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ABSTRACT
The estimation of atmospheric turbulence parameters is of relevance for the following: (a)
site evaluation and characterization; (b) prediction of the point spread function; (c) live as-
sessment of error budgets and optimization of adaptive optics performance; (d) optimization
of fringe trackers for long baseline optical interferometry. The ubiquitous deployment of
Shack–Hartmann wavefront sensors in large telescopes makes them central for atmospheric
turbulence parameter estimation via adaptive optics telemetry. Several methods for the estima-
tion of the Fried parameter and outer scale have been developed, most of which are based on
the fitting of Zernike polynomial coefficient variances reconstructed from the telemetry. The
non-orthogonality of Zernike polynomial derivatives introduces modal cross coupling, which
affects the variances. Furthermore, the finite resolution of the sensor introduces aliasing. In this
article the impact of these effects on atmospheric turbulence parameter estimation is addressed
with simulations. It is found that cross-coupling is the dominant bias. An iterative algorithm
to overcome it is presented. Simulations are conducted for typical ranges of the outer scale
(4–32 m), Fried parameter (10 cm) and noise in the variances (signal-to-noise ratio of 10 and
above). It is found that, using the algorithm, both parameters are recovered with sub-per cent
accuracy.

Key words: turbulence – atmospheric effects – instrumentation: adaptive optics –
instrumentation: high angular resolution – site testing – techniques: high angular resolution.

1 IN T RO D U C T I O N

The atmosphere is a refractive fluid in turbulent motion. Light
waves, after propagating through it, exhibit random phase perturba-
tions and, if over long distances, random amplitude variations. At-
mospheric turbulence is generally modelled as a stochastic process
with structure functions given by an empirical turbulence model
(Hardy 1998; Roddier 2004). In most spatial scales turbulence
roughly obeys the Kolmogorov model. However, because atmo-
spheric turbulence cascades from eddies of an effective maximum
size, an outer scale for the turbulence has to be introduced, where
turbulent effects saturate. Several options exist (e.g. Voitsekhovich
1995) for adapting the Kolmogorov model by including an outer
scale in the structure function, a widely used one being the von
Kármán model. Using the index of refraction structure function,
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the power spectrum of the optical field phase fluctuations can be
computed (e.g. Conan 2000), being given by

Wφ(f ) = α

(
f 2 + 1

L2
0

)−11/6

r
−5/3
0 , (1)

where f is the spatial frequency, α is a constant,1 L0 is the outer
scale2 and r0 is the Fried parameter

r0(λ) = β

(
2π

λ

)−6/5 [∫ ∞

0
dzC2

n (z)

]−3/5

, (2)
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)]5/6 � 2.2896 × 10−2.
2This parameter of the von Kármán model is not to be confounded with
the spatial scale of the large turbulent eddies. In this work, the wavefront
coherence outer scale will referred as simply outer scale (cf. Ziad 2016, for
a discussion of the outer scale definitions).
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where β is a constant,3 λ is the optical beam wavelength, and C2
n (z)

is the refraction index structure constant in function of height z.
In this framework, the optical phase fluctuations are characterized
with only two turbulence parameters: the outer scale L0 and Fried’s
parameter r0. In particular, it explains why the long exposure point
spread function of the largest optical-infrared telescopes is limited
by the atmosphere to that of an equivalent telescope of a few tens
of centimetres (cf. the image quality of seeing-limited surveys;
Castellano et al. 2010; Libralato et al. 2014) and is a function of
both the outer scale and Fried’s parameter (e.g. study of Martinez
et al. 2010).

The above framework is approximate. The turbulence strength,
as given by C2

n (z), is stratified in layers with different speeds (e.g.
Osborn et al. 2017; Osborn & Sarazin 2018). These layers can have
different outer scales L0(z) (e.g. Maire et al. 2007; Guesalaga et al.
2017). Atmospheric turbulence is non-stationary and the above pa-
rameters are found to vary in time (e.g. Ziad et al. 2004; Maire et al.
2006; Dali Ali et al. 2010; Floyd, Thomas-Osip & Prieto 2010). The
surface layer of atmospheric turbulence appears to not follow Kol-
mogorov turbulence (e.g. Lombardi et al. 2010) as well as the lower
altitude dome-related turbulence (e.g. Guesalaga et al. 2014; Helin
et al. 2018). Deviations from the Kolmogorov refractive index struc-
ture function or phase power spectrum power-law coefficients have
been referred to by several authors (Dayton et al. 1992; Nicholls,
Boreman & Dainty 1995; Goodwin, Jenkins & Lambert 2016), but
it is not clear if these are manifestations of the outer scale or data fil-
tering effects. In general, the framework is roughly consistent with
measurements (e.g. Dayton et al. 1992; Rao, Jiang & Ling 1999;
Tokovinin, Sarazin & Smette 2007) and found to be a working solu-
tion and of standard use in high angular resolution (adaptive optics
or interferometry) simulations, system design, and data reduction.

Optical characterization of atmospheric turbulence, i.e. the deter-
mination of the atmospheric turbulence parameters, is relevant in
several instances: (a) site evaluation and characterization; (b) opti-
mization of AO systems, whose performance can only be assessed
when the turbulence conditions under which they are operating are
known; (c) making predictions of point spread functions in a vari-
ety of conditions (with or without AO); (d) optimization of fringe
trackers for optical interferometry (e.g. Conan et al. 2000; Choquet
et al. 2014).

Several methods are available for the characterization of the tur-
bulence (cf. review of Lombardi, Navarrete & Sarazin 2014, on
Balloons, DIMM, MASS, SLODAR, SCIDAR, etc.). In this article,
the estimation of turbulence parameters from the telemetry of an AO
Shack–Hartmann wavefront sensor (SH-WFS) is considered. Their
ubiquity in large telescopes makes the development of methods for
AO telemetry attractive as they have the advantage of making use
of existing infrastructure. On top of that, using AO telemetry is
more appropriate to circumvent inconsistencies related to temporal
synchronism, angular co-alignment, and identical turbulence path
(e.g. including dome seeing) of the observations. These are issues
that affect the former methods. The use of AO telemetry for at-
mospheric turbulence sensing is not new (e.g. Schöck et al. 2003;
Fusco et al. 2004; Jolissaint et al. 2018) for single-sensor telemetry
and (Guesalaga et al. 2017; Ono et al. 2017) for multiple sensor
telemetry.

The common approach to estimate turbulence parameters from
a single SH-WFS data uses the projection on Zernike polynomi-

3β =
[

5�(2/3)√
π�(1/6)

]3/5 √
24
5 �( 6

5 ) � 1.6748.

als of the wavefront phases reconstructed from the telemetry data
– wavefront phase gradient measurements and deformable mirror
commands. The turbulence parameters are retrieved by fitting a the-
oretical Zernike representation of the turbulence spectrum to the
variances of the Zernike coefficients. Noise, aliasing, and modal
cross-coupling (Herrmann 1981) are effects introduced by the SH-
WFS which degrade the quality of the wavefront reconstructions and
limit the accuracy of the method. Aliasing results from the finite
spatial resolution of the SH-WFS when sampling phase gradients
of turbulence-induced distorted phases which have non-bandlimited
spatial frequency content. Cross-coupling has its origin in the non-
orthogonality of the first-order derivatives of the Zernike polyno-
mials over the circular pupil. In the phase reconstruction process,
which is based on a least-squares fit of these derivatives to the phase-
gradients, the non-orthogonality gives rise to a matrix of normal
equations which is not diagonal, and thus, originates modal cross-
coupling. Since the variances of the reconstructed Zernike coeffi-
cients incorporate contributions from noise, modal cross-coupling
and aliasing, the turbulence parameters retrieved from the fit of the
theoretical variances are biased.

In this article, the effects of aliasing and modal cross-coupling
on the variances of the reconstructed Zernike coefficients are stud-
ied with simulations. An algorithm to remove the impact of cross-
coupling in the estimation of the turbulence parameters is proposed.
It relies on the correction of the modal variances for cross-coupling
before the fit and, since its calculation requires the knowledge of
the turbulence parameters, it has an iterative nature. In the next
section, the methods used for turbulence parameter estimation are
presented. In Section 3, we start by showing that aliasing has a
negligible impact but cross-coupling significantly biases the mea-
surements. It is then shown that the proposed iterative algorithm
converges to the simulation parameters in three iterations, with sub-
per cent accuracy. In Section 4, we conclude and discuss possible
developments.

2 M E T H O D S

2.1 Shack–Hartmann model and phase reconstruction

In a modal representation, the wavefront phase is given by a series
expansion in terms of basis functions. Zernike polynomials, orthog-
onal within a circle of unit radius, are a common choice for basis
functions due to the similarity of the low-order polynomials with
familiar optical aberrations. Using Zernike polynomials with Noll’s
numbering and normalization (Noll 1976), the phase is given by

φ(Rρ, θ) =
M∑
i=2

aiZi(ρ, θ ) , (3)

where Zi is the Zernike polynomial of order i, R is the telescope
radius, ρ and θ are the polar coordinates in the unit circle. The
summation starts at i = 2 since the first term (piston mode) is of no
concern for an SH-WFS, and ends at M, a sufficiently large number
for the approximation to the infinite sum.

If the phase at the telescope pupil is represented by a column
vector of Zernike coefficients, a = [a2, · · · , aM ]t , its measurement
by an SH-WFS with N sub-apertures is modelled by

s = Ga + w , (4)

where s = [s1, · · · , s2N ]t is a column vector of 2N slopes, G is a
2N × (M − 1) matrix that describes the wavefront sensor response
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to the Zernike modes, and w = [w1, · · · , w2N ]t is a column vector
representing the measurement noise.

The estimation of the phase from the slope measurements requires
an inversion of the direct problem expressed by equation (4).

If J is the order of the highest mode to be estimated, let a
be represented by the concatenation a = [a‖a⊥]t , where a‖ =
[a2, · · · , aJ ]t and a⊥ = [aJ+1, · · · , aM ]t . Similarly, let G be given
by G = [H‖H⊥], where H‖ is the matrix containing the first J −
1 columns of G, and H⊥ is the matrix formed by the remaining
columns. Equation (4) becomes

s = [
H‖ H⊥

][ a‖
a⊥

]
+ w

= H‖a‖ + H⊥a⊥ + w . (5)

The least-squares solution of equation (5) is given by

b = H+s , (6)

where b = [b2, · · · , bJ ]t is the column vector with the estimates of
the first J − 1 Zernike coefficients a‖ and H+, the reconstruction
matrix, is the generalized inverse of matrix H‖, which is given by

H+ = (
Ht

‖H‖
)−1

Ht
‖ . (7)

The relation between true (atmospheric, a‖) and estimated (b)
Zernike coefficients becomes (Dai 1996)

b = a‖ + H+H⊥a⊥ + H+w . (8)

The second term of equation (8) results from the truncation of
matrix G and shows how the estimated lower modes are affected
by the higher ones not present in the reconstruction matrix. This
cross-coupling effect is caused by the lack of orthogonality between
columns in matrix G which are, essentially, the gradients of the
Zernike polynomials (non-orthogonal over the circular aperture,
Herrmann 1981; Janssen 2014).

2.2 Zernike coefficient variances

The covariance matrix for the estimated Zernike coefficients is

〈bbt 〉 = 〈
a‖at

‖
〉 + C

〈
a⊥at

⊥
〉

Ct + 2C
〈

a⊥at
‖
〉 + H+〈wwt 〉(H+)t ,(9)

where 〈.〉 represents the expectation value and C = H+H⊥ is a cross-
talk matrix, as defined by Dai (1996). It is assumed that there is no
correlation between measurement noise and the Zernike coefficients
(〈wat

‖〉 = 0 and 〈wat
⊥〉 = 0).

The diagonal elements of equation (9) give the relation between
reconstructed and atmospheric Zernike coefficient variances. Rep-
resenting h+

ij and cij as the matrix elements of, respectively, the
reconstruction and the cross-talk matrices〈
b2

i

〉 = 〈
a2

‖i
〉 + σ 2

cc,i + σ 2
n,i , (10)

where

σ 2
cc,i =

M∑
j=J+1

M∑
j ′=J+1

cij 〈a⊥j a⊥j ′ 〉ct
j ′i + 2

M∑
j=J+1

cij 〈a‖ia⊥j 〉 , (11)

is the contribution to the modal variances4 associated with cross-
coupling (which can be computed with the expressions of Takato &

4In the article, modal variances and Zernike coefficient variances are used
interchangeably.

Yamaguchi 1995; Conan 2000, and are functions of r0 and L0). The
contribution to the modal variances associated with noise, given by

σ 2
n,i =

2N∑
j=1

2N∑
j ′=1

h+
ij 〈wjwj ′ 〉(h+)tj ′i , (12)

can be simplified by assuming that the noise affecting slope mea-
surements is uncorrelated and has equal variance σ 2

0 (Southwell
1980)

σ 2
n,i ≈ σ 2

0

[
Ht

‖H‖
]−1

ii
. (13)

2.3 Algorithm for turbulence and noise parameters estimation

The turbulence parameters are retrieved from a fit to the variances of
the reconstructed Zernike coefficients. The method is reminiscent of
that in Fusco et al. (2004) but generalizes it to mitigate biases stem-
ming from modal cross-coupling. Noise and cross-coupling in the
reconstructed modal variances are dealt in two different ways. Noise
is included in the modelling of the modal variances by adding its
associated variances, equation (13), to the theoretical von Kármán
Zernike coefficient variances. The fitting function, f ( p), is, thus,

f ( p) =
(〈

a2
‖i
〉

vK
+ σ 2

n,i

)
( p) , (14)

where p = [r0,L0, σ
2
0 ] is a vector including the turbulence param-

eters and a noise parameter. A similar modelling of cross-coupling
by inclusion of the respective term in the fitting function would be
unpractical since it would require the manipulation of large matrices
at each iteration of the least-squares algorithm. Instead, the distur-
bances associated with cross-coupling, given by equation (11), are
computed and removed from the modal variances. In the same spirit
as the procedure used in Veran et al. (1997), since these calculations
require the knowledge of the turbulence parameters, the same for
the estimation of which they are being made, the following iterative
approach is adopted

p̂k = arg min
p

J (r)∑
i=5

{
log

[(〈
a2

‖i
〉

vK
+ σ 2

n,i

)
( p)

]
−

log
[〈

b2
i

〉 − σ 2
cc,i( p̂k−1)

] }2

, k = 1, . . . (15)

where p̂k is the vector of parameter estimates at iteration k, J(r) is
the number of Noll modes up to radial order r,5 and

p̂0 = arg min
p

J (r)∑
i=5

{
log

[(〈
a2

‖i
〉

vK
+ σ 2

n,i

)
( p)

]
− log

[〈
b2

i

〉] }2

,(16)

is the iteration 0 (k = 0), an initial guess of the parameters taken on
the uncorrected variances. Summations in equations (15) and (16)
start at mode 5 in order to exclude tip-tilt and focus modes, because
in practice, at the telescope, they include large contributions that do
not come from the turbulence, such as wind-shake and vibrations.
The logarithmic transformations in equations (15) and (16) are used
to achieve a least-squares model with homogeneous residuals.

Although it is not demonstrated that the problem is convex, we
show by simulation that, for the cases considered, the algorithm
converges. Non-convergence was never observed.

5Here, the radial order is denoted by r for clarity, in contrast with other
works where it is denoted by n.
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2.4 Simulation set-up

The simulations to test the algorithm proposed in the previous sec-
tion were conducted with the OOMAO toolbox (Conan & Correia
2014).

In order to isolate cross-coupling from other known effects, at-
mospheric turbulence and SH-WFS measurements were treated in
idealized conditions: turbulence modelled by independent phase
screens to assure good statistics, the sensor described by a noiseless
geometrical model to avoid issues related with measurement errors
(e.g. Thomas et al. 2006; Anugu, Garcia & Correia 2018) and noise
artificially introduced directly on the modal variances.

Sets of 5000 independent phase screens, 8 m × 8 m in size,
were generated for typical turbulence conditions characterized by
L0 = 32, 16, 8, and 4 m and r0 = 10 cm. Only one r0 is used be-
cause Zernike variances can be scaled to other values. Each set
was sampled by a telescope with diameter D = 8 m without central
obstruction and an SH-WFS (geometrical model) with 14 × 14 sub-
apertures. A minimum light ratio condition of 75 per cent settled
the number of valid sub-apertures at 148. The phases were recon-
structed from the resulting open loop slopes using reconstruction
matrices H+

r of size (J(r) − 1 × 2N), with J(r) representing the
number of Noll modes up to radial order r, and N is the number of
valid sub-apertures. Radial orders from 7 to 12 were considered, as
these are typically referred in the literature (e.g. Schöck et al. 2003;
Fusco et al. 2004; Jolissaint et al. 2018). All reconstruction matrices
were obtained by singular value decomposition of sub-matrices ob-
tained by truncation of a large (up to radial order r = 40) matrix G,
constructed by collecting as columns the slopes of each individual
Zernike mode.

The effects of noise were simulated by adding to the reconstructed
noiseless Zernike coefficient variances a term computed with equa-
tion (13), with σ 2

0 chosen to give specific values of signal-to-noise
ratio (SNR) calculated by

SNR(r) =
∑J (r)

j=5

〈
b2

j

〉
∑J (r)

j=5 σ 2
n,j

. (17)

Finally, the algorithm described in Section 2.3 to estimate the
turbulence parameters was tested on Zernike coefficient variances,
obtained with varying reconstruction matrix sizes and number of
iterations.

3 R ESULTS A N D DISCUSSION

In this section, we start by addressing the effects of aliasing and
cross-coupling on the reconstructed Zernike coefficient variances.
Then the estimation of the turbulence parameters from these vari-
ances following the approach in Section 2.3 is presented. The section
ends with a discussion on the limitations and applicability of the
algorithm to real world experiments.

3.1 Aliasing and cross-coupling

In order to illustrate the difference between aliasing and cross-
coupling effects, simulations with filtered phase screens were per-
formed. These phase screens were constructed with a limited num-
ber of modes from the decomposition of the original ones and then
sampled by the SH-WFS. Reconstruction with matrices containing
the same modes eliminates perpendicular modes and thus, cross-
coupling. Since the SH-WFS measures the phase gradients with a
finite resolution, as the order of the Zernike polynomials increases
aliasing is expected at some point. Fig. 1 shows the results for

Figure 1. Onset of aliasing effects on the Zernike coefficient variances of
reconstructed phases. Top and middle: phase screens constructed with a
limited number of modes from their original Zernike decomposition (21 and
22 radial orders, respectively). The phase reconstructions use reconstructor
matrices with the same modes used in the phase screens generation in order to
avoid cross-coupling. Aliasing, affecting the modal reconstructed variances,
starts with reconstructors containing 275 Noll modes – the number of modes
(piston excluded) up to radial order 22. Bottom: Rank of matrices H‖r . Rank
deficiency starts at radial order 22.

phase screens and reconstruction matrices containing modes from
21 and 22 radial orders and the matrices rank as a function of
their size. The effects visible in the reconstructed modal variances
for the 22 radial order case can be ascribed to aliasing. The rank
of matrices H‖r becomes smaller than the number of columns for
r ≥ 22, an indication that the columns produced by Zernike modes
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Figure 2. Effects of cross-coupling on the Zernike coefficient variances of
reconstructed phases. Variances from phase screens constructed using only
12 radial orders from their Zernike decomposition. Reconstructed phase
variances obtained from the slopes produced by these phase screens by
using reconstruction matrices with different number of modes: the same
number of modes presents in the phase screens (top), one radial order less
(middle) and two radial orders less (bottom).

belonging to radial orders 22 and higher are linear combinations of
previous columns. This is expected for the 14 × 14 SH-WFS un-
der consideration, whose Nyquist frequency is f = 7/D. Following
Conan, Rousset & Madec (1995) we have that f ∼ 0.3(r + 1)/D,
which translates the Nyquist frequency into a maximum radial order
r ∼ 22.

Cross-coupling effects on the reconstructed modal variances are
shown in Fig. 2. Filtered phase screens, this time containing 12

Figure 3. Modal variances of phase screens and of phases reconstructed
from unfiltered phase screens and from filtered phase screens (containing
modes only up to radial order 21).

Table 1. Turbulence and noise parameters estimates from modal variances
of noiseless phase screens and noisy reconstructed phases without (k = 0)
and with (k = 3) cross-coupling corrections. The phase screens have r0 =
10 cm and L0 = 8 m.

r0/cm L0/m σ 2
0 /rad2

Phase screens 9.99 ± 0.05 8.0 ± 0.1 0.01 ± 0.05
Reconstructed (k = 0) 11.4 ± 0.4 8.9 ± 0.5 4.0 ± 0.3
Reconstructed (k = 3) 10.03 ± 0.06 8.0 ± 0.1 1.95 ± 0.06

radial orders,6 were sampled by the SH-WFS and reconstructed
with matrices containing 12, 11, and 10 radial orders. The existence
of perpendicular modes in the last two cases leads to cross-coupling.

Unfiltered phase screens introduce, both aliasing and cross-
coupling effects. Modes above radial order 21 are perceived as
lower order modes and perpendicular modes contribute to the es-
timation of the parallel ones (cf. equation 8). Fig. 3 displays the
comparison between modal variances of phases reconstructed from
slopes produced by unfiltered phase screens and by filtered phase
screens with 21 radial orders (which do not introduce aliasing).
First, both reconstructed variances almost agree. Secondly, they
both differ from the phase screen variances. This can be explained
by a small contribution of aliasing from modes of radial order above
21 and a dominant contribution of cross-coupling from modes of
radial order below 22. It is concluded that cross-coupling effects
dominate over aliasing at the radial orders (r ≤ 12) normally used
for atmospheric turbulence estimation.

3.2 Estimation of turbulence and noise parameters

As presented in Section 2.3, the method estimates three parameters
(r0, L0, and σ 2

0 ) by fitting the reconstructed Zernike coefficient vari-
ances, corrected, iteratively, for modal cross-coupling effects. An
example of its application provides the results presented in Table 1,
obtained from simulations with the set of phase screens generated
for r0 = 10 cm and L0 = 8 m (cf. Section 2.4). Their modal vari-
ances are displayed in Fig. 4, along with those of the respective

6The number 12 is somewhat arbitrary but representative of the maximum
radial order used in AO SH-WFS atmospheric turbulence parameter estima-
tion.
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Figure 4. Zernike coefficient variances, of modes from radial orders 2
(without focus) to 11, from simulations with the set of phase screens gen-
erated for r0 = 10 cm and L0 = 8 m. In black, modal variances of the
phase screens. In red, modal variances of the reconstructed phases with
SNR(r = 9) = 10. In blue (solid line), von Kármán Zernike coefficient
variances calculated with the turbulence parameters estimates obtained by
applying algorithm of Section 2.3 to the reconstructed variances after three
iterations (k = 3).

reconstructions from the SH-WFS measurements. The latter ex-
hibit disturbances due to noise and modal cross-coupling. Noise
is expected by the fitting function (14) but not cross-coupling. A
fit to these reconstructed variances corresponds to iteration k = 0
of the algorithm (equation 16) and produces biased estimates of
the parameters. At higher iterations, corrections for cross-coupling
are calculated, using the turbulence parameters estimated at the
previous iteration, and applied to the modal variances before the
fit. At iteration k = 3, the bias in the turbulence parameters is re-
moved. The agreement is illustrated in Fig. 4 where the von Kármán
Zernike coefficient variances, calculated with the estimated turbu-
lence parameters, are plotted against the modal variances of the
phase screens. The retrieved noise parameter at k = 3 compares
well with the synthetic noise of 1.852 rad2 (corresponding to an
SNR(r = 9) = 10). This is not the case at k = 0.

We now address the results of the turbulence parameters and
noise estimation as a function of the maximum radial order used
in the reconstruction and the number of algorithm iterations. The
parameter values used in the generation of synthetic measurements
are referred in Section 2.4. Four noise regimes with SNR values of
∞, 1000, 100, and 10, were considered. Each SNR is calculated
by equation (17) at radial order 9 and is obtained by adjusting the
value of the noise parameter σ 2

0 . All fits are performed on sets of
modal variances with lower radial order 2 from which the focus is
excluded.

Figs 5–7 show, for all considered outer scale values, the be-
haviour of the estimations as a function of the reconstruction matrix
size (indexed by the maximum radial order r) and the number of
performed iterations (k). For reference, the same estimations on the
phase screens (ideal values) are also depicted (horizontal dotted
line).

3.2.1 k = 0

We will focus, in this section, on the k = 0 regime. This is the
standard approach, apart from the denoising, without the iterative
correction for cross-coupling proposed in this article.

Figure 5. Fried parameter estimation for SNR(r = 9) = 10. L0 = 4 m (top
row), 8, 16, 32 m (bottom row). Left: estimations after k iterations. The
result at a given r are obtained by fitting modes from radial order 2 without
focus (Noll mode i = 5 cf. equation 15, Section 2.3) up to radial order r.
The horizontal dotted line is the expected value of r0 = 10 cm. Right: error
(bias) as a function of number of iterations for selected sets of modes.
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Figure 6. Outer scale estimations for SNR(r = 9) = 10. Cf. Fig. 5 for
details. The horizontal dotted line is the expected value L0 = 4 m (top), 8,
16, and 32 m (bottom).

The impact of cross-coupling is shown in Figs 5–7, which display
the estimates on noisy variances (SNR(r = 9) = 10).

The estimates of r0 and L0 have large uncertainties and, gen-
erally, large deviations (overestimations) from the expected values.
As the size of the reconstruction matrix (r) changes, different modes

Figure 7. Noise parameter estimations for SNR(r = 9) = 10. Cf. Fig. 5 for
details. The horizontal dotted line is the expected value for σ 2

0 .

are affected by cross-coupling and the distortions introduced in the
Zernike variances (cf. Fig. 3) change its position in the spectrum
leading to different estimates of L0 and r0. It should be underlined
that the relative error does not scale monotonously with the number
of radial orders (r) used in the fit. This is a fundamental limitation of
the standard method, where the size r of the reconstruction matrix
must be carefully chosen, to avoid large errors. The size of the
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reconstructor matrix which minimizes the error due to cross-
coupling, r � 9 in this case, depends on the geometry of the wave-
front sensor and on its modelling. For example, setting a different
minimum light ratio condition may change this best size.

For the outer scale estimations depicted in Fig. 6, the fit quality de-
creases with increasing phase screen L0, as a consequence of poorer
sampling of a large outer scale by the comparatively small aperture.
The great sensitivity of the outer scale parameter to tip-tilt modes,
leads, when excluding them from the fits, to occasional failures in
the estimations (nonphysical large values) at large outer scales and
for some sizes of the reconstructor matrix. When observed, these
difficulties cease with the inclusion of the tip-tilt modes in the fits.

With regards to the noise parameter, it is not well estimated by
the standard method (k = 0). It is underestimated for maximum
radial order r < 10 and overestimated for r ≥ 10.

3.2.2 k > 0

The case k > 0 is now addressed. This is the iterative approach
proposed in this article.

Figs 5–7 show that, regardless of the reconstruction matrix size,
r, at iteration 3, all r0 and L0 estimations have converged to values
in agreement, within the estimation uncertainty, with the expected
ones (direct estimations on the phase screens). The same is true
for the noise parameter convergence to the reference values (ex-
cept for some cases involving larger reconstructor matrices, where
nevertheless the difference is very small).

The better the estimations at k = 0, the faster the convergence is
achieved. For r = 9, r0 and L0 estimations have converged, or are
close to converge, as soon as iteration 1.

An important aspect that emerges from the results is the robust-
ness of the proposed iterative algorithm. Significant improvements
are achieved even when the corrections are calculated using inac-
curate parameter values from estimations at the previous iteration.
This is particularly evident in the L0 estimations. Extreme exam-
ples are those for which the zero iteration gives non-physically large
outer scale values (in the km range) and, nevertheless, the correc-
tions computed with these values allow reasonable estimations at
the first iteration.

3.2.3 Summary of results

In this section, we summarize the top-level results, in terms of r0,L0,
and signal to noise, obtained with the conventional approach (k = 0)
and with the proposed algorithm after three iterations (k = 3), for
the case of fits on nine radial orders of modes (r = 9).

Fig. 8 shows that the Fried parameter value estimated without
iteration is biased by the signal-to-noise ratio, being overestimated
most of the time. The overestimation increases with signal-to-noise
ratio. The bias is stronger for smaller outer scales. In contrast, the
iterative method is robust to this bias, with all curves overlapping
at the expected value.

With regards the outer scale, it is also biased by the signal-to-
noise ratio, but with a smaller amplitude (cf. Fig. 9) and mostly for
larger outer scales.

This apparently counter-intuitive behaviour, more noise – better
initial (k = 0) estimations, stems from the fact that cross-coupling
effects arise in very localized regions of the Zernike spectrum and
thus, bias the estimation to higher values. On the other hand, noise,
which has a more uniform distribution across all radial orders, masks
the cross-coupling disturbances.

Figure 8. Fried parameter estimations as a function of SNR(r = 9), for
reconstructions with r = 9 and r0 = 10 cm. Note that the k = 3 curves
overlap.

Figure 9. Outer scale estimations as a function of SNR(r = 9) for recon-
structions with r = 9 and r0 = 10 cm.

Fig. 10 presents the bias in the estimated Fried parameter versus
the outer scale in the phase screens. It clearly illustrates that the
estimated Fried parameter is also biased by the outer scale. As
the outer scale increases, the r0 estimations improve in precision
and accuracy. This is because the ratio of the Zernike coefficient
variances to the disturbances produced by cross-coupling increases
as the outer scale increases, as shown in Fig. 11.

With regards to the outer scale L0 estimations depicted in Fig. 12,
it is clear that up to L0 = 32 m = 4D the fit converges to the phase
screen value.

In Tables 2 and 3, the bias for the proposed method, in per cent,
of the estimated parameters, with regards to the phase screen values
is presented for the range of signal-to-noise ratios considered. It
is of less than 1 per cent for the range of simulation parameters
considered. The non-dependence of the bias on the signal-to-noise
ratio is due to the inclusion in the iterative algorithm of the variance
noise as a parameter.

3.3 Limitations and applicability to experiments

The proposed algorithm for correcting cross-coupling relies on the
correct modelling of the atmospheric turbulence and the SH-WFS
measurements. In order to isolate cross-coupling from other known

MNRAS 483, 1192–1201 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/483/1/1192/5203639 by guest on 12 M
ay 2022



1200 P. P. Andrade et al.

Figure 10. Fried parameter estimations as a function of L0 for simulations
with r0 = 10 cm and r = 9. Top – no noise, bottom – SNR(r = 9) = 10.

Figure 11. Signal to cross-coupling effects ratio at r = 9 as a function of
L0, for r0 = 10 cm.

effects, these two aspects were treated in idealized conditions (cf.
Section 2.4): turbulence modelled by independent phase screens,
the sensor is described by a noiseless geometrical model and the
noise is artificially introduced directly on the modal variances.

In real applications, departures from the above simplified frame-
work are expected. In this work open loop telemetry is used, but in
an on-sky application it is desirable to use closed loop telemetry,
without disturbing the scientific observation. Synthetic open loop
telemetry must be generated from closed loop telemetry. A sim-
plified version of the algorithm is already in place at ESO’s AO
Facility to provide turbulence parameters estimations for all of its
laser guide star wavefront sensors, estimations that have shown to
be very consistent from one WFS to the other, and with external
seeing monitors as well. An accurate estimation with this improved

Figure 12. Outer scale estimations as a function of L0 for simulations with
r0 = 10 cm and r = 9. Top – no noise, bottom – SNR(r = 9) = 10.

Table 2. Percent error (bias) in estimations of r0 after three iterations for
r = 9, r0 = 10 cm.

4 8 16 32

∞ −0.50 −0.28 −0.26 −0.11
1000 −0.56 −0.28 −0.26 −0.11
100 −0.62 −0.28 −0.25 −0.11
10 −0.58 −0.27 −0.17 −0.10

Table 3. Percent error (bias) in estimations of L0 after three iterations for
r = 9, r0 = 10 cm.

4 8 16 32

∞ − 0.29 −0.12 −0.56 −0.81
1000 − 0.29 −0.13 −0.56 −0.81
100 − 0.30 −0.12 −0.54 −0.78
10 0.26 −0.07 −0.37 −0.64

algorithm of the seeing in the line of sight of the science instruments
would greatly benefit the quality classification of the observations,
their scheduling and the understanding of the delivered AO perfor-
mance.

Another aspect of real applications is the signal-to-noise ratio.
Following Rigaut & Gendron (1992), the SNR(r = 9) = 10 in this
work translates in a natural guide star magnitude of mV = 12 for
a NAOS AO-like system. When applied to natural guide star SH-
WFSs present in many instruments, it would provide an unprece-
dented accuracy and reliability for noise-limited measurements. On
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the other hand, the experience of the AO Facility shows that the
laser guide star measurements are not signal-to-noise limited (Kolb
et al. 2017).

4 C O N C L U S I O N S

Motivated by the ubiquity of AO SH-WFS and its advantages in at-
mospheric turbulence parameters estimation, the effects of aliasing
and cross-coupling in the estimation are analysed for the first time
for single sensor SH-WFS AO telemetry.

For the adopted SH-WFS, with 14 × 14 lenslets, and in the
range of reconstructed modes considered (7 to 12 radial orders),
the Zernike coefficient variances were found to be affected essen-
tially by modal cross coupling, responsible for distortions which,
depending on the reconstructor size, can lead to large inaccuracies
in the estimation of the turbulence parameters.

A method that removes from the modal variances the disturbances
created by cross-coupling is proposed. The theoretical Zernike coef-
ficient variances fitting function is adapted with an added term mod-
elling measurement noise. The variances to be fitted are corrected
for cross-coupling. Since these corrections require the knowledge
of the turbulence parameters, the algorithm is iterative.

Simulated measurements of the SH-WFS, obtained at different
noise regimes (guide star of magnitude 12 or brighter) and atmo-
spheric conditions (outer scales from 4 to 32 m at Fried parameter
of 10 cm) were used to test the algorithm. The results showed the
elimination of the bias to sub-per cent level in the estimation of the
turbulence parameters after three or less iterations, regardless of the
number of reconstructed modes.
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