N
N

N

HAL

open science

BEBOP II: sensitivity to sub-Saturn circumbinary
planets using radial-velocities
Matthew R. Standing, Amaury H. M. J. Triaud, Joao P. Faria, David V.
Martin, Isabelle Boisse, Alexandre C. M. Correia, Magali Deleuil, Georgina
Dransfield, Michaél Gillon, Guillaume Hébrard, et al.

» To cite this version:

Matthew R. Standing, Amaury H. M. J. Triaud, Jodo P. Faria, David V. Martin, Isabelle Boisse, et al..
BEBOP II: sensitivity to sub-Saturn circumbinary planets using radial-velocities. Monthly Notices of
the Royal Astronomical Society, 2022, 511, pp.3571-3583. 10.1093 /mnras/stac113 . insu-03667433

HAL Id: insu-03667433
https://insu.hal.science/insu-03667433

Submitted on 11 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://insu.hal.science/insu-03667433
https://hal.archives-ouvertes.fr

of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 511, 3571-3583 (2022)
Advance Access publication 2022 January 25

https://doi.org/10.1093/mnras/stac113

BEBOP II: sensitivity to sub-Saturn circumbinary planets using
radial-velocities

Matthew R. Standing *,'* Amaury H. M. J. Triaud “,! Jodo P. Faria, > David V. Martin * ,*}
Isabelle Boisse,? Alexandre C. M. Correia *’,%7 Magali Deleuil,’ Georgina Dransfield !
Michaél Gillon “,® Guillaume Hébrard,” Coel Hellier,'® Vedad Kunovac “,' Pierre F. L. Maxted “,'°

Rosemary Mardling,'! Alexandre Santerne ', Lalitha Sairam ! and Stéphane Udry.!?

LSchool of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

2Depta de Fisica e Astronomia, Faculdade de Ciéncias, Universidade do Porto, Rua do Campo Alegre, P-4169-007 Porto, Portugal
3Instituto de Astrofisica e Ciéncias do Espago, Universidade do Porto, CAUP, Rua das Estrelas, P-T4150-762 Porto, Portugal
4quar),‘mem‘ of Astronomy, The Ohio State University, 4055 McPherson Laboratory, Columbus, OH 43210, USA

SLAM, Aix Marseille Univ, 13007 Marseille, France

SCFisUC, Departamento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra, Portugal

TIMCCE, UMRS028 CNRS, Observatoire de Paris, PSL Université, 77 av. Denfert-Rochereau, F-75014 Paris, France

8 Astrobiology Research Unit, University of Liége, Allée du 6 aoiit 19 (B5C), B-4000 Liége (Sart-Timan), Belgium

9 Institut d’astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis boulevard Arago, F-75014 Paris, France
10Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG, UK

1 School of Physics and Astronomy, Monash University, Victoria 3800, Australia

120bservatoire astronomique de [’université de Genéve, Chemin Pegasi 51, CH-1290 Versoix, Switzerland

Accepted 2022 January 11. Received 2021 December 10; in original form 2021 October 8

ABSTRACT

BEBOP is a radial-velocity survey that monitors a sample of single-lined eclipsing binaries, in search of circumbinary planets
by using high-resolution spectrographs. Here, we describe and test the methods we use to identify planetary signals within the
BEBOP data and establish how we quantify our sensitivity to circumbinary planets by producing detection limits. This process
is made easier and more robust by using a diffusive nested sampler. In the process of testing our methods, we notice that contrary
to popular wisdom, assuming circular orbits in calculating detection limits for a radial-velocity survey provides overoptimistic
detection limits by up to 40 per cent in semi-amplitude with implications for all radial-velocity surveys. We perform example
analyses using three BEBOP targets from our Southern HARPS survey. We demonstrate for the first time a repeated ability
to reach a residual root mean squared scatter of 3ms~! (after removing the binary signal), and find that we are sensitive to
circumbinary planets with masses down to that of Neptune and Saturn, for orbital periods up to 1000 d.

Key words: techniques: radial velocities — planets and satellites: detection —binaries: eclipsing —stars: low-mass.

Despite these successes, circumbinary configurations remain

1 INTRODUCTION largely elusive on account of their longer orbital periods. Martin

Circumbinary planets are planets which orbit around both stars of
a central binary system. Long postulated (e.g. Borucki & Summers
1984; Schneider 1994), most unambiguous discoveries have only
been made in the past decade thanks to the transit method. In total, 14
circumbinary planets have been identified orbiting 12 main-sequence
eclipsing binaries. The Kepler space telescope discovered 12 of these
planets orbiting 10 binaries (Doyle et al. 2011; Welsh et al. 2012;
Oroszetal. 2012a, b, 2019; Kostov et al. 2013, 2014, 2016; Schwamb
et al. 2013; Welsh et al. 2015; Socia et al. 2020), and since two have
been discovered in TESS photometry: EBLM JO608-68 b/TOI-1338 b
(Kostov et al. 2020) and TIC 17290098 b (Kostov et al. 2021).

* E-mail: mxs1263 @bham.ac.uk
1T NASA Sagan Fellow

© 2022 The Author(s).

(2018) and references therein, show how most circumbinary planets
found to date lie just outside of the circumbinary stability limit, as
described by Holman & Wiegert (1999), which incidentally places
them often close or within the habitable-zones of their parent stars.
Binary-driven orbital precession means that most circumbi-
nary planets find themselves in transiting configurations only =&
25 per cent of the time (Martin 2017), while their presence would
be visible 100 per cent of the time in radial-velocity measurements.
With sufficient precision, radial-velocities have the potential to be
more efficient at detecting circumbinary planets than the transit
method, particularly since the Doppler method is also much less
sensitive to orbital inclination and period (e.g. Martin et al. 2019).
Despite these advantages, no circumbinary planet has been dis-
covered by the Doppler method so far. Only one has been detected
in follow-up, a recent recovery of Kepler-16 b by our project
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(Triaud et al. 2022). To unlock more information on circumbinary
formation mechanisms, the demographics of circumbinary plan-
ets need to increase, along with accurate physical and orbital
parameters.

To this end, Konacki et al. (2009) launched a Doppler survey in an
attempt to detect circumbinary planets with radial velocities alone,
with ‘The Attempt To Observe Outer-planets In Non-single-stellar
Environments’ (TATOOINE) survey. Unfortunately, TATOOINE was
unable to discover any planetary companions during their survey.
This is likely due to the type of binary stars that were observed.
TATOOINE observed double-lined (SB2) binary star systems. With
spectra from both stars visible within a spectrograph, complex
deconvolution methods need to be applied to recover the individual
components’ velocities with high precision and accuracy. Konacki
etal. (2009) found their best binary target was HD 9939 (V = 7). Their
ten radial-velocity measurements on this target from Keck HIRES
have uncertainties of 1—4 ms~!, but they find a residual root mean
squared (rms) scatter of 7ms~!. This rms is calculated after the data
have been fitted for binary Keplerian models, which we refer to as
residual rms for the remainder of this paper. To achieve this level
of rms scatter on an SB2 is impressive, though combining all their
data on this target yielded a 99 per cent confidence detection limit
of ~ 1 My, (Konacki et al. 2009). Results on other targets typically
yield residual rms in excess of 10ms~!. In the end, Konacki et al.
(2010) recommend that single-lined binaries might be the next step
forward, a step that we took.

Martin et al. (2019) introduced our Binaries Escorted By Orbiting
Planets (BEBOP) survey. BEBOP currently only targets proven
single-lined (SB1) eclipsing binary targets, where only the spectrum
of the primary star, typically an F or G dwarf, is visible. We note here,
that whilst the binary mass ratios of the BEBOP and TATOOINE
samples are biased towards low and high values, respectively, Martin
(2019) showed that circumbinary planets exist around all mass ratios
with no discernable preference. Our binary sample was identified
while confirming transiting hot Jupiters with the Wide Angle Search
for Planets (WASP) survey (Pollacco et al. 2006; Triaud et al. 2013;
Triaud et al. 2017). First, we used the CORALIE spectrograph, on
the 1.2-m Euler telescope at La Silla, Chile (Martin et al. 2019),
and have now extended the survey to HARPS, at the ESO 3.6-
m telescope, also in Chile (Pepe et al. 2002a), as well as with
SOPHIE, at the OHP 193-cm telescope in France (Perruchot et al.
2008).

In this paper, we detail and test our detection and observational
protocols for the BEBOP survey, which have improved since Martin
et al. (2019). To fit our data, we now use a diffusive nested sampler
called KIMA (Faria et al. 2018). Contrary to our previous method,
we now measure evidence for the presence of a circumbinary
planet, accounting for Ockham’s razor, and can marginalize our
results over as-of-yet undetected planets. With KIMA , we investigate
our detection sensitivity to circumbinary planets, and we use it
to produce robust detection limits. We also test our detection
protocol by injecting circumbinary planets into our HARPS data and
retrieve them with x1Ma. We show that, after removing the binary
signal, we repeatedly achieve a detection limit for circumbinary
planets at masses as low as Neptune’s, paving our way to actual
detections.

This paper is organized as follows. In Section 2, we describe our
observing strategy for the BEBOP survey along with statistics of data
gathered to date. Secondly in Section 3, we provide a brief overview
of the xzma DNS package, along with justification of its use within
the BEBOP survey. In Section 4, the data analysis and simulation
methods used are described. In Section 5, we display the results of
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our detection limit and simulation recovery analysis, and discuss
the effect of the results on the BEBOP survey before concluding in
Section 6.

2 DESCRIPTION OF OUR OBSERVATIONAL
PROTOCOL AND DATA COLLECTION

The current BEBOP sample consists of a total of 113 single-lined
eclipsing binaries which do not exhibit strong stellar activity, or the
presence of a tertiary star. Fifty four in the Southern hemisphere,
with HARPS, and fifty nine in the Northern hemisphere, with
SOPHIE; observations still ongoing in each. The Southern sample
was established from the EBLM programme, which identified low-
mass eclipsing binaries from WASP false-positives (Triaud et al.
2013, 2017; Swayne et al. 2021). The data we use in this paper
are exclusively from our Southern sample, for which we have now
accumulated over 1200 HARPS spectra, an average ~23 individual
radial-velocity measurements per target. The Southern data are
obtained from a preliminary proof-of-concept run (Prog.ID 099.C-
0138) and a 78 night programme seeking planetary candidates that
commenced between 2018 April and 2020 March (Prog. ID 1101.C-
0721). BEBOP has been awarded a further large programme (Prog.
ID 106.212H), which began in 2020 September to confirm a number
of candidate planetary signals, the results of which will be published
in future work.

2.1 Observational protocol

All systems are observed as homogeneously in time as is possible,
with 1800 s exposures, at an average cadence of one measurement
every ~06 nights except when a system is no longer visible. All
measurements are taken at airmass < 1.6. We attempt to cover as
much of the yearly visibility as is feasible. All measurements are
taken using the OBJ_AB mode of HARPS, which places the B fibre
on the sky rather than on a simultaneous Fabry—Pérot calibration
lamp, with the A fibre placed on our science target (Pepe et al.
2002a). Whilst the OBJ_AB mode prevents us from reaching the
most accurate mode of HARPS, this gives us a chance to subtract
moonlight contamination from our spectra, which can introduce a
secondary spectral component, something our sample is designed
to avoid. Since most our systems have V magnitudes between 9
and 12, photon noise rarely reaches down to the 1 ms~' long-
term stability of the instrument (Lovis & Pepe 2007; Mayor et al.
2009), removing the need for simultaneous calibration. Calibration
of the instrument is done at the start of night using Fabry—Pérot and
Th-Ar calibration lamps as is now standard on HARPS (Coffinet
et al. 2019).

The data is analysed on a bi-monthly basis for quality control
(for instance, verifying whether the residual residual rms around
the binary solution is low enough to allow exoplanet detections).
Exoplanet candidate identification are done only once a year. We
chose on purpose to perform those candidate searches rarely in order
to avoid falling into observer’s bias. A homogeneously observed
data set also provides more robust detection limits. On account of
the rather long orbital periods expected for circumbinary planets
(50+ d; Martin 2018), we are only now reaching the ability to confirm
exoplanetary candidates.

A similar procedure is performed with SOPHIE, on the Northern
sample. It will be more specifically described once SOPHIE data are
presented for publication.
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2.2 Data collection reduction and outlier removal

Observations are obtained using the HARPS instrument on the ESO
3.6-m telescope situated at the La Silla observatory in Chile (Mayor
et al. 2003). Reduction of the spectroscopic data was carried out
by the HARPS pipeline (Lovis & Pepe 2007). A Cross Correlation
Function (CCF; Baranne et al. 1996; Pepe et al. 2002b) is created by
comparing the spectra obtained by the spectrograph with a G2 or K5
template mask spectra (depending on the spectral type of the primary
star in question). We remind here, that our targets are chosen such that
the spectra of the secondary star is too faint to be detected. Typically
our primary stars are >4 magnitudes brighter than the secondaries.
This allows us to safely ignore the secondary CCF and treat each
system as a single-star system (spectroscopically speaking; Martin
et al. 2019). The correlation is evaluated at 0.5 km s~ intervals and
the CCF indicates with its lowest point the radial velocity at which
the mask corresponds most closely with the targets’ spectra. The
CCF is fit with an inverted Gaussian profile and its mean recorded as
the radial-velocity.

Various shape metrics are obtained from the CCF itself, such as
the span of the inverse of the mean bisector slope (bisector span) and
the full width at half-maximum (FWHM). These are often used as
indicators of stellar activity (Queloz et al. 2001; Santos et al. 2002)
but mainly they track the quality of our observation and whether any
radial-velocity displacement is caused by a change in the shape of
the CCF, or by a translation of the CCF, which is what we are after.

Eleven systems (9 on HARPS and 2 with SOPHIE) with particu-
larly strong anti-correlation have been dropped from the observing
schedule. A anti-correlation between bisector span and RV is likely
caused by starspots on the surface of the target creating parasitic
signals (e.g. Queloz et al. 2001).

Prior to fitting our radial-velocities, we clean any obvious out-
liers from our data. First, we exclude any observations mistakenly
obtained on a star other than our target. This is often seen as a
significant difference in the spectrum’s signal-to-noise ratio and in
the FWHM. Secondly, we remove any measurement likely affected
by the Rossiter-McLaughlin effect (e.g. Triaud 2018). To find which
measurements are affected, we fit a Keplerian binary model to the
radial velocities, and from the fit parameters compute when eclipses
would happen.

In the third step, we examine the distribution of all bisector
span and FWHM measurements of a given system, and exclude
measurements that are further from the mean by more than 30. We
also perform target per target visual inspections of these metrics and
flag systems where the bisector span and/or the FWHM appear to
show a long-term trend.

2.3 Choice of targets and observation summary

For this paper, we select three systems from within the full BEBOP
South sample. We choose our Southern sample for this exercise as we
have obtained more high precision data with a longer baseline than
what is currently available in BEBOP North. We select these three
from the sample for several reasons. The first is that no planetary or
stellar activity signal are currently visible.

Secondly, we select amongst the systems with the lowest radial-
velocity uncertainty, and lowest rms scatter, after having removed
the contribution of the secondary star to the radial velocities of the
primary (that we refer to as residual rms). We do this to specifically
demonstrate BEBOP’s ability to recover circumbinary planets with
signals of a few ms~'. Of our 41 Southern targets with more than
the average of 23 spectra, we have identified 17 with a residual
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Figure 1. Best fit phased RV models for (a) = J0310-31, (b) = J1540-09, (c)
= J1928-38 with associated residuals. Doppler motion of the primaries seen
here are caused by the secondary stars. Residuals have an rms = 3.2, 3.8, and
3.0ms~!, respectively.

rms < 10ms~!, corresponding to roughly 42 per cent of the sample.

While 27 of these targets (66 per cent) have anrms < 17 ms~'. Three
systems are selected from within these, which we now describe:

(1) EBLM J0310-31 (JO310-31 thereafter) has been part of the
preliminary survey for BEBOP on HARPS, and of the first extensive
observing campaign. This is the target for which the largest number
of spectra has been obtained. In total, 65 RV data points are available,
obtained between 2017-7-9 and 2020-1-2. These measurements also
have the lowest mean uncertainty of the survey ory = 2.13 ms~!.
J0310-31°s residual rms = 3.16 ms~', which is one of the smallest
we obtain so far. All these make JO310-31 the ideal target to test our
procedures to compute detection limits, as well as perform injection-
recovery tests on. See Fig. 1 for a phased plot of our RV data for
JO310-31, along with our best-fitting model and residuals.

(2) EBLM J1928-38 (J1928-38 for short). Its residual rms =
2.96 ms~!, better than J0310-31, close to its mean photon noise
uncertainty gy = 2.67 ms~'. Only 25 measurements have been
obtained on J1928-38 so far, which makes it more representative of
the current state of the survey than J0310-31 is. These were collected
between 2018-6-4 and 2019-9-14.

(3) EBLM J1540-09 (henceforth J1540-09) has ory =
3.86ms~ ', and rms = 3.75 ms ™', for 41 available spectra, observed
from 2017-4-20 to 2020-3-6.

MNRAS 511, 3571-3583 (2022)
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These targets were analysed using the xivma RV analysis package
(see next section). Their parameters can be found in Table 1. All data
can be accessed in tables A5—-A7 of appendix A. All measurements
for these three systems are used, with no outliers found within those
three data sets.

3 RV ANALYSIS WITH xIma

For the analysis of the radial velocities and the calculation of detec-
tion limits, we use the KIMA package presented in Faria et al. (2018).
The code models the RV timeseries with a sum of Keplerian functions
from N, orbiting planets, estimating the posterior distributions for
all the orbital parameters.

To sample from the joint posterior distribution, KIMA uses the
Diffusive Nested Sampling (DNS) algorithm from Brewer, Pértay
& Csanyi (2011). Together with posterior samples, DNS provides
an estimate for the marginal likelihood, or evidence, of the model,
which can be used for model comparison (e.g. Brewer 2014; Feroz,
Balan & Hobson 2011). Fixing the values of N, in sequence, we
can use the ratio of the evidences to compare models with different
number of planets. In addition, since DNS can be used in a trans-
dimensional setting (Brewer & Donovan 2015), the number of planets
in the system N, itself can be a free parameter in the analysis, and
its posterior distribution can be estimated together with that of the
orbital parameters. The posterior probability for each N, value then
allows for the same model comparison, with the advantage of being
obtained from a single run of the algorithm.

The DNS algorithm samples from a mixture of distributions which
is not directly the posterior. A total number of samples N, from this
target distribution results in a smaller number of effective samples
Negr from the posterior distribution. We obtain N > 20 000 effective
samples for each model, which is more than enough to accurately
characterize the posterior.

Keplerian parameters are estimated from the effective posterior
samples via the clustering algorithm HDBSCAN (Mclnnes, Healy &
Astels 2017). First, crossing orbits are removed from the posterior
samples. Those are proposed Keplerian orbits that cross with each
other, or those with an eccentricity which would cause their orbit
to cross into the instability region of the binary and are therefore
unphysical (e.g. Dvorak, Froeschle & Froeschle 1989; Holman &
Wiegert 1999; Doolin & Blundell 2011; Mardling 2013). HDB-
SCAN is applied on the remaining posterior samples, highlighting
dense regions in parameter space. The cluster corresponding to the
Keplerian signal is plotted with the CORNER package (Foreman-
Mackey 2016). Parameters are determined as the 50th percentile of
the cluster, with 1o uncertainties estimated from the 14th and 84th
percentiles.

To decide between competing models that fit our data, we use the
Bayes factor (BF, here onwards). The BF is the ratio of the Bayesian
evidence of the two competing models, and provides a measure of
the support in favour of one over the other (Kass & Raftery 1995;
Trotta 2008). Table 2 adapted from Trotta (2008) shows how the BF
is measured and introduces the Jeffreys’ scale (Jeffreys 1961) as a
measure of evidence strength.

To guide our identification of planetary candidates, we follow
the same Jeffreys’ scale, but use custom thresholds that affect what
response we have to the system. Like Trotta (2008), we use BF =
12 as a threshold for ‘moderate’ evidence. To identify planetary
candidates worthy of additional follow-up (to apply for additional
telescope time for instance), we use BF > 6. Regularly, 30 marks a
detection in Astronomy. To make sure we are over that value, we place
a threshold at BF = 35. Any system reaching that level continues to
be observed as any other, but we analyse its data more regularly than
once a year. To visually track increasing evidence for a planetary
signal, we place an additional division at BF = 70. Finally, we place
our upper threshold BF = 140, after which observations cease to

Table 1. Updated binary, system, and derived parameters for the investigated binary systems. Uncertainties are given in the
brackets, as the last two significant figures, except for oj; where uncertainties can be significantly asymmetric.

EBLM J0310-31

EBLM J1540-09 EBLM J1928-38

System properties

TIC 89045042
TYC 7019-784-1

Gaia DR2 5057983496155992448
o (deg) 03:10:22.62

5 (deg)® —31:07:35.7

Vmag 9.33(02)"

Distance (pc)“ 147.29(84)

Mp (Mg)* 1.26(10)

Binary parameters

Pin (d) 12.6427937(17)

Ka (kms™") 27.87218(52)

€bin 0.308724(19)

wpin (rad) 3.243410(80)

Tperi (BJD2450000) 7934.64483(13)

System parameters

y (kms™ 1) 29116.0(10)

ojic (ms™!) 27708

Derived parameters

Mg (Mg) 0.408(20)

apin (AU) 0.1260(31)

32431480 469755925
5600-377-1 7931-842-1
6317098582556256000 6739146911148825344
15:40:08.99 19:28:58.85
—09:29:02.2 —38:08:27.2
10.865(38)° 11.20(12)"
206.0(1.8) 257.7(2.2)
1.18(10) 0.980(80)
26.338279(14) 23.322972(22)
23.17988(87) 17.26333(52)
0.120452(38) 0.073151(38)
1.09802(37) 2.39117(75)
7839.4468(15) 8258.5885(28)
—55395.95(65) 16558.05(62)
1.32 1.153
1.48%132 0.089% 1oz
0.444(23) 0.268(14)
0.2037(53) 0.1720(44)

Note. “Martin et al. (2019) "Hgg et al. (2000) “Munari et al. (2014) YGaia Collaboration, Brown et al. (2018)
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Table 2. Table of BF along with corresponding probability,
sigma values (standard deviations away from the mean of a
normal distribution), and the ‘Jeffreys’ scale’ adapted from

Trotta (2008).

BF Probability Sigma Evidence strength
<3 <0.750 s2.1 Inconclusive

3 0.750 2.1 Weak

12 0.923 2.7 Moderate

150 0.993 3.6 Strong

be blind and we start to target specific epochs that represent poorly
sampled orbital phases, or alternate solutions (eccentricity, 2 x P,
etc). We use the thresholds described here in our insertion/recovery
exercise below.

Contrary to aregular planetary system, a circumbinary SB1 system
is dominated by the reflex motion caused by the secondary star
(typically tens of km s~') and extremely well-constrained by the data.
In addition, we know there cannot be a planet at an orbital period
<4 Py, due to the instability region (Dvorak et al. 1989; Holman &
Wiegert 1999; Doolin & Blundell 2011; Mardling 2013).! In contrast,
we have no idea whether a planet is within the system, or what its
parameters might be. By default, xtmaapplies a common prior for all
the orbiting objects (secondary, or planet) in a given model, which is
not well-adapted to our case. Particularly, there is no doubt that there
is a secondary star in the system, and as such no need for the nested
sampler to test that hypothesis.

In this context, xIMa can instead use the so-called known ob-
Jject mode, where a specific set of priors can be placed on the
binary properties, and another set of priors is used to explore the
presence/parameters of putative planets. At each step, xima then
fits for the binary (the known object) and any additional Keplerian
signal present in the data. Using this mode, the nested sampler only
computes evidence for >1 Keplerian function, therefore only testing
for the presence of circumbinary planets (>0 planets).

A typical x1mMa run with 200 000 saves, resulting in Neg &~ 25 000—
35000 posterior samples (depending on data set) takes ~180 min on
a standard laptop computer.

4 METHODS AND SIMULATIONS

Here, we describe our methods, which are used similarly on all
the systems we monitor in the survey. First, we give a simple
parametrization of the model. Then, we detail and justify the priors
we use within x1mMa (see also Table 3). We then demonstrate using
K1MA to produce robust and fully Bayesian detection limits. Following
that, we perform a more traditional insertion-recovery test of static
Keplerian signals to compare with our x1ma detection limits. We then
test the validity of injecting static Keplerian signals in comparison to
N-body simulations. Finally, we discuss how our process compares
with previous methods for detection limits, both for single and binary
stars.

'In practice, the stability limit is dependent on other parameters such as the
eccentricities, orbital alignments, relative orbital phases, and mean motion
resonance, as most recently explored by Quarles et al. (2018). It is there-
fore possible that xva would return unstable circumbinary configurations.
However, any such solutions would have their stability rigorously tested with
N-body models prior to claiming a detection.
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Table 3. Prior distributions used in RV model for binary and planetary signals
in KIMA.

Parameter Unit Prior distribution

Binary Planet

Ny 1 U, 3)orl
P d U(Pyin = 0.01) LU@A X Py, 1 x 103 or x 10%)
K ms~! UK £ 10) MLUO0.1, 100)
e U (epin £ 0.0005) K(0.867, 3.03)
¢ U(0, 27t)

Uu(o, 27)
ajit ms~! LU(0.001, 10 x rms)
y ms~! U(Vyys £ 100)

Note. N, denotes the Number of Planetary Keplerian signals to fit to the data. Py,
and epi, denote the Period and eccentricity of the binary respectively. K5 denotes
the semi-amplitude of the primary star, caused by the secondary. ¢/ denotes a
uniform prior with an upper and lower limit, £/ is a log-uniform (Jeffreys) prior
with upper and lower limits, M LU is a modified log-uniform prior with a knee
and upper limit, and IC is a Kumaraswamy prior (Kumaraswamy 1980) which
takes two shape parameters.

4.1 Model setup

With k1Ma, we assume independent, static Keplerian orbits for the
binary and any circumbinary planets. This neglects the fact that
the orbits of the planet and binary will evolve through three-body
interactions (e.g. Martin & Triaud 2014; Kostov et al. 2014). Martin
et al. (2019) however found such interactions to be negligible with
respect to the CORALIE BEBOP survey. We will briefly verify if
this assumption still holds with our more precise HARPS data in
Section 4.4, where we test the injection and retrieval of N-body
simulated RV signals.

The Keplerian models we fit to the data are defined by the following
parameters. For the binary we have Py, (the orbital period), K4 (the
semi-amplitude of the primary star, caused by the secondary), epiy
(the binary’s orbital eccentricity), wpi, (the argument of periastron),
and ¢y, (the starting phase of the orbit). We can calculate the time
of periastron passage from these parameters using Tpeq = fo — (P X
¢)/(21), where 1, is the chosen epoch. The number of planets in the
system is referred to as N,,. Planetary parameters are defined like for
the binary, but written with a subscript p, e.g. P, for a planet’s orbital
period.

In addition, we fit for the systemic velocity y, and for a jitter term,
o that rescales the uncertainties on the data. An increase in this
parameter is penalized when computing the likelihood. We can also
fit for offsets in data between instruments, but this not necessary for
the three systems we analyse here.

4.2 Prior distributions

We use priors similar to those laid out in Faria et al. (2020), but
adapted to circumbinary planets. As described in Section 3, we treat
the signal produced by the secondary star as an known object, taken
to be obviously present in the data and place tight priors on its
parameters. We only compute Bayesian evidence for any additional
signals to the inner binary. This is an advantage of using x1mMa, both
the orbit of the binary and any additional signal are fit to the data
simultaneously, each posterior sample obtained has a corresponding
binary fit. Table 3 shows the prior distributions utilized in our
analysis.

The secondary’s orbital parameters prior distributions are based on
values from an initial fit. We take the mode of each binary parameter
and set to the prior to uniformly explore a range around that value.
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That range is determined from fitting all of the binaries in our sample.
For instance, we explore £0.01d around the orbital period, and
+10ms~! around the semi-amplitude (Table 3). While these might
seem tight, the typical precision obtained on Py, and K is 100 times
less than the prior ranges we set (see Table 1). As such, the binary
priors we chose are wide enough to enclose the true parameters and
their uncertainties.

To search for additional signals besides the binary (i.e. circumbi-
nary planets), we use a uniform distribution for y, ¢, w, and N,
as there is no reason to favour any particular value within these
parameter spaces.

For planetary eccentricities, we utilize a Kumaraswamy distribu-
tion (Kumaraswamy 1980), using values for our shape parameters
as o = 0.867 and B = 3.03 as justified in Kipping (2013), closely
resembling the Beta distribution described there. A Kumaraswamy
distribution favours lower values but still permits the exploration of
higher eccentricities when the data allows.

The most sensitive parameter to sample when determining robust
detection limits is planetary semi-amplitudes Kj,. For this reason, we
use a transformed Log-Uniform (Jeffreys) prior. We cap the upper
range, choosing 100ms~! (any signal greater than this would be
obvious in our data). Thanks to various tests, we noticed that setting
a specific lower limit to K}, influenced our ability to recover planets
and estimate robust detection limits. When we set the lower limit too
high (e.g. 1 ms™!), it excludes any signals < 1 ms~! in strength that
could lie formally undetected in our data, but effectively ignoring
any contribution they may have on other signals and parameters. If
instead we set the limit too low (e.g. 0.01 ms™!), the sampler does
not explore the higher K, sufficiently (since they become relatively
less likely). This can bias the detection limit to lower K, due to low
number statistics in the posterior, producing overconfident detection
limits.

Instead of setting a lower value we insert a knee, to give less
priority to signals below a set value. Gregory (2005) advises using
a knee at 1 ms~!, which was 1/10 of their typical RV uncertainty.
As our survey utilizes RV data from both SOPHIE, HARPS, and
ESPRESSO, our uncertainties approach 1 m s~!, we set our knee to
0.1ms™". For values of 0 < K, < 0.1ms™', the distribution acts
as a uniform prior, whereas for K, > 0.1 m s~!, the priors follow the
usual Jeffreys prior (see Gregory 2005).

For all other parameters, we employ Log-Uniform (Jeffreys) priors
since the range of values can span several orders of magnitudes. This
goes for o and P,,.

The lower limit for the P, prior is set to 4 x Py,, following
the instability region (see Section 3). This is a slightly conservative
estimate for the instability region. For completeness, we explored
the effect of placing a lower limit at P, < Py;,. Results were similar,
with the only effect being that posterior samples were dispersed over
a larger parameter space resulting in a coarser posterior.

We place the upper limitat P, = 1 x 10° d, roughly the time-span
of our longest observed systems: J0310-31. For simplicity and to
allow for a fair comparison, this limit is used for all three systems. We
increase the maximum limit to 2 x 10* d to generate detection limits,
as described in Section 4.3, and witness how the detectable semi-
amplitude increases with increasing orbital period after exceeding the
time-span of the data. When seeking planetary candidates, we prefer
using a maximum period of 1 x 103 d, which saves computational
power and ensures a finer sampling of the posterior. The presence of a
planetary signal with P, > 1 x 10? d in our data would be identifiable
as an overdensity of posterior samples at the upper limit of this prior.
In which case, we adjust this limit as required. The limit on P, will
extended as we accumulate more data.
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4.3 Detection limit method

A unique feature of a diffusive nested sampler such as x1ma is that
when forced to explore higher N, than is formally detected, the
sampler will produce a map of all signals that are compatible with
the data. Since those proposed signals remain formally undetected,
the posterior naturally produces a detection threshold. In our case,
this is made simpler by x1Ma ’s known object mode (see Section 3),
and the fact that no planets have been detected in those three systems
thus far. We describe in Section 5.3 how we calculate a detection
limit when a planetary signal is already present in the data.

Later, we compare our results to a more traditional insertion-
recovery test, the method of choice to assess detectability and
measure occurrence rates in radial-velocities surveys (Cumming et al.
2008; Konacki et al. 2009; Bonfils et al. 2013; Martin et al. 2019;
Rosenthal et al. 2021; Sabotta et al. 2021).

Using a diffusive nested sampler like k1Ma also provides immediate
advantages over insertion-recovery test. kIma samples all orbital
parameters in a fine manner. Particularly, this means that all orbital
phases, all eccentricities, and all periastra are sampled when typically
only a small number of phases are tested, and that eccentricities are
nearly always forced to zero. Detection limits obtained with xIvMA
marginalize over more orbital parameters than is computationally
feasible with insertion-recovery tests, and kIMa assumes Keplerian
signals, rather than sinusoidals (see next section).

To create a detection limit, we run kIMa with priors as in Table 3
except that we fix N, = 1. ktMa marginalizes over all allowed param-
eter space, searching for any possible Keplerian signals producing
a reasonable likelihood, in the process, ruling out Keplerians that
would otherwise have been detected.

A key to producing a robust detection limit is to produce a well-
sampled posterior. For each system we compute three runs, ensuring
>20000 samples are obtained in each. To gather consistent results,
we set the number of saves in k1ma to 200 000. The resulting (K}, Pp)
posterior’s density is plotted in Figs 2 and 3 as a grey-scale hexbin,
with the detection limit being the top envelope.

To compute the detection limit, we separate the posterior in log-
spaced bins in P, and within each bin, we evaluate the maximum
99th percentile of the K, distribution. This is done with the caveat
that >2 posterior samples must lie above the chosen sample in a given
bin. We do this to prevent the detection limit from being affected by
small number statistics in individual bins. We calculate a detection
limit for each of the three runs we perform on each system, which
we show with faded blue lines in Figs 2 and 3. We also draw the
detection limit obtained when combining all posterior samples from
the three runs into a single sample, with a solid blue line. Proceeding
this way allows us to produce a mean detection limit and to obtain a
visual estimate of the uncertainty of that limit for each bin. Overall,
all runs are compatible with one another. We stop computing the
detection limit for all P, exceeding the first P, bin where the number
of samples in the top 10 per cent of K|, prior is larger than three,
which is where the posterior is affected by the upper limit set for the
P, prior.

4.4 Injection and recovery tests

The seminal (single-star) radial-velocity surveys of Cumming et al.
(2008), Mayor et al. (2011), and Howard et al. (2010) used injection
and recovery methods as a means of determining injection limits.
First, all known planets are removed from the data. Then a sinusoid
of varying amplitude, period and phase is used to model a putative
exoplanet, and applied to the data. Following that, a periodogram of
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Figure 2. Hexbin plot denoting the density of posterior samples obtained from three separate ktMa runs on J0310-31 with N, fixed =1, as a grey-scale. Faded
blue lines show detection limits calculated from each individual run on the system as described in the text. The solid blue line shows the detection limit calculated
from all posterior samples combined. Coloured symbols indicate the BF results of injection/recovery tests and correspond to the colour bar on the right-hand
side. Circles are for injected static Keplerian sinusoidal signals, whereas triangles are for N-body simulated injected signals. The Keplerian and N-body signals
are injected at the same orbital periods but are represented slightly offset horizontally here for visual clarity. The faded red dashed lines show masses of Solar

system planets for comparison.
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Figure 3. Same as in Fig. 2, but for three separate x1va runs on J1540-09 (a), and J1928-38 (b) with N, fixed =1. All injected signals here are static Keplerian

sinusoidal.

the data (typically a Generalized Lomb-Scargle) is computed. If it
produces a peak below a certain false alarm probability (typically <
1 per cent) near the injected period, the simulated planet is considered
‘detected’. By reproducing this procedure over a grid of P, and K,
inserted signal, it is possible to find out for which values the planet
is no-longer detectable. Martin et al. (2019) followed this approach
for the CORALIE BEBOP survey, with one key difference that the
planet signal was injected to a radial-velocity data set where the
binary signal had already been removed.

Whilst this traditional approach may appear similar to ours, in
practice they are distinct. When we use our Bayesian approach with
KIMA to produce detection limits, we answer the question ‘‘what is
compatible with the data?”, whereas with an insertion-recovery test,
we ascertain ‘‘can this specific signal be found?”.

Here, we create injection-retrieval tests for our three targets. There
are two purposes of this. First, we investigate compatibility between
our Bayesian x1va -derived limit and the more traditional approach of
injecting static Keplerian signals. Secondly, we follow the approach
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of Martin et al. (2019) to inject not just static sinusoids but an N-body
derived signal using REBOUND, including all dynamical interactions
between the planet and binary, to test the validity of the previous
step.

We add one circumbinary planet signal to the original data, and do
so for a number of planetary semi-amplitudes K|, and orbital periods
Py,. x1va is then used to recover any Keplerian signals in the modified
data set with the resulting BFs providing a measure of signal recovery
success.

The choice of K}, and P, at which we inject simulated signals is
informed by the data itself. For K}, values are chosen as multiples of
the residual rms of each system. Values used can be found for each
system in appendix A, tables A1-A4.

For P, there are three periods we test for all three targets. The first
18 5.9 X Ppin, which is similar to known circumbinary systems (Martin
2018) and slightly offset from the often unstable 6:1 mean-motion
resonance (Quarles et al. 2018). We also test 12 x Py;, and 486d
(365 x 4/3, to avoid but be close to the 1 yr alias). In some cases, we
also simulate specific orbital periods, coinciding with features of the
detection limits described in Section 4.3.

Each inserted signal has an eccentricity ¢, = 0.01 (small but non-
zero), and argument of periastron w, = 0.

Then, we run x1mMa as described previously, using priors as in
Table 3, including a uniform prior on N, = U(0, 3), reproducing how
we conduct an open search of the system. BFs are computed from
each run and results are plotted in Figs 2 and 3 as coloured points.
Their values can also be found in tables A1-A4 in appendix A.

The binary and putative circumbinary planets for the three chosen
periods are then simulated for the J0310-31 system using the REROUND
N-body code (Rein & Liu 2012), with the IAS15 integrator (Everhart
1985; Rein & Spiegel 2015). First, we remove the best-fitting binary
model from J0310-31’s observed radial-velocity measurements, pro-
ducing residuals. Then, we use REBOUND to simulate a radial-velocity
model of the binary and putative planet at each epoch of observation.
We add this model to the residuals. Doing this preserves the scatter,
uncertainties, and observational cadence obtained in reality. KIMA is
ran once again on each N-body simulated data set, and BFs computed
and compared to those resulting from the injected static Keplerian
signals. We discuss the result of this test in Section 5.3. All BF values
are plotted in Fig. 2 as coloured triangles offset to the right-hand side,
and can also be found in appendix A table A2.

5 RESULTS AND DISCUSSION

We begin by providing updated parameters on the three binary
systems investigated. Then, we discuss the calculated detection limits
for each binary system, along with how they compare to our Keplerian
injection and recovery tests. Following this, we discuss and present
our results from the comparison between Keplerian and N-body
simulation injection and recovery. We discuss how nested sampling
provides more robust detection limits. Particularly, we describe how
traditional insertion-recovery exercises overestimate their ability to
retrieve planets by assuming zero eccentricity.

5.1 Updated binary parameters

Table 1 shows updated orbital parameters from our most recent
data for the systems investigated in this work. We provide lo
uncertainties for each parameter, in parenthesis. Uncertainties are
symmetric and varying only in the second significant figure, where
the largest of the two values were taken. oj;; is the only parameter that
demonstrated an asymmetric distribution (tending to zero), where
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we consequently provide asymmetric uncertainties. Values agree
with Martin et al. (2019) to within 1-20 for all parameters other
than wy;, and correspondingly 7. Improvements in parameter
precision of around 70 per cent are to be attributed to the increased
number of high-precision measurements acquired using the HARPS
spectrograph.

5.2 Detection limit results

Figs 2 and 3 show the results of our detection limit analysis for
EBLM J0310-31, J1540-09, and J1928-39, respectively. The grey-
scale hexbins show the density of posterior samples from all kTma
runs on the targets. The faded blue lines are the calculated detection
limit from three individual run containing 200 000 saves, and >20
000 posterior samples. The solid blue line is calculated from all
posterior samples combined. Coloured dots represent the results for
each individual injection and recovery test as outlined in Section 4.4.
The colour of these points represent the BF discussed in Section 3,
and measure the probability of recovery for the injected Keplerian
signals. Every sample in the posterior used to compute detection
limits involves a free fit of the binary as a well as a proposed planetary
signal, producing a detection limit that marginalizes over the binary
parameters, an essential element for BEBOP.

From these plots, it is evident that different runs of x1ma produce
consistent detection limits with one another. The only inconsistencies
are due to a low number of samples within a particular bin, a situation
easily resolved by increasing the number of saved posterior samples.
We also note that the posterior below the limit is uniformly sampled
across parameter space, an indication of the reliability of the method
we followed.

The detection limit plots also show many features that are regularly
seen in detection limits for exoplanets using the radial-velocity
method. For all three systems, we see an increased density of
posterior samples, and a consequently raised detection limit near
0.5 and 1 yr orbital periods, corresponding to yearly aliases, caused
by seasonal gaps in observations. In addition, we observe that our
detection capability is broadly horizontal for P, below the timespan
of our data. Then, it increases linearly in log until it hits the upper
limit of the P}, prior. For J0310-31, we reach a mean Kp detection
of 1.49ms™!, for J1540-09, we get 2.06, and 2.15ms~" for J1928-
38. For these three systems, we outperform any produced by the
TATOOINE survey (Konacki et al. 2010) despite our systems being
fainter by an average four magnitudes, validating our choice to
monitor single-lined binaries to seek circumbinary exoplanets. These
detection limits can be translated into masses, which are shown by
additional lines in Figs 2 and 3. Typically, we are sensitive to planets
with masses between Neptune’s and Saturn’s for orbital periods
between 50 and 1000 d respectively, a milestone.

Injection-recovery test results are consistent with the detection
limits obtained with xIma at almost all orbital periods tested on each
system. The largest deviation can be seen in Fig. 2 for J0310-31 at
74.59 d. Where the detection limit is approximately 2ms~! lower
than the recovered injected signal strength. This is the only location
where such a deviation is observed.

Fig. 4 is an example of how the value of the BF evolves with
the number of posterior samples during a xIMa run. Our example is
J0310-31 data, with an injected planetary signal with P, = 227.57d,
and K, =3.16m s~!. The uncertainty on the BF (blue area) is
estimated assuming a multinomial distribution. We use this figure as
an indicator for fit convergence, i.e. once the line asymptotes on a
BF value, the fit has converged.

€20z Iudy || uo Josn gSNI 3INI SUNO-LSINI Ad €625 1.69/1 2GE/€/1 L G/aI01HE/SBIU/WOD dNO"DlWapedk//:sdiy WOy papeojumoq



Bayes Factor

= = N ~N
o w =] w
o (=] (=] o

w
o

0 5000 10000 15000 20000 25000
Effective Sample Size

Figure 4. Plot of BF versus number of posterior samples from a kIMa run
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Figure 5. Hexbin plot of posterior samples for J0310-31 as in Fig. 2. The
coloured lines here indicate the detection limits calculated with the posterior
samples split into five even phase bins with the black line representing the
phase bin containing ¢ = 0.

We also check how often we recover the Keplerian signal we
insert. We find that orbital parameters of injected signals detected
with BF > 35 are typically recovered to within 30 or 10 per cent
of their original values, except those with periods close to one or
half a year. This is true for injected Keplerian signals, as well as the
REBOUND injected signals.

The chosen phase of the injected Keplerian signal could, in princi-
ple, cause the discrepancy between the methods seen at P, = 74.59d
for JO310-31. Fig. 5 shows the same posterior samples as those in
Fig. 2 but split into five different phase bins, with a detection limit
calculated for each. Doing this is simple with x1mMa , we simply select
all posterior sample within a specific phase bin and reproduce the
method in Section 4.3. As can be seen in the figure, varying phase
has little effect on the detection limit, which is the case for each
target investigated. This consistency seen between phase bins further
demonstrates how robust and consistent our detection limits are.
This also highlights the usefulness and importance of using nested
samplers such as xImMa to compute detectability curves.

5.3 reEBoUND simulation results comparison

Results from systems simulated using REBounDare shown in Fig. 2, as
coloured triangles offset to the right from similar, but Keplerian-only
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Figure 6. Plot of residual radial-velocity amplitude as a function of time,
after removing a Keplerian binary signal from N-body simulated JO310-31
radial-velocity data set. Simulated data are computed with rReBounDincluding
the binary and an orbiting circumbinary planet with P, = 74.59d and K, =
6.32ms ™. To reveal the Newtonian perturbation, we plot one point for each
night over the entire duration of our data set. The blue line depicts 1.3 x rms
within bins 45 d wide. We use this line as a visual guide to the amplitude
of the effect. The shaded orange region illustrates the rms scatter obtained
on the data we collected on J0310-31. The bow-tie shape of the residuals is
caused by apsidal motion of the binary (wpin), caused by the planet, which a
Keplerian model does not include.

simulations. The only evident deviation between the two simulations
occurs at the shortest period investigated (74.59 d) here, the BF for
the rEBOUND simulated data is higher for K, = 3.95ms™.

The agreement in those results (see table A2 in appendix A)
confirms that assuming Keplerian functions has no obvious detriment
to circumbinary planet detection within our current data just like
for any planetary system so far, and as we had already seen in
Martin et al. (2019) with more imprecise CORALIE data. This
simply means that assuming a static Keplerian signal is sufficient
for discovery. However, dynamical fits are known to be useful
to constrain the physical and orbital parameters of circumstellar
planetary systems (e.g. GJ 876; Correia et al. 2010), and would
likely be the case for circumbinary systems, as they have been for
HD 202206 (Correia et al. 2005; Couetdic et al. 2010), a system
comparable to a circumbinary configuration.

To better understand the non-Keplerian signal, we visualize the
amplitude of the Newtonian interactions in Fig. 6. We use REBOUNDtO
simulate nightly RV data, for K, = 6.32ms™! at P, =74.59d
(the shortest period and highest mass planetary signal simulated in
this work, producing the largest Newtonian perturbation), over the
timespan of our data on JO310-31. Fig. 6 depicts the residuals after
fitting and removing the Keplerian binary and planetary signals from
the N-body simulated data set. The residuals show that N-body model
diverges from the Keplerian model due to apsidal precession (wpiy)-
However, for the timespan of our current data that divergence remains
comparable to the residuals’ rms. Assuming Newtonian effects are
non-negligible will likely cease to be valid for longer time-series.

5.4 Post-Newtonian effects

Radial-velocity measurements of binary stars are also affected
by weaker effects, such as tidal distortion, gravitational redshift,
transverse Doppler and light time travel effects (Zucker & Alexander
2007; Konacki et al. 2010; Arras et al. 2012; Sybilski et al. 2013).
k1M assumes purely Keplerian functions, ignoring these effects, here
we explore what impact this may have on our fit, and particularly on
our ability to retrieve planets.
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Figure 7. (a) Phased RV residuals from the best-fitting model of J0310-31
simulated binary and additional post-Newtonian effects only. Residuals have
an rms = 0.07ms~'. (b) Semi-amplitude versus period plot of posterior
samples from a xIMa run on the residuals seen in plot (a). Posterior samples
are located at half, third, and a quarter of JO310-31’s binary orbital period.

We calculate the magnitude of tidal distortion on our RV measure-
ments as in Arras et al. (2012), and find their amplitude is < 0.7 ms™!
for the three systems we investigate in this paper, an insignificant
contribution to the observed RV scatter. We do note however, that
for the shortest period binaries in the BEBOP survey, the magnitude
of this effect becomes significant (with respect to the rms of the
systems) and should be accounted for in any further analysis.

Computing equations from Zucker & Alexander (2007) for the
parameters of each of our three systems, we find the magnitude of
transverse Doppler effects to be < 2.2ms™!, and the peak to peak
variation < 1.6ms~!. Similarly, we find the magnitude and peak
to peak variation of light time travel effects is < 2.7ms~!. The
only relativistic effect found to be greater than the rms on these
systems is that of gravitational redshift, with a maximum amplitude
of 13.9ms™! but a peak to peak variation of < 6.5ms™!.

To better asses the impact of these effects on our work, we simulate
apurely Keplerian binary signal for JO310-31 using the same cadence
as our observations were obtained in, and add these post-Newtonian
effects. We then fit the data using k1Ma. Fig. 7(a) shows residuals
after removing the best-fitting Keplerian model of the binary. The
residuals have an amplitude of &~ 0.1 ms~! and a signal phasing with
the binary (as expected). This shows that most of the post-Newtonian
effects are absorbed by the Keplerian fit.

We now use x1Ma once more, to ‘‘search for a planet” in these
residuals, in order to study how the algorithm behaves in the presence
of additional coherent signals. The posterior of that fit is plotted in
Fig. 7(b), and demonstrates the periodicity of these remaining signals
at harmonic periods of the binary with low semi-amplitude.

Individually these effects boast significant amplitudes, but as
their functional forms resemble, and phase, with a Keplerian, only
small differences are produced. Our simulations show that the
majority of the post-Newtonian signals are absorbed into our fit.
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Figure 8. Hexbin plot of posterior samples obtained from three separate
kIMA runs on JO310-31 with an additional 486 d signal located at the green
point, with N, free between 0 and 3. The blue line shows the detection limit
as seen in Fig. 2. Faded red lines show detection limits calculated from each
individual run on the system after having removed the most likely N = 1 signal
from the data. The solid red combines all these posterior samples together.

They are absorbed primarily into the systemic velocity, and lead
to a small underestimation of the secondary’s semi-amplitude. For
J0310-31, ignoring post-Newtonian effects in this experiment creates
an underestimated K, ~ 4ms~!, corresponding to a 0.01 per cent
deviation. We conclude that these effects do not affect the detection
limits of this paper greatly, and can be safely ignored for our purposes.

5.5 Detection limits in the presence of planetary signals

Detection limits thus far are all generated from our current data on
systems purposefully chosen with no candidate planetary signals.
The ultimate goal of the BEBOP survey is to detect RV signals of
circumbinary planets in our data. Once a system is found to have a
planetary signal, a detection limit is required to rule out the presence
of additional companions above our calculated mass limit. To this
end, we calculate the detection limit for J0310-31 with our N-body
simulated data set containing an injected 4.74ms~!, 486 d signal. A
signal of this strength is easily detected in the data (see table A2 in
appendix A for its BF value). We identify the injected signal as in
Section 4.4, with N, varying uniformly from O to 3, as is standard
for the survey. Fig. 8 shows the resulting posterior samples, along
with a green dot illustrating the semi-amplitude and orbital period of
the injected signal. To obtain a recovered detection limit, we subtract
the Keplerian signal corresponding to the posterior model with the
highest likelihood from the simulated data. Once subtracted, we run
KIMAagain as in Section 4.3 and calculate the red recovered detection
limit from the resulting posterior samples. The blue line seen in Fig. 8
is taken from Fig. 2 for reference, and the recovered red line closely
resembles the original blue detection limit. We note that while this
approach is not strictly Bayesian, it recovers the correct detection
limit, and is expected to affect only a few systems (with planets)
within the survey.

5.6 The dangers of assuming circular orbits

Thanks to our use of xIMA to produce detection limits, we are able
to explore the effect of assuming e, = 0 on detection limits for
exoplanet radial-velocity surveys.

Most often detection limits are produced with multiple insertion-
recovery tests. To increase efficiency, and remain computationally
tractable, a number of assumptions are made. Circular orbits are
generally assumed in the inserted signals used to calculate detection
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Figure 9. Hexbin plot of posterior samples and blue detection limit for
JO310-31 as in Fig. 2. The red and green lines here indicate the same
limit calculated from posterior samples with eccentricities <0.1 and <0.5,
respectively. Horizontal coloured lines show the mean semi-amplitude of the
three coloured detection-limits out to 1000 d.

limits because this removes two dimensions: e, and w, (e.g. Cum-
ming et al. 2008; Zechmeister, Kiirster & Endl 2009; Howard et al.
2010; Bonfils et al. 2011; Mayor et al. 2011; Bonfils et al. 2013;
Martin et al. 2019; Sabotta et al. 2021).2 In addition, a short number
of discrete planet phases ¢, are usually sampled (e.g. 10; Martin
et al. 2019 or 12; Zechmeister et al. 2009; Bonfils et al. 2011, 2013).

Commonly when orbits are assumed circular, investigators invoke
Endl et al. (2002) as a justification. Endl et al. (2002) investigated
the effect of eccentricity on their detection limit for HR 4979, using
insertion and recovery. They test five planetary orbital periods Py,
each with one corresponding semi-amplitude K, and vary e, over
9 values and w, over 4, creating 180 (Pp, K}, e, wp) signals.3
They only test one phase angle ¢,. At the time, producing these
simulations represented a significant computational effort, however,
nowadays this appears as a rather coarse grid. From this exercise,
Endl et al. (2002) conclude that eccentricity can affect detection
limit calculations, but find that their detection limits assuming e, =
0 are valid for P, £ 3654, so long as the simulated Keplerian has e,
< 0.5. More recently, Cumming & Dragomir (2010) also concluded
that assuming circular orbits provides a good agreement with upper
semi-amplitude limits for e, < 0.5 when recovering signals with a
periodogram. These particular results have been invoked to justify
the assumption of circular orbits ever since.

Interestingly, for P, < 365 d (Endl et al. 2002) find their detection
limit is only valid if the inserted signal has e < 0.3. However, this
recommendation has not been followed, and assuming circular orbits
for short period is prevalent throughout the literature. From our
analysis, we can show how eccentricity affects the detection limit
over the entire period range. Our x1Ma runs contain >70 000 posterior
samples that naturally explore all orbital parameters.

Fig. 9 shows the same detection limit for EBLM J0310-31, as
calculated before, in blue using all posterior samples. Alongside, we
plot a red detection limit produced in exactly the same way, except
using only samples with ¢, < 0.1, and green with e, < 0.5 (the
limit stated by Endl et al. 2002; Cumming & Dragomir 2010). For
the three systems explored in this work, the red detection limit is
systematically lower, by an average of 24.7 per cent or ~1ms~' for
periods < 1000d. The green detection limit is also systematically
lower by an average of 13.3 per cent or ~0.6ms~! for the same

2Circularity is assumed for recovery since most use a periodogram. With
k1ma, the full Keplerian is used for exploration and recovery.
3Strangely, Endl et al. (2002) only mention 110 signals.
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Figure 10. Plot of the percentage difference between detection limits
calculated with all posterior samples, and posterior samples with eccentricities
<0.1 and <0.5 in red and green, respectively, for J0310-31 from Fig. 9. Solid
coloured lines represent a running mean taken on the faded coloured lines.

periods. Fig. 10 demonstrates how the two lower detection limits
differ from the original for J0310-31 with period. We note an increase
in divergence from the original detection limit at P, exceeding the
timespan of the data (> 1000 d here), to a maximum of 39.9 per cent
at ~4000 d. This maximum difference corresponds to 3.5ms~! (~
120 Mg). Our results are consistent with Wittenmyer et al. (2006)
who are able to exclude planets with masses 2 2 My, by assuming
e, = 0, and masses >4 My, if instead they assume e, = 0.6 at
a given P, ~ 4300 d, a 50 per cent difference, comparable to our
40 per cent.

Here, we remind the reader that we assume a Kumaraswamy
distribution as our prior on e,,, which already favours low e, as is seen
in observations (Kipping 2013). Even though circumbinary planets
discovered thus far are known to have relatively low eccentricities (e
< 0.15 Martin 2018), we strongly caution against assuming circular
orbits when calculating detection limits in any survey, particularly at
long orbital periods. Fixing e, = 0 when calculating detection limits
overestimates the success of the programme by a significant amount
(up to 120 Mg, or 0.4 My, in our case).

This exercise demonstrates the superiority of a diffusive nested
sampler in establishing robust detection limits, which are crucial to
infer the sensitivity of radial-velocity surveys, and consequently, the
occurrence rates of exoplanets.

6 CONCLUSIONS

We analyse high-precision radial-velocities obtained as part of a
large-scale, ongoing, radial-velocity survey that seeks circumbinary
planets using radial velocities obtained with HARPS, ESPRESSO,
and SOPHIE, in both hemispheres, on single-lined eclipsing bina-
ries. This survey is called BEBOP (Binaries Escorted By Orbiting
Planets). We then detail an observing and Bayesian analysis protocol
and test it on data collected for three single-lined binaries within
the survey. Our analysis shows for the first time, a repeated ability
to detect circumbinary planets with masses between Neptune’s and
Saturn’s, for orbital periods within 1000 d with as few as 25 spectra
in the span of a year. Fig. 11 displays a mass versus period plot
of the detection limits from this work (blue) along with confirmed
exoplanets (grey circles; NASA exoplanet archive* Akeson et al.
2013), transiting circumbinary planets (magenta diamonds), and
Solar system planets for comparison. This figure demonstrates our

“https://exoplanetarchive.ipac.caltech.edu/index.html
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Figure 11. Mass versus period plot showing the three detection limits from this work as blue lines in comparison to confirmed exoplanets as grey circles, and
transiting circumbinary planets as pink diamonds. Solar system planets are depicted as yellow dots for reference. Circumbinary planets in order of increasing
period; Kepler-47 b, Kepler-413 b, TOI-1338 b, Kepler-38 b, Kepler- 35 b, Kepler-64 b, Kepler-1661 b, Kepler-47 d, TIC-1729 b, Kepler-16 b, Kepler-453 b,
Kepler- 34 b, Kepler-47 c, Kepler-1647 b. Arrows illustrate planets with upper mass limits with the symbol placed to give a 20" upper limit.

ability to detect sub-Saturn mass circumbinary planets at periods up
to 1000d. Our data are able to detect a large fraction of currently
known systems. We note though that many circumbinary planet
detections made with eclipse timing variations are upper limits only.

We also present a method to compute detection limits on radial-
velocity data by using a diffusive nested sampler, without the need to
assume circular orbits as is the norm. We then show that this method
is superior than the usual injection-recovery tests. Assuming circular
orbits when determining detection limits generates overoptimistic
detection limits by an average of ~ 1 ms~' (24.7 per cent) at periods
< 1000d, and up to 120 Mg at periods > 1000d. We therefore
strongly caution against assuming circular orbits when calculating
detection limits, and suggest kIMa as a way for exoplanet surveys
in general to extract accurate sensitivity limits and occurrence rates
with fewer assumptions.

Thanks to the protocols and tests described in this paper, the BE-
BOP survey is now ready to produce circumbinary planet candidates
following Bayesian evidence, and able to compute occurrence rates
that can be compared to those already established from photometric
methods (Armstrong et al. 2014; Martin & Triaud 2014). Producing
occurrence rates and upper limits on the occurrence of circumbinary
planets will be done by simply combining all xima produced
detection limits.
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