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Abstract 

The standard model (e.g., Hocking in Earth Planets Space 51:525–541, 1999), ε = c0σ
2
N , (where σ is the radar spectral 

width assumed to be equal to vertical turbulence velocity fluctuation 
√

w2 , N is the buoyancy frequency, and c0 is a 
constant), derived from Weinstock (J Atmos Sci 35:1022–1027, 1978; J Atmos Sci 38:880–883, 1981) formulation, has 
been used extensively for estimating the turbulence kinetic energy (TKE) dissipation rate ε under stable stratifica-
tion from VHF radar Doppler spectral width σ . The Weinstock model can be derived by simply integrating the TKE 
spectrum in the wavenumber space from the buoyancy wavenumber kB = N

σ
 to ∞ . However, it ignores the radar 

volume dimensions and hence its spatial weighting characteristics. Labitt (Some basic relations concerning the radar 
measurements of air turbulence, MIT Lincoln Laboratory, ATC Working Paper NO 46WP-5001, 1979) and White et al. (J 
Atmos Ocean Technol 16:1967–1972, 1999) formulations do take into account the radar spatial weighting characteris-
tics, but assume that the wavenumber range in the integration of TKE spectrum extends from 0 to ∞ . The White et al. 
model accounts for wind speed effects, whereas the other two do not. More importantly, all three formulations make 
the assumption that k−5/3 spectral shape of TKE spectrum extends across the entire wavenumber range of integra-
tion. It is traditional to use Weinstock formulation for k−1

B
< 2a, 2b (where a and b are radar volume dimensions in the 

horizontal and vertical directions) and White et al. formulation (without wind advection) for k−1
B

> 2a, 2b . However, 
there is no need to invoke these asymptotic limits. We present here a numerical model, which is valid for all values of 
buoyancy wavenumber kB and transitions from ε ∼ σ

2 behavior at lower values of σ in accordance with Weinstock’s 
model, to ε ∼ σ

3 at higher values of σ , in agreement with Chen (J Atmos Sci 31:2222–2225, 1974) and Bertin et al. 
(Radio Sci 32:791–804, 1997). It can also account for the effects of wind speed, as well the beam width and altitude. 
Following Hocking (J Atmos Terr Phys 48:655–670, 1986, Earth Planets Space 51:525–541, 1999), the model also takes 
into account contributions of velocity fluctuations beyond the inertial subrange. The model has universal applicabil-
ity and can also be applied to convective turbulence in the atmospheric column. It can also be used to explore the 
parameter space and hence the influence of various parameters and assumptions on the extracted ε values. In this 
note, we demonstrate the utility of the numerical model and make available a MATLAB code of the model for poten-
tial use by the radar community. The model results are also compared against in situ turbulence measurements using 
an unmanned aerial vehicle (UAV) flown in the vicinity of the MU radar in Shigaraki, Japan, during the ShUREX 2016 
campaign. 

Keywords: VHF radar, MU radar, Unmanned aerial vehicles (UAV), Turbulence kinetic energy (TKE), TKE dissipation 
rate, Radar model, Stably stratified flows, Inertial subrange, Buoyancy subrange, Viscous subrange, Troposphere, 
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Introduction
The dissipation rate ε of turbulence kinetic energy (TKE) 
is a fundamental parameter indicative of the strength 
of turbulence. With suitable assumptions, knowledge 
of ε allows the turbulent diffusion coefficient K, of great 
importance to mixing in the fluid column, to be deter-
mined. As such there is considerable interest in deter-
mining ε in both the atmosphere and the oceans. While 
the principal application of VHF wind profiling Doppler 
radars is for measuring the three components of wind 
velocity in the atmospheric column, they also have the 
capability to measure velocity fluctuations in the beam 
direction. The intensity of velocity fluctuations can be 
determined from the spectral width σ of the backscat-
tered signal, after suitable corrections are applied to 
effects such as beam broadening and wind shear. The 
task then is to infer the dissipation rate from the spec-
tral width. But first, the dissipation rate has to be related 
to turbulent velocity fluctuations. Considerable effort has 
been expended over the past four decades on the prob-
lem of extracting ε from σ . A very useful summary of 
these efforts and the issues involved can be found in an 
excellent review by Hocking (1999).

Simultaneous measurements of ε by the radar and 
in  situ turbulence sensors, both measuring the same 
volume, have been costly and hence infrequent (but see 
Bertin et al. 1997; Dehghan and Hocking 2011; Dehghan 
et  al.  2014 and the references cited therein). As such, 
there are still some unresolved issues. However, quite 
recently, routine and inexpensive in  situ measurements 
have been made possible through turbulence sensors 
deployed on small, unmanned aerial vehicles (UAVs, e.g., 
Scipion et al. 2016) flown near and above the MU radar 
in Shigaraki, Japan (Kantha et al. 2017; Luce et al. 2018). 
This has enabled us to revisit the problem of extracting ε 
from σ . A brief summary of past work is also provided for 
completeness and context.

Weinstock (1978, 1981) was one of the first to propose 
a model that enables extraction of ε from measurements 
of vertical turbulence velocity fluctuations w2

= σ
2
w and 

the local buoyancy frequency N:

where c0 is an empirical constant and N, the buoyancy 
frequency indicative of the degree of stability of the fluid 
column, is given by:

where g is the gravitational acceleration, z is the vertical 
coordinate, and Θ is the potential temperature (assuming 

(1)ε = c0w2N

(2)N =

(

g

Θ

∂Θ

∂z

)1/2

dry air, although water vapor effects can be easily incor-
porated through virtual potential temperature).

The Weinstock model was subsequently applied to 
Doppler MST radars operating in the VHF-band (e.g., 
Hocking 1983, 1985, 1986, 1999; Fukao et  al. 1994) to 
extract ε from measurements of turbulence-produced 
radar spectral width σ , with the assumption

so that

The extraction of the Doppler variance due to turbu-
lence after correcting for beam-broadening and shear-
broadening effects is outside the scope of the present 
work. Here, we assume that σ is correctly evaluated but 
can be affected by wave contributions. Equation  (4) has 
been used extensively since, for estimating the turbu-
lence kinetic energy (TKE) dissipation rates under stable 
stratification from VHF radar Doppler spectra, although 
there is still considerable debate as to the exact value of 
c0. In a nice summary, Hocking et al. (2016) show that its 
empirical value appears to vary between 0.27 and 0.6, but 
recommend that 0.5± 0.25 be used (their Eq. 7.55). How-
ever, as shown below, c0 depends on the Kolmogorov uni-
versal constant α as well as the lower limit of integration 
of the turbulence wavenumber spectrum.

The primary dependence of ε is on σw (or equivalently σ 
when applied to radar data), since the dependence on N 
is much weaker. As such, Weinstock model yields ε ∼ σ

2
w 

(or equivalently σ 2 ) behavior, whereas ε ∼ σ
3
w (or equiv-

alently σ 3 ) dependence based on some stratospheric 
measurements of turbulence is also evident in some cases 
(Chen 1974; Bertin et al. 1997). The latter behavior sug-
gests ε ∼

σ
3

L  , where L is a turbulence length scale (inde-
pendent of N). It is possible that under certain conditions 
(Hocking 1999), L could remain constant giving rise to 
ε ∼ σ

3 behavior. Labitt (1979) proposed a model that 
yields ε ∼ σ

3 behavior.
But first, it is useful to define the various wavenum-

bers (and length scales) involved in the above models and 
derivations, since there appears to be some confusion 
about exact definitions that complicate the debate (see 
Section 3 of Hocking 1999) and introduce uncertainties 
into the estimation of some constants. The Kolmogorov 
viscous wavenumber of importance in turbulence studies 
defined as

corresponds to the Kolmogorov viscous scale, indicative 
of the scales at which dissipation of TKE cascading down 

(3)σ = σw =

(

w2
)1/2

(4)ε = c0σ
2N

(5)kK =

(

ε

ν
3

)1/4
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the spectrum from large energy-containing scales to vis-
cous dissipative scales, takes place. ( ν is the kinematic 
viscosity.) This Kolmogorov viscous scale is traditionally 
defined (without the factor 2π ) as:

If the turbulence Reynolds number is large enough, 
sufficiently far away from anisotropic energy-contain-
ing wavenumbers (equivalently scales), the turbulence 
kinetic energy spectrum contains the Kolmogorov uni-
versal range, where the spectral shape depends only on 
the wavenumber k, the TKE dissipation rate ε and the 
Kolmogorov viscous scale η:

where the proportionality constant α is known as the 
Kolmogorov universal constant and f stands for function. 
One frequently used form for the spectrum in the univer-
sal range (e.g., Ogura 1958) is

where κ = 0.4 is the von-Karman constant. Turbulent 
eddies are expected to be isotropic in the Kolmogorov 
universal range of the energy spectrum, the idea being 
that while the large energy-containing scales are neces-
sarily anisotropic (especially under the influence of buoy-
ancy or other directional forces), as the energy cascades 
down the spectrum to higher wavenumbers by nonlinear 
interactions, the turbulent eddies lose memory of direc-
tionality and become increasingly isotropic.

For kη >> 1, viscous subrange (VSR) results and the 
spectrum take the form:

where β ∼ 0.041.
Far away from both isotropic viscous and anisotropic 

energy-containing scales, if the turbulence Reynolds 
number is high enough, lies the inertial subrange (ISR) 
of the Kolmogorov universal spectrum, whose shape 
depends only on the wavenumber k and the dissipation 
rate ε , and not on the Kolmogorov viscous scale η:

There has been an enormous amount of work done 
over the years to determine the precise value of α and as a 
result, it is known to range between 1.53 and 1.65 (e.g., 
Gossard et al. 1984). The best-known empirical value at 
present is 1.65 (although 1.53 has also been used, e.g., 
Weinstock 1981; Hocking 1999). This value is very close 

(6)η =

1

kK
=

(

ν
3

ε

)1/4

(7)E(k) = f (ε, k , η) = αε
2/3k−5/3f (kη)

(8)E(k) = αε
2/3k−5/3

[

1+

(

8

3κ2

)

(kη)4
]

−4/3

(9)E(k) = βν
2
η
−8k−7

(10)E(k) = f (ε, k) = αε
2/3k−5/3

to the often-cited (e.g., Ogura 1958) value of 
(

8
9κ

)2/3
∼ 1.675 . Note that the Kolmogorov universal 

range consists of the inertial and viscous subranges and 
the transition between the two.

It is also important to keep in mind the fact that when 
the upper limit on the wavenumber in the integration of 
energy spectrum is taken as infinity, strictly speaking, 
Eq. (8) should be used instead of Eq. (10).

Empirically, the inner scale of turbulence correspond-
ing to the inner edge of the ISR is taken to correspond to 
the upper wavenumber limit of the ISR and is related to 
the Kolmogorov viscous wavenumber (e.g., Wilson 2004):

where kK is the Kolmogorov wavenumber (Eq.  5). Note 
that the proportionality constant in Eq.  (11) is not far 
from the value 4π . The inner scale is therefore

In stably stratified flows, buoyancy forces tend to flat-
ten large turbulent eddies and make them anisotropic, so 
that vertical velocity fluctuations become less than the 
horizontal ones, the degree of reduction depending on 
the stability of the fluid column. The lower wavenumber 
limit of the ISR is therefore determined by the Ozmidov 
wavenumber

The wavenumber corresponding to the outer scale of 
turbulence denoting the outer edge of the ISR is pro-
portional to the Ozmidov wavenumber so that the outer 
scale is

where fk =
kOUT
kO

 is the ratio of the outer and Ozmidov 
wavenumbers. While theoretical studies such as Suko-
rianski and Galperin  (2017) assert that the transition 
between the inertial and buoyancy subranges lies close to 
the Ozmidov scale 1/kO, thus suggesting the value of this 
ratio is close to 1.0, its precise value remains uncertain at 
present and should perhaps be determined by dedicated 
experiments in the future (personal communication by 
W. Hocking). The code allows for the user to prescribe 
the value of the proportionality constant fK.

The outer and inner scales of turbulence denote the 
edges of the ISR. The ratio of the two is

(11)kupper ∼
kK

12.8

(12)LIN ∼ 12.8η

(13)kO =

(

N 3

ε

)1/2

(14)LOUT =

1

fkkO
=

1

fk

(

ε

N 3

)1/2

(15)R =

LOUT

LIN
∼

(

1

12.8fk

)

Re
3/4
b
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where

is the so-called buoyancy Reynolds number, used rou-
tinely by oceanographers as a measure of “turbulence 
activity,” indicative of the “strength” of turbulence as 
measured by microstructure profilers in the ocean (e.g., 
Gregg et  al. 2018). The ratio R itself is indicative of the 
extent of the ISR in the turbulence energy spectrum. 
Assuming fk = 1, for Reb ~ 645, the ISR extends over a dec-
ade of wavenumbers (R = 10) and for Reb ~ 13,900, over 2 
decades (R = 100). In the stably stratified regions of both 
the oceans and the atmosphere, the value of R lies mostly 
but not entirely between 10 and 100.

At wavenumbers less than the Ozmidov wavenumber 
kO (or equivalently scales larger than the Ozmidov length 
scale LO), buoyancy forces begin to affect turbulence by 
tending to inhibit vertical motions. The turbulence spec-
tral shape may deviate from that in the ISR. This buoy-
ancy subrange (BSR) is thought to extend from the outer 
wavenumber kOUT to the buoyancy wavenumber kB 
defined as

The length scales corresponding to the Ozmidov and 
buoyancy wavenumbers are known as Ozmidov and 
buoyancy length scales and can be defined as the recipro-
cal of kO and kB, respectively (without the factor 2π)

This is the definition that atmospheric scientists use 
(e.g., American Meteorological Society), although some 
studies (e.g., Weinstock 1981; Hocking 1999) define the 
buoyancy scale as 2π/kB . The Ozmidov length scale is 
also often defined as 2π/kO . There has been considerable 
and needless confusion regarding length scales we use 
in turbulence studies (see also comments in Section 3 of 
the review of the topic by Hocking 1999) because of the 
factor 2π , which can lead to serious discrepancies in the 
magnitudes of ε extracted from σ.

However, there is a simple solution. The wavenumber 
spectrum is more fundamental to turbulence studies and 
as long as we deal with just wavenumbers, which involve 
no ambiguity whatsoever, and not arbitrarily defined 
length scales, there is no inconsistency in the derivations 
of the expressions for the dissipation rate (in terms of 
wavenumbers). Once that is done, wavenumbers can be 

(16)Reb =

ε

νN 2

(17)kB =

N
(

w2
)1/2

=

N

σw

(18)

LO =

1

kO
=

(

ε

N 3

)1/2
; LB =

1

kB
=

(

w2
)1/2

N
=

σw

N

converted to corresponding scales, whichever way they 
are defined. We do so and suggest that the radar com-
munity do the same, since there is usually some ambigu-
ity as to how to define the corresponding length scales, 
i.e., with or without the factor 2π . This has to do with the 
confusion between length scales and wavelengths in tur-
bulence studies as we transition from the wavenumber 
space (see the excellent discussion in Hocking 1999, also 
personal communication by Hocking). Our own prefer-
ence is to define turbulence length scales as inverse of 
wavenumbers.

The spectrum in the BSR (kOUT < k < kB), where buoy-
ancy forces affect turbulence, is thought to follow the law

although the precise value of nb is uncertain. Weinstock 
(1978) suggests that the value of nb depends on the flux 
Richardson number, but is close to the ISR value of 5/3, 
while Lumley (1964; see also Sukoriansky and Galperin 
2017) suggests nb = 3. In any case, the Ozmidov wave-
number kO (often called the buoyancy wavenumber in 
meteorology leading to needless confusion once again) is 
indicative of the transition from ISR to BSR in the spec-
trum (while buoyancy wavenumber kB is indicative of the 
transition from turbulent motions to wave motions), and 
the spectrum in the wavenumber range comprising of 
both ISR and BSR can be modeled as:

so that for k ≫ kOUT, the ISR results: E → αε
2/3k−5/3 and 

for k ≪ kOUT, we get the BSR

Note that the computer code has been written so that 
the user can input any values for fK and nb, although in 
the illustrative plots, we have used fK = 1 and nb = − 5/3.

Now, fluctuations below the wavenumber kB (equiva-
lently above the buoyancy length scale LB) are due to 
wave motions and not turbulence. This must be taken 
into account in the derivations of ε , since the radar does 
not discriminate between velocity fluctuations due to 
turbulence and wave motions. Keeping in mind the fact 
that wave motions can exist below the buoyancy wave-
number kB, the integration of the turbulence energy spec-
trum E(k) over the wavenumber space kB to ∞ yields the 
energy resident in turbulent fluctuations and only turbu-
lent fluctuations, i.e., the TKE:

(19)E(k) ∼ k−nb

(20)E(k) = αε
2/3k−5/3

[

1+ γ

(

k

kOUT

)

−nb+(5/3)
]

(21)E → αγ ε
2/3k

−nb+(5/3)
OUT k−nb

(22)
q2

2
=

∞
∫

kB

E(k)dk
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where

is twice the turbulence kinetic energy. The lower limit in 
Eq.  (22) assures that all motions considered are due to 
turbulence and not from wave motions possible under 
stable stratification. The major portion of the contribu-
tion to TKE comes from low wavenumbers correspond-
ing to energy-containing scales. The high wavenumbers 
close to viscous dissipation scales contribute very little.

Only wavenumbers (scales) smaller (larger) than the 
Bragg backscatter wavenumber (scale) contribute to 
broadening of the spectrum of the backscattered radar 
signal, and therefore, the upper limit of integration in 
Eq. (22) should be taken as

where � is the wavelength of the radar, so that the TKE

It is traditional to assume that the − 5/3 shape of the 
spectrum representative of the ISR (shape is uncertain in 
the BSR) extends across the entire integration range from 
kB to kBragg so that using

yields

However, the radar spectral width depends only on w2 
and so further assumptions are necessary. It is usual to 
assume equal contributions to TKE from velocity fluctua-
tions in the three directions ( u2 = v2 = w2 ) so that

Then, Eq. (27) can be written as

If non-isotropy of the components of TKE is acknowl-
edged, there would be an appropriate factor multiplying 
α on the right hand side of Eq. (29) (see Appendix B).

Finally, for analytical convenience, it is usual to ignore 
the second term in the square brackets and implicitly 
assume kB ≪ kBragg so that

(23)q2 = u2 + v2 + w2

(24)kBragg =
4π

�

(25)
q2

2
=

kBragg
∫

kB

E(k)dk

(26)E(k) = αε
3/2k−5/3

(27)q2 = 3αε2/3
[

k
−2/3
B −

(

kBragg
)

−2/3
]

(28)q2 = 3w2

(29)w2
= αε

2/3
[

k
−2/3
B −

(

kBragg
)

−2/3
]

(30)w2
= αε

2/3k
−2/3
B

which yields:

where

as indicated by Weinstock (1978, 1981). Substituting for 
kB from Eq. (17) yields

which is the Weinstock (1981) model. For α = 1.65 , 
c0 ~ 0.47. As such, there is no ambiguity in the value of 
c0, since it is tied to the Kolmogorov universal constant, 
if and only if the lower limit on integration is strictly 
enforced as equal to the buoyancy wavenumber, which 
delineates wave motions from turbulent motions. Appli-
cation to radar spectral width data gives Eq.  (4), the 
widely used form of Weinstock (1981) model.

The Weinstock model can also be derived as fol-
lows (e.g., Hocking 1999). Define a “buoyancy scale” as 
he did (recall we define the buoyancy scale differently: 
LB = 1/kB):

and integrate the energy spectrum from 2π
L̄B

 to ∞ . But 
from Eq. (34),

Therefore,

Using Eq. (26), we get

which can be written as (using Eqs. 13, 28):

so that

where c0 ~ 0.44 if α = 1.65 , but 0.47 if α = 1.53 as in 
Hocking (1999). Invoking Eq.  (3), we get the Weinstock 
model (Eq. 4). If we had used kO as the lower limit of inte-
gration, c0 would have been 0.61.

(31)ε = c0

(

w2
)3/2

kB

(32)c0 = α
−3/2

(33)ε = c0w2N

(34)L̄B =

2π

0.62
ε
1/2N−3/2

(35)
2π

L̄B
= 0.62kO

(36)
q2

2
=

∞
∫

0.62kO

E(k)dk

(37)
q2 = 3αε2/3(0.62kO)

−2/3
= 3α(0.62)−2/3

ε
2/3k

−2/3
O

(38)w2
=

q2

3
= α(0.62)−2/3

εN−1

(39)ε =

1

α

(0.62)2/3w2N = c0w2N
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The closeness of Eqs.  (39) and  (33) is merely a 
happenstance.

It is interesting to note that Eqs. (13) and (39) yield

for c0 = 0.47. The relative closeness of the two wavenum-
bers tends to downplay the influence of the exact spectral 
shape in the BSR portion of the spectrum.

However, the radar measurement volume is finite, and 
the Weinstock formulation does not take into account 
the resulting radar spatial weighting characteristics. On 
the other hand, Labitt (1979) and White et al. (1999) for-
mulations do (see “Radar epsilon model” section), but 
provide numerical and not analytical solutions. However, 
both integrate the wavenumber spectrum of the back-
scattered radar signal from 0 to ∞ , whereas the Wein-
stock model integrates the turbulence spectrum from 
the buoyancy wavenumber kB to ∞ . As summarized by 
Hocking (1999), these three Doppler methods lead to dif-
ferent formulas and results, which has been a source of 
some confusion. Also, all three formulations make the 
assumption that the k−5/3 spectral shape representative 
of the inertial subrange (ISR) of the turbulence kinetic 
energy spectrum extends across the entire wavenumber 
integration range. This ignores the potential presence 
of the buoyancy subrange (BSR) within the integration 
range. Also, strictly speaking, the upper limit on wave-
number should be kBragg and not ∞ , although the differ-
ence is quite small. Finally, the observed spectral width 
due to velocity fluctuations in the beam direction may 
have contributions from wave motions and not just tur-
bulence. We address these issues in the next section.

Radar epsilon model
The original Labitt (1979; see also Hocking 1986, 1999) 
formulation takes into account the radar spatial weight-
ing function:

(40)kO =

kB
√

c0
∼ 1.46kB

(41)σ
2
= CK

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

Φll(k)
[

1− exp
(

−k2z b
2
− k2x a

2
− k2y a

2
)]

dkxdkydkz

where a and b are radar volume dimensions in the hori-
zontal and vertical. Because the radar beam measures 
velocity fluctuations transverse to the horizontal wind 
advecting turbulence past it, the value of CK can be less 
than 1 (see Appendix A of Hocking 1999), the exact value 
of depending on the type of turbulence (see Appendix 
B). However, this issue has been ignored thus far and all 
previous derivations in radar literature, including Labitt 
(1979), have assumed CK = 1. We have used CK = 0.873, 
appropriate to shear-generated turbulence, in this paper, 
keeping the transverse nature of radar measurements (for 
more details see Appendix B). The precise value of CK is 
still uncertain and requires further studies.

Note the wavenumber integration limits. Using the 
spectrum of vertical velocities:

where E(k) is the turbulence energy spectrum and

Integration in Eq. (41) can be carried out using Eq. (26) 
for E(k) appropriate to the ISR, which yields

or equivalently

where

(42)Φll(k) =
E(k)

4πk2

(

1−
k2z
k2

)

(43)k2 = k2z + k2x + k2y

(44)σ
2
=

α

2
ε
2/3

Υ

(45)ε =

(

2

αΥ

)3/2

σ
3

(46)Υ = CK

π
∫

θ=0

∞
∫

k=0

k−5/3 sin3 θ
[

1− exp
(

−k2b2 cos2 θ − k2a2 sin2 θ
)]

dkdθ
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This is what we will call the original Labitt method, 
which assumed k−5/3 spectral shape to exist over the 
entire wavenumber range of interest, from k = 0 to ∞ , 
and ignored the effect of wind advection (see Hocking 
1999).

Now, Eq.  (41) can be modified to take into account 
wind advection as indicated by Hocking (1983) and 
White et al. (1999). Following White et al. (1999):

assuming the wind is in the x-direction. Note that 
L = VH�t , where VH is the wind speed in the horizon-
tal direction and �t is the dwell duration (duration for 
collecting the time series), which is 24.57 s for MU radar 
during the ShUREX campaigns. Using Eqs.  (42)–(43) in 
Eq. (47), we get Eq. (2.14) of White et al. (1999):

This is what we call generalized Labitt formulation. 
Substituting

and expressing the integral in terms of x = kb, θ and ϕ , we 
get

White et al. (1999) showed that Eq. (50) can be approx-
imated to within 2% by

Henceforth, we will not present results from White 
et al. formulation (Eq. 51), since they are very close to the 
generalized Labitt formulation (Eq. 50) and it is hard to 
discern any difference between the two in the plots. Note 
that CK = 1 in original Labitt and White et al. derivations.

(47)σ
2
= CK

∞
�

−∞

∞
�

−∞

∞
�

−∞

Φll(k)











1−







sin2
�

kxL
2

�

�

kxL
2

�2






exp

�

−k2z b
2
− k2x a

2
− k2y a

2
�











dkxdkydkz

(48)σ
2
= CKαε

2/3

∞
�

−∞

∞
�

−∞

∞
�

−∞

k−5/3

4πk2

�

1−
k2z
k2

�











1−







sin2
�

kxL
2

�

�

kxL
2

�2






exp

�

−k2z b
2
− k2x a

2
− k2y a

2
�











dkxdkydkz

(49)kz = k cos θ , kx = k sin θ cosϕ, ky = k sin θ sin ϕ, dkx · dky · dkz = dk · kdθ · k sin θdϕ

(50)
Υ = CK

(

b2/3

2π

)

x=xU
∫

x=xL

x
−5/3dx

π
∫

θ=0

dθ

π
∫

ϕ=−π

dϕ sin3 θ

{

1−

[

sin2
(

L

2b
x sin θ cosϕ

)

(

L

2b
x sin θ cosϕ

)2

]

exp

(

−x
2 cos2 θ − x

2 a
2

b2
sin2 θ

)

}

(51)Υ = CK

(

12

2π

)

Γ

(

2

3

)

π/2
∫

θ=0

dϕ

π/2
∫

ϕ=0

dθ sin3 θ

[

b2 cos2 θ + a2 sin2 θ +

L2

12
sin2 θ cos2 ϕ

]1/3

Note that both White et  al. (1999) and Labitt (1979) 
formulations integrate right through the wavenumber 
kB and therefore are accounting for velocity fluctuations 
due to wave motions below kB (albeit with spectral shape 
corresponding to ISR). A related minor issue with both 
formulations is that the upper limit should be kBragg, but 
this is not important since it makes little difference. On 
the other hand, since the lower limit is not kB, the wave-

number delineating turbulent and wave motions, integra-
tion is carried out right through kB and so the results, not 
surprisingly do not involve the buoyancy scale 1/kB (or 
equivalently the buoyancy frequency N), whereas Wein-
stock formulation integrates down to kB only and so its 
results involve N explicitly.

It is traditional to use Weinstock formulation for 
k−1
B < 2a, 2b and White et al. formulation (without wind 

advection and therefore L = 0) for k−1
B > 2a, 2b , where 

the buoyancy length scale given by k−1
B  is taken to be the 

size of the largest eddies permitted under stable stratifi-
cation (e.g., Fukao et al. 1994; Kantha and Hocking 2011; 

Luce et al. 2018). However, these are the two asymptotic 
limits. Since White et  al. formulation requires numeri-
cal integration anyway, it is not any more difficult to use 
numerical integration of the generalized Labitt formula-
tion, but with proper integration limits. A major advan-
tage is that the numerical model allows for inclusion of 
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wind advection and radar weighting characteristics, with 
no need for approximations whatsoever.

Since the original Labitt formulation (Eq. 46) does not 
account for wind advection, we use the generalized Labitt 
formulation (Eq.  48) instead or equivalently Eq.  (50). 
However, we replace the spectrum used in Eq.  (48), 
which is valid only in the ISR (Eq. 26) by one that extends 
from the viscous range to well beyond the ISR:

where nb = 4/3 is the spectral slope in the wave region 
(fK = 0.6–1, γK = 1 ). This form is used for completeness, 
although there is rarely any need to invoke VSR and so 
for all practical purposes

is quite close to Eq. (52). Thus, we get

This form has general applicability. If we put terms 
in the first curly bracket in Eq.  (54) equal to 1 and take 
limits xL = 0 and xU = ∞ , we get the generalized Labitt 
formulation (Eq. 50). In addition, if we put terms in the 
third square bracket equal to 1 (equivalently L = 0), the 
influence of wind advection is ignored. On the other 
hand, putting terms in the second curly bracket equal to 
1 (equivalent to putting a, b = ∞ ) yields the Weinstock 
model, for which the lower limit must be xL = kBb. (Using 
xL = 0 as the lower limit makes the integral go to ∞ thus 
giving ε = 0.)

The numerical model presented in this paper inte-
grates Eq. (54) in 3 segments: 1) universal range (VSR and 
ISR) (k = kO to k = kBragg), 2) BSR (k = kB to k = kO) and 
3) Beyond BSR when wave contributions are included 
(k = 0 to k = kB), so that xL = 0 and xU = kBraggb. However, 
the principal problem is that the Ozmidov wavenumber 
kO is not known a priori, since it depends on the yet to 
be determined ε . So an iterative procedure is necessary, 
using an initial guess value for ε from one of the standard 
formulations (e.g., White et al. 1999).

(52)E(k) = αε
2/3k−5/3

[

1+ γK

(

fK kO

k

)

−nb−(5/3)
]

[

1+

(

8

3κ2

)

(kη)4
]

−4/3

(53)E(k) = αε
2/3k−5/3

[

1+ γK

(

fK kO

k

)

−nb−(5/3)
]

(54)

Υ = CK

(

b2/3

2π

)

x=xU
∫

x=xL

x−5/3

{[

1+ γK

(

fK kO

k

)

−nb−(5/3)
]

[

1+

(

8

3κ2

)

(kη)4
]

−4/3
}

dx

π
∫

θ=0

dθ

π
∫

ϕ=−π

dϕ sin3 θ

{

1−

[

sin2
(

L
2b
x sin θ cosϕ

)

(

L
2b
x sin θ cosϕ

)2

]

exp

(

−x2 cos2 θ − x2
a2

b2
sin2 θ

)

}

We illustrate the various model results in Fig.  1. 
The numerical model simulation is specifically for the 
46.5 MHz MU radar in Shigaraki, Japan, with b = 75 m, 
and � = 6.4516 m (but can be done for any radar). The 
two-way half-power beam half-width is 1.32°, which 
determines the parameter a as a function of altitude 
above ground level (AGL). For the results in Fig.  1, the 
altitude has been set to 2 km, the average altitude of UAV 

measurements. The buoyancy frequency N is kept fixed 
at 0.0121 s−1, a value appropriate to the troposphere. The 
wind speed VH is put to zero, for simplicity.

The left panel shows ε plotted against σ , while the 
right panel shows ε plotted against the buoyancy scale 
1/kB (The two plots have equivalent information.) 
The red line shows the Weinstock formulation (Eq.  1 
with N = 0.0121  s−1), and the black line shows the gen-
eral Labitt formulation denoted as G Labitt. Note that 

because wind = 0, the general Labitt formulation reduces 
to the original Labitt formulation. These two form the 
two asymptotic limits discussed earlier and the numerical 
model (blue line) transitions from one to the other quite 
nicely. The blue line parallels the red line for low values 
of σ and therefore 1/kB, but transitions toward the red 
line at high values of σ and 1/kB. This is simply because 
when 1/kB < 2a, 2b, the dissipation rate ε ∼ σ

2 (Wein-
stock 1981, but with N ~ constant), but transitions to 
ε ∼ σ

3 behavior when 1/kB > 2a, 2b (Chen 1974). There-
fore, when the radar volume spatial characteristics are 
taken into account, both behaviors become feasible. Note 
that the value of CK has been put equal to 0.873. This is 
the reason the numerical model values do not asymptote 
to Weinstock and Labitt values. They would have if CK 
were to have been chosen equal to 1.0 (see Appendix B 
for details).

Figure  2 compares the numerical model results (blue 
line) to in situ measurements of ε made using UAV-borne 
turbulence sensors for all 16 flights during the ShUREX 
(Shigaraki UAV Radar Experiment) 2016 campaign, as 
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detailed in Luce et  al. (2018) and explained in Kantha 
et  al. (2017). Only radar data from the vertical beam 
are considered. Radar data with values of σ < 0.1 m/s 
(the radar noise threshold, equivalently LB < 8  m) and 
UAV data with ε < 1.1 × 10−5 m3 s−2 (UAV sensor noise 
threshold) are omitted. The models mentioned in Fig. 1 
are also shown. The magenta line is given by

where L = 25  m, and is in better agreement with UAV 
data than both the Weinstock and Labitt models. Luce 
et al. (2018) also suggest that Eq. (55) with L = 25 m, best 
fits the ShuREX 2016 UAV data. The Labitt (1979) for-
mulation (and White et al. 1999) yields ε ∼ σ

3 behavior 
for ALL values of σ , simply because the lower limit on 
integration in these formulations is zero and not kB. Note 
that, like in Fig.  1, because wind = 0, the general Labitt 
formulation reduces to the original Labitt formulation.

(55)ε = 0.47

(

σ
3

L

)

The upper wavenumber limit has some impact. If kBragg 
and not ∞ is imposed as the upper limit, the blue line 
(model), instead of overlapping the red line (Weinstock) 
at low values of σ , would deviate increasingly from it as 
σ decreases, with ε values somewhat higher (not shown) 
than those given by Weinstock formulation.

Now, the dissipation rate in turbulent flows can be 
written as

where ℓ is the turbulence length scale, a measure of the 
size of energy-containing large eddies and hence propor-
tional to it. B1 ~ 16.6 (Kantha and Carniel 2009). For sta-
bly stratified conditions, w2

q2
 becomes a function of the 

gradient Richardson number Ri = N 2

S2
 (S is the mean 

shear) (e.g., Kantha and Carniel 2009). Observational 
data suggest that w2

q2
 ~ 0.13–0.15 in the Ri range 0–0.25 of 

interest in stably stratified flows (Kantha and Carniel 

(56)ε =

q3

B1ℓ

Fig. 1 Plot of the TKE dissipation rate ε against σ (left) and the corresponding buoyancy length scale 1/kB (right). The blue line shows the numerical 
model (Eq. 54). The red line shows the Weinstock (1978, 1981) formulation, while the black line is the Labitt formulation. Note that because the 
constant CK < 1, the numerical model does not asymptote to Weinstock and Labitt values
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2009, their Fig.  5). Taking an average value of 0.14, 
Eq. (56) becomes

Equating (55) and (57), it is seen that L = 0.4ℓ , and 
therefore, the turbulence length scale is around 60 m, on 
the average, in ShUREX 2016 measurements.

The advantage of the numerical model is that it can 
account for the effects of altitude and beam angle, the 
influence of wind advection, as well as allow imposing 
the upper wavenumber limit of kBragg. Figure 3 shows the 
effect of wind speed and altitude at the MU radar site. 
The acquisition time DT is ~ 30  s. Weinstock (red line) 
and original Labitt model (black line) for AGL (above 
ground level) altitude 2 km and zero wind speed are also 

(57)ε = 1.15
σ
3

ℓ

shown for comparison. Results for 4 cases are shown. 
The blue line is the model result for AGL altitude of 2 km 
and zero wind speed, the same as the blue line in Fig. 1. 
The magenta line is for AGL altitude of 10 km and zero 
wind speed. The cyan line is for AGL altitude of 2 km and 
10  m/s wind speed. The green line for AGL altitude of 
10 km and wind speed of 10 m/s is nearly indistinguish-
able from and hence overwrites the cyan and magenta 
lines. It is interesting to note that all these values fall 
above the Weinstock values. These simulations therefore 
demonstrate the importance of not only imposing proper 
integration limits, but also accounting for the altitude 
AGL and wind speed for a particular radar, when deriv-
ing ε from σ . The use of the two asymptotic limits (Wein-
stock and White et al.) is therefore not always justified.

Fig. 2 Plot of the TKE dissipation rate ε against σ (left) and the corresponding buoyancy length scale 1/kB (right). Cyan circles show the 
UAV-measured ε plotted against radar-determined σ for all 16 flights made during the ShUREX 2016 campaign. The blue line shows the numerical 
model (Eq. 54). The red line shows the Weinstock (1978, 1981) formulation, while the black line is the Labitt formulation. The magenta line 
corresponds to Eq. (55) with L = 25 m (see text). The green and magenta lines nearly overlap. Chen (1974) and other data cited in Fig. 2 of Weinstock 
(1981) are shown by filled red polygons. The units and the figure aspect ratio are selected to be similar to that in Figure 2 of Weinstock (1981) for 
easy comparison
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We have provided model results only for the MU 
radar, since that was where in  situ UAV measurements 
were made. It is also not possible to explore here the 
large parameter space that governs the ε estimates of 
the numerical model. Instead, the Appendix provides a 
MATLAB code suited to exploring the parameter space 
for any radar.

Correcting radar spectral width for wave 
contributions
Figures  1, 2, 3 assume that the spectral radar width 
σ results from velocity fluctuations due to turbulent 
motions only. In reality, wave motions also cause velocity 
fluctuations in the beam direction that contribute to σ . 
For comparisons with measurements of ε by in situ tur-
bulence sensors, it may be necessary to correct for wave 
motions (see Hocking 1988). This can be done as follows. 
If we recall

(58)
Υt = CK

(

b2/3

2π

)

x=kBraggb
∫

x=kBb

x−5/3

{[

1+ γK

(

fK kO

k

)

−nb−(5/3)
]

[

1+

(

8

3κ2

)

(kη)4
]

−4/3
}

dx

π
∫

θ=0

dθ

π
∫

ϕ=−π

dϕ sin3 θ

{

1−

[

sin2
(

L
2b
x sin θ cosϕ

)

(

L
2b
x sin θ cosϕ

)2

]

exp

(

−x2 cos2 θ − x2
a2

b2
sin2 θ

)

}

Fig. 3 Plot of the TKE dissipation rate ε against σ (left) and the buoyancy length scale LB (right) for various wind speeds and AGL altitudes. The black 
line is for White et al. (1999) formulation for zero wind speed and 2 km altitude. The red line is the Weinstock formulation. The numerical model 
results are: blue line for altitude = 2 km, wind speed = 0 m/s, cyan line for altitude = 2 km, wind speed = 10 m/s, magenta line for altitude = 10 km, 
wind speed = 0 m/s, and green line for altitude = 10 km, wind speed = 10 m/s. Note that the cyan and magenta lines have essentially been 
overwritten by the green line
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contains contributions from turbulent motions only, 
whereas

contains contributions from wave motions as well 
(because of the lower limit of integration), using Eq. (44),

is the required correction of radar measured spectral 
width for wave motions.

Extension to convective mixing
While we focused on turbulence in stably stratified flows 
so far, the general Labitt formulation can also be extended 
to convective mixing of any type seen in the atmospheric 
column, by recognizing that in this case, the ISR extends 
over the entire wavenumber range of interest. Neither the 
Ozmidov wavenumber kO nor the buoyancy wavenum-
ber kB is relevant. The stratification is unstable (N2 < 0), 
and these wavenumbers are undefined. Thus, the lower 
integration limit in Eq. (50) can be taken as kDb, (where 
kD = 1/D, D being the depth of the convective layer), since 
no wave motions are feasible in unstably stratified fluid 
column. Equations (44) and (50) constitute the proposed 
spectral model for convective mixing. The resulting TKE 
dissipation rate ε exhibits σ 3 behavior (Eq. 55), with the 
length scale L dependent on a variety of factors includ-
ing the depth of the layer D and parameters 2a and 2b. 
More details can be found in the Appendix. The model 
is applicable to the convective boundary layer (CBL) and 
mid-level cloud-base turbulence (MCT, e.g., Kudo et  al. 
2015), as well as convective mixing produced by cloud-
top radiative cooling.

Concluding remarks
The TKE dissipation rate, regardless of the source of tur-
bulence, can be written as (e.g., Kantha 2003):

where B1 ~ 16.6 and ℓ is the turbulence macroscale indic-
ative of the scale of the energy-containing eddies and 
corresponds roughly to the wavenumber of the peak of 
the spectrum (and NOT necessarily the largest eddy 

(59)
Υ = CK
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x=kBraggb
∫

x=0
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1+ γK

(

fK kO
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−nb−(5/3)
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1+

(

8
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−4/3
}

dx

π
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dθ

π
∫

ϕ=−π

dϕ sin3 θ

{

1−

[

sin2
(

L
2b
x sin θ cosϕ

)

(

L
2b
x sin θ cosϕ

)2

]

exp

(

−x2 cos2 θ − x2
a2

b2
sin2 θ
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}

(60)σt = σ

√

Υt

Υ

(61)
ε =

q3

B1ℓ
∼

(

w2
)3/2

L

size). This is simply the Taylor–Prandtl hypothesis, where 
it is assumed that while TKE dissipation occurs at viscous 

scales, the dissipation rate itself is independent of viscos-
ity and depends instead only on the energy in the energy-
containing large scales (~ q2) and the energy-containing 
eddy turnover timescale ( ∼ ℓ/q ). Therefore, the scale L 
is proportional to the turbulence macroscale ℓ , irrespec-
tive of the source of turbulence, but the proportionality 
constant depends on the ratio of w2

q2
 , which is 1/3 for iso-

tropic turbulence, roughly 1/2 for convective turbulence 
and less than 1/4 for stable stratification (e.g., Kantha 
2003).

Comparing Eq. (61) to Weinstock (1978, 1981) formu-

lation ε = 0.47

(

w2
)3/2

LB
 for stable stratification, it is clear 

that formulations of that type are essentially equivalent 
to assuming that the turbulence macroscale ℓ is pro-
portional to the buoyancy scale LB. This of course is not 
always true.

In situ measurements of TKE dissipation rates during 
the ShUREX 2016 campaign by UAV-borne turbulence 
sensors deployed in the immediate vicinity of the MU 
radar (Kantha et  al. 2017; Luce et  al. 2018) suggest that 
Eq. (61), with L ~ 25 m and therefore ℓ ~ 60 m, is in better 
agreement with observed data than the Weinstock model 
(Eq.  4, with N = 0.0121  s−1) or the conventional Labitt 
(Eq. 50) and White et al. (Eq. 51) models. The reason and 
significance of this result is not clear at this point and 
requires further study (see the companion paper Luce 
et al. 2018, this special issue, for details and discussion of 
this issue).

Finally, we note that the numerical model can also be 
applied to any turbulence measurements in stably strati-
fied flows, where w2 is available (e.g., Weinstock 1981 or 
Chen 1974), along with N, not just radar data. Conversely, 
if the TKE dissipation rate is known, it is possible to infer 
TKE. This is of particular interest in the oceans, where 
it is relatively simple to measure ε using microstructure 
probes, but TKE measurements are much harder. To 
some extent, this applies to UAV measurements in the 
atmosphere also, since once again, ε measurements are 
straightforward (e.g., Kantha et al. 2017; Luce et al. 2018), 
but TKE measurements are more difficult, because of the 
problems in inferring ambient wind velocity accurately 
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enough from measurements of UAV velocity relative to 
the wind and relative to the ground.
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Appendix A: Numerical model
As seen above, it is traditional in the radar commu-
nity to use Weinstock formulation for k−1

B < 2a, 2b and 
White et  al. formulation (usually without wind advec-
tion and therefore L = 0) for k−1

B > 2a, 2b for extracting 
the TKE dissipation rate ε from observed radar Doppler 
variance σ (e.g., Hocking 1983, 1985, 1986, 1999; Fukao 
et al. 1994; Kantha and Hocking 2011; Luce et al. 2018). 
The buoyancy length scale given by k−1

B  is taken to be the 
size of the largest eddies permitted under stable stratifi-
cation. However, there is no need to restrict ourselves to 
these two asymptotic limits. Since White et al. formula-
tion requires numerical integration anyway, it is not any 
more difficult to numerically integrate the generalized 
Labitt formulation (Eq. 50) for the general case, but with 
proper integration limits. This also allows for inclusion of 
wind advection and radar weighting characteristics, with 
no approximations whatsoever. The model can also be 
applied to convective layers.

Also, we focused entirely on the MU radar. To be gen-
erally useful, we must allow for other radars and other 
points in the altitude, wind, beam angle and frequency 
parameter space to be considered. In dimensional param-
eter space, the number of variables is too many. How-
ever, major simplification is possible, if we consider the 
non-dimensional parameter space. With this in mind, we 
rewrite Eqs.  (44) and (54) in terms of non-dimensional 
TKE dissipation rate:

Equation (51) corresponding to the White et al. formu-
lation can also be written in non-dimensional form:
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There are 7 dimensional quantities involved in the 
problem, ε, kB, 2a, 2b, L, � and σ , and from the Bucking-
ham Pi theorem, 5 non-dimensional parameters can be 
formed. The only dependent non-dimensional parameter 
is ε̄ =

ε
(

σ
3

2b

) , and the four independent non-dimensional 

parameters are kB(2b), 2a
2b
, L
2b

and �

4b . It is possible to 
ignore the last one related to the Bragg scattering wave-
length, since its influence is generally small enough to be 
neglected. For convective case, parameter kB(2b) is 
irrelevant.

The non-dimensional form of the spectral shape across 
the entire wavenumber range, from viscous subrange 
(VSR) to beyond the inertial subrange (ISR), is taken as 
(from Eq. 52):

(64)Ē(x) =
E(k)

αε
2/3b5/3

= x−5/3

[

1+ γK

(

fK xO

x

)

−nb−(5/3)
]

[

1+

(

8

3κ2

)

(xη

b

)4
]

−4/3

where nb, the slope in the wave region, can be prescribed 
suitably. The default value is nb = 4/3. The parameter fK 
can be put to 0.62 as in Hocking (1999, Eq. 65 below) or 
to 1.0. γK = 1 . This form is used in the code for complete-
ness, although there is rarely any need to invoke VSR and 
so for all practical purposes

relevant to ISR prevails.
Hocking (1999) used instead the spectral shape given 

by Eq. (54), whose non-dimensional form is:

(65)Ē(x) = x−5/3

[

1+ γK

(

fK xO

x

)

−nb−(5/3)
]

Fig. 4 Assumed spectral shape, log scale (left) and linear (right) for σ = 0.1 m/s and ε = 0.47 σ
3

L
 with L = 25 m (fK = 1, N = 0.0121 s−1). These values 

can be changed and spectral shape replotted using the code provided. Note how the energy is concentrated at low wavenumbers, and therefore, 
the spectral shape in the ISR and beyond is important. Note also the difference relative to Hocking’s spectrum (Eq. 66) in the BSR and beyond
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where nH is the slope of the spectrum beyond ISR, with 
nH = − 3 corresponding to E ∼ k4/3 behavior. γH = 1 and 
fH = 0.62.

We have included the MATLAB code that can be used 
to compute ε̄ numerically for both the stably stratified 
and convective turbulence. The code allows not only the 
exploration of the 3-dimensional parameter space, but 
also specification of any radar and environmental param-
eters. There are also options for including the viscous 
subrange and different spectral slopes in the BSR and 
beyond. The integration is carried out in 3 segments: ISR, 
BSR and beyond. The wavenumber fKkO is considered 

(66)
Ē(x) =

x−5/3

[

1+ γH

(

x
fH xO

)

−nH−5/3
]

to denote the end of the ISR and the beginning of the 
BSR, whereas the buoyancy wavenumber kB denotes the 
boundary between turbulence and waves. Since kO is not 
known a priori, an iterative procedure is used, utilizing 
the White et al. (1999) model as the first guess.

1. Option “waves”: takes values 0 or 1. Value of 0 cor-
responds to turbulence only, so that the lower limit 
of integration is kB; value of 1 includes wave contri-
butions, since the wavenumber limit of integration is 
zero (as in White et al. and Labitt formulations).

2. Option “Hocking”: allows the use of spectral shape 
proposed by Hocking (1999). The option “Hocking” 
can be put to 0 or 1, depending on which spectral 
shape is considered. The spectral shapes for the 2 
cases are shown in Fig. 4.

Fig. 5 Non-dimensional TKE dissipation rate plotted against 2kBb. Top left: Base case with abyb = 0, Lby2b = 0.001 (zero altitude and zero wind). 
Top right: Case with abyb = 10, Lby2b = 0.001 (nonzero altitude). Bottom left: Case with abyb = 0, Lby2b = 5 (nonzero wind). Bottom right: Case 
with abyb = 10, Lby2b = 5 (nonzero altitude and wind). Solid line is the numerical model, the dotted line is Weinstock and dashed line, White et al. 
Hocking = 0, waves = 0 and fK = 1, and the upper limit of integrations is ∞ , in the above simulations. If instead Bragg wavenumber were imposed 
as the upper limit, the model would depart from Weinstock values at high values of kB(2b). The transition value of kB(2b) between Weinstock and 
White et al. formulations depends very much on the values of L/2b and 2a/2b. Because CK = 0.873 and not equal to 1, the numerical model does not 
asymptote exactly to the two limits (see Appendix B)
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3. Option “vsr”: can be put to 1, if viscous subrange is to 
be considered. This is seldom necessary.

4. Option “wind”: value of 1 considers wind advection, 
although the wind velocity itself can be prescribed 
to be nearly zero (zero value is not permitted by the 
code. Use 0.0001 instead). However, wind = 0 makes 
integration quicker for the zero wind case.

5. Option fK: the ratio between Ozmidov wavenumber 
and the outer scale wavenumber. It can be put equal 
to 1 or whatever value is found appropriate by future 
studies.

6. Option CK: This is the constant introduced because 
of the nearly transverse nature of radar measure-
ments (vertical beam in particular). See Appendix B 
for details.

Figure  5 shows numerical results for 4 cases (for 
CK = 0.873):

1. Base case with abyb = 0, Lby2b = 0.001 (zero altitude 
and zero wind).

2. Case with abyb = 10, Lby2b = 0.001 (altitude/beam 
angle dependence)

3. Case with abyb = 0, Lby2b = 5 (Nonzero wind)
4. Case with abyb = 10, Lby2b = 5 (Nonzero wind)

Note that White et al. formulation leads to σ 3 depend-
ence of ε , and therefore, there is no dependence on kB. 
On the other hand, Weinstock formulation depends on N 
and hence kB(2b). The numerical model provides values 
between these two asymptotic limits and hence is useful 
for general use. Through suitable changes, the parameter 
space can be more fully explored and/or specific radar 
and ambient conditions explored.

Finally, the code can also compute ε̄ for convective con-
ditions, where ISR is presumed to exist throughout the 
range of integration.

The depth of the convective layer is an independent 
parameter. Values for b and σ need to be provided to do 
the computation. Precise values are not important since 
the non-dimensional dissipation rate is not a function of 
these parameters. Figures 6 and 7 show results for a con-
vective layer 500 m deep, for various values of 2a/2b and 
L/2b. The strong influence of these parameters suggests 
that the base case of zero altitude and zero winds is not 
the best approximation in general. Figure 6 shows results 
for CK = 1 and Fig. 7, for CK = 0.437.

For the convective case,

1. Option “vsr”: can be put to 1, if viscous subrange is to 
be considered. This is seldom necessary.

2. Option “wind”: value of 1 considers wind advection, 
although the wind velocity itself can be prescribed 
to be nearly zero (zero value is not permitted by the 
code. Use 0.0001 instead). However, wind = 0 makes 
integration quicker for the zero wind case.

3. Option CK: This is the constant introduced because 
of the nearly transverse nature of radar measure-
ments (vertical beam in particular). See Appendix B 
for details.

(67)Ē(x) = x−5/3

[

1+

(

8

3κ2

)

(xη

b

)4
]

−4/3

Fig. 6 Non-dimensional TKE dissipation rate plotted against 2a/2b, 
for various values of L/2b for CK = 1. Note the strong influence of 
these parameters

Fig. 7 As in Fig. 6 but for CK = 0.437
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Appendix B: Transverse nature of radar 
measurements of velocity fluctuations
The vertical radar beam is transverse to the horizon-
tal wind advecting turbulence past the radar beam, and 
hence, the variance of the radial velocity fluctuations 
measured by the radar may not be the same as the vari-
ance of vertical velocity fluctuations derived by integrat-
ing the theoretical spectrum (e.g., Eq. 41). The difference 
between the “parallel” spectrum (for example, spectrum 
measured in the direction of traverse by a sensor carried 
by an aircraft traversing the turbulence field), “trans-
verse” spectrum (spectrum measured perpendicular 
to the direction of traverse) and the theoretical spec-
trum was first mentioned by Hocking (1983) and is well 
explained in Appendix A of Hocking (1999). Accordingly, 
the spectrum of velocity fluctuations parallel and trans-
verse to the horizontal wind (in the inertial subrange) is 
given by:

Integrating these spectra yields

for the parallel and transverse components with respect 
to the horizontal wind. However, integration of conven-
tional spectrum (Eq. 26) from kout to ∞ yields

If we invoke isotropy, q2 = 3w2 , C1 = 1 and we get 
Eq. (30). Therefore,

On the other hand, if we recognize that in shear-gener-
ated turbulence, the energy is deposited by shear into the 
turbulence component in the direction of mean veloc-
ity and then distributed to the other two components by 
pressure covariance terms (see for example, Kantha and 
Clayson 1994, 2004), q2 ∼ 4w2 and C1 ~ 0.75 so that

(68)S� =
18

55
αε

2/3k−5/3
; S⊥ =

(

4

3

)

18

55
αε

2/3k−5/3

(69)

u2 =

∞
∫

kout

S�dk = 0.491αε
2/3

k
−2/3

out ;

v2 = w2
=

∞
∫

kout

S⊥dk = 0.655αε
2/3

k
−2/3

out

(70)w2
= C1αε

2/3k
−2/3
out

(71)σ
2
= w2

radar = 0.655w2

(72)σ
2
= w2

radar = 0.873w2

Similarly, for convective turbulence, where energy is 
deposited into the vertical component and then distrib-
uted to horizontal components, q2 ∼ 2w2 and C1 ~ 1.5 so 
that

This means that the integrals on the right hand side 
of Eqs. (41), (44), (47) and (48) should include factor CK, 
whose value depends on the nature of turbulence and is 
equal to 0.873 for turbulence in stably stratified flows, 
and 0.437 for convective turbulence. The expressions 
for Υ  in Eqs. (46), (50), (51), (54), (58) and Υ  in Eqs. (62) 
and (63) should also include the same factor as well. The 
corresponding estimates of TKE dissipation rate ε and 
ε would increase by a factor of (1/0.873)3/2 ~ 1.23, and 
(1/0.437)3/2 ~ 3.46, respectively.

Remarkably, the fact that the radar beam is trans-
verse to the wind, and hence, σ 2 may not be equal to w2 
obtained by integrating the TKE spectrum appears to 
have been unrecognized so far (to our knowledge any-
way) in the derivations of expressions for σ 2 in radar 
literature. However, it is important to note that the trans-
verse nature of vertical radar beam measurements may be 
diluted by the fact that the radar averages vertical fluctua-
tions over the measurement volume (personal communi-
cation from Prof. Wayne Hocking). While the horizontal 
dimension of the radar beam introduces some averaging 
in the horizontal direction, the vertical beam still makes 
essentially a transverse measurement, since it is taking 
averages of a bunch of transverse measurements adjacent 
to one another. The value of CK may be closer to 0.873 
(and 0.437 for convection) than 1.0, but because of many 
other uncertainties involved, the precise value is not that 
easy to ascertain at present. Further calibration measure-
ments are essential to pin down the value of CK (personal 
communication from Prof. Wayne Hocking). The code 
has provisions to prescribe the appropriate multiplication 
factor CK, whether by invoking conventional approach or 
by allowing for the transverse nature. However, the pre-
cise value awaits further research and confirmation of the 
transverse nature of radar measurements.

The numerical code will be submitted as Additional 
file 1.
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2
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