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Abstract

The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument onboard the 

Rosetta spacecraft has measured molecular oxygen (O2) in the coma of comet 67P/Churyumov-

Gerasimenko (67P/C-G) in surprisingly high abundances. These measurements mark the first 

unequivocal detection of O2 in a cometary environment. The large relative abundance of O2 in 

67P/C-G despite its high reactivity and low interstellar abundance poses a puzzle for its origin in 

comet 67P/C-G, and potentially other comets. Since its detection, there have been a number of 

hypotheses put forward to explain the production and origin of O2 in the comet. These hypotheses 

cover a wide range of possibilities from various in situ production mechanisms to protosolar 

nebula and primordial origins. Here, we review the O2 formation mechanisms from the literature, 

and provide a comprehensive summary of the current state of knowledge of the sources and origin 

of cometary O2.
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1 Introduction

While atomic oxygen is the third most abundant element in the Universe, its molecular form, 

O2, has been particularly elusive to observers in various astrophysical environments. O2 is 

expected to be present in the interstellar medium (ISM) in both its solid (ice) and gas phases. 

However, O2 is a highly chemically reactive molecule with no electric dipole moment, 

which makes it hard to detect. Indeed, solid O2 is yet to be detected in interstellar grains or 

in protoplanetary disks, and gas-phase O2 has only been observed in two interstellar clouds 

with very low concentrations relative to H2 (Orion: O2/H2 ≈ 0.3−7.3 × 10−6, and ρ Oph A: 

O2/H2 ≈ 5 × 10−8; see e.g. Goldsmith et al. 2011; Chen et al. 2014; Larsson et al. 2007; 

Liseau et al. 2012). In the Solar System, O2 has been detected on the icy moons of Jupiter 

and Saturn, where it is produced via photolysis and radiolysis followed by sputtering (e.g. 

Hall et al. 1995; Johnson 1996; Johnson and Quickenden 1997; Johnson and Jesser 1997; 

Cruikshank et al. 1998; Johnson et al. 2006; Bahr et al. 2001; Teolis et al. 2010), and from 

energetic particles accelerated in their magnetospheres (e.g. Spencer et al. 1995; Noll et al. 

1997; Sieger et al. 1998). O2 is also present in trace amounts in the atmosphere of Mars, and 

results from the complex photochemistry taking place in these environments (Barker 1972). 

Meanwhile, O2 is the second most abundant atmospheric component at about 21% by 

volume in Earth’s atmosphere, but it is the only known planetary environment in which O2 is 

biologically produced.

Before the Rosetta mission, comets in general seemed to be oxygen poor, which was 

expected based on the generally low levels of O2 observed in interstellar and protoplanetary 

environments, and its high reactivity. However, with the unprecedented capabilities of the 

European Space Agency’s Rosetta mission came unprecedented discoveries. One of 

Rosetta’s most perplexing findings was the persistent detection of O2 in the coma of comet 

67P/Churyumov-Gerasimenko (hereafter: 67P/C-G) in surprisingly high abundances. These 

measurements were made by the Double Focusing Mass Spectrometer of the Rosetta Orbiter 

Spectrometer for Ion and Neutral Analysis (ROSINA/DFMS; Balsiger et al. 2007), and 

marked the first ever unequivocal detection of O2 in a cometary environment. ROSINA/

DFMS measured an O2 concentration of 1–10% relative to water in the coma of 67P/C-G, 

with a mean value of 3.80 ± 0.85% (Bieler et al. 2015). The presence of O2 in the coma of 

67P/C-G was later independently confirmed by the Alice imaging spectrograph onboard 

Rosetta, with a somewhat larger mean relative column abundance of 25% (Keeney et al. 

2017a). In addition, the recent reevaluation of the Neutral Mass Spectrometer (NMS) 

measurements from the Giotto flyby yielded data consistent with O2 in the coma of comet 

1P/Halley, with concentrations similar to those detected in the coma of 67P/C-G (Rubin et 

al. 2015b). Thus, the presence of cometary O2 may not be unique to 67P/C-G, but rather it 

may be a common attribute of the otherwise dynamically different Jupiter-family (e.g. 

67P/C-G) and Oort Cloud (e.g. 1P/Halley) comets.
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The first ROSINA/DFMS measurements of O2 in the coma of 67P/C-G were made over a 

six-month period between September 2014 and March 2015 at 10–30 km from the nucleus 

(Bieler et al. 2015). The measured local O2 abundance relative to H2O was persistently high 

over this period with a mean value of 3.80 ± 0.85%, making O2 the fourth most abundant 

species in the coma after H2O, CO2, and CO. Over this six-month time interval, O2 was 

found to strongly correlate with H2O, which led to the conclusion that the origin and/or 

release mechanism of O2 and H2O are linked. In addition, the analysis of Bieler et al. (2015) 

suggested that the O2/H2O ratio in the coma of 67P/C-G remained fairly constant, with a 

scatter of less than about 10%. Fougere et al. (2016) showed that the strong correlation with 

H2O extended through February, 2016. Their modeling results also provided an O2/H2O 

production rate of 1–2%. While ROSINA/DFMS did not detect O3 (ozone), it did measure 

the chemically related species H2O2 (hydrogen peroxide) and HO2 (hydroperoxyl) with 

relative abundances of H2O2/O2 ≈ HO2/O2 ≈ 6 × 10−4 (Bieler et al. 2015).

The remarkably high concentration of gaseous cometary O2 contrasts with the remarkably 

low O2 concentrations across the Universe. Because comets are leftover planetesimals whose 

accretion and growth took place in the protosolar nebula (PSN), they contain some of the 

best-preserved materials from before and during planet formation. Cometary nuclei likely 

agglomerated either from minimally-altered icy grains formed in the ISM, or from more 

processed grains directly condensed in the PSN. Hence, comets are often thought of as 

“cosmic freezers”. Whether O2 is present in all or a multitude of comets, in just a few, or in 

67P/C-G only, the production mechanism and origin of cometary O2 would provide crucial 

information about the formation of our Solar System, and for interstellar-, disk-chemistry, 

and astrochemical models. Since its first detection in 67P/C-G, several hypotheses have 

emerged for the production and origin of cometary O2. These hypotheses cover a wide range 

of possibilities from in situ production mechanisms to various primordial or protosolar 

nebula origins. The proposed formation mechanisms of cometary O2 existing in the current 

literature are shown in Fig. 1.

One possibility for the presence of molecular oxygen in the coma of 67P/C-G is that it was 

present before comet formation. In that case, the nucleus would have been agglomerated 

from O2-rich icy grains formed in the ISM that did not undergo further chemical 

modification before and after being incorporated into the nucleus (primordial origin). If 

cometary O2 is primordial, then the comet would have agglomerated in the coldest regions 

of the disk, where chemical reactions may be slow enough to preserve O2 in cometary 

nuclei. Possible production mechanisms for primordial O2 in interstellar ices include the 

radiolysis of H2O ice by galactic cosmic rays (GCRs) in a low-density environment, such as 

a molecular cloud (Mousis et al. 2016b). Radiolysis of icy grains requires very large GCR 

fluxes, but the irradiation itself would stabilize the O2 formed by the development of cavities 

in the H2O ice matrix, where the O2 molecules get trapped. Alternatively, oxygen atom 

recombination on the surfaces of interstellar grains in warm (~ 20–30 K) and dense (≥ 105 

cm−3) dark clouds could produce O2 in the observed abundances (Taquet et al. 2016). The 

latter scenario requires warmer and denser conditions than typically found in dense clouds, 

but is in good agreement with the physical conditions in ρ Oph A, as noted in Taquet et al. 

(2016). Both of these primordial scenarios require an intimate relationship between O2 and 

H2O; thus explaining the strong observed correlation between O2 and H2O. These 
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observations must be taken in conjunction with other measurements pertaining to the origins 

of cometary H2O. For instance, the elevated D/H ratio observed at 67P/C-G pre-inbound 

equinox (Al-twegg et al. 2015) would be another constraint on the (primordial) formation 

scenario of 67P/C-G’s ice.

Gaseous O2 could have also been formed and incorporated into icy grains in the PSN before 

being agglomerated into the nucleus. Luminosity outbursts (Taquet et al. 2016) or accretion 

bursts (Bieler et al. 2015) could have increased the temperature to exceed 100 K, aiding the 

formation of gas-phase O2. Subsequent rapid cooling would then be needed to trap the O2 in 

amorphous icy grains. In this case though, CO and N2 (and other volatiles) should also be 

trapped in amorphous ice and correlate with H2O, which was not the case for observations 

over a six-month period by Bieler et al. (2015). O2 also readily traps in clathrates, but in that 

case it would be expected to strongly correlate with CO and even CO2 instead of H2O 

(Mousis et al. 2016b). In addition, O2 may form crystalline ice in the PSN, but that would 

make the N2 and Ar depletion problematic in 67P/C-G compared to the protosolar values 

(Mousis et al. 2016b). However, O2 embedded in interstellar icy grains may remain stable 

even during a phase transition upon heating in the disk. While CO, Ar, and N2 would get 

trapped in clathrates from the gas phase as the disk cools, O2 would remain trapped from its 

initial incorporation into the H2O matrix, maintaining its close association with H2O 

(Mousis et al. 2016b). O2 with an adsorption energy of 1660 K (8.6 kJ/mol) (Laufer et al. 

2018; Smith et al. 2015) would be more strongly attached to the ice than N2 (adsorption 

energy of 1155 K or 7.2 kJ/mol; Laufer et al. 2018; Smith et al. 2015) and CO (adsorption 

energy of 1420 K or 7.6 kJ/mol; Laufer et al. 2018; Smith et al. 2015). Ar, with an 

adsorption energy of 866 K or 7.5 kJ/mol (Laufer et al. 2018; Smith et al. 2015), is even 

more volatile. PSN formation scenarios do not necessarily require a strong correlation with 

H2O, but require a correlation with CO, CO2, and/or N2 (Fig. 1). Most recently, Mousis et al. 

(2018) proposed that an alternative mechanism for O2 formation is radiolysis of icy grains 

being cycled between the mid-plane and the upper layers of the disk multiple times. While 

this turbulent mixing would have allowed the icy grains to undergo stronger GCR irradiation 

while in the upper layers of the disk, and would explain a strong correlation between O2 and 

H2O, as they point out the timescale needed to make the O2 in the abundances observed by 

ROSINA/DFMS exceeds the formation timescale of the comet.

O2 may have also formed after nucleus accretion, either via radiolysis, or in situ. Past 

radiolysis in the Kuiper-belt seems unlikely to be the main source of O2 on the comet 

because the affected layers would be removed by erosion since 67P/C-G entered the inner 

solar system, and current radiolysis would be indicated by variable O2/H2O driven by 

illumination (Bieler et al. 2015). However, endogenic radiolysis may contribute to the 

observed O2 in the coma of 67P. In this scenario, radiation chemistry from an endogenic 

source, such as decaying radionuclides would produce O2 homogeneously in the ice of the 

nucleus. While endogenic radiolysis is unlikely to have produced all the observed O2 today, 

it may have significantly contributed to it (Bouquet et al. 2018). In situ O2 formation is 

possible via water-group ions accelerated by the solar wind and energetic electrons hitting 

various oxidized surfaces and triggering Eley-Rideal (ER) reactions (Yao and Giapis 2017). 

Thus, O2 may be formed on the surface of the nucleus, spacecraft, or the ROSINA/DFMS 

instrument itself (hyperthermal surface ionization). On the other hand, O2 formation via the 
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dismutation/disproportionation of H2O2 co-sublimating with H2O was proposed based on 

laboratory experiments (Dulieu et al. 2017). The ER and the H2O2 dismutation/

disproportionation reactions, as well as endogenic radiolysis require a strong correlation 

with H2O at all times.

This paper reviews the possible O2 formation mechanisms, as we currently understand them, 

and evaluates their strengths, weaknesses, and limitations based on the currently available, 

published Rosetta measurements. Sections 2 and 3 provide detailed reviews of pre-

agglomeration and post-agglomeration O2 formation mechanisms from the literature. A 

comprehensive summary of the current state of knowledge, as well as conclusions are given 

in Sect. 4. Finally, we suggest future key measurements and data analysis for a deeper 

understanding of the origin of cometary O2.

2 Pre-agglomeration Formation and Trapping Scenarios

This section discusses the possibility of O2 formation in the icy grains precursors of comets. 

Different scenarios of O2 formation, proposed both in the ISM and in the PSN, are reviewed.

2.1 O2 Formation in the ISM

As detailed below, the formation of O2 can take place in the ISM in dark clouds either 

through surface reactions on interstellar grains, or via radiolysis and/or photolysis of icy 

grains.

2.1.1 Exogenic Radiolysis and O2 Trapping in Icy Grains—Among the 

possibilities considered, the radiolysis of cometary water ice has attracted significant 

attention. A first scenario linking the production of O2 to the ice of the comet nucleus was 

proposed (Bieler et al. 2015). These authors estimated, considering 67P/C-G’s thermal 

history, that any quantity of O2 formed prior to approach at closer distances to the Sun 

should have been lost due to outgassing and/or erosion rapidly during the first one or two 

orbits around the Sun. It was therefore suggested that O2 must have already been 

incorporated into 67P/C-G at the time of its formation in the PSN (Mousis et al. 2016b). In 

this context, radiolysis by Cosmic Ray Flux (CRF) is able to deposit large enough energy 

doses that create latent tracks in the bulk ice in which O2 can be formed from the fragments 

H, O, OH issued from the radiolysis.

The possibility of radiolytic production of O2 in micron to millimeter-sized icy grains 

present either in the outer PSN or in the ISM has been investigated by Mousis et al. (2016b). 

In both cases, the energy available for radiolysis was assumed to be provided by the galactic 

CRF impacting icy grains. The authors used the energy range and CRF distribution from 

Yeghikyan (2011) and Cooper et al. (2003) for their calculations, respectively. They also 

assumed that O2 is produced by radiolysis of water ice through the chemical reaction

2H2O 2H2 + O2, (1)
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with an amount of energy needed to alter one H2O molecule Wr = 235 eV (Johnson 1991). 

Furthermore, the authors assumed that all the energy absorbed by water ice is used to form 

O2. Under those circumstances, the time τ needed to reach a given O2/H2O ratio in icy 

grains has been established as follows:

τ =
Wr ⋅ NA

ECR ⋅ MH2O
× f H2O (2)

where NA (mol−1) is the Avogadro constant, MH2o (kg mol−1) is the molar mass of water, 

Ecr (eVkg−1 yr−1) is the CRF energy dose received by water ice, which depends on the gas 

number density, and fH2O is the fraction of altered H2O molecules, corresponding to two 

times the fraction of O2 produced. Figure 2 summarizes the results of the calculations 

presented by Mousis et al. (2016b) and shows that the timescales needed to produce an O2 

fraction in the 1–10% range in icy grains lying at 30 AU in the PSN midplane are much 

longer than the lifetime of the PSN (~ 0.25–2.5 Gyr vs. a few Myr). The CRF energy dose 

absorbed by icy grains located at this distance from the Sun is within the ~ (5–60) × 1016 eV 

kg−1 yr−1 range, depending on the disk’s surface density (between 10 and 103 gcm−2; 

Hersant et al. 2001). We note that the distance of 30 AU was intended as a figure of merit 

representing the outer part of the disk in Mousis et al. (2016b). It does not quite correspond 

with where the outermost planets formed because our solar system was more compact, and 

then relaxed to the current configuration. However, the disk surface density is constant to a 

good approximation, and so the production rate from GCRs should not vary much inward. 

Any variation would not be enough to change the conclusion that the production timescale 

of O2 in the observed relative abundances is longer than the age of the disk.

Mousis et al. (2016b) also considered the case in which the CRF has supposedly undergone 

a significant enhancement by a factor of ~ 100 because of a close supernova explosion. 

Because these events are too brief (~ a few kyr), such enhancements cannot significantly 

decrease the time needed to form O2 in the PSN midplane. Meanwhile, if icy grains have 

grown to sizes larger than tens of meters in the PSN, then the deepest layers would be more 

difficult to alter, requiring longer timescales for efficient O2 formation. Mousis et al. (2016b) 

also considered the possibility of an icy grain receiving the maximum CRF energy dose 

estimated by Yeghikyan (2011) (~ 1.20 × 1020 eVkg−1 yr−1), a value corresponding to a 

surface density of 10−3 gcm−2, which is typical of those found in molecular clouds. The 

authors determined that only ~ 1.3–13 Myr of radiolysis was needed to generate an O2 

fraction in the 1–10% range in icy grains located in environments with such low column 

densities (see Fig. 2).

Mousis et al. (2016b) considered the radiolysis to be effective because of the different 

diffusion between the products of the radiolysis reaction. At temperatures encountered in the 

ISM or the PSN, the diffusion of O2 in water ice is greatly reduced, which is not the case for 

H2 (Johnson 1991). This difference in diffusion disfavors further reactions between O2 and 

H2, and helps to preserve O2 in the ice. Given this assumption about the effectiveness of the 

radiolysis, the first consequence of the CRF irradiation of the ice mantles is the creation of 
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latent tracks, i.e. channels void of H2O molecules but filled with their fragments. These 

fragments participate in the reconstruction of the ice bulk by forming H2O molecules (Eq. 

(3)) which close the open tracks. By doing so, they create cavities playing the role of 

confinement volumes in which O2 could be formed by the coupling of two oxygen atoms. 

Reconstruction can obviously come from the successive addition of two atomic hydrogen to 

the oxygen atom. However, radiolysis of H2O ice may create molecules other than H2 and 

O2. The OH radical is produced via the reaction H2O → H + OH (Johnson 1991), which 

was not considered by Mousis et al. (2016b). The presence of the OH radical opens new 

chemical routes:

OH+OH H2O + O, (3)

OH+OH H2O2, (4)

OH+O HO2 (5)

that can be followed by the formation of O2 according to

H2O2 + OH HO2 + H2O (6)

H2O2 + O HO2 + OH (7)

HO2 + OH O2 + H2O (8)

The confinement in the cavities makes all these processes possible. The question is how can 

O2 survive in these voids? To address this issue, Mousis et al. (2016b) investigated the 

question of the stability of the radiolytically produced O2 molecules in the water matrix of 

ice grains. To do so, a sampling of the representative structures of O2 in solid water ice has 

been obtained using a strategy based on first principle periodic density functional theory 

quantum calculations (Lattelais et al. 2011, 2015; Ellinger et al. 2015). These calculations, 

performed in the case of hexagonal ice Ih using the Vienna ab initio simulation package 

(VASP) (Kresse and Hafner 1993, 1994), show that when 2, 3, or 4 adjacent H2O molecules 

were removed from the hexagonal lattice, well defined cavities form with shapes depending 

on the positions of the dismissed entities. The stabilization energies of the embedded O2 

were found to be in the order of 0.2–0.5 eV, namely the energy between water dimer 

stabilization and ice cohesion energies. This implies that the presence of O2 does not perturb 
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the ice structure until its further ejection due to sublimation or abrasion. A typical example 

of O2 trapping is illustrated in the case of 4 removed H2O molecules in Fig. 3. Similar 

results have been obtained in the case of O2 stabilization in amorphous ice.

Based on all these considerations, Mousis et al. (2016b) concluded that, even with a strong 

CRF enhancement due to the presence of a nearby supernova, the radiolysis of icy grains is 

not fast enough in the PSN to create amounts of O2 comparable with those observed in 

67P/C-G. Instead, they showed that icy grains must be placed in low-density environments 

such as molecular clouds to enable radiolysis to work efficiently. They also found that the 

irradiation process favors the stabilization of O2 molecules in the icy matrix via the 

development of cavities and is compatible with both amorphous and crystalline ice 

structures. From this set of constraints, two possible formation scenarios of 67P/C-G in the 

PSN have been derived by the authors: (1) agglomeration from pristine amorphous icy 

grains/particles formed in the ISM and (2) agglomeration from multiple guest clathrates 

including O2 that formed during the cooling of the disk subsequent to the vaporization of the 

amorphous icy grains entering the PSN (see Sect. 2.3.2). With the incorporation of O2 in the 

cavities created by CRF in the icy matrix, scenario 1 naturally provides an explanation for 

the strong correlation found between the O2 and H2O production rates observed in 67P/C-

G’s coma (Bieler et al. 2015). However this scenario makes implausible the accretion of 

67P/C-G from clathrates and crystalline ices originating from the PSN, as proposed by 

Mousis et al. (2016a) and Lu-nine et al. (1991a). A way to reconcile scenario 2 with the 

strong O2-H2O correlation would be to assume that the icy grains (i) initially formed as in 

scenario 1 and (ii) subsequently experienced an amorphous-to-crystalline phase transition in 

the 130–150 K temperature range when entering the disk (Kouchi et al. 1994; Maldoni et al. 

2003; Ciesla 2014). In this context, all volatiles initially adsorbed by ISM amorphous ice 

would be released in the PSN gas phase during phase transition. With the cooling of the 

disk, these volatiles would have been later trapped in the clathrates formed with the 

crystallized icy grains. O2 is unique because, in spite of the ice phase transition, this 

molecule would remain stable within the icy matrix thanks to the strength of the interaction 

between O2 and the surrounding H2O molecules that would remain stable, or eventually 

increase, upon crystallization.

The exogenous radiolysis scenario makes it possible to rationalize also why H2O2 and HO2 

are detected only in very low abundances in 67P/C-G, and O3 not detected at all. These 

chemically-related species are formed during radiolysis and are effectively present into the 

cavities of the cometary ice. Our calculations show that all the oxygenated actors, i.e. H2O2, 

the corresponding radical HO2, atomic oxygen O, and the OH radical are stabilized within 

the ice matrix with comparable energies, close to the stabilization energy of water. Due to 

the confinement situation, the cavity appears as a chemical reactor in which H2O2 and HO2 

are converted into O2 (see reaction network above). It is the formation of O2 which is at the 

origin of the failure to observe the reactants leading to its formation. As to O3, it is so 

reactive that it will be destroyed by any radical formed in the radiolysis.

2.1.2 Recombination of Oxygen Atoms on the Surfaces of Interstellar Icy 
Grains—Gas-phase chemistry is not sufficient to account for the observed abundance of 

interstellar molecules because of the inefficiencies of gas phase routes. Grain-surface 
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chemistry is thus required to explain the observed abundances of water and other molecules, 

like H2 or O2 in molecular clouds (Tielens and Hagen 1982; D’Hendecourt et al. 1985; 

Hasegawa et al. 1992). Surface O2 is involved in the chemistry reaction network of water ice 

(Tielens and Hagen 1982; Cuppen and Herbst 2007), and forms through the recombination 

of atomic oxygen on icy grain surfaces.

The formation of O2 in the ISM in dark clouds can take place either through surface 

reactions on interstellar grains, or via radiolysis and/or photolysis of ice grains. In the case 

of surface reactions, O2 is formed through the recombination of atomic oxygen on icy grain 

surfaces. O2 efficiently reacts with O to form O3, and H to form HO2. The hydrogenation of 

O3 is the main destruction process of O3 and leads to the formation of O2 along with HO 

(Mokrane et al. 2009). Formation of O2 through radiolysis or photolysis takes place when 

energetic particles and UV photons break bonds triggering chemistry within the icy mantle 

of the grains, which could possibly lead to the formation of O2. However, this process seems 

unlikely for several reasons. First, although UV photolysis produces O atoms that may 

recombine to form O2, it also produces H atoms which react with O2 to reform H2O. 

Second, laboratory experiments show that if radiolysis does not occur when water is 

condensing onto the grain surface, then water radiolysis overproduces H2O2 while producing 

O2 (Teolis et al. 2006).

Taquet et al. (2016) conducted a parameter study in their astrochemical model to evaluate 

the formation of O2 in dark clouds. They varied several chemical and physical parameters 

with the aim of reproducing the relative abundances of related species (H2O, H2O2, HO2 and 

O3) with respect to O2 observed in 67P/C-G. The authors were able to reproduce the O3/O2 

and HO2/O2 abundance ratios by introducing an activation barrier of ~ 300 K for the O + O2 

and H + O2 reactions. However, under those conditions, H2O2 is overproduced by one order 

of magnitude compared to the observations, suggesting that other chemical processes are at 

play. In their simulations, Taquet et al. (2016) were only able to reproduce high O2 

abundances, comparable to those measured for 67P/C-G and when the density of H nuclei in 

the gas phase was very high (≥ 105 cm−3). Simulations using intermediate temperatures, ~ 

20 K, and low cosmic ray flux also favored the formation and survival of O2, with only a 

weak impact from visual extinctions. The temperature of ~ 20 K enhances the mobility of 

oxygen atoms on the surface of the grain, which favors oxygen recombination forming O2. 

At the same time, it allows efficient sublimation of atomic hydrogen, limiting the impact of 

hydrogenation reactions that destroy O2. The results presented by Taquet et al. (2016) 

suggest that the physical conditions of ρ Oph A, where Hershel observations revealed the 

presence of O2, HO2 and H2O2 gases in proportions consistent with the observations at 

67P/C-G, is a favorable environment for the formation and survival of O2 because of its high 

density (~ 106 cm−3) and warm temperature for a starless core (dust temperature of ~ 20 K). 

Furthermore, Taquet et al. (2016) showed that O2 is mostly formed in the innermost layers 

of the icy mantles and that it is well preserved during the formation of the protoplanetary 

disk. Contrary to O2, CO and N2 mostly form in the outermost layers of the icy mantle. 

Taquet et al. (2017) detail the impact of layering of the icy mantle during the transition from 

dark cloud to protoplanetary disk and its consequences to the volatile content of cometary 

ices. The outer layers of the icy grains are more likely to evaporate in the outer layer of the 

protoplanetary disk releasing N2 and CO in the gas phase, while the inner ice layers where 
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most of the O2 would be trapped remains frozen. N2 and CO can subsequently freeze out 

onto ices again once they reach the colder disk mid-plane. As CO is slightly less volatile 

than N2, it freezes out more efficiently than N2, which leads to a low N2/CO abundance, in 

agreement with observations made at 67P/C-G (Rubin et al. 2015a). Furthermore, as 

refreezing is independent of the amount of H2O in the icy mantle, this would also explain 

the low correlation of N2 and CO with H2O in cometary ices. On the other hand, the inner 

layer, where most of the O2 is thought to be trapped in H2O ice, remains unprocessed, which 

explains the good correlation between O2 and H2O reported by Bieler et al. (2015). The 

preservation of the inner layers of the icy grain mantles from the dark cloud stage until their 

incorporation into cometary nuclei is supported by the observation of a distributed source of 

halogens in the coma of 67P/C-G (Dhooghe et al. 2017). Thus, the scenario of O2 

production and the subsequent evolution of ice during the transition from dark cloud to 

protoplanetary disk discussed in Taquet et al. (2016) and Taquet et al. (2017) is consistent 

with observations of other volatiles (such as N2 and CO) made at 67P/C-G.

2.2 O2 Formation in the PSN

2.1.1 During Protosolar Collapse/Protoplanetary Disk Formation—Formation 

of O2 during protostellar collapse and protoplanetary disk formation was evaluated by 

Taquet et al. (2016) using an astrochemical model for gas grain chemistry (Furuya et al. 

2016). A fluid approach is used to describe the physical evolution of the cloud during its 

collapse and during the formation of an accretion disk described by the α-viscosity 

prescription. The fluid parcels are traced with the 2D axisymmetric and semi-analytical 

model initially developed by Visser et al. (2009). The initial composition of the gas and solid 

phase of the parent cloud was obtained from a molecular cloud model (Furuya et al. 2015) in 

which the amount of O2 ice is negligible at the onset of the collapse. The authors found that 

some gaseous O2 can form (up to 10−6H2), but that O2 trapped in H2O ice does not form 

efficiently. Because most of the O-bearing species are in the ices at the onset of the collapse, 

gaseous O2 can only form through photodissociation or desorption of H2O by stellar UV 

followed by subsequent gas phase reactions. In their simulations, this formation process 

failed to reproduce the observations of O2 made in 67P/C-G. They found that the O2/H2O 

ratio in the ice was several orders of magnitude lower, except for a few parcels of the upper 

layers of the disk where it is higher than 10−2. They also found that O2 was associated with 

CO2 rather than with H2O because CO2 ice reformation was more favorable than H2O 

reformation.

Taquet et al. (2016) ran another simulation where they modified the initial conditions in 

order to have a O2/H2O ratio of 5% in the ice, comparable to the ratio in 67P/C-G, at the 

beginning of the collapse. This simulation shows that this ratio is largely preserved, 

indicating that O2 produced in an earlier stage, for instance at the molecular cloud stage, 

would be preserved during the formation of the protoplanetary disk.

2.2.2 During the Vertical Transport of Icy Grains—The O2 formation in icy grains 

irradiated during their transport towards the upper layers of the PSN has been investigated 

by Mousis et al. (2018). In this scenario, the icy grains present in the midplane were lifted 

toward the upper layers of the disk and dragged down over a large number of cycles, due to 
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turbulent mixing (see Fig. 4). Consequently, these grains spent a non-negligible fraction of 

their lifetime in the disk’s upper regions, where CRF irradiation was stronger than in the 

PSN midplane.

The computations performed by Mousis et al. (2018) suggest that, even if a significant 

fraction of the icy particles have followed a back and forth cycle towards the upper layers of 

the disk over 10 million of years in a static PSN, the amount of O2 created via radiolysis is at 

least ~ two orders of magnitude lower than the Rosetta observations, making the proposed 

mechanism completely negligible if at play. This timespan exceeds by far the formation 

timescale of 67P/C-G, which has been estimated to range between 2.2 and 7.7 Myr after the 

formation of Ca-Al-rich inclusions in the PSN (Mousis et al. 2017). They also found that an 

increase of the CRF up to a factor of ~100 due to a close supernova explosion would not 

substantially change the O2/H2O ratio in icy grains because the timespan of such an event (a 

few kyr) is too short (Mousis et al. 2016b).

2.3 Different O2 Trapping Scenarios

2.3.1 Trapping in Amorphous Ice in the PSN Prior to Comet Formation—If O2 

were produced in the molecular cloud prior to the formation of the protosolar nebula itself, 

might it have been trapped in grains and delivered to the protosolar nebula as the latter 

formed? Trapping and transport of the pre-nebular molecular oxygen in grains that reach the 

comet-forming zone in the protosolar nebula is a more complex problem, given the range of 

environments and the time dependence of processes delivering grains to the disk, along with 

possible modification of grains as they enter the disk (e.g., Lunine et al. 1991b).

Hence, Taquet et al. (2016) invoke the variable luminosity of low mass stars to construct a 

scenario in which luminosity outbursts sublimate ice from grains, allowing O2 to be 

produced by gas phase cosmic ray energized chemistry, and then frozen out into grains of 

amorphous ice formed as the stellar luminosity tails off quickly. A series of such luminosity 

excursions could lead to the production and trapping of O2 in ice grains directly within the 

planet-forming disk. However, they discard this disk-origin model for O2 because, they 

argue, other species such as N2 would become trapped with the O2, which is not consistent 

with the observed depletion and lack of correlation with H2O in 67P/C-G, in contrast with 

O2’s strong correlation (N2 should be more poorly trapped in amorphous ice than O2, since 

the measured binding energy for adsorption of N2 is about 2/3 that of O2 (see Introduction), 

though the key here is the difference in correlation with H2O). Another concern, not raised 

by Taquet et al. (2016), is whether the luminosity fall-off and cooling are fast enough to 

form the amorphous ice required to trap the molecular oxygen.

Taquet et al. (2016) favor a dark cloud site, outside of and perhaps prior to the protosolar 

nebula, for the chemical production of O2 from H2O. Although consistent with the cometary 

data, the consequent complexities of delivery to the disk including the potential for removal 

of the O2 from the ice by even modest heating, must be considered in contemplating a 

molecular cloud source.

2.3.2 Trapping in Clathrate Hydrate—Trapping of volatile species in nebular 

clathrate hydrate has been treated by numerous groups over a number of years, but with less 
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attention paid to molecular oxygen until very recently. Tse et al. (1986) prepared a clathrate 

hydrate with O2 as the sole “guest” species (the molecule occupying the void or cage site in 

the water ice H-bonded structure) and found it to induce the so-called structure II clathrate, 

with 16 small and 8 large cages per unit cell. The dominant clathrate-forming species in the 

solar nebula, CO and CH4, both induce structure I clathrate formation (Lunine and 

Stevenson 1985), but O2 will incorporate as a secondary guest species in the structure I. 

Mousis et al. (2016b) numerically computed O2 incorporation in clathrate in the nebula by 

considering a two-component gas of O2 and CO, employing a statistical mechanical 

formalism first used comprehensively for solar system studies by Lunine and Stevenson 

(1985), but with molecular interaction (Kihara) parameters from the most recent data sets 

available. Mousis et al. (2016b) found that the ratio of O2 to CO in the clathrate hydrate was 

up to twice that in the coexisting gas phase of the nebula. Given the lack of evidence for 

direct condensation of the class of volatile species O2, N2, and argon as molecular ices, 

clathrate hydrate may have been an important carrier of molecular oxygen in the 

protoplanetary disk. This scenario has been ruled out by Mousis et al. (2016b) because it 

predicts a strong O2-C0 correlation instead of the one observed for O2-H2O, regardless the 

seasons or heliocentric distance of the comet.

2.3.3 O2 Condensation in the Protosolar Nebula—As mentioned above, direct 

condensation of O2 (and other volatiles) in the colder regions of the PSN also needs to be 

considered in the context of O2 in comet 67P/C-G. O2 and other volatiles condensed from 

the gas phase in the PSN may have incorporated into the forming nucleus if the nucleus was 

formed in a colder environment than needed for clathration. Pure Ar, N2, CO, and O2 

condense at similar temperatures (~ 20–25 K) in the PSN (Fray and Schmitt 2009). 

Therefore, their similar condensation temperature implies that if direct condensation is 

responsible for the observed O2 in the coma of 67P/C-G, then both Ar and N2 should be 

present in the nucleus in near-solar proportions.

ROSINA/DFMS measured the abundance of O2 and other volatiles relative to H2O in the 

coma. While it is important to note that measurements of volatile abundances in the coma do 

not necessarily reflect abundances in the nucleus, they currently are our best estimate of the 

possible composition of the nucleus. As measured by ROSINA/DFMS, Ar/CO (Balsiger et 

al. 2015) and N2/CO (Rubin et al. 2015a) in the coma of 67P/C-G have been found to be 

significantly depleted compared to the solar abundances, by a factor of ~ 90 and 10, 

respectively (Mousis et al. 2016b). In addition, N2 was found to be strongly depleted with 

respect to CO in three Oort cloud comets (Cochran et al. 2000; Cochran 2002). This 

depletion implies that Ar and N2 did not likely form substantial amounts of pure condensates 

in the PSN where comet 67P/C-G was formed. However, a mixture of pure condensates and 

clathrates in the nucleus of 67P/C-G is also possible.

O2 was observed to correlate strongly with H2O during the six-month approach-phase 

interval reported by Bieler et al. (2015). If such strong correlation is representative of the 

outgassing behavior through the entire orbit, then it is likely that either O2 and H2O desorb 

together, or that O2 is produced from H2O (see Sect. 3 for details).

Luspay-Kuti et al. Page 12

Space Sci Rev. Author manuscript; available in PMC 2019 December 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



3 Post-agglomeration Formation Scenarios

3.1 In Situ O2 Formation Processes

3.1.1 Eley-Rideal Reactions—An alternative hypothesis concerning a class of rarely-

considered Eley-Rideal mechanisms (ER) was recently proposed by Yao and Giapis (2017) 

to explain the presence of O2 in the coma of 67P/C-G. In these ER reactions, energetic 

water-derived ions (e.g. H2O+, H3O+, OH+, O+) are accelerated by the solar wind and are 

pulled back toward the nucleus (or other surfaces). Based on laboratory experiments, when 

the ionized water-group species collide with oxidized Si/Fe or other mineral surfaces, they 

abstract an oxygen atom and form an excited precursor state. The dissociation of this 

precursor state generates energetic O2
− anions, which are then converted to O2 by photo-

detachment. O2
− and energetic O2 produced this way was proposed to account for the O2 

detected in the coma of 67P/C-G (Yao and Giapis 2017). Since O2 is produced from H2O on 

multiple possible surfaces in the proposed ER reactions, the two species must be closely 

associated at all times, and the O2
− production rate must be proportional to the accelerated 

cometary H2O ion flux. In addition to energetic water-derived ions, O2 could also be 

produced in collisions of (1) energetic hydronium ions, (2) energetic neutral water 

molecules, and (3) excited atomic oxygen (thermal or hyperthermal) on the surfaces of the 

nucleus, the spacecraft, or the DFMS instrument itself.

While the proposed ER reactions do explain the strong correlation between H2O and O2 as 

reported by Bieler et al. (2015), the energetic water ion flux (Nilsson et al. 2017; Fuselier et 

al. 2015) seems to be too low to account for the observed high O2 abundance in the coma of 

67P/C-G. Recently, Heritier et al. (2018) concluded that both the integrated energetic 

cometary water-group ion flux and the maximum fraction of O2 produced via ER reactions 

(assuming 100% yield) were insufficient for ER reactions to be the dominant O2 source. In 

fact, they estimated that the O2 production rate by ER reactions is at least 4 orders of 

magnitude lower than the observed O2 production rate, even when using the conservative 

low O2 concentration of 1%. In addition, Heritier et al. (2018) argue that the energetic water 

ions that drive ER reactions were anti-correlated with the O2 density measured by ROSINA/

DFMS, at least for March 5–23, 2016. At the same time, Yao and Giapis (2018) argued that 

“cold” water ions, whose flux is about 100 times that of the “accelerated” water ions 

(Nilsson et al. 2015) bombarding the spacecraft could produce O2 in situ. Whether this O2 

would be detected by DFMS is uncertain as the DFMS response under exposure to a low-

pressure water plasma containing O2 is unknown (Yao and Giapis 2018). It is also important 

to note that Alice has detected O2 independently of ROSINA (Keeney et al. 2017a), and 

post-perihelion Alice results indicate that the relative O2/H2O decreases with increasing 

impact parameter above the nucleus (Keeney et al. 2017b). Although the Alice 

measurements may arguably be affected by spacecraft-produced O2, the observed O2/H2O 

variation with impact parameter would be unlikely within this framework. Finally, ER 

reactions require a direct collision with the appropriate atom, which is a low probability 

process.
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3.1.2 O2 Formation via H2O2 Dismutation/Disproportionation—Dulieu et al. 

(2017) proposed dismutation of cometary H2O2 as a source of O2 observed in the comae of 

67P/C-G by ROSINA/DFMS (Bieler et al. 2015) and Halley by the Giotto mass 

spectrometer (Rubin et al. 2015b). The peroxide is suggested to have a primordial origin, co-

produced with water ice on surfaces of interstellar dust grains via hydrogenation reaction of 

O-bearing species, and transported into the comet-forming regions of the proto-planetary 

disks (Taquet et al. 2016). The comet’s volatile constituents, including water ice and 

peroxide, undergo temperature-dependent sublimation during perihelion approach. The 

peroxide either desorbs as intact molecules, or dismutates as the global reaction

2H2O2 2H2O + O2 . (9)

Based on results from their laboratory experiments summarized below, the authors (Dulieu 

et al. 2017) assert this peroxide-derived O2 as the source of molecular oxygen detected in the 

coma of 67P/C-G at abundances ranging from ~ 1–10% relative to H2O.

In the first set of experiments, the authors co-deposited molecular O2 with an atomic beam 

of D onto an amorphous silicate substrate held at 10 K. These species condensed and reacted 

to form a thin film (< 1 ML (monolayer)) of O2, D2O, and D2O2, which are thermally 

desorbed and detected with a mass spectrometer when the substrate was heated to > 200 K at 

10 Kmin−1. The key result was the presence of O2 and D2O desorption peaks at 175 K, 

accompanying the sublimation of the less volatile D2O2. Dulieu and coworkers interpreted 

the higher temperature O2 and D2O peaks as the signature of D2O2 dismutation. While a 

fraction of the D2O2 sublimes intact, some are converted to D2O and O2 on the surface and 

released in the gas phase. Above 180 K, the ratio O2/D2O2 is about 0.4; nearly half that of 

D2O/D2O2 ~ 1, and consistent with the stoichiometry of the dismutation reaction.

The second set of experiments was a repeat of the first set, except performed on a 25 ML-

thick compact H2O ice pre-deposited on top of the silicate substrate. A distinct O2 peak was 

observed at 155 K, immediately following the main H2O/HDO desorption. Solid-state 

isotope exchange led to the conversion of D2O and D2O2 formed via O2 + D reactions into 

HDO and HDO2, respectively. However, it is not clear what fraction of the deuterated 

species was substituted with H even to form H2O2, which is not discussed.

Several differences were noted compared to the first set of experiments: the O2 peak was 

observed at 155 K, 20 K lower compared to the first experiments. Further, no concurrent 

HDO2 desorption peak was observed with O2. Instead, the HDO2 sublimation followed the 

O2 peak at 160 K. The authors claim a dismutation origin for the O2, since they report a 

HDO desorption rate twice that of O2 at 155 K. However, this is not consistent with the data 

in Fig. 3 of their manuscript (reproduced here as Fig. 5) where the HDO rate is about ten 

times larger compared to O2. Furthermore, to explain the absence of HDO2, the authors 

inferred a highly efficient peroxide dismutation (close to unity) attributed to the high 

concentration of peroxide that accumulates on the silicate substrate following H2O 

sublimation, and the catalytic effect of the substrate favoring peroxide dismutation. Above 
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160 K, the three species continue to effuse out with O2/HDO2 and D2O/D2O2 ratios more 

consistent with dismutation.

The dismutation process requires the incorporation of primordial peroxide into the cometary 

nucleus. Though astrochemical models (Tielens and Hagen 1982; van Dishoeck et al. 2013) 

predict the occurrence of peroxide on interstellar grains, and laboratory experiments support 

the formation of H2O2 via hydrogenation reactions with O-bearing species (Dulieu et al. 

2010; Ioppolo et al. 2008; Jing et al. 2011; Oba et al. 2009), an unambiguous detection of 

solid peroxide in the molecular clouds has not been reported to date. H2O2 has been reported 

in the gas phase, but at a small abundance of 10−10 relative to H2 (Bergman et al. 2011). 

Smith et al. (2011) analyzed the infrared spectra of several molecular clouds, and placed 

upper limits on H2O2 abundance (9 ± 4% relative to water ice) by assessing the possible 

contribution of the 3.5 μm peroxide feature measured in the laboratory to the 3.47 μm 

interstellar feature. However, other H2O2-specific absorption features expected at 7 and 11.3 

μm were not identified, probably due to masking by underlying H2O and silicate features 

(Smith et al. 2011). Further, it is not clear if the primordial H2O2 can survive the evolution 

of the dark clouds to protoplanetary disks and be transported unaltered to the comet-forming 

regions.

It is also challenging to reconcile the highly efficient (50–100%) peroxide dismutation with 

other laboratory experiments where stable films of pure crystalline H2O2 (~ 98% purity) is 

obtained from the isothermal distillation of H2O-H2O2 films at 167 K (Loeffler et al. 

2006b). This temperature exceeds the dismutation temperature of 155 K. Using a quartz 

crystal microbalance, Loeffler and colleagues reported no mass loss (< 0.1 H2O2 ML, the 

detection limit of the microbalance) from a distilled crystalline peroxide film (Loeffler et al. 

2006b). Any H2O2 dismutation into O2 and H2O, which are thermally unstable at 167 K, 

would have resulted in a mass loss. While we note the use of different substrates (gold vs. 

silicate), the substrate-promoted dismutation is likely not important for multi-layered 

peroxide films obtained by Loeffler et al. (2006b).

Finally, H2O2 can fragment into O2 from electron impact in the ionization region of the mass 

spectrometer (Loeffler et al. 2006a). Also, collision with the chamber walls can dissociate 

H2O2 to O2. It is unclear if the desorption flux reported by Dulieu et al. (2017) were 

corrected for fragmentation.

3.2 Post-accretion Radiolysis

One can wonder how radiolysis affected cometary ices over their orbital history during their 

4.56 billion-year evolution in the Solar System. Bieler et al. (2015) noted that comets are 

subject to radiolysis on 3 different timescales: (i) billions of years during their residence in 

the Kuiper belt, (ii) over a period of a few years when they enter the inner Solar System, and 

(iii) on very short timescales when they approach perihelion. The authors estimated that the 

skin depth for producing O2 is in the range of meters during their residence in the Kuiper 

belt. However, once a comet migrates towards the inner Solar System, it easily loses surface 

material over depths reaching several meters during each orbit. This material loss implies 

that, according to Bieler et al. (2015), no O2 produced during the Kuiper belt phase is likely 

to remain in the amount exceeding the percentage level. Radiolysis and photolysis by solar 
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wind and UV flux in the inner Solar System may also produce O2 at the top micrometer 

levels of cometary surfaces. Meanwhile, based on measurements of continuous mass loss 

through outgassing, Bieler et al. (2015) estimated that 67P/C-G’s active surface areas lost a 

depth of several centimeters during their sampling period between September 2014 and 

March 2015. Because their data show a constant O2/H2O ratio during the studied time 

interval instead of a continuous decrease, the authors ruled out the hypothesis that a recent 

production by radiolysis or photolysis may be the source of the measured O2. In addition, 

Bieler et al. (2015) excluded the possibility of instant creation of O2 by radiolysis or 

photolysis because these processes would lead to variable O2/H2O ratios as a result of 

different heliocentric distances and illumination conditions.

3.2.1 Endogenic Radiolysis—A possible source of molecular oxygen in 67P/C-G is 

radiation chemistry of ice induced by an endogenic source—decaying radionuclides present 

in the chondritic dust that represents 4/5th of the mass of the comet (Rotundi et al. 2015). 

Short-lived (26Al, 60Fe) and long-lived (40K, 235U, 238U, 232Th) radionuclides emit energetic 

alpha particles (helium nuclei), beta particles (electrons), and gamma rays that interact with 

the surrounding materials, including ice. Assuming an even repartition of the radionuclide-

bearing dust, this process would produce O2 homogeneously within the ice, in conformity 

with the observation of an O2 signal correlated with water (Bieler et al. 2015).

Using a production model originally developed for Earth water-rock mixtures (Hofman 

1992; Lin et al. 2005a,b; Bouquet et al. 2017), Bouquet et al. (2018) estimated a maximum 

value of 1% O2/H2O produced within 67P/C-G over the age of the Solar System, which is 

below the 3.8% value derived from the ROSINA/DFMS observations. However, this 

estimate relies on O2 production yields from ice irradiation experiments, which are 

motivated by the need to understand the evolution of icy surfaces exposed to planetary 

radiation belts (e.g. Europa). These experiments are therefore performed at projectile 

energies lower than the values relevant to radionuclide decay emissions, and gamma ray 

irradiation is usually not considered. Additionally, the results of Teolis et al. (2017) indicate 

that O2 production yields in ice are higher for low projectile energies and high ice 

temperatures (> 80 K). Conditions in comet 67P/C-G are therefore unfavorable for O2 

production, as projectile energies are high and the temperature has stayed below 80 K for 

most of the comet’s history (Mousis et al. 2017). For these reasons, the 1% value reported in 

Bouquet et al. (2018), which uses the highest yields from the literature, is an upper limit.

It should be noted that H2O2 is also produced by ice radiation chemistry in a more consistent 

manner than O2 (Teolis et al. 2017) regarding projectile energy. The findings of Bouquet et 

al. (2018) point to the potential for endogenic radiolysis to produce amounts of H2O2 on the 

order of a tenth of a percent compared to water. Such quantities are incompatible with the 

very low abundance of H2O2 detected by ROSINA/DFMS (Bieler et al. 2015), indicating 

that either production was prevented, or that H2O2 was destroyed by a chemical process, 

possibly producing O2 (Dulieu et al. 2017).

Endogenic radiolysis cannot account for the abundance of O2 measured by ROSINA, but it 

may have produced a non-negligible fraction of it, either directly, or through production and 
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destruction of H2O2. This homogenous distribution of O2 in the ice would fit the observed 

correlation with water. More laboratory data is required to better constrain this fraction.

4 Conclusions

The presence of large amounts of O2 in the coma of 67P/C-G continues to be perplexing. 

While several possible scenarios have been postulated for the formation of cometary O2, the 

current state of analysis of the published Rosetta data preclude the determination of its 

dominant source and origin. All O2 formation mechanisms currently proposed in the 

literature rely heavily and solely on the only available published O2 data, which only covers 

a six-month time interval from Rosetta’s approach phase (Bieler et al. 2015). This limitation 

raises the issue of how representative the time interval is for the entire orbit of 67P/C-G, 

which would be key for deciphering the origin of O2. Is the O2-H2O correlation strong 

throughout the orbit, or does it change with heliocentric distance? Are there any 

hemispherical differences between the correlations? Do the large-scale changes or the lack 

thereof more or less agree with the small-scale changes, and if not, then why? Does the 

O2/H2O ratio remain fairly constant at different orbital segments, or does it change 

systematically/randomly/hemispherically/with illumination/with temperature? Is the bulk of 

cometary O2 produced by one dominant mechanism, or do multiple production mechanisms 

contribute to the signal? Does the dominant production mechanism change at different parts 

of the orbit? These are just a handful of questions that need to be answered in order to assess 

the viability of each scenario reviewed in this paper. Some of the answers most likely lie in 

the systematic analysis of the Rosetta data, and some issues will likely require future 

missions to address.

If O2 is primordial, then the O2/H2O should remain nearly constant with heliocentric 

distance, regardless of the hemisphere (see Fig. 1). That is because O2 and H2O ices in the 

nucleus would be physically related. That means that the production rate of O2 must be 

related to the production rate of H2O at all times. When more H2O is released from the 

nucleus due to higher sublimation rates, more O2 is also released, resulting in a nearly 

constant O2/H2O with season, hemisphere, and heliocentric distance. On the other hand, if 

O2 has a present-day origin and is produced in situ, then the O2/H2O is expected to change 

with the seasons and heliocentric distance. If O2 is produced in situ from water-group ions 

accelerated by the solar wind hitting various surfaces and triggering ER reactions, then O2 

production would have to depend on: (i) the H2O production rate, (ii) on the intensity of the 

solar UV/photoelectrons and the solar wind/energetic electrons, and (iii) dynamic processes 

in the solar wind including its interaction with the coma (shocks, discontinuities, etc.). UV 

photons and photoelectrons ionize the cometary H2O molecules, while the solar wind and 

energetic electrons drag these water-derived ions back onto the surface, initiating the ER 

reactions. The H2O production rate scales with heliocentric distance (Rh) as a function of 

roughly Rh
−c2, where c2 = 5 and c2 = 7 pre- and post-perihelion, respectively (Hansen et al. 

2016). At the same time, the solar wind and solar UV scale with Rh as 1/Rh
2 Therefore, the 

production rate of O2 should scale with Rh
−(c2 − 2), while the production rate of H2O is 

Rh
−c2, meaning that the O2/H2O ratio should follow a 1/Rh

2 dependence. Thus, if ER 
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reactions produce the majority of the observed O2, then the O2/H2O ratio should be several 

factors (by a factor of ~ 5) higher at perihelion than at 3 AU. Therefore, analysis of the 

O2/H2O over the extent of the mission would be needed to conclude whether or not the ratio 

changes with cometocentric distance. In addition, ER reactions are independent of the 

illumination conditions and the nucleus temperature. At the same time, H2O2 dismutation/

disproportionation reactions are temperature-dependent, and the O2/H2O2 ratio should vary 

below about 180 K (Dulieu et al. 2017). At Rh ≥ 3 AU the conditions were ideal for 

identifying differences in the O2/H2O2 between the two hemispheres due to the different 

hemispheric temperatures; hence, looking at time periods prior to the inbound equinox and 

following the outbound equinox may be a good start. We also note that a possible lack of 

correlation between O2 and H2O may occur as a result of H2O re-condensation onto the 

nucleus after the more volatile O2 has already sublimated away. This re-sublimated H2O 

would not contain O2 anymore; hence, would weaken the correlation between O2 and H2O.

A potential strong correlation between O2 and CO, and/or O2 and CO2 (hemispheric and/or 

over a given period along the orbit) would make it more likely that O2 was formed in the 

PSN instead of the ISM, and that it is not produced in situ. In that case, determining the 

O2/CO ratio over time and comparing it to calculations from the clathrate model of Mousis 

et al. (2016b) could provide more definitive answers as to what phase O2 is stored in the 

nucleus. Furthermore, the time scales calculated by Mousis et al. (2016b) may yield a 

different conclusion about the formation location of icy grains if the GCR flux (H and Fe) 

were estimated using a different approach, i.e. that of Webber and Yushak (1983). While the 

Fe flux is lower than the proton flux based on the latter approach, the electronic stopping in 

H2O ice is higher, which could potentially make Fe contribute more heavily to O2 

production in icy grains. In future parameter studies, both the issue of GCR flux and the 

depth-dependency of the O2 yield (Teolis et al. 2017) will need to be evaluated.

The conundrums created by the discovery of O2 in 67P/C-G would be readily dismissed as 

perhaps a peculiarity were it not for the conclusion that 1P/Halley data also show evidence 

of this molecule in similar amounts (see Sect. 1 Introduction). The inference that 1P/Halley 

may have been an Oort cloud comet, rather than a Jupiter family object as 67P/C-G, might 

argue for a widespread occurrence of O2 in the protoplanetary disk, any other explanation 

(such as both comets being anomalous) seeming to beg the question. It is thus incumbent 

upon modelers to focus additional effort on mechanisms for producing this molecule either 

in the protoplanetary disk, precursor clouds, or in the comet itself. The prospect that a 

sample of a comet nucleus might be returned to Earth, thanks to the selection for additional 

development of the CAESAR mission in NASA’s New Frontiers program, opens up the 

possibility of determining how this molecule is incorporated in the ice. Until then, the 

difficult task of remote sensing of this symmetric molecule or its atomic fragments will have 

to suffice for additional data.
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Fig. 1. 
Proposed explanations for the origin (red and orange), formation mechanisms (purple), and 

trapping mechanisms (blue) of O2 from the literature. Implications of the different scenarios 

to the ROSINA data, i.e. key measurements required to validate the different approaches, are 

listed in the black boxes. Formation mechanisms in the gray boxes are highly unlikely 

because of the affected layers would have been removed by erosion since 67P/C-G entered 

the inner Solar System. References: M16: Mousis et al. (2016b), T16: Taquet et al. (2016), 

B15: Bieler et al. (2015), M18: Mousis et al. (2018), YG17: Yao and Giapis (2017), D17: 

Dulieu et al. (2017), AB: Bouquet et al. (2018)
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Fig. 2. 
Time evolution of the fraction of O2 molecules produced by cosmic rays in icy grains 

located in various environments (derived from Mousis et al. 2016b). The PSN case (blue 

curve) considers the irradiation of an icy grain placed at 30 AU in the PSN midplane. The 

ISM case (red curve) considers the irradiation of an icy grain located in the interstellar 

medium
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Fig. 3. 
Optimized crystalline structure for O2 trapped inside the cavity (n = 4). The dashed lines 

show the unit cell considered in the VASP simulation. A vacuum of 15 Å high is used over 

the topmost H2O bi-layer to avoid spurious interactions between adjacent slabs in the 

periodic treatment. The initial positions of destroyed H2O are illustrated by the dotted 

circles. The arrow points to the embedded O2 molecule
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Fig. 4. 
Illustration of the vertical transport of small icy grains toward disk regions where irradiation 

is strong and favors the formation of O2 (figure adapted from Mousis et al. 2018). Grains 

remain concentrated in the midplane of the disk because of gravitational settling and gas 

drag
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Fig. 5. 
Desorption rates of O2, HDO, HDO2, and H2O from heating a thin film produced from the 

reaction of D atoms with O2 condensed onto the surface of a 25 ML-thick compact 

amorphous ice. The H atoms are introduced in the deuterated species via isotope exchange. 

Reproduced from Dulieu et al. (2017)
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