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ABSTRACT
Shack–Hartmann wavefront sensing relies on accurate spot centre measurement. Several al-
gorithms were developed with this aim, mostly focused on precision, i.e. minimizing random
errors. In the solar and extended scene community, the importance of the accuracy (bias error
due to peak-locking, quantization, or sampling) of the centroid determination was identified
and solutions proposed. But these solutions only allow partial bias corrections. To date, no
systematic study of the bias error was conducted. This article bridges the gap by quantify-
ing the bias error for different correlation peak-finding algorithms and types of sub-aperture
images and by proposing a practical solution to minimize its effects. Four classes of sub-
aperture images (point source, elongated laser guide star, crowded field, and solar extended
scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity,
Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-
noise conditions. The best performing peak-finding algorithm depends on the sub-aperture
image type, but none is satisfactory to both bias and random errors. A practical solution is
proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the
true centre. The solution decreases the bias by a factor of ∼7 to values of � 0.02 pix. The
computational cost is typically twice of current cross-correlation algorithms.

Key words: instrumentation: adaptive optics – techniques: high angular resolution –
techniques: image processing.

1 IN T RO D U C T I O N

The Shack–Hartmann wavefront sensor is commonly used to mea-
sure the wavefront aberrations in astronomical adaptive optics
(Tyson 2015), optical testing (Malacara 2007), ophthalmology
(Burns et al. 2014), or microscopy (Booth 2014). It consists of
a two-dimensional (2D) array of microlenses. For a plane wave-
front incidence, the spots are focused on the optical axis of the
each microlens – the reference centres. For an aberrated wavefront,
the imaged spots are displaced from the reference centres. The es-
timation of the spot displacements between the aberrated and the
reference spots allows one to retrieve the incident aberrated wave-
front profile (Dai 1996)

Correlation algorithms are used to estimate spot displacements
when extended sources are present [cf. Rais et al. (2016) for a
recent review]. The cross-correlation (a) is optimal at lower signal-
to-noise ratios (SNR; Vijaya Kumar, Dickey & Delaurentis 1992);
(b) is fast and of simple implementation over other methods such
as maximum likelihood (Gratadour, Mugnier & Rouan 2005) and
iterative gradient-based shift estimators (Rais et al. 2016); and (c)

� E-mail: narsireddy.anugu@fe.up.pt (NA); pgarcia@fe.up.pt (PJVG);
carlos.correia@fe.up.pt (CMC)

has unitary gain (Gratadour et al. 2010). Cross-correlation is applied
to measure image displacements for solar adaptive optics (Wöger &
Rimmele 2009; Löfdahl 2010; Townson, Kellerer & Saunter 2015),
laser guide star elongated spots (Thomas et al. 2008; Basden et al.
2014), and to extended scene wavefront sensing (Poyneer 2003;
Robert et al. 2012). The image displacement is computed by cross-
correlating a reference1 image to the target aberrated sub-aperture
image. The correlation algorithm can be implemented either in
spatial domain (Löfdahl 2010) or in the Fourier domain (Poyneer
2003; Sidick 2013). In both domains, the image displacement is
measured in two steps. In the first step, the cross-correlation between
the reference and the target image is computed. In the second step, a
sub-pixel peak-finding algorithm is applied to the correlation image
(Poyneer 2003). Commonly used peak-finding algorithms in image
registration are 1D parabola fitting (Poyneer 2003; Thomas et al.
2006; Robert et al. 2012), Gauss fitting (Nobach & Honkanen 2005),
centre of gravity, pyramid fitting (Bailey 2003), and 2D quadratic
polynomial fitting (Löfdahl 2010). These will be addressed further
in the article (cf. Table 1).

1 Cf. Basden et al. (2014) for several approaches for reference image
generation.
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Table 1. Sub-pixel (s′
x , s′

y ) peak-finding algorithms. The estimate of s′
y is

obtained in an analogous fashion to s′
x .

Algorithm

1D parabola fit (PF):
s′
x = x0 + 0.5 × C[x0−1,y0]−C[x0+1,y0]

C[x0−1,y0]+C[x0+1,y0]−2C[x0,y0]
Gaussian fit (GF):
s′
x = x0 + 0.5 × ln(C[x0−1,y0])−ln(C[x0+1,y0])

ln(C[x0−1,y0])+ln(C[x0+1,y0])−2 ln(C[x0,y0])
Pyramid (PYF):
s′
x = x0 + 0.5 × C[x0−1,y0]−C[x0+1,y0]

min

(
C[x0−1,y0],C[x0+1,y0]

)
−C[x0,y0]

2D quadratic polynomial fit (QPF):

(s′
x , s′

y ) =
(

x0 + 2a1a5−a2a4
a2

4−4a3a5
, y0 + 2a2a3−a1a4

a2
4−4a3a5

)
with polynomial f(x) = a0 + a1x + a2y + a3x2 + a4xy + a5y2.
Centre of gravity (CoG):
s′
x = x0 + C[x0−1,y0]−C[x0+1,y0]

3 min

(
C[x0−1,y0],C[x0+1,y0]

)
−
(

C[x0,y0]+C[x0+1,y0]+C[x0−1,y0]

)

Sub-pixel peak-finding in the correlation image is biased towards
integer pixels. In adaptive optics, these errors are often referred
as systematic bias errors, quantization errors, or sampling errors.
Methods for their correction are modelling and a posteriori correc-
tion (Wöger & Rimmele 2009; Löfdahl 2010; Sidick 2013). These
approaches are limited because the bias errors depend on (a) mod-
elling; (b) the sub-aperture image characteristics; (c) the noise level;
(d) the combination of correlation and the peak-finding algorithms;
making it difficult to model – especially in low signal-to-noise
conditions.

In the following, the bias problem of centroid algorithms is ad-
dressed. In Section 2 the methods used are presented, including a
novel algorithm for bias error reduction. The results on the bias
performance of several peak-finding algorithms are presented in
Section 3.1. It is found that no algorithm is simultaneously satisfac-
tory for both bias and random errors. The results on the proposed
solution to the bias error are presented and discussed in Section 3.2.
In Section 4 we conclude by recalling the main ideas.

2 M E T H O D S

2.1 Current peak-finding methods

Consider the reference (I0) and sub-aperture (IS) images, with size
N × N pix2. The cross-correlation in the image domain (C), is given
by

C[m, n] =
N∑

i=1

N∑
j=1

IS[i + m, j + n]I0[i, j ]. (1)

The image displacement in integer pixels is determined from the
correlation maximum location, which is at the pixel (x0, y0). The
sub-pixel image displacement (s ′

x , s ′
y) is estimated by applying 2D

centroid algorithms (cf. Table 1 and Section 1) to the correlation
map C[m, n]. In most algorithms only five pixels are used: (x0, y0),
(x0 − 1, y0), (x0 + 1, y0), (x0, y0 − 1), and (x0, y0 + 1). For the
2D quadratic polynomial fit nine pixels instead of five are required
for the estimation of the six coefficients. The estimation of s ′

y is
analogous to s ′

x .
The measured displacement s′ (in a given direction x or y) by the

centroid algorithms is related to the real displacement s by

s ′ = s + β + ε, (2)

Figure 1. Bias error for a point source with centre of gravity centroid
algorithm versus sx. The shift vector is �s = [s, s]T, i.e. sx = s.

where β is the bias error and ε the noise error. As referred in
Section 1 these algorithms have systematic errors, the bias error
β exhibits a ‘sinusoidal’ variation with an exact shape depending
on ε, image, and centroid algorithm. In Fig. 1 an example of this
bias is presented, in the absence of noise, for the cross-correlation
algorithm (equation 1). The origin of the bias is well known in
the strain measurement community, it is due to the transfer func-
tion of the centroid algorithm (e.g. Schreier, Braasch & Sutton
2000). For example, the transfer function of the linear interpola-
tion is not unitary but a complex number. Its module and phase
changes with interpolation position. Therefore a bias in intensity
and shift when an interpolation is made (cf. Schreier et al. 2000, for
details).

In the presence of noise ε, the bias error β in equation (2) is
estimated by taking the average of a large number of realizations,
assuming that s is constant for the number of realizations. The noise
error is then significantly reduced and equation (2) becomes〈
s ′〉 � s + β, (3)

where the 〈 〉 denotes average.
The noise error ε is estimated by the root-mean-square (RMS)

deviation of the random sample of realizations

ε � σ =
√∑n

i=1 (s ′ − 〈s ′〉)2

n
, (4)

with n the number of realizations.

2.2 Window shift peak-finding algorithm

In the standard approach, the sub-pixel peak centre is determined by
directly applying a peak-finding algorithm of Table 1. In this work,
a method to reduce the bias error in the peak-finding is proposed.
A similar method was previously applied in the context of particle
image velocimetry (Gui & Wereley 2002), but to our knowledge, it
is presented for the first time in the context of adaptive optics.

It is a two-step method: (a) coarse search; (b) fine search. In
Algorithm 1 the pseudo-code of the method is presented. In the first
step (coarse search, lines 2–4) the integer pixel maximum location
(x0, y0) is found. In the second step, (fine search, lines 5–19) an
image region of interest (IROI, cf. line 12) is interpolated from the
sub-aperture image IS. The interpolation is made with the same
sampling as the original image. At each iteration, the interpolation
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is done at changing fractional initial positions δ (cf. line 7). Then
the correlation between the reference I0 and each IROI is computed
(cf. line 13). The sub-pixel displacements s′ are then obtained using
the peak-finding algorithms of Table 1 (cf. line 16). These sub-pixel
displacements are then corrected by the step δ introduced during
the interpolation (cf. line 17). This process is repeated K times,
with varying δ (cf. line 7). Because K correlations took place, s′

is a vector of K elements. The individual displacements s′[k] are
affected by the bias β. This bias is ‘sinusoidal’ and antisymmetric,
with period 1 pix, as referred in Fig. 1. The algorithm then takes the
average of all K displacements (cf. line 19), which reduces the bias
approximately proportional to K.

For computational efficiency the cross-correlation C is not com-
puted in all pixels but only for a sub-image of size 5 × 5 pix2

centred in the maximum, generating a cropped version of the cross-
correlation: C5. Simulations show that the centroid algorithms be-
have similarly for C and C5.

The combination of the original pixel grid based conventional
correlation (in a large field of view) and a sub-image grid correlation
within a small field of view, warrants a high dynamic range shift
determination to the algorithm.

Data: Reference image I0; sub-aperture image IS;
sub-sampling scale K .

Result: Unbiased sub-pixel shift s ′
A.

1 begin
2 Coarse search;

C[x, y] = Correlation(IS; I0);
(x0, y0) = FindCentreInteger(C);
Fine search;
for k = 1 to K do

3 δ = (k − 1)/K
for i = x0 − 2 to x0 + 2 do

4 x =
Range2D(i − N/2+1+δ; i+N/2+δ; N)
for j = y0 − 2 to y0 + 2 do

5 y = Range2D(j − N/2 + 1 + δ; j +
N/2 + δ; N)
IROI = Interpolate2D(IS; x; y)
C5[i, j ] = Correlation(IROI; I0)

6 end
7 end
8 s ′ = FindCentre(C5);

s ′[k] = s ′ − δ //remove input shift applied to IROI

at interpolation step;
9 end

10 s ′
A = Average(s ′[k])

11 end

Algorithm 1: Window shift peak-finding algorithm.
The function FindCentre is one of the peak-
finding algorithms presented in Tab.1. The function
Correlation(IS; I0) is given in equation 1. The func-
tion FindCentreInteger(C) determines the integer
pixel where the maximum of C is located. The function
Interpolate2D(IS; x; y) extracts an interpolated im-
age IROI from IS at grid array locations x and y. The function
Range2D(a, b, N ) creates a square 2D mesh from (a, a)
to (b, b), with N2 pixels. In Section 2.2 the algorithm is
explained in detail. The IROI has image dimensions as I0.

2.3 Synthetic sub-aperture images

Four types of sub-aperture image models of relevance for astro-
nomical adaptive optics were used: (a) a point source diffracted
spot; (b) a laser guide star elongated spot (Schreiber et al. 2009);
(c) a crowded field image; (d) a solar photosphere image (Löfdahl
2010). The simulation of the point source and the laser guide star
are realized using 2D Gaussian profiles (circular 2 × 2 pix2 and
elliptical 3 × 6 pix2 with a 45◦ rotation angle, respectively). The
crowded field sub-aperture images are obtained by shifting and
adding circular Gaussian profiles of varying intensity. To model the
sub-aperture solar photosphere image, a Swedish Solar Telescope
solar granulation image is used.2 All the sub-aperture images are
Nyquist sampled and have a size of 16 × 16 pix2. The synthetic
sub-aperture images are presented in Fig. 2.

The synthetic image shifts (s) due to atmospheric tilts are gener-
ated as follows. For the point source, laser guide star, and crowed
field the shifts s are directly applied to the Gaussian profiles. The
original solar image has a factor of 10 larger sampling than the one
used for the sub-aperture images. The original image is shifted and
blurred to the target Nyquist resolution by convolving it with a PSF.
The resulting image is binned to generate a 16 × 16 pix2.

Due to the extended and low contrast nature of the solar im-
age, the cross-correlation algorithm is slightly adapted. The mean
intensity is subtracted from the reference and sub-aperture solar
images because their linear intensity trend (low contrast) can shift
the correlation centre from its correct position (Löfdahl 2010).

Noise is added to the synthetic sub-aperture images. For all im-
ages a Gaussian read-out-noise (σ R) of 1 e− pix−1 is assumed, in
line with new generation detectors (Finger et al. 2014; Feautrier
et al. 2016). Each synthetic image was generated with counts in
each pixel following Poisson statistics. The total image SNR is
calculated as

SNR = Ne√
Ne + σ 2

RNP

, (5)

where Ne and NP are the total number of electrons and pixels in the
sub-aperture image. For reference, Ne = 5 × 103 e−, corresponds
to a 9.5 mag H-band star with integration time of 10−2 s, when a
9 × 9 lenslet and an 8 m class telescope considered. For the solar
image case Ne = 5 × 104 e− corresponds to an SNR = 104.

3 R ESULTS AND DI SCUSSI ON

3.1 Performance of current peak-finding methods

3.1.1 No noise case

To study the bias, synthetic sub-aperture images displaced hori-
zontally at known positions s are generated. In this section, the
sub-aperture images have no noise. The positions s varied from −1
to 1 pix, in steps of 0.05 pix. For each synthetic image, the correla-
tion centres s′ are computed with the conventional cross-correlation
as described in Section 2.1. Then the peak-finding algorithms of
Table 1 are applied to estimate the position s′. The biases are then
simply β = s′ − s. For completeness, the bias is also presented for
the determination of s′ with the centre of gravity algorithm directly
(i.e. without the correlation) in the sub-aperture images point source

2 http://www.isf.astro.su.se/gallery/
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Bias in Shack-Hartmann wavefront sensing 303

Figure 2. Synthetic Shack–Hartmann sub-aperture images. From left to right: (a) the point source; (b) the elongated laser guide star (LGS); (c) the crowded
field; (d) the solar photosphere. Colourbars indicate contrast levels.

Corr + QPF
Corr + PF
Corr + PYF
Corr + GF
Corr + CoG
CoG

Figure 3. Bias errors for various peak-finding algorithms and sub-aperture
images. The algorithm colour/symbol legend is presented at the top left
panel, cf. Table 1 for abbreviations translation. The ‘Corr +’ label is used
when the algorithm is applied to the correlation image. Sub-aperture images
are point source (top left), laser guide star (top right), crowded field (bottom
left), and solar photosphere (bottom right). The shift vector is �s = [s, s]T.
The top left (point source) and right (laser guide star) images also include
the results for direct application of the Centre of Gravity algorithm to the
sub-aperture images, plus signs labelled ‘CoG’.

and elongated laser guide star. The results are presented in Fig. 3,
for the four types of sub-aperture images.

It is found that the bias are antisymmetric (β(−x) = −β(x)) for all
sub-aperture images as expected. It is periodic for the point source,
laser guide star, and crowded field images. But not periodic for
the solar image. This non-periodicity is due to the extended scene
nature of the image. When a shift is applied different parts of the
image enter the field of view of the sub-aperture. Therefore the solar
image does not have β = 0 pix at s = ±0.5 pix. The exact shape of
the bias curve depends on the centroid algorithm and also on the
nature of the image. In the [−0.5, 0.5] pix interval the bias extreme

values are located approximately at s = ±0.25 pix for all images
except the laser guide star.3

Sharp transitions are observed for extended sub-aperture images
at pixel positions s = ±0.5 pix. This is due to the shift vector being
diagonal: �s = [s, s]T, which translates in the peak of the correlation
being ‘split’ into two diagonal pixels. When the shift s is, e.g.
0.4 pix, the brighter pixel is in the lower left one and the bias is
negative. When the shift is e.g. 0.6 pix, the brighter pixel is the top
right and the bias is positive.

The best performing centroid algorithm depends on the image:
(a) for the point source and crowded field, it is the Gaussian fit; (b)
for the solar image it is 2D quadratic polynomial; (c) for the laser
guide star it is the centre of gravity. The reason for this behaviour
is the matching of the algorithm to the actual shape of each image
correlation centre (e.g. point source and crowded field are generated
with circular Gaussians).

3.1.2 Varying signal-to-noise ratio

The centroid algorithms’ performance was tested in varying SNR
conditions. For each SNR, 500 random realizations are generated
at an input shift vector �s = [smax, smax]T where the bias is approxi-
mately maximum: (a) smax = 0.25 pix for the point, crowded field,
and solar images; (b) smax = 0.4 pix for the laser guide star image.
Note that the exact maximum location depends on the algorithm
and therefore smax is approximate. The input shifts are measured by
applying the conventional cross-correlation (equation 1) and cen-
troid algorithm (cf. Table 1). The bias and SNR are computed using
equations (3) and (4), respectively. The SNR is varied via NP in the
sub-aperture images.

The results are presented in Fig. 4. The first column presents the
RMS centroid error (σ ). It is computed by the RMS of s′. It decreases
with SNR as expected. The direct image centre determination via
the centre of gravity algorithm has a worse behaviour for the point
source and laser guide star than the correlation algorithms. The
superiority of the correlation with respect to σ is well known in
the literature (e.g. Thomas et al. 2006). Intuitively it is expected
because of the noise smoothing and shape matching. All correlation
algorithms have a similar behaviour.

3 The shape of the β curve for the laser guide star is due to applying shift
�s = [s, s]T along the diagonal of the image. For a horizontal shift, it would
have a similar shape as the point source and crowded field.
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Figure 4. Performance of centroid algorithms with SNR. Left column: RMS centroid error σ ; centre column: |〈s′〉 − s|, which coverages to bias error β at
high SNR; right column 〈s′〉 − s versus σ . The dotted line in the right column traces 〈s′〉 − s = σ . The rows from top to bottom are point source, laser guide
star, crowded field, solar image, respectively. The dotted line in the last column is where bias error and random error is equal. The data points above this dotted
line indicate bias error domination over random error.
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Figure 5. Bias errors of the window shift method in comparison with the
conventional approach. The algorithm legend is presented at the top left
panel. Sub-aperture images are point source (top left), laser guide star (top
right), crowded field (bottom left), and solar photosphere (bottom right).
The shift vector is �s = [s, s]T. The top row also includes the performance
for direct sub-aperture images (labelled CoG).

The centre column of Fig. 4 shows that |〈s′〉 − s | increases to an
asymptotic value, the bias error β. |〈s′〉 − s | is not constant because
at low SNR the effective image shape changes. Intuitively the low
value of |〈s′〉 − s | at low SNR can be explained by a pure noise
image, for which the bias is expected to be zero. The large values
of |〈s′〉 − s | for the low SNR of the solar image (centre column,
bottom row of Fig. 4) are due to the large variance of |〈s′〉 − s | for
this sub-aperture image. The large bias for the laser guide star in
comparison to others is caused by the shape of the correlation peak,
which is elongated and oriented 45◦ rotation angle.

The right column of Fig. 4 plots |〈s′〉 − s | versus σ . The dashed
line is the imaginary curve |〈s′〉 − s | = σ . Points above the curve
show a bias error larger than the centroid error. Typically the bias
error is larger than the noise error for SNR larger than 10, ex-
cept for the solar case where it becomes important for SNR larger
than 200.

3.2 Performance of the window shift method

In this section the performance of the algorithm introduced in
Section 2.2 is presented, initially for a fixed SNR and then for a
varying SNR.

3.2.1 Fixed signal-to-noise ratio

Fig. 5 shows the comparison of the window shift method with the
conventional cross-correlation algorithm. One of the worst perform-
ing centroid algorithms – the centre of gravity – was used. The SNR
conditions are the same as in Section 3.1.1. The sampling factor is
K = 5. The window shift method drastically reduces the bias. For
the solar image the final bias is larger, because the shift will in-
clude pixels from the edge of the image that are not present in the
reference image.

Figure 6. Performance of the window shift method as a function sam-
pling factor K. The curves are for point source, laser guide star (LGS),
crowded field (CF), and solar image. The dashed curve depicts the function
β(K) = 0.1/K.

3.2.2 Varying sampling factor K

The effect of the sampling factor K in reducing the bias β of the
centroid algorithm is presented in Fig. 6. The setup is the same
as Section 3.2.1, except for the sampling factor K, which varied.
The centre of gravity algorithm was used considering its better
performance against lower SNR for point, crowded field and solar
images.

The bias β strongly decreases with the sampling factor K. It ap-
proximately follows a ∝ K−1 relation. For sampling factors K > 5–6
no significant improvement is observed. This behaviour is similar
to the one observed by Gui & Wereley (2002) in a different context.

3.2.3 Varying signal-to-noise ratio

The performance of the window shift method as a function of SNR
is presented in Fig. 7. The same setup as the one presented in
Section 3.1.2 is used (e.g. s position). The sampling factor is K = 5.
The residual errors are well below 0.05 pix for all SNR and sub-
aperture image type.

The performance is similar to the windowed, adaptive threshold-
ing centre of the mass method of Townson et al. (2015).4

3.2.4 Computational efficiency

Several number of factors can influence the total execution time
of the algorithm, importantly, the sub-aperture window size, the
efficiency of programming (ex. multithreading), the performance of
hardware, and the programming language. Therefore only the rela-
tive computational efficiency was computed. The proposed window
shift method is slower in comparison to the conventional algorithm
by a factor of 2.4 and 3.6 for K = 3 and K = 5, respectively. For
larger sub-apertures, the computational time ratio is reduced be-
cause the window shift method uses a fixed and small correlation
sub-image C5. If the sub-aperture size is increased from 16 × 16
to 32 × 32 pix2 the window shift method is slower by a factor of
1.4 and 1.8 for K = 3 and K = 5, respectively.

4 Note that a different SNR metric is used in Townson et al. (2015), i.e. in
their fig. 7 an SNR of 20 corresponds to an SNR ∼ 100 in our Fig. 7.
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Figure 7. Residual bias errors for window shift method as a function of
SNR: point source (top left); laser guide star (top right); crowded field
(bottom left); and solar photosphere (bottom right).

4 C O N C L U S I O N S

A systematic study of the bias error in conventional centroid algo-
rithms used for slope measurement in Shack–Hartmann wavefront
sensors is presented for the first time. It is found that the bias can
be as the same order of magnitude of the centroid error, especially
at moderate and high SNR ratios, typically the bias error is larger
than the noise error for SNR larger than 10, except for the solar case
where it becomes important for SNR larger than 200.

No centroid method reduces both the bias and noise error terms
in conventional correlation methods. A window shift method is
proposed based on the antisymmetric nature of the bias. It works by
sampling the sub-aperture image K times, at the same resolution,
but shifted by a sub-pixel step, with size function of K. The obtained
K shifts are then averaged out, significantly reducing the bias. The
window shift method is studied as a function of image type, centroid
algorithm, SNR, and K sampling factor. It is found that it robustly
reduces the bias by a factor of ∼7 to values of � 0.02pix. The
computational cost of the algorithm is optimized by obtaining the
correlation in two steps: (a) large region based coarse search; (b)
small region based C5 fine search. It ranges between a factor of
1.4–3.6 of conventional approaches.

The window shift method can be applied to other algorithms
which work similar to the cross-correlation algorithm such as square
difference function, absolute difference function, and square of the
absolute difference function (Löfdahl 2010). The square difference
function is especially important for the solar type of images as it
gives a significantly smaller random error and more antisymmetric
pattern of systematic error (Löfdahl 2010). However, the system-
atic error values are larger in a comparison to the cross-correlation.
The proposed method would be of relevance for the square differ-
ence function to reduce its systematic error by using its consistent
antisymmetric pattern.

Further developments are the study of the window shift algorithm
for sub-aperture images that have a sampling smaller than the critical

sampling and for Shack–Hartmann devices with a small number of
apertures, such as those used for fast tip-tilt correction or pupil
tracking.
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Feautrier P., Gach J.-L., Bério P., 2016, in Malbet F., Creech-Eakman M. J.,

Peter G., Tuthill P. G., eds, Proc. SPIE Conf. Ser. Vol. 9907, Optical and
Infrared Interferometry and Imaging V. SPIE, Bellingham, p. 990715

Finger G., Baker I., Alvarez D. et al., 2014, in Marchetti E., Close L. M.,
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