497 

continuous and correlated. A 3D hydraulic conductivity field is obtained.  498 

4.2. Pumping tests data  499 

13 pumping tests were performed in our experimental site during summer 2016. During each test, the 500 

transient responses are measured in all the wells for all the tests. The pumping tests were long enough 501 

to reach a pseudo-steady state response. We randomly choose 5 cross hole pumping tests to use as 502 

observations for the following application. Different times from early and middle parts of the response 503 

were sampled and used as the HT observations. We didn’t sample from late time to avoid any 504 

instability that may come from the biased modelling of the uncertain regional heterogeneity and 505 

boundary conditions. From the well test analysis, the estimated effective permeability and specific 506 

storage of the test site are Keff  = 1.34e-4 m.s-1 and Ss = 2.65e-5 m-1, which are used in the inversions.  507 

4.3. Hydraulic tomography 508 

The dimensions of the inverted domain are length=50 m, width=50 m and height=20 m; the 509 

dimensions of the buffer area are length=200 m, width=200 m and height=20 m. The outer boundaries 510 
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are set to constant hydraulic head h0=25 m while the upper and lower boundaries (top and bottom) are 511 

set to no flow condition. The initial condition is set to a constant hydraulic head h0=25 m in the whole 512 

domain. A covariance matrix is constructed using the hydraulic conductivity field. In fact, a nested 513 

covariance function for multiscale heterogeneity is used in order to perform the inversion. It allows to 514 

incorporate geological information to constrain the results (Zha et al. 2017). The nested covariance 515 

matrix constructed based on flowmeter data interpolation can be found in Figure S5. The statistical 516 

parameter used for the generating the covariance is provided in Table S2. Different facies are 517 

determined and, in each facies, a correlation is defined. The main objective is not to perfectly 518 

reproduce the drawdown responses, but to obtain a more realistic hydraulic property distribution with 519 

a good fitting of the observed drawdowns. The initial guess is constructed from flowmeter interpreted 520 

hydraulic conductivity field. A similar interpolation method as adopted in the synthetic inversion is 521 

used to interpolate the flowmeter data. The covariance matrix is built accordingly to flowmeter results; 522 

layers information is prioritized. The covariance is a result of a sum of different covariance matrices, 523 

one defines the layers, another represents the variance and correlation length inside each layer and the 524 

last one defines the variance and the correlation length of the whole domain.   525 

For the experimental field case, we performed two inversion runs, the first one by a classical 526 

hydraulic tomography approach and we used only observation from the pumping tests, while in the 527 

second run, flowmeter interpretations were used to initialize the parameter and the covariance matrix. 528 

Figure 7 shows the inverted hydraulic conductivity for both cases; Figure 7a corresponds to the 529 

inverted hydraulic conductivity field with classical hydraulic tomography while Figure 7b 530 

corresponds to the inverted hydraulic conductivity field with hydraulic tomography conditioned by 531 

flowmeter data; Figures 7c and 7d are scatter plots of observations (hydraulic head measurements) 532 

data fitting obtained using respectively results from Figure 7a and 7b.  533 



27 

 

 534 

Figure 9: Inverted hydraulic conductivity map and observation data fitting results from hydraulic 535 

tomography of real-case experimental site.  a) inverted hydraulic conductivity map obtained from 536 

classical HT, b) inverted hydraulic conductivity map obtained from HT conditioned by flowmeter data, 537 

c) hydraulic conductivity map obtained from flowmeter interpretation, d) data fitting for classical HT 538 

results, e) data fitting for HT conditioned by flowmeter data, f) data fitting for flowmeter 539 

interpretation. 540 

5. Discussion 541 

Incorporating flowmeter data into hydraulic tomography allows to obtain a better K estimate in the 542 

synthetic validation cases. For the 2D validation case, the results (see Figure 3) show that initializing 543 

the parameter and the covariance matrix with flowmeter interpretation data provides better K 544 

estimates. The initial parameter value can play an important role on converging to a different K 545 

estimate solution. Such an effect can be observed on the inverted hydraulic conductivity when 546 

flowmeter estimate was used to initialize the parameter (Figure 3c). On the other hand, the initial 547 

covariance matrix can also contain layers’ information by correlating the cells that belong to the same 548 

layer. However, the correlation constraint can be strong on the K estimate especially when the 549 

covariance remains unchanged and equal to the initial (Figure 3e). The covariance of unknown 550 
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parameter can be updated to derive the residual covariance, the continuous updating of residual 551 

covariance allows to correctly address the uncertainty and enhance convergence of the inverse 552 

solution (Zha et al. 2018) which can be confirmed with the results in Figure 3f.  553 

The approach of integrating flowmeter data was also tested using synthetic case in three dimensions 554 

and results (see Figure 5) are in total agreement with the 2D case observations. For this case, we also 555 

showed the quality of the result by simulating drawdown curves in a prediction well (which was not 556 

included in observation wells) using the inverted hydraulic conductivity field and compared them with 557 

the true observed drawdown (see Figure 6). It clearly shows how flowmeter data adds a non-558 

redundant vertical profile information and, thus, enhance considerably the K estimates. In the present 559 

study, we focused on reconstructing K distributions by keeping Ss as a constant. Although previous 560 

studies have shown that the selection of Ss value may impact the K estimates (Castagna et al., 2011; 561 

Zhao et al., 2021), our interpretation of field site single-hole and cross-hole pumping tests did not 562 

indicate a strong variation of Ss. For this reason, we think the treatment is reasonable. However, in the 563 

future, we attempt to perform a full inversion to simultaneously estimate the spatial distribution of 564 

both K and Ss. These would require more pumping test data points to be sampled and used in the 565 

inversion as the inclusion of Ss distribution would double the number of unknown parameters, which 566 

increases drastically the underdetermined-ness of the inversion problem.  567 

Figure 9 summarizes the results of the approach applied to a real field case. The two inverted 568 

hydraulic conductivity fields are totally different from each other while their data fitting are quite 569 

similar. K estimates obtained from HT conditioned by flowmeter data exhibits a multilayered system 570 

with more geological realism comparing to K estimates obtained from classical HT without any 571 

additional profile information. The same layering system has been observed in other measurements 572 

(core analysis, logs, permeameter measurements, etc.). 573 

The data fitting in both inversions is relatively similar (RMSE = 0.0912 for HT using pumping tests 574 

data and RMSE = 0.0874 for HT using pumping tests and flowmeter data). However, the prediction of 575 

transient drawdowns becomes significantly better using K estimate obtained with the incorporation of 576 

flux measurements data. For further validation, we sampled hydraulic conductivity values from 577 

inversion results and we compared them to some available permeameter measurements at the same 578 
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locations. Within the 13 wells available in the experimental site, three (PC6, PC8 and PC12) were 579 

cored. Cores allowed to obtain a permeability log from laboratory permeameter measurements along 580 

the wells. Figure 8 shows a comparison of extracted conductivity from THT results and laboratory 581 

permeability measurements (converted into hydraulic conductivity using water density ρ=1000 kg m-3, 582 

water viscosity µ=0.001 kg m-1 s-1 and gravity acceleration g=9.81 m s-2) of plugs on the cored wells 583 

as well as the flowmeter interpreted hydraulic conductivity. 584 

 585 

Figure 10: Hydraulic conductivity profiles for wells PC6, PC8 and PC12 of the experimental site. 586 

Red dots are laboratory measurements. Grey solid line is extracted from THT results. Black solid line 587 

is extracted from THT integrating flowmeter analysis data results. Dashed line is from flowmeter 588 

interpretation. 589 

Figure 10 strengthen the fact that flowmeter data enhance HT results, especially in the vertical profiles 590 

of the hydraulic conductivity estimates. Flowmeter conditioning data allows the K estimate to get 591 

closer to the measured permeability from the plugs of the cored wells.  Hydraulic conductivity 592 

profiles in the wells obtained from transient hydraulic tomography (Figure 10, grey solid line), show 593 

that normal pumping tests do not contain vertical information about the aquifer’s hydraulic properties; 594 

the hydraulic conductivity profiles are similar to a result of a 2D THT extruded into the third 595 

dimension (depth averaged values). 596 
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Our work is in agreement with other previous works in terms of how flux measurements enhance 597 

hydraulic tomography results. The work of Li et al. (2008) showed that inverting both steady state 598 

hydraulic head measurements and flux measurements data leads to better hydraulic conductivity 599 

estimates. They used both data in the inverse process as conditioning observations. However, in this 600 

work, only transient hydraulic head measurements are used to condition the inversion and flowmeter 601 

tests data are used to initialize the prior inputs of the inversion. Our results show that incorporating 602 

flowmeter data in the initial parameter and the prior covariance matrix may be sufficient to enhance 603 

considerably the K estimates. Zha et al. (2014) and Tso et al. (2016) also worked on combining flux 604 

measurements with pumping tests data. Zha et al. (2014) inverted synthetic case in 2D by using 605 

normal pumping tests and used lateral fluxes as an additional data to strengthen the result and Tso et 606 

al. (2016) extended it to 3D by using the same observation datasets. They both showed that flux data 607 

improves estimates resolution of HT analysis. The difference between the two studies is the 608 

dimension and the fact that Zha et al. (2014) used it to characterize a discrete fracture network while 609 

Tso et al. (2016) investigated a porous media instead. However, both studies were not tested on any 610 

real case study. 611 

6. Summary and conclusions  612 

In this study, we performed a transient hydraulic tomography of cross-hole pumping tests by 613 

integrating flowmeter data in prior inputs on an experimental site and managed a 3D imaging of the 614 

aquifer system that was coherent with geological observations and existing permeability 615 

measurements. We used flowmeter data as source of the vertical information additional to pumping 616 

tests that provides the lateral information. In order to incorporate the vertical data into hydraulic 617 

tomography, flowmeter tests are interpreted separately to obtain a prior K estimate which was used to 618 

initialize the parameter and the covariance matrix. While, the pumping tests observations were used to 619 

condition the inversion convergence process. Using different initial parameters and initial covariance 620 

matrices showed that the prior inputs of the inversion are important and can modify the result 621 

considerably. Also, the non-packer pumping tests do not contain vertical information: the inverted 622 

hydraulic conductivity using only pumping tests was generally constant along the vertical profile. The 623 
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integration of vertical hydrogeological information obtained from flowmeter surveys and horizontal 624 

information from cross-hole pumping tests allow a 3D transient hydraulic tomographic (THT) 625 

characterization of sedimentary layered rocks. Flowmeter data are a non-redundant information and 626 

different data other than flowmeter could also be used to better define the variations of vertical 627 

hydraulic conductivity such as laboratory measurements on cored wells or classical logs that are able 628 

to be converted into relative conductivity profiles.  629 
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