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ABSTRACT
The dynamics and evolution of any galactic structure are strongly influenced by the properties
of the orbits that constitute it. In this paper, we compare two orbit classification schemes,
one by Laskar [numerical analysis of fundamental frequencies (NAFF)], and the other by
Carpintero and Aguilar (CA), by applying both of them to orbits obtained by following
individual particles in a numerical simulation of a barred galaxy. We find that, at least for
our case and some provisos, the main frequencies calculated by the two methods are in good
agreement: for 80 per cent of the orbits the difference between the results of the two methods is
less than 5 per cent for all three main frequencies. However, it is difficult to evaluate the amount
of regular or chaotic bar orbits in a given system. The fraction of regular orbits obtained by
the NAFF method strongly depends on the critical frequency drift parameter, while in the CA
method the number of fundamental frequencies strongly depends on the frequency difference
parameter Lr and the maximum integer used for searching the linear independence of the
fundamental frequencies. We also find that, for a given particle, in general the projection of
its motion along the bar minor axis is more regular than the other two projections, while the
projection along the intermediate axis is the least regular.

Key words: Galaxy: bulge – galaxies: kinematics and dynamics – galaxies: structure.

1 IN T RO D U C T I O N

Nearly two-thirds of spiral galaxies in the Universe have a bar
structure (e.g. Buta et al. 2010, 2015; Lee et al. 2012). Bars are one
of the main drivers for the secular evolution of disc galaxies (see
Athanassoula 2013 for a review), and can transport material from
the bar region to the centre and redistribute angular momentum
within the galaxy. This is emitted by the resonant regions in the bar
and its vicinity, and absorbed by the outer parts of the disc and,
mainly, by the spheroidal components (halo and bulge). Moreover,
there is a strong correlation between the strength of the bar and
the amount of angular momentum thus redistributed (Athanassoula
2003). Therefore, understanding the structure and the dynamical
properties of bars is one of the most important issues in the formation
and evolution of disc galaxies.

Orbits are the fundamental building blocks of any galactic struc-
ture and therefore their properties greatly influence those of the
structure. Moreover, it is difficult to describe the phase-space distri-
bution for the chaotic orbits, which cannot be adopted to construct
torus models (McMillan & Binney 2008). The orbit families and,
more generally, the orbital structure in a fixed bar potential have
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been considered by many studies (Contopoulos & Papayannopou-
los 1980; Zhao 1996; Häfner et al. 2000; Manos & Athanassoula
2011; Wang et al. 2012, 2013). Different methods of orbit classifi-
cation have been used.

The Lyapunov exponent method (see e.g. Benettin, Galgani &
Strelcyn 1976; Benettin et al. 1978, for a description). The Lyapunov
exponents describe the time-averaged exponential rate of divergence
of two orbits with close initial conditions in the phase space. Orbits
with significantly non-zero Lyapunov exponents are chaotic.

The Small ALignment Index method (SALI, Skokos 2001;
Voglis, Kalapotharakos & Stavropoulos 2002; Skokos et al. 2004;
Carpintero, Muzzio & Navone 2014). This method can be con-
sidered as an extension of the Lyapunov one, as it relies on the
properties of two arbitrary different initial deviation vectors of an
orbit, in order to distinguish efficiently between chaotic and regular
orbits. The Generalized ALignment Index (GALI; Skokos, Bountis
& Antonopoulos 2007) is similar to SALI, but uses a set of at least
three initially linearly independent deviation vectors.

The numerical analysis of fundamental frequencies (NAFF)
method relies on the fact that the regular orbits move on a torus-like
manifold and are thus quasi-periodic (Laskar 1990, 1993). We will
describe it further in Section 3.1.

The spectral analysis method uses the Fourier transform of the
time series of each coordinate of a given orbit (Carpintero & Aguilar
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1998, hereafter CA98). We will hereafter refer to this method as CA,
from the initials of its authors, and describe it further in Section 3.2.

While each method has its advantages, each also suffers from
disadvantages. For example, the Lyapunov method necessitates very
long integration times and the fraction of chaotic orbits also depends
on the integration time (Merritt & Fridman 1996); the SALI method
also needs relatively long integration times, albeit much shorter
than the Lyapunov method. The CA method has some problems
for rotating systems (Carpintero et al. 2003) and depends strongly
on the orbit integration time (Wang et al. 2012). Finally, in the
NAFF method whether an orbit is regular or not depends on the
drift of its frequencies, so that a critical value needs to be adopted
(see Section 5 in the present paper). Compared to other methods,
CA and NAFF have an important advantage, namely they give
more information for the regular orbits, such as their fundamental
frequencies, from the ratios of which it is possible to define orbital
families. Both of them have been successfully applied to various
potential systems (e.g. Papaphilippou & Laskar 1998; Valluri et al.
2010; Bryan et al. 2012; Valluri et al. 2016).

Most studies so far have relied on simple analytic potentials,
which, however, are not very realistic. In particular, real bars as
well as N-body bars are composed of two parts: an inner part which
is thick both horizontally and vertically, and an outer part which
is thin in both these directions, while as yet no analytical potential
with such a property has been developed (see Athanassoula 2016
for a review). N-body bar potentials, however, are much more com-
plex to use and there are therefore relatively few studies relying
on them, compared to the large number of studies relying on ana-
lytic potentials. Manos & Machado (2014) and Machado & Manos
(2016) took an intermediate path, using analytical time-dependent
potentials modelled after an N-body simulation of a strongly barred
galaxy. The disadvantage of this approach is that both the disc and
the bar potentials are rigid and have not responded to each other,
which is not realistic.

An alternative route, much nearer to the N-bodies, is to freeze
the simulation potential at a representative time and then follow
orbits with initial conditions obtained from the positions and veloc-
ities of the simulation particles at that chosen time (Athanassoula
2002, 2003, 2005; Martinez-Valpuesta, Shlosman & Heller 2006;
Voglis, Harsoula & Contopoulos 2007; Wozniak & Michel-Dansac
2009; Valluri et al. 2012, 2016). This approach has a number of
advantages. The corresponding potentials are realistic, and allow
for orbital structure studies in bars with a thick inner part and a thin
outer part. It also provides a unique and correct definition of the
orbital sample which will be used, whereas in rigid potentials this
sample is arbitrary, thus rendering any estimate of the fraction of
chaos in a given system also entirely arbitrary. Indeed, whether a
given orbit is regular or chaotic depends on its location within the
galaxy’s phase space, and different samples may populate this space
differently. This severe drawback of analytical potentials is easily
avoided by relying on the simulation to provide the initial condi-
tions of the orbits. Concerning disadvantages, let us mention that a
correct description of the potential from the simulation particles is
not trivial and also that the potential has been frozen, i.e. does not
depend on time. It is nevertheless possible to obtain information on
time evolution by considering a series of consecutive times and of
corresponding frozen potentials. Thus full time information can be
obtained, but in a very time consuming manner.

A third alternative is to use directly the orbits of a preselected
number of particles during the simulation (Ceverino & Klypin
2007; Gajda, Lokas & Athanassoula 2015, 2016). This attractively
straightforward way has a number of difficulties, not the least being

the fact that most of the available techniques and information on
orbital structure have been obtained for non-evolving potentials. As
we will show here, however, this third alternative can still be very
useful if one chooses carefully the time interval over which one
follows the orbits so that it has as little evolution as possible.

In this paper, we will give a detailed comparison of the CA and
NAFF orbit classification methods by studying orbits in a simulated
bar. The outline of the paper is as follows. In Section 2 we describe
briefly our numerically simulated bar. In Section 3 we outline dif-
ferent methods of orbit classifications. In Section 4 we present the
main frequencies from two methods. In Section 5 we present the
fraction of regular orbits from different classification schemes. In
Section 6, we give a brief discussion. In Section 7 we present the
summary and conclusions.

2 T H E S I M U L AT I O N A N D BA R O R B I T S

The initial conditions of this simulation comprise two components
a disc and a halo. Both are live, i.e. described self-consistently, in
order to allow exchange of angular momentum and thus a full bar
growth (Athanassoula 2002, 2003). The initial density distribution
of the disc is

ρd(R, z) = Md

4πh2z0
exp(−R/h) sech2

(
z

z0

)
, (1)

where R is the cylindrical radius, h is the disc radial scale length,
z0 is the disc vertical scale thickness and Md is the disc mass. The
corresponding numerical values are h = 3 kpc, z0 = 0.6 kpc and
Md = 5 × 1010 M�. For the halo we used an initial volume density
of

ρh(r) = Mh

2π3/2

α

rc

exp
(−r2/r2

c

)
r2 + γ 2

,

where r is the radius, Mh is the halo mass, γ and rc are the halo core
and cut-off radii, respectively, and the constant α is given by

α = {1 − √
πq exp(q2) [1 − erf(q)]}−1,

where q = γ /rc (Hernquist 1993). The numerical values used in
this run are rc = 42.4 kpc, γ = 15 kpc and Mh = 19.54 × 1010 M�.
The halo is described by 1 million particles and the disc has 200 000
particles.

The initial conditions were built using the iterative method of
Rodionov, Athanassoula & Sotnikova (2009), and to run the simu-
lation we used a version of the GADGET3 code kindly made available
to us by V. Springel. For a full description of GADGET see Springel,
Yoshida & White (2001) and Springel (2005). We adopted a soft-
ening length of 100 pc for the disc and of 200 pc for the halo and
an opening angle of 0.5.

With these initial conditions, the disc dominates the potential in
the inner parts, so that the bar forms very early on in the simulation.

The bar strength is defined as in Athanassoula, Machado & Ro-
dionov (2013). More specifically, the Fourier components of the
two-dimensional mass distribution can be written as

am(R) =
NR∑
i=0

mi cos(mθi), m = 0, 1, 2, ... (2)

bm(R) =
NR∑
i=0

mi sin(mθi), m = 1, 2, ... (3)

where NR is the number of the particles inside a given annulus
around the cylindrical radius R, mi is the ith particle mass and θ i
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Figure 1. Evolutions with time of the bar strength (top) and pattern speed
(bottom) in our N-body bar. For more details, see Section 2.

Figure 2. Face-on (bottom left), side-on (upper left) and end-on (lower
right) views of the distribution of the selected 3094 orbits at time 6.0005 Gyr.
The positions are normalized by the corotation radius RCR.

is its azimuthal angle. The am(R) and bm(R) are a function of the
cylindrical radius. The bar strength is measured by the maximum
amplitude of the relative m = 2 component,

A2 = max

(√
a2

2 + b2
2

a0

)
(4)

where a0 is given by equation (2) with m = 0. The evolution of
the bar strength and the pattern speed with time are given in Fig. 1.
We note that in the time interval 6 to 10 Gyr the bar strength and
the patter speed evolve little with time, so we analyse the orbits in
this time interval. We selected a number of orbits visually, making
sure that they were in the bar at the time of selection (6 Gyr). We
then reran the simulation over the time range 6.0005–10.096 Gyr
outputting only the positions, velocities and accelerations of the
selected particles, but for a very large number of times (8192 out-
puts). We finally analysed 3094 orbits, whose initial positions at
time 6.0005 Gyr are shown in Fig. 2. The full disc at the nearby
time (6.005 Gyr) is also presented in Fig. 3. It is seen that the disc
has a more extended range than that of the selected orbits. Here and
elsewhere in this paper, the positions of these orbits are normalized
by the corotation radius RCR.

Figure 3. Face-on (bottom left), side-on (upper left) and end-on (lower
right) views of the simulated disc at time 6.005 Gyr.

3 O RBI T CLASSI FI CATI ON BA SED
O N T H E FR E QU E N C Y M A P S

The Fourier spectral analysis technique was pioneered by Binney &
Spergel (1982, 1984) to classify regular and chaotic orbits, and was
then extended in different forms by Laskar (1993) and CA98. The
key point of this method is that regular orbits are quasi-periodic,
thus the Fourier spectra should consist of discrete lines and their
frequencies can be expressed as integer linear combinations of N
fundamental frequencies (where N is the dimension of the model).
Chaotic orbits, however, are not quasi-periodic and the correspond-
ing frequencies of the Fourier spectra cannot be reduced to integer
combinations of up to only N basic frequencies.

Suppose that we have Nd consecutive sampled values zk′ ≡ z(t ′
k),

where t ′
k = k′η, where η is sampling interval, and k′ = 0, . . . , Nd − 1.

The discrete Fourier transform of zk′ can be written as

Zj = 1

Nd

Nd−1∑
k′=0

zk′ exp

(
− i2πjk′

Nd

)
, (5)

where j = −Nd/2 + 1, . . . , Nd/2. The Fourier spectrum consists of
Nd waves with amplitudes |Zj| and frequencies �j = 2πj/(Ndη). We
also define three amplitudes |Zj, p|, |Zj, v|, and |Zj, pv|: |Zj, p| and |Zj, v|
correspond to the amplitudes from the position and velocity compo-
nents, respectively, and |Zj, pv| is given by

√|Zj,p|2 + |Zj,v|2/
√

2.
In this paper, we use |Zj| to represent

√|Zj,p|2 + |Zj,v|2 unless
stated otherwise. In order to facilitate the following discussions, we
denote the time range 6.0005–8.048 Gyr as t1, 8.0485–10.096 as t2

and 6.0005–10.096 as ttotal (t1 = t2 = 1
2 ttotal).

3.1 NAFF

The NAFF was pioneered by Laskar (1990, 1993), and developed
further by Papaphilippou & Laskar (1996, 1998) for both two- and
three-dimensional models. The key point of NAFF is that regular
orbits move on a torus-like manifold and are thus quasi-periodic.

In an integrable system with N degrees of freedom, the Hamilto-
nian H(J, θ ) depends only on the actions Jj, H(J, θ ) = H(Jj), and
the equations of motion of the system are given by

J̇j = 0, θ̇j (t) = ∂H

∂Jj

= ωj (J), (6)

where θ j are angle variables, and j = 1, 2, . . . , N. The orbit in the
system can be written in terms of the complex variables

z′
j (t) = Jj eiθj = z′

j0eiωj t (7)
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where z′
j0 = z′

j (0). The motions in phase space take place on the
surface of tori that are products of true circles with constant radii
Jj = |z′

j (0)|. The rate of the motions around a torus is determined
by the frequency vector (ω1, ω2, . . . , ωN). Generally, we do not
know the precise action-angle variables (Jj, θ j), but we can find
approximations (J ′

j , θ
′
j ). In the new coordinates, the motion can be

written as

f (t) = z′
j (t) +

∞∑
k

Akei〈k,ω〉t (8)

where Ak are the complex amplitudes, and 〈k, ω〉 = k1ω1 +
k2ω2 + . . . + kNωN. In the limiting case, the coordinates (J ′

j , θ
′
j )

are action-angle variables, and the amplitudes Ak are close to zero.
In general, a system with more than one degree of freedom is not

integrable. The Hamiltonian can be expressed as a perturbation of
an integrable Hamiltonian H0,

H (J , θ ) = H0(J ) + εH1(J , θ ). (9)

If the perturbation ε is small, the Kolmogorov–Arnold–Moser
(KAM) theorem suggests that a large fraction of the tori still exist
and that the motion of most orbits is still quasi-periodic.

The frequency map analysis consists of obtaining a quasi-periodic
approximation of the numerical solutions of the Hamiltonian system
in equation (8) in the form of a finite number of terms without
searching for an explicit transformation of coordinates in action-
angle variables

f (t) = z′
j (t) +

kmax∑
k=1

Akei〈k,ω〉t (10)

where kmax is the number of terms, and Ak are of decreasing ampli-
tude.

A regular orbit is quasi-periodic, and the complex function com-
bining its positions and velocities f(t) = X(t) + iV(t), can be ex-
panded in a Fourier series (Binney & Tremaine 2008)

f (t) =
kmax∑
k=1

Ak exp(iωkt), (11)

where ωk are the linear combinations of the fundamental frequen-
cies, ωk = lk∗ω1 + mk∗ω2 + nk∗ω3, Ak are the complex amplitudes
and kmax is the number of terms. The NAFF algorithm is designed
to obtain an approximate form of f(t)

f ′(t) =
kmax∑
k=1

A′
k exp(iω′

kt) (12)

where the frequencies ω′
k and complex amplitudes A′

k can be ob-
tained by an iterative scheme. The first frequency ω′

1 is searched
by computing the maximum amplitude of φ(σ ) = 〈f(t), exp (iσ t)〉
where the scalar product 〈f(t), g(t)〉 is given by

〈f (t), g(t)〉 = 1

T

∫ T /2

−T /2
f (t)ḡ(t)χ (t)dt, (13)

where T is the time interval, ḡ(t) is the conjugate of g(t), and
χ (t) = 1 + cos (2πt/T) is the Hanning window function. In the
NAFF routine, the location of the primary frequency corresponds
to the largest amplitude among the position spectrum |Zj, p| and
the velocity spectrum |Zj, v|. The location of the first frequency is
around the primary frequency. Once the first frequency has been
found, its complex amplitude A′

1 is obtained by the orthogonal
projection A′

1 = 〈f (t), exp(iω′
1t)〉. The first frequency component

is subtracted and the process is restarted on the remaining part

of the f1(t) = f (t) − A′
1 exp(iω′

1t) to find the second frequency
ω′

2. The process is repeated to find the third ω′
3, fourth ω′

4 and
more frequency components until the residual function does not
significantly decrease when subtracting the following term. The
fundamental frequencies are from these selected frequencies.

For the regular orbits, the fundamental frequencies do not change
with time. Therefore, the frequency drift of the fundamental fre-
quencies in two intervals provides us the regular behaviour of the
orbits. The frequency drift is defined as (Valluri et al. 2010, 2012,
2016)

log(�f1) = log

∣∣∣∣∣ω1(t1) − ω1(t2)

ω1(t1)

∣∣∣∣∣, (14)

log(�f2) = log

∣∣∣∣∣ω2(t1) − ω2(t2)

ω2(t1)

∣∣∣∣∣, (15)

log(�f3) = log

∣∣∣∣∣ω3(t1) − ω3(t2)

ω3(t1)

∣∣∣∣∣, (16)

and the frequency drift parameter log (�f) is the largest value of
log (�f1), log (�f2) and log (�f3). The orbit will be chaotic if the
frequency drift parameter is large. Usually, a critical value log (�f0)
is used to distinguish chaotic from regular orbits. If the frequency
drift is smaller than the critical value log (�f0), the orbit is clas-
sified as regular, otherwise, the orbit is chaotic. It is seen that the
frequency drift in this definition is a relative drift; a shortcoming of
this definition occurs when the fundamental frequency is large. In
particular, the accuracy of the determination of the main frequencies
of the ordinary FFT is of the order of 1/T, and the NAFF method
uses a Hanning window to search for the maximum peak in the
spectrum, which increases the accuracy of the main frequencies to
the order of 1/T4 (Papaphilippou & Laskar 1996). Thus, the fre-
quencies of the orbits can be recovered with high accuracy even for
the chaotic orbits (Valluri & Merritt 1998). If the absolute values
of the fundamental frequency in the first and second intervals are
large, the relative value of |(ωi(t1) − ωi(t2))/ωi(t1)| will still be
small. Therefore, we also use a different definition of the frequency
drift, which is given by

�F1 =
∣∣∣∣∣ω1(t1) − ω1(t2)

δω

∣∣∣∣∣, (17)

�F2 =
∣∣∣∣∣ω2(t1) − ω2(t2)

δω

∣∣∣∣∣, (18)

�F3 =
∣∣∣∣∣ω3(t1) − ω3(t2)

δω

∣∣∣∣∣, (19)

where δω = 2π/(Ndη), where Nd is again the number of sampled
points and η is the sampling interval. The frequency drift parameter
�F is taken as the largest value of �F1, �F2 and �F3. We take this
frequency drift as the absolute frequency drift. A critical value �F0

is used to distinguish regular orbits from chaotic ones.
Fig. 4 shows the distribution of the absolute frequency drift pa-

rameter (top) and the relative frequency drift parameter (bottom)
from the NAFF method between t1 and t2 (solid line). It is seen
that most orbits have an absolute frequency drift smaller than 2δω.
The peak of the distribution of the relative frequency drift log �f is
around −1, which indicates a 10 per cent frequency drift.
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Figure 4. Distribution of the absolute frequency drift parameter �F (top)
and the relative frequency drift parameter log (�f) (bottom) for our selected
3094 orbits. The solid, dotted and dashed lines correspond to the comparison
of different time ranges as labelled at the top right of the top panel.

Generally, the frequency drift can be considered between any
two different intervals, therefore, we also study the cases from the
t1 time range to ttotal and t2 to ttotal. In Fig. 4, we show the frequency
drift parameter from time t1 to ttotal (dotted lines), and one from
time t2 to ttotal (dashed lines), respectively. It is seen that most orbits
have smaller absolute frequency drift parameters in t1 − ttotal and
t2 − ttotal than those in t1 − t2, which can be explained in the
following way: The frequency resolution is twice higher for time
ttotal time range than that for the t1 and t2 ones since we use the
same time-step to output the orbits. The absolute frequency drift
parameter is calculated using δω rather than 0.5δω in cases from
time t1 to ttotal and t1 to ttotal. In this paper, the orbit types are given by
using the drift parameter from time t1 to t2 unless stated otherwise.

3.2 The CA method

The key point of CA is to find the number of the fundamental fre-
quencies. In its initial form this method used only the position to do
the Fourier transform (CA98). An updated version of the code uses
the Frequency Modified Fourier Transform (FMFT; Šidlichovský
& Nesvorný 1996) to extract lines, and the spectral analysis is per-
formed on both the position and velocity component X(t) + iV(t),
which is similar to what is done in the NAFF scheme.

In NAFF, the frequencies are calculated sequentially and any
later frequency and amplitude depend on the previous ones. Once
the previous ones are found, they will not change in the subsequent
steps. After k − 1 cycles, the kth frequency is shifted from ω′

k mostly
due to the existence of close frequencies which have significant
amplitudes. After a number of cycles this can lead to differences of
the order of several δω. The FMFT method consists of the NAFF
process but gives a correction of frequencies via equation (36) in
Šidlichovský & Nesvorný (1996). It is important to note that the
frequencies and amplitudes in FMFT can change with the number of
extracted lines because every frequency and amplitude are corrected
by the primary selected peaks in the FFT spectrum. This is a major
difference between the FMFT and the corresponding method used
in NAFF (see Table 1 for an example).

The rightmost panels of Fig. 5 show 10 lines extracted by the
CA method with FMFT and 10 extracted by the NAFF method in
the spectra of the three (x, y, z) components for orbit 2745. It is

seen that most lines from the two methods agree, but some lines are
significantly different. It is also noted that the primary frequency
in the CA code is found by the largest amplitude |Zj, pv| (defined
below equation 2) in the FFT spectrum, which is slightly different
from that done in the NAFF method. For most orbits, the frequency
with the largest amplitude |Zj, pv| is consistent with the frequency
with the largest amplitude among |Zj, p| and |Zj, v|. However, for
some orbits this is not true. In Table 2, we show the frequencies
and amplitudes of the first 20 strongest lines in the FFT spectra of
orbit 1315. It is seen that the frequency with the largest |Zj, pv| is
78.242 571, while the frequency with the largest amplitude among
|Zj, p| and |Zj, v| is 119.665 109 in the x component.

We refer the interested readers to CA98 for a full description
of their technique. Here we only give a brief overview and some
modifications on the new version of their code. There is a clean dis-
tinction between the main and fundamental frequencies in this new
version. The main frequencies are the frequencies whose amplitudes
are the maximum (or second maximum) on each coordinate. These
frequencies are used to determine whether or not the orbit is reso-
nant. The fundamental frequencies are the independent frequencies.
We will take an example to illustrate this difference. If there is no
integer non-zero vector (l, m, n) to satisfy lω1 + mω2 + nω3 = 0,
these main frequencies are independent. If the rest of the spectral
lines can be expressed as the linear combinations of them, then the
fundamental frequencies are the same as the main frequencies. If
there are more than three independent frequencies, the number of
fundamental frequencies will be 4, and thus the orbit is classified
as an irregular type in CA. If there is one resonance, then the three
main frequencies are not independent, the main frequencies are not
the fundamental frequencies.

4 MA I N FR E QU E N C I E S I N NA F F A N D C A

There are two different conceptual frequencies in the literature, one
is the fundamental frequency, and the other is the main frequency.
Unfortunately, these two are sometimes confusingly used.

In NAFF, the fundamental frequencies are frequencies of the an-
gle variables in the case of a regular orbit for which the action/angle
variables exist. In that case any coordinate time series will have a
spectrum made of discrete lines at frequencies that can be written as
linear combinations with integer coefficients of three independent
‘fundamentals frequencies’. However, unless the coordinates used
are close to angle variables, there is no reason why the dominant line
in one spectrum should be one of those fundamental frequencies.
For box orbits, the fundamental frequencies are identified by the
highest amplitude terms in the Cartesian coordinates. On the other
hand, for tube orbits, the terms with the second or subsequent high-
est amplitudes are taken as the fundamental frequencies (Valluri &
Merritt 1998).

In the CA method, the main frequencies are frequencies with
the maximum or subsequent highest amplitudes of each coordinate,
which is the same as the ‘fundamental’ frequencies in NAFF. The
main frequencies in CA are used further to determine whether or
not there are resonances. If there is no resonance among the main
frequencies, they may be taken as fundamental frequencies too. If,
however, there are resonances, then the main frequencies are used
to determine one to three linearly independent fundamental fre-
quencies for regular orbits, or more than three for irregular orbits.
Therefore, the main frequencies in CA coincide with the ‘funda-
mental’ frequencies in NAFF. In the remaining of the paper, we
will use the ‘main’ frequencies and ‘fundamental’ frequencies as
defined in CA.
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Table 1. Frequencies and amplitudes extracted from the spectrum of orbit 1315 in the x (top), y (middle) and z (bottom) components using the NAFF and CA
methods with different Lmax.

k ω′
k (NAFF) A′

k (NAFF) ω′
k (NAFF) A′

k (NAFF) ω′
k (CA) A′

k (CA) ω′
k (CA) A′

k (CA)
Lmax = 10 Lmax = 10 Lmax = 12 Lmax = 12 Lmax = 10 Lmax = 10 Lmax = 12 Lmax = 12

1 118.646975 0.087493 118.646975 0.087493 123.906921 0.205454 123.903713 0.204517
2 118.646975 0.129730 118.646975 0.129730 80.383856 0.197367 80.379904 0.197389
3 79.180676 0.189038 79.180676 0.189038 130.690324 0.222754 130.526476 0.204632
4 130.964723 0.178945 130.964723 0.178945 127.104809 0.190681 127.053323 0.188998
5 79.180569 0.187178 79.180569 0.187178 78.497611 0.215303 78.493748 0.215055
6 83.774549 0.120298 83.774549 0.120298 121.152373 0.180770 121.152083 0.180511
7 76.471528 0.057949 76.471528 0.057949 132.023087 0.174899 132.228818 0.193995
8 122.210680 0.178263 122.210680 0.178263 83.047291 0.134492 83.037662 0.134594
9 131.004247 0.159953 131.004247 0.159953 119.680380 0.142824 119.677448 0.142573
10 134.123148 0.079459 134.123148 0.079459 77.055611 0.114834 77.051043 0.114728
11 125.801781 0.195909 133.928603 0.104530
12 124.280162 0.097235 87.622990 0.072769

1 120.187879 0.289342 120.187879 0.289342 124.332263 0.447271 124.359786 0.443748
2 132.703213 0.276719 132.703213 0.276719 130.661153 0.476913 130.663652 0.476665
3 134.960731 0.192684 134.960731 0.192684 127.359892 0.430963 127.374838 0.430598
4 134.654657 0.222301 134.654657 0.222301 121.552062 0.403108 121.646264 0.390782
5 128.870117 0.408115 128.870117 0.408115 132.318424 0.453290 132.320529 0.453740
6 131.047180 0.334746 131.047180 0.334746 119.660980 0.439960 119.716928 0.440926
7 125.360971 0.463758 125.360971 0.463758 133.982798 0.242381 133.982529 0.242588
8 127.308115 0.133632 127.308115 0.133632 118.283853 0.248884 118.023337 0.341200
9 122.980739 0.414632 122.980739 0.414632 80.485974 0.132293 80.146343 0.128368
10 119.665109 0.304908 119.665109 0.304908 78.780880 0.109954 78.661243 0.110079
11 121.532408 0.054014 116.738274 0.126798
12 124.217988 0.081351 83.026349 0.084185

1 129.788437 0.160866 129.788437 0.160866 138.000765 0.345491 138.002662 0.343542
2 127.865342 0.097260 127.865342 0.097260 135.090665 0.291035 135.135194 0.290528
3 128.132109 0.182508 128.132109 0.182508 140.857289 0.264038 140.859943 0.263717
4 132.335399 0.179940 132.335399 0.179940 143.924934 0.210984 143.926056 0.210835
5 131.938453 0.189985 131.938453 0.189985 130.765206 0.327860 130.706509 0.327987
6 136.540957 0.342655 136.540957 0.342655 132.723722 0.244343 132.761358 0.232638
7 133.705729 0.138481 133.705729 0.138481 146.306622 0.202305 146.308937 0.202298
8 139.613950 0.325237 139.613950 0.325237 129.506709 0.184226 129.170063 0.259542
9 137.906023 0.064947 137.906023 0.064947 147.877606 0.156429 147.878724 0.156423
10 146.398331 0.155171 146.398331 0.155171 110.364005 0.101131 110.355605 0.101467
11 146.398154 0.192978 116.926172 0.094574
12 142.327606 0.213880 127.811826 0.115941

The first step to get the main frequencies is to extract the lines
from the Fourier spectra. We use both the position and velocity
components X(t) + iV(t) to get the spectrum for each component.
In order for positions and velocities to contribute in a comparable
manner, we use a normalized, dimensionless position and velocity
to do the Fourier transform. The original position and velocity are
divided by Rm and Vm, respectively, where Rm =

√
〈x2 + y2 + z2〉

and Vm =
√

〈v2
x + v2

y + v2
z 〉, x, y and z are the three positions, vx,

vy and vz are the three velocities and 〈 · · · 〉 denotes the average
over time along the orbit.

The detailed method to extract the spectrum is given in Laskar
(2003); we refer the reader to his paper for further details. Here we
just point out that the strongest spectral lines in each component
are obtained using an accurate numerical technique. In NAFF, all
extracted lines are sorted by amplitude in descending order. The
first main frequency ω1 corresponds to the line with the largest
amplitude, the second main frequency ω2 is the next highest peak
coming from a different component and a value different from the
first main frequency. The third main frequency is one of the remain-
ing frequencies, should come from the remaining component, and
should not be any linear combination of ω1 and ω2.

In CA, the x, y and z axes should be aligned with the major, in-
termediate and minor axes of the system. Then, the main frequency
from each component should yield ωx < ωy < ωz, where ωx, ωy

and ωz are the highest peaks from the spectrum of the x, y and
z components, respectively. Therefore, if the frequency from the
largest peak in each component does not satisfy ωx < ωy < ωz,
the CA method switches the corresponding coordinates, unless the
two corresponding amplitudes are very close to each other. The first
main frequency is the smallest frequency among ωx, ωy and ωz. The
second and third main frequencies are from the frequency compo-
nents with intermediate and largest values among ωx, ωy and ωz,
respectively. In principle, when ωx < ωy < ωz, then the second main
frequency is from the spectrum of the y component, and the third
main frequency is from the spectrum of the z component. However,
in practice, when ωy is quite close to ωx, then ω2 is searched in
descending order of amplitude in the y spectrum until ω2 is signif-
icantly larger than ω1. A similar treatment is adopted for the third
main frequency.

Since the main frequencies are selected among the extracted lines
in the spectrum in both methods, they may depend on the candidate
number of the extracted lines Lmax. Fig. 6 shows a comparison of
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Orbit classification in an N-body bar 3505

Figure 5. Left set of panels: orbit 2745. From top to bottom, the orbit in y–z, x–z and x–y planes, respectively. From left to right, the result for time
6.005–7.024, 7.0245–8.048, 8.0485–9.072, 9.0725–10.096Gyr. Note that the scales of the ordinates and abscissas are not always the same, so as to allow for
a better resolution. Right set of panels: FFT spectrum for this orbit (left) and the extracted lines (right). From top to bottom, the results for the z, y and x
components, respectively. First column of the right set of panels: The red, blue and green solid lines denote the positions of ω1, ω2 and ω3 from NAFF, while
the corresponding dashed lines represent the main frequencies from CA method. The amplitude of the spectrum is normalized by the largest amplitude among
three components. Second column of right set of panels: the red solid and blue dotted lines represent the extracted lines from NAFF and CA, respectively. [ω1,
ω2, ω3] =[37.980, 56.760, 74.362 ] (NAFF) and [ω1, ω2, ω3] =[37.997, 38.004, 74.104 ] (CA). The ordinate of the rightmost panel is in logarithmic scale.

the main frequencies obtained with Lmax = 10 and with Lmax = 12
for both methods. It is seen that only a small number (<0.1 per cent)
of the main frequencies in NAFF have been changed when using
different values of Lmax, while about 6 per cent of the main fre-
quencies have been changed in CA. Here the changes in the main
frequencies from Lmax = 10 to Lmax = 12 mean that the largest
frequency difference of |ωi(Lmax = 12)/ωi(Lmax = 10) − 1| (i = 1,
2, 3) is larger than 0.01. It is easy to understand these changes of
the main frequencies with the increasing number of Lmax in both
the NAFF and CA methods. In the CA method, the frequencies and
amplitudes of the extracted lines are corrected by the next extracted
lines, therefore, the frequency and amplitude from the extracted
lines are changed when Lmax is different. In the NAFF method, the
increasing number of Lmax may give new frequencies and ampli-
tudes. To illustrate this, we show the frequencies and amplitudes
of the extracted lines in orbit 1315 for both the NAFF and the CA
methods in Table 1. From the definition of the main frequencies in
the two methods, we know that ω1 = 79.181 (k = 3 in the x compo-
nent) with Lmax = 10, and ω1 = 125.802 with Lmax = 12 (k = 11)
in NAFF. The shift of ω1 in NAFF is because a new line with a
large amplitude is found in the eleventh step. In the CA code, the
increasing number of Lmax changes the frequencies and amplitudes,
therefore, ω1 can be changed. In Fig. 7, we show the dependence of
three main frequencies on the value of Lmax for orbit 1315 (left) and
orbit 1220 (right). It is seen that the main frequencies from NAFF
will not be changed if Lmax ≥ 12, while there is a small fluctuation
along the Lmax value for orbit 1315. For orbit 1220, only ω3 has
been changed at Lmax = 36, and will be kept as a constant with
Lmax > 36. In order to avoid the missing lines and save the compute
time, we adopt Lmax = 12 in the remainder of the paper unless stated
otherwise.

In NAFF, the absolute difference between the first and second
main frequencies |ωi − ωj|(i = 1, 2, 3, j = 1, 2, 3, and i �= j)
must be larger than a critical value Lr,a, which we define as the
critical absolute frequency difference. In CA, the parameter to dis-
tinguish two frequencies is similar to NAFF, but with the value
of the relative frequency difference |ωi − ωj |/

√
ωi

2 + ωj
2 larger

than a critical value Lr. In order to compare the main frequen-
cies in these two methods, we introduced a definition consistent
with that of CA, i.e. |ωi − ωj |/

√
ωi

2 + ωj
2 > Lr. In Fig. 8, we

show the comparison of main frequencies from Lr = 2 × 10−4 and
Lr = 2 × 10−3, where the first one is suggested by the CA method.
We found that around 6 per cent and 1.5 per cent of the orbits have
a different main frequency in the NAFF and the CA methods, re-
spectively. Here we define two main frequencies as different if
|ωi(Lr = 2 × 10−4)/ωi(Lr = 2 × 10−3) − 1| (i = 1, 2, 3) is larger
than 0.01.

Since our orbits are extracted from a simulation, they are nec-
essarily much noisier than those obtained from an analytic po-
tential. In order to estimate this effect on the main frequency de-
tection, we will vary the absolute critical value Lr,a in the NAFF
method, to check whether any lines with very small amplitude are
taken as the main frequencies. In Fig. 9, we compare the main
frequencies with different Lr,a, and find that even when the value
of Lr,a is increased from 10−6 to 1, only 22.3 per cent of the or-
bits change their main frequencies: the largest frequency change
of |ωi(Lr,a = 1)/ωi(Lr,a = 2 × 10−6) − 1| > 0.01. We define nine
parameters to describe the corresponding amplitude variation:

Ri,a = Ai(Lr,a = 10−4)/Ai(Lr,a = 10−6), (20)

Ri,b = Ai(Lr,a = 10−2)/Ai(Lr,a = 10−6), (21)

Ri,c = Ai(Lr,a = 1)/Ai(Lr,a = 10−6), (22)

where i = 1, 2, 3 and Ai are the amplitudes of the main frequencies
ωi. In Fig. 10, we show the distribution of these parameters Ri,a,
Ri,b and Ri,c in the NAFF method. We can see that some lines with
low amplitude appear as new main frequencies as Lr,a increases.
However, the number of orbits for which the ratio of the amplitudes
is considerably different from unity is quite small. This is true even
when we change this parameter by 6 orders of magnitude, from
10−6 to 1 (rightmost panels). In other words, the simulation noise
does not affect the main frequencies significantly.
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3506 Y. Wang, E. Athanassoula and S. Mao

Table 2. Frequencies and amplitudes of the first 20 strongest lines in the FFT spectra of orbit 1315. From top to bottom, the results for x, y and z components,
respectively. The amplitude is normalized by the largest values of |Zj, pv|, |Zj, p| and |Zj, v| in the x, y and z components.

�j |Zj, pv| �j |Zj, p| �j |Zj, v|
1 78.242571 0.376261 78.242571 0.397491 119.665109 0.441276
2 79.776739 0.341673 131.938454 0.388476 79.776739 0.372881
3 131.938454 0.341376 76.708403 0.341961 78.242571 0.353760
4 119.665109 0.322304 133.472622 0.330353 124.267613 0.323890
5 118.130941 0.306547 121.199277 0.310250 127.335949 0.322616
6 130.404285 0.290761 79.776739 0.307313 118.130941 0.321816
7 133.472622 0.277273 118.130941 0.290476 130.404285 0.309150
8 76.708403 0.261478 116.596773 0.283636 82.845075 0.303582
9 124.267613 0.260451 130.404285 0.271128 131.938454 0.286639
10 127.335949 0.230389 122.733445 0.241251 81.310907 0.239860
11 121.199277 0.222195 115.062605 0.190504 125.801781 0.220963
12 82.845075 0.216798 124.267613 0.175397 133.472622 0.211252
13 122.733445 0.206655 87.447580 0.144521 135.006790 0.203641
14 116.596773 0.203209 119.665109 0.114172 75.174235 0.171446
15 81.310907 0.171751 75.174235 0.096095 122.733445 0.164955
16 125.801781 0.157773 88.981748 0.093776 128.870117 0.159648
17 135.006790 0.144317 96.652588 0.090859 76.708403 0.140725
18 115.062605 0.143714 84.379244 0.090526 73.640067 0.120937
19 75.174235 0.138975 111.994269 0.066164 85.913412 0.116579
20 128.870117 0.113322 95.118420 0.062765 95.118420 0.105852

1 131.938454 0.817488 119.665109 1.000000 131.938454 0.918017
2 119.665109 0.736141 127.335949 0.760479 133.472622 0.801207
3 118.130941 0.689816 124.267613 0.750421 121.199277 0.707666
4 130.404285 0.663555 118.130941 0.729137 118.130941 0.648115
5 133.472622 0.647121 131.938454 0.702722 130.404285 0.630494
6 124.267613 0.600851 130.404285 0.695045 116.596773 0.629587
7 127.335949 0.539153 125.801781 0.493815 122.733445 0.570149
8 121.199277 0.510406 133.472622 0.442264 115.062605 0.445213
9 122.733445 0.455214 135.006790 0.441181 124.267613 0.398636
10 116.596773 0.449717 128.870117 0.384844 119.665109 0.289495
11 125.801781 0.356472 122.733445 0.298950 78.242571 0.257532
12 115.062605 0.327240 79.776739 0.215070 76.708403 0.225199
13 135.006790 0.312036 78.242571 0.200541 141.143462 0.178793
14 128.870117 0.276401 142.677630 0.185873 111.994269 0.175189
15 78.242571 0.230802 82.845075 0.159508 113.528437 0.162036
16 79.776739 0.185546 136.540958 0.155262 79.776739 0.150332
17 76.708403 0.171929 113.528437 0.155105 142.677630 0.148415
18 142.677630 0.168190 81.310907 0.148642 139.609294 0.130068
19 113.528437 0.158608 144.211798 0.144056 110.460101 0.126255
20 141.143462 0.132717 121.199277 0.142257 147.280134 0.122198

1 130.404285 0.595491 130.404285 0.602931 128.870117 0.611627
2 131.938454 0.461723 131.938454 0.595086 130.404285 0.587957
3 128.870117 0.436930 139.609294 0.558446 133.472622 0.420099
4 136.540958 0.428092 136.540958 0.556658 135.006790 0.410902
5 139.609294 0.394928 138.075126 0.453658 147.280134 0.392487
6 147.280134 0.393585 147.280134 0.394679 127.335949 0.314830
7 138.075126 0.321138 148.814302 0.375144 145.745966 0.313433
8 135.006790 0.310646 141.143462 0.310228 144.211798 0.286731
9 127.335949 0.307596 125.801781 0.306661 142.677630 0.277177
10 133.472622 0.305220 127.335949 0.300189 131.938454 0.268791
11 148.814302 0.285385 142.677630 0.285142 108.925933 0.257125
12 142.677630 0.281188 107.391764 0.245189 136.540958 0.238031
13 145.745966 0.271008 145.745966 0.220568 118.130941 0.185580
14 141.143462 0.220437 105.857596 0.165661 148.814302 0.148852
15 125.801781 0.218882 116.596773 0.165479 150.348470 0.135856
16 144.211798 0.208107 135.006790 0.155439 107.391764 0.133676
17 107.391764 0.197467 110.460101 0.149926 104.323428 0.129141
18 108.925933 0.184959 121.199277 0.147039 116.596773 0.111140
19 118.130941 0.143629 122.733445 0.138278 105.857596 0.108521
20 116.596773 0.140953 113.528437 0.134046 102.789260 0.099456
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Figure 6. Comparison of main frequencies from different values of Lmax.
The solid line represents equality of two frequencies for two different pa-
rameters Lmax (12 and 10). The top and bottom panels represent the results
from the CA and NAFF methods, respectively. The sample interval is ttotal.

Figure 7. Dependence of three main frequencies on Lmax for both NAFF
(solid line) and CA (dotted line) for orbit 1315 (left panel) and orbit 1220
(right panel). The top, middle and bottom panels represent the results for
ω3, ω2 and ω1, respectively. For orbit 1220, ω1 and ω2 from two methods
are same.

Figure 8. Comparison of main frequencies from different values of Lr.
The red solid line represents equality of two frequencies for two different
parameters Lr. The top and bottom panels represent the results from the CA
and NAFF methods, respectively. The time interval used here is ttotal.

Figure 9. Comparison of main frequencies from different values of Lr,a

in NAFF. The solid line represents equality of two frequencies for two
parameters Lr,a. The sample interval is ttotal.

Figure 10. The distribution of the amplitude ratios. From top to bottom,
the results are for ω3, ω2 and ω1, respectively. The sample interval is ttotal.
The parameters Ri,a, Ri, b and Ri, c are defined in equations (20)–(22). Note
that the scale for the ordinate is logarithmic.

We also check the distribution of the amplitude ratios in the
CA method, and find results similar to those in NAFF. There-
fore, the effect of the critical parameter to distinguish two fre-
quencies is small in both methods. However, in the CA method, if
we increase the value of Lr, the number of fundamental frequen-
cies may be changed significantly, which increases the fraction of
regular orbits significantly. Indeed in CA, the parameter Lr has
two meanings: one is the frequency difference, which is the same
as shown in our paper, while the other is the critical value de-
termining whether an orbit is resonant, or not. In the CA code,
if |lω1 + mω2 + nω3|/

√
(lω1)2 + (mω2)2 + (nω3)2 is smaller than

Lr, then a resonance has been found. Since the number of the fun-
damental frequencies depends on the resonance number of the or-
bits, Lr can affect the number of fundamental frequencies. In order
to give a more detailed comparison of the main frequencies be-
tween the NAFF and CA methods, we adopt a relative critical value
Lr = 2 × 10−4 in the remainder of the paper, unless otherwise
indicated.

Fig. 11 shows the histogram of the ratios of the three main fre-
quencies from both the NAFF (bottom) and CA (top) methods. It
is seen that there are typical peaks in these distributions, which
indicate the intrinsic orbit types in our N-body bar. Note that the
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3508 Y. Wang, E. Athanassoula and S. Mao

Figure 11. Histogram of the ratios of the main frequencies from the CA
(top) and NAFF (bottom) methods. From left to right, the results are for the
ratios with ω1/ω2, ω2/ω3, and ω1/ω3, respectively. From left to right, the
vertical dashed lines represent ratios with 4/7, 2/3, 4/5 and 1, respectively.
The sample interval is ttotal. The ratio and the corresponding orbit numbers
are indicated in the top-right corner of each panel.

Figure 12. Comparison of one similar main frequency from NAFF with
that from CA. The solid line represents equality of two frequencies from
these two methods. The sample interval is ttotal.

ordinate is in a logarithmic scale, which means that the peaks are
very high, i.e. that many orbits are in families with well-defined
frequency ratios. For both methods, the face-on view, (x, y), has two
clear peaks. The highest peak is for 1:1, and the second highest for
2:3, the two having amplitudes of 1120 and 436 in NAFF, 1913 and
434 in CA98. The two edge-on views, (y, z) and (x, z), also have
two clear peaks, one at 4:5 and the other at 4:7. The implications of
this result will be discussed elsewhere.

We define nine parameters to check whether a main frequency
agrees in the two methods:

δf
ij
1 =

∣∣∣∣∣ωi(NAFF)

ωj (CA)
− 1

∣∣∣∣∣, (23)

with i = 1, 2, 3 and j = 1, 2, 3. We take the minimum value of δf
ij
1

as δf1. If δf1 is small, then at least one main frequency from CA
is consistent with one from NAFF. The corresponding frequency
to δf1 is defined as ω′′. We find that 97 per cent of the orbits have
the minimum δf1 smaller than 0.01; in other words, these orbits
have at least one similar main frequency from the two methods,
which can also be seen from the comparison of one similar main
frequency in Fig. 12. Then we define 18 parameters to check two

Figure 13. Comparison of the three main frequencies from the NAFF and
CA methods. The red solid line represents the equality of two frequencies
from the two methods. From left to right, the results are for ω′′

1 , ω′′
2 and ω′′

3 ,
respectively. In the right panel, the green and blue solid lines present Y = AX
with A = 3/2 and A = 2/3, respectively. The sample interval is ttotal. The
red asterisk symbol denotes the location of orbit 2745 in each panel.

main frequencies agree from two methods, these parameters are
given as

δf
ij,i′j ′
2 =

∣∣∣∣∣ωi(NAFF)

ωj (CA)
− 1

∣∣∣∣∣ +
∣∣∣∣∣ωi′ (NAFF)

ωj ′ (CA)
− 1

∣∣∣∣∣, (24)

with i = 1, 2, 3, j = 1, 2, 3, i′ = 1, 2, 3, j′ = 1, 2, 3, and i′ �= i,
j′ �= j. The minimum value of δf

ij,i′j ′
2 is defined as δf2. Two main

frequencies agree in the two methods if δf2 is smaller than a critical
value δf2,0. If the remaining main frequencies from two methods are
also close (the frequency difference is smaller than δf2,0/2), then
all three main frequencies are in agreement. The first two identi-
cal main frequencies are defined as ω′′

1 and ω′′
2 , and the remaining

main frequency as ω′′
3 . We find 88 per cent orbits have two frequen-

cies in agreement and 39 per cent orbits have three frequencies in
agreement from two methods if δf2,0 = 0.02. If we increase δf2,0 to
0.1, then 99 per cent of the orbits have two frequencies in agreement
and 80 per cent of the orbits have three frequencies in agreement be-
tween the two methods. In other words, most orbits have an average
difference in the main frequency smaller than 5 per cent.

In Fig. 13, we show the comparison of the three main frequencies
from the two methods. The two first panels, referring to the two
first frequencies, show a close equality, with all points distributed
very close to the diagonal. The third panel, referring to the third
frequency, has a different structure. About 80 per cent of the points
(2458 orbits) are around the diagonal, but with a considerably larger
spread than for the first and second frequency. This may argue
that this third frequency is less accurately defined than the other
two. Note also that a considerable number of orbits (144 orbits,
5 per cent) are located at the wings along the green and blue solid
lines which follow Y = AX with A = 3/2 (green) or A = 2/3
(blue), respectively. This could be due to a badly recognized third
frequency.

As shown in Valluri et al. (2010), the accuracy of the frequency
analysis decreases significantly when orbits were integrated for less
than 20 oscillation periods, therefore, it is interesting to compare
the main frequencies from the NAFF method with those from the
CA method for orbits with more than 20 oscillation periods. In the
top panel of Fig. 14, we show the fraction of our orbits with fixed
oscillation periods. We find that 70 per cent orbits have more than
20 oscillation periods. In the bottom panel of Fig. 14, we present the
histogram of the oscillation periods. It is noted that the distribution
peaks around 20. Therefore, the output interval for most orbits in
our sample is reasonable for the frequency analysis. Fig. 15 shows
that the fraction of orbits having three frequencies in agreement
(δf2, 0 = 0.1) from the two methods increases strongly with the
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Figure 14. Top: fraction of the orbits having completed at least a given
number of oscillation periods during the time we follow our simulation, as
a function of this number of oscillation periods. Bottom: histogram of the
oscillation periods.

Figure 15. Dependence of the fraction of the orbits with the same main
frequencies in both NAFF and CA methods on the orbit oscillation periods.

number of orbit oscillation periods. We find that, for 90 per cent of
the orbits having undergone at least 80 oscillation periods, the three
frequencies as calculated by the CA and NAFF methods agree. On
the other hand, for orbits which have less than five oscillation peri-
ods, only 39 per cent have three frequencies in agreement between
two methods.

5 FR AC T I O N O F R E G U L A R O R B I T S A S
O B TA I N E D F RO M NA F F A N D C A

Once we have the main frequencies, NAFF classifies orbits as reg-
ular or chaotic using the frequency drift. CA classifies the orbits by
finding the number of the fundamental frequencies. Fig. 16 shows
the dependence of the fraction of regular orbits on the absolute crit-
ical frequency drift parameter (left panel) and the relative critical
frequency drift parameter (right panel) from the NAFF method. It
is seen that the fraction of regular orbits strongly depends on the
critical frequency drift value, but it is difficult to give a reasonable
choice.

In order to compare the ranking of the various orbits in regularity
by two kinds of the critical value in the NAFF method, we rank all
orbits as a function of their �F values. The ranking is defined as
r�F. The most regular orbit will have r�F = 1 and the most chaotic
one r�F = 3094. We then rank 3094 orbits as function of their
log (�f) values, which is called r�f. Again, the most regular orbit

Figure 16. Dependence of the fraction of regular orbits on the critical
frequency drift parameter from NAFF. Left: for the absolute frequency drift.
Right: for the relative frequency drift.

Figure 17. Comparison of the ranking of the orbits in regularity by �F and
log (�f). The red solid line represents the equality of the two rankings from
r�F and r�f.

will have r�f = 1 and the most chaotic one r�f = 3094. Fig. 17
shows the comparison of the ranking of the orbits in regularity by
�F and log (�f). We find that only 727 orbits have similar rankings
in r�F and r�f (|r�f/r�F − 1| ≤ 0.1). For most orbits, however, there
is a large dispersion between r�F and r�f.

In CA, an orbit is classified by the number of the fundamental
frequencies. An orbit is irregular if it has more than three inde-
pendent fundamental frequencies, otherwise it is regular. In this
method, there are two important parameters Lr and In. The former is
used to determine whether the two main frequencies are the same,
and whether the main frequencies are at resonance, while the latter
one is the maximum integer for searching linear independence of
the fundamental frequencies (see Section 4). Although the main
frequencies weakly depend on the parameter Lr, the number of
fundamental frequencies strongly depends on it, thus affecting the
fraction of regular orbits. In the left panel of Fig. 18, this fraction
increases with the increasing value of Lr. If Lr is larger than 10−4,
most orbits are regular. In the right panel of Fig. 18, we show the
dependence of the fraction of regular orbits on the parameter In. It
is noted that most orbits are regular if In is larger than 25. In = 35
is usually chosen in order to classify correctly a large set of orbits
coming from selected known analytic potentials (Carpintero, pri-
vate communication). In the bar system, nearly all orbits are regular
if In = 35.

The upper panel of Fig. 19 shows the number of orbits with
more than 50 oscillations. It is a decreasing function of radius, as
expected, because the inner orbits have, on average, shorter orbital
periods than the outer ones. All orbits with more than 50 oscillations
have the average radius 〈R/RCR〉 smaller than 0.2. The lower panel of
Fig. 19 shows the correlation between the fraction of regular orbits
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Figure 18. Dependence of the fraction of regular orbits on the parameters
Lr (left panel) and In (right panel) in CA. For the left and right panels, the
parameters In and Lr are fixed at 35, and 2 × 10−4, respectively.

Figure 19. Top: number distribution of the orbits with more than 50 oscil-
lation periods. Bottom: fraction of regular orbits along the average radius of
the orbits for orbits with more than 50 oscillation periods. The solid, dotted
and dashed lines represent the results from the absolute critical value in
NAFF, relative critical value in NAFF and CA, respectively. The different
lines represent the results with the different parameters in two methods. The
region with 〈R/RCR〉 beyond 0.2 is ignored because there are no orbits with
more than 50 oscillation periods.

and the average orbit radius for orbits with more than 50 oscillations
for the two methods with different parameters. For �F0 = 2.9 or
log (�f0) = −1.09 in NAFF, and In = 18 in CA, we find in general
very good agreement between all methods, with a fraction of regular
orbits around 53 per cent.

It seems that the regular fraction along the radius from NAFF with
log (�f0) = −1.09 is consistent with that from CA with In = 18
if 〈R/RCR〉 is smaller than 0.18. If, however, we compare the orbit
types from the two methods one by one, we find a small decrease, so
that only 47 per cent of the orbits have the same type in both NAFF
and CA methods. When we compare the two NAFF methods, we
find that a very large fraction, 95 per cent, have the same types when
we use �F0 = 2.9 and log (�f0) = −1.09 in NAFF.

If we take log (�f0) = −1.09 and consider the frequency drift pa-
rameter only in the x, y, and z components, respectively, then the reg-
ular orbit fractions are 56.2 per cent, 52.2 per cent and 72.8 per cent.
If we consider the frequency drift parameter in two components,
x and y, x and z, y and z, then the regular orbit fractions with
log (�f0) = −1.09 are 43.2 per cent, 50.7 per cent and 46.7 per cent,
respectively. Therefore, the z component is most regular, while the
y component is most chaotic in the bar system. This is similar to
the fact that the intermediate tube orbits are unstable in the triaxial
system (e.g. Merritt & Fridman 1996; Binney & Tremaine 2008).

Figure 20. Same as the left panel of Fig. 5, but for orbit 160, an orbit looks
regular in the x–y and x–z planes, but chaotic in the y–z plane.

Figure 21. Same as the left panel of Fig. 5, but for orbit 865, an orbit being
regular in each interval, but the shape changing with time.

6 D I SCUSSI ON

It seems difficult to give definite values of �F0 and log (�f0) in
NAFF, and Lr and In in CA to classify orbits, but we can attempt to
do this by selecting some likely regular and chaotic orbits. We use
196 orbits which have the same main frequencies from the NAFF
and CA methods, and have a small frequency drift �F < 0.5. We
find that when we choose In ≥ 30 and Lr = 2 × 10−4, most of these
orbits are regular in the CA method. Even so, a few of these orbits
are still irregular when we take In = 30. For example, as shown in
Fig. 20, orbit 160 is a regular orbit in NAFF, but we find there are
some chaotic property in the y–z plane and this could explain why
CA classifies it irregular.

Next we select 40 orbits which have the same main frequencies
from the NAFF and CA methods, but with large frequency drift
�F > 9.3. Most of them are irregular when we take In = 16, but
orbits such as orbit 865 are still regular in the CA method. From
Fig. 21, usually this orbit is regular in each interval, but the shape
changes with time. Since the three main frequencies are independent
and no extra fundamental frequencies are found, the CA method
classifies it as a regular box orbit. On the other hand, if we use the
frequency drift method to classify it, it will be classified as irregular.
This frequency drift, however, could perhaps be due to the slight
potential changes with time and may not necessarily be due to the
fact that the orbit is irregular.
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There is a further point related to the evolution of the potential.
Namely, we find that the smallest �F among the full 3094 orbits
is 0.016, while the resolution of the main frequencies is usually
10−4 to 10−3. Thus, even the smallest �F is still larger than the
frequency resolution. If we take �F0 = 0.01, then every orbit is
chaotic in NAFF; a small In in CA with Lr = 2 × 10−4 can give
similar results, so we can say both methods are in good agreement,
but this is only an extreme case. Compared with the CA method,
the results of NAFF only weakly depend on Lr and Lmax. For the
parameter Lmax, if we do not take into account CPU time limits,
we can make it as large as possible. Also the In value may have
to be chosen differently for different potentials in the CA method.
The advantage of the CA method is that it can give independent
fundamental frequencies of orbits, which can yield more detailed
information about regular orbits.

7 SU M M A RY A N D C O N C L U S I O N S

Individual particle orbits are the backbone of any structure. It is
thus important for understanding the formation and evolution of this
structure to know whether the orbits that constitute it are chaotic or
regular and, in the latter case, what family they are associated with.
Bars, in particular, are a favourite field for such tests and thus many
studies have addressed the orbital structure in bars. Most of them,
however, use an analytic potential and are thus not very realistic
(see e.g. Athanassoula 2016, for a review). A further disadvantage
of such studies is that it is not trivial to choose the initial conditions
for the orbits and the result can depend critically on this choice.
Instead, we used here orbits taken directly from the simulation. This
means that they have very realistic potentials, but at the expense of
some noise and, particularly, some evolution of the potential.

As a first step towards understanding the orbital structure in bars,
we compare in this paper two methods: the NAFF method of Laskar
(1990) and the method of CA98.

We show how the main frequencies depend on the maximum
extracted line number Lmax and on the parameter to distinguish
two main frequencies Lr. We find that only a small number
(<0.1 per cent) of the main frequencies in NAFF have been changed
when using different values of Lmax, while about 6 per cent of the
main frequencies have been changed in CA. If we change Lr from
2 × 10−4 to 2 × 10−3, then around 6 per cent and 1.5 per cent of
the orbits have a different main frequency in the NAFF and CA
methods, respectively.

We find that, at least for our case, the main frequencies calculated
by the two methods are in good agreement provided we use the same
definitions and values for Lmax and Lr: for 80 per cent of the orbits
the differences between the results of the two methods are less than
5 per cent for all three main frequencies. We also find that there
are two clear peaks in the histogram of the ratios of the three main
frequencies in both methods. The highest peak is 1:1, and the second
highest is 2:3 for the face-on view (x, y). The two edge-on views,
(y, z) and (x, z), also have two clear peaks, one at 4:5 and the other
at 4:7.

We find that the fraction of the regular orbits strongly depends on
two parameters Lr and In in the CA method. The former is used to
determinate whether the two frequencies are the same and whether
there are resonances among the main frequencies. The fraction of
the regular orbits increases with increasing Lr or In. In the NAFF
methods, the fraction of the regular orbits strongly depends on the
critical frequency drift parameter. The regular fraction is increased
with increasing this parameter. However, it is difficult to give certain
values of these parameters in both methods. The fact that there is no

abrupt change from chaotic to regular reflects the fact that there is
stickiness and confined chaos. We also find that, for a given particle,
in general the projection of its motion along the bar minor axis is
more regular than the other two projections, while the projection
along the intermediate axis is the least regular.

Increasing the number of particles in the simulation will decrease
the noise. In a future paper we plan to use a simulation with a
considerably larger number of particles, to determine how noise
may influence the results.
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