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Abstract

Random walk methods are particularly well suited for modeling (anomalous)

transport processes in complex systems, from heterogeneous porous domains

to fractured rocks. Taking full advantge of their multi-scale attributes, these

methods can be integrated into multi-scale modeling strategies where they are

used for (i) performing small-scale simulations with a high level of description

of the heterogeneities, (ii) defining statistical functions that describe these

heterogeneities at a larger scale, and (iii) providing upscaled descriptions of

the processes while taking into account the impact of the small-scale hetero-

geneities. In this work, we define such a strategy considering (i) structural

heterogeneities with heterogeneous porosity fields incorporated into fracture-

matrix systems and (ii) the reactivity of the system with chemical reactions

that are not restricted to linear first-order reactions as it is the case in exist-

ing upscaled formulations. To this end, we develop two new modeling meth-

ods: the Reactive-Time Domain Random Walk (R-TDRW) and Upscaled

Reactive TDRW (UR-TDRW) approaches at small and large scale, respec-

tively. The numerical methods and multi-scale strategy are presented with
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a general formulation and applied to single-species transport and reaction in

fracture-matrix systems. We analyze the impact of different levels of struc-

tural heterogeneities, and the impact of the reactivity, on the breakthrough

curves computed at both scales and on the statistical functions that are used

in the multi-scale strategy. This strategy is validated by demonstrating the

good agreement between the results obtained at different scales, showing

promising applications for future work in large-scale fracture networks.

Keywords: Random walk methods, Heterogeneous systems,

Fracture-matrix systems, Chemical reactions, Statistical description,

Upscaling methods

1. Introduction1

Modeling reactive transport processes that occur in the natural environ-2

ment is a key challenge for numerous research fields and applications. It3

requires to couple flow, transport and chemical processes that are character-4

ized by different space and time scales [e.g., 1, & references therein] [e.g., 2].5

Considering advective and diffusive mechanisms in heterogeneous geological6

formations amplifies the ranges of the considered scales and leads to the de-7

velopment of new modeling approaches and the adaptation of existing ones8

[e.g., 3, 4, 5, 6].9

Random walk (RW) or particle-based methods are well suited to model10

and upscale anomalous hydrodynamic transport behavior for various scales,11

processes and degrees of heterogeneities [e.g., 5, 1, 7, 8, 9]. Taking into12

account the impact of small-scale properties in large-scale simulations can13

be done by parameterizing upscaled RW methods such as Continuous Time14
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Random Walk (CTRW) with spatial and temporal statistics of the parti-15

cle displacement at the small scale. When these statistics are defined from16

numerical simulations, they allow to capture the impact of heterogeneous17

properties on mass transfer at various scales and to represent for example18

pre-asymptotic behavior that cannot be described by standard upscaling19

methods relying on the existence of a Representative Elementary Volume20

(REV) [10, 11, 12]. RW methods are also able to deal with a large range of21

transport regimes including large values of the Peclet number, in particular22

when they are used in dual-porosity, mobile-immobile and fracture-matrix23

systems [13, 14, 15]. In these cases, analytical formulations that are often24

called memory functions, are used to parametrize the diffusion times in the25

low porosity domain. This results in running large-scale transport simu-26

lations with reasonable computational resources while taking into account27

heterogeneous properties of the advection-dominant domain, while standard28

methods (such as finite volume, finite difference or finite element) require a29

costly increase in discretization to avoid numerical dispersion issues.30

These features and successful applications in simulating transport pro-31

cesses in heterogeneous systems make RW methods an ideal candidate to32

establish efficient and robust reactive transport models in heterogeneous sys-33

tems. First efforts into this challenge led so far to models that are used34

in academic research, but they have a strong potential for a larger audience.35

However, the RW transport models that are adapted to dual-porosity/mobile-36

immobile/fracture-matrix systems mentioned before, are based on analytical37

solutions restricting the simulations to homogeneous properties of the low38

porosity domain, linear relationship between the mobile and immobile do-39
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main concentrations and linear first-order chemical reactions [e.g., 16, 13].40

Analytical formulations of the impact of chemical reactions on the fate of41

particles are also used in mesh-free (homogeneous) domains by expressing42

the survival probability of each particle [e.g., 17, 18, 19, 20]. As a result, per-43

forming efficient simulations of reactive transport processes that are adapted44

to structural heterogeneities and various kinds of chemical reactions, requires45

the development of new modeling approaches and strategies.46

In this work, we present a modeling approach that allows simulating47

advective and diffusive processes with structural heterogeneities that range48

from heterogeneous matrix porosity fields to the fracture/matrix contrast,49

and chemical reactions that are not restricted to linear first-order expres-50

sions. To this end, we take advantage of the multi-scale attributes of the51

TDRW approach and its ability to simulate advective and diffusive mech-52

anisms in heterogeneous systems and we extend its formulation to reactive53

transport problems in the frame of a multi-scale modeling strategy. This is in-54

spired by the work of Gouze et al. [12] for inert solute in heterogeneous porous55

domains, and it is done here through the development of two numerical meth-56

ods. (i) The R-TDRW (Reactive-TDRW) approach that solves the reactive57

transport (2-dimensional) problem at the scale of description of the domain58

properties (i.e., the pixels that represent void and solid or Darcy-scale prop-59

erties such as porosity). (ii) The UR-TDRW (Upscaled Reactive-TDRW)60

approach that solves the problem on an 1-dimentional upscaled description61

of the system, corresponding to a mobile-immobile (or dual-porosity) repre-62

sentation of the domain that is parameterized by small-scale simulations. In63

both methods, solute transport is represented by the displacement of particles64
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while the chemical reactions are modeled at the pixel scale in the small-scale65

simulations assuming no changes in porosity during the simulations.66

General formulations of the R-TDRW and UR-TDRW methods for multi-67

species and reactions are presented in Section 2 and the considered multi-scale68

strategy in Section 3. Applications to fracture-matrix systems with a single69

species transport and reaction are shown in Section 4, where the presented70

numerical methods and strategy are validated with analytical solutions. Sec-71

tion 5 is dedicated to analyzing the impact of structural, hydraulic and chem-72

ical properties on transport behavior and the ability of both R-TDRW and73

UR-TDRW models to describe it.74

2. Methodological background75

2.1. Problem formulation76

Consider the transport of Ns reactive species such that the solute concen-77

tration cs(x, t) of species s (s = 1, ..., Ns) at position x and time t satisfies78

the reactive transport equation79

∂[ϕ(x)cs(x, t)]

∂t
+∇ · [u(x)cs(x, t)] = ∇ · [D(x)∇cs(x, t)]− rs(cs,x, t) (1)80

81

with ϕ the porosity, u the flow velocity, D the diffusion tensor matrix and rs82

the reaction term related to species s.83

In mobile-immobile systems, ϕ is set to 1 in the mobile domain and u84

to 0 in the immobile domain. Considering isotropic domain properties, the85

tensor D is defined as the effective diffusion coefficient De = Dmϕ
n with86

Dm the molecular diffusion coefficient and n ≥ 1 the porosity exponent that87

denotes the effect of tortuosity for n > 1 [21] and with De = Dm in the88
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mobile domain. Different reaction terms rs can be considered in the mobile89

and immobile domains with the expressions rs,m and rs,im, respectively.90

2.2. Small-scale modeling approach91

Small-scale simulations are performed on two-dimensional domains that92

are discretized into pixels of regular size ∆x. Equation (1) is solved in these93

systems by using a reactive TDRW approach as outlined below.94

The displacement of particles is modeled with the TDRW approach, which95

has been formulated for diffusive processes [22] and advective and diffusive96

processes [11] in heterogeneous and homogeneous porosity fields, respectively.97

It is expressed here for advective and diffusive processes with space-dependent98

porosity properties using the recursive relationships (or Random Walk pro-99

cess)100

xi(n+ 1) = xj(n) + ξij, t(n+ 1) = t(n) + θj, (2)101
102

which express the displacement from pixel j to pixel i of a particle being at103

pixel j after n jumps with the transition length |ξij| and transition time θj.104

The probability wij of jumping from pixel j to one of its neighboring pixels105

i is defined as106

wij =
bij∑

k∈Vj
bkj

with bij = Dij∆x+ uij∆x
2H(uij). (3)107

108

In expression (3), Vj is the set of neighboring pixels of pixel j, the function109

H(uij) is set to 1 if uij > 0 and 0 otherwise, uij is the flow velocity from110

pixel j to i and Dij is the harmonic mean of the diffusion coefficients in111

pixles i and j. The time θj associated with the jump from pixel j to one of112
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its neighboring pixels is drawn from the exponential distribution ψ(t, τj) of113

mean τj that is expressed as114

ψ(t, τj) =
exp(−t/τj)

τj
with τj =

ϕjVj∑
k∈Vj

bkj
(4)115

116

with ϕj and Vj the porosity and volume of pixel j.117

Reactions are modeled at the pixel scale with the concentration cj,s of118

solute species s in pixel j that is defined as119

cj,s =
∑
k∈Kj

mk,s/(ϕjVj), (5)120

121

where Kj is the set of particles that are present in pixel j andmk,s the mass of122

solute species s carried by particle k. Using an operator splitting approach,123

concentration and particle mass in the pixel are updated isochronically, that124

is at discrete times tn = n∆t (n = 1, 2, . . . ) according to the chemical reaction125

rate rs(cs,x, t) associated with the solute species s. This implies that126

c′j,s = cj,s +∆t
rs
ϕj

, m′
k,s = c′j,sϕj

Vj
N(Kj)

, k ∈ Kj (6)127

128

withN(Kj) the number of particles in the set Kj. Note that after the reaction129

step, mass is distributed equally between all particles according to the new130

concentration. Thus, before the reaction step, particles may carry different131

masses, while after the reaction step, they are homogenized.132

2.3. Upscaled models133

The upscaled formulation of the R-TDRW approach presented in Sec-134

tion 2.2 relies on a 1D representation of the mobile domain over which ad-135

vective and diffusive processes are considered and coupled to diffusion in the136
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(not physically represented) immobile domain. The governing equations are137

derived from expressions (2) and (3), which leads to moving the particles138

along the 1D mobile domain according to the recursive relation139

xi(n+ 1) = xj(n) + ξij (7)140
141

with the large-scale spatial transition ξij, and the downstream (Wd) and142

upstream (Wu) probabilities143

Wd =
Dm

2Dm + U∆x
, Wu =

Dm + U∆x

2Dm + U∆x
, (8)144

145

where Dm, U and ∆x are the molecular diffusion coefficient, upscaled flow146

velocity and pixel size of the 1D mobile domain, respectively.147

The displacement expression (7) is associated with the recursive time148

relation149

T (n+ 1) = T (n) + θj, θj = Tm
j + T im

j , Tm
j ∼ ψ(t, τj), (9)150

151

where θj represents the time of the particle jump from pixel j to one of its152

neighboring pixels, including the times Tm
j and T im

j spent in the mobile and153

immobile domains, respectively. Tm
j is defined from the 1D-reduced form of154

the TDRW approach, corresponding to the exponential distribution ψ(t, τj)155

given in (4) for which the distribution mean reduces to τj = ∆x2/(2Dm +156

U∆x). Conversely, T im
j is an upscaled description of the diffusive process157

in the immobile domain, whose distribution Pτim is derived from analytical158

solutions or small-scale numerical models.159

The displacement and time recursive expressions (7) and (9) are associ-160

ated with the survival probability Ss
j , which is the probability that a particle161

keeps carrying species s after jumping from pixel j to one of its neighboring162
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pixels. Ss
j is an upscaled description of the reactivity of the system that163

depends on the time spent in the mobile and immobile domains and is also164

derived from analytical solutions or small-scale numerical simulations.165

3. Multi-scale modeling strategy166

3.1. Upscaled parameter definition167

The upscaled model presented in Section 2.3 requires to define the time168

spent in the immobile domain T im
j and the survival probability Ss

j that are169

associated with the particle jump from pixel j to one of its neighboring pixels170

and the species s carried by the particle. These variables are expressed as171

T im
j = H(N e

j )

Ne
j∑

e=1

τimj,e , Ss
j = Ss

j,m

Ne
j∏

e=1

Ss
j,im, (10a)172

with173

H(N e
j ) =

 0, if N e
j = 0,

1, otherwise,
N e

j ∼ Pp(k, λj), τimj,e ∼ Pτim , (10b)174

175

Ss
j,d(τ) =

1

Np

∑
k∈Sτ

ws
k,d/w

s,0
k,d, d = m, im. (10c)176

In expressions (10), we consider the following definitions.177

N e
j is the number of transfers from the mobile to immobile domains. As178

done in [12], this number is drawn from the Poisson distribution Pp(n, λj) =179

λnj e
−λj/n! where n is the number of events and λj is the distribution param-180

eter defined as λj = Tm
j γ with γ the time rate for the number of considered181

events. The macro-scale parameter γ is defined from small-scale simulations182

as γ = 1/⟨τm⟩p, τm being the local mobile time (i.e., the time spent in the183
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mobile domain between two transfer events, called survival time in [12]) and184

⟨.⟩p the average value over the particles.185

The upscaled immobile time T im
j depends on the immobile local time τimj,e ,186

which is the time spent in the immobile domain during the eth transfer event187

(i.e., the time required to go back to the mobile domain for the eth transfer188

event) and is drawn from the immobile local time distribution Pτim .189

Ss
j,m and Ss

j,im are the survival probabilities associated with the mobile190

time Tm
j and local immobile times τimj,e , respectively, that are defined from191

small-scale simulations. In expression (10c), Sτ is the set of particles that192

spent time τ in the considered domain and enter and exit the domain with193

the weight ws,0
k,d and ws

k,d in species s, respectively. In the same expression,194

Np is the total number of particles considered in the simulation.195

3.2. Upscaled parameter computation196

The upscaled parameter γ, distribution Pτim and probabilities Ss
j,m and197

Ss
j,im previously defined are computed from small-scale simulations that are198

performed with the R-TDRW approach presented in Section 2.2. Whereas199

these variables could be evaluated from full small-scale simulations in which200

the initial domain is fully represented with both the mobile and immobile201

zones, the number of required simulations and their complexity are minimized202

here by adapting the small-scale configurations as explained below.203

As described in Table 1, computing the time rate of mobile-immobile204

transfers γ requires to represent both the mobile and immobile domains (Full205

configuration), the distribution of immobile local times Pτim and the survival206

probability in the immobile domain Ss
j,im can be evaluated from configura-207

tions that only represent the immobile zone (Immobile configuration), and208
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the survival probability in the mobile domain Ss
j,m from configurations that209

only represent the mobile zone (Mobile configuration). In terms of micro-210

scale parameter values, γ and Pτim characterize the structural properties of211

the system independently of the reactivity of the system, implying that they212

can be evaluated for inert solutes with rs,d = 0 (d = im,m), whereas Ss
j,m and213

Ss
j,im characterize the reactivity of the system in the mobile and immobile214

domain, respectively, independently of the physical and structural properties215

of the immobile and mobile domain, respectively.

Upscaled properties Domain configuration Small-scale properties

γ Full configuration u, ϕ, rs,im = 0, rs,m = 0

Pτim Immobile configuration ϕ, rs,im = 0

Ss
j,m Mobile configuration u, rs,m

Ss
j,im Immobile configuration ϕ, rs,im

Table 1: Domain configurations and parameter values considered to define the upscaled

properties γ, Pτim , Ss
j,m and Ss

j,im.

216

4. Configurations and validation217

4.1. Considered configurations and parameters218

Consider the fracture-matrix system shown in Figure 1 that corresponds219

to advection and diffusion processes in a fracture coupled with pure diffusion220

in the surrounding matrix and chemical reaction in both domains. Applying221
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the modeling approaches and strategy presented in Sections 2 and 3 results222

in a full 2D description of the system at the small scale with R-TDRW223

and an upscaled 1D description at the fracture scale with UR-TDRW, in224

which the surrounding matrix is taken into account without being physically225

representated. This system is considered with the two sets of parameters226

Param1 and Param2 that are provided in Table 2. Param1 corresponds to227

cases studied in Tang et al. [23] and Param2 to parameter values mentionned228

in Dentz et al. [13] and Gouze et al. [12].

Figure 1: Fracture-matrix configuration with fracture length and aperture L and b, respec-

tively, fracture flow velocity u, molecular diffusion coefficient Dm, matrix domain width H,

matrix porosity and diffusion coefficient fields ϕ(x, y) and De(x, y), respectively, porosity

exponent n, reaction rate coefficient k and concentration of injected solute on the left side

of the fracture C0.

229

The impact of the matrix structural heterogeneities is studied by com-230

paring the results obtained with (i) homogeneous porosity fields where the231

porosity ϕ(x, y) is set to a constant value ϕ0 and (ii) heterogeneous poros-232

ity fields defined from multi-gaussian distributions whose averaged value is233

set to ϕ0. Various heterogeneous fields are simulated by defining a thresh-234

old porosity value ϕth below which ϕ is set to 0, resulting in increasing the235
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Parameters Param1 Param2

L [m] 0.05 ; 0.1 0.1

b [m] 10−4 10−4

u [m/s] 1.1574× 10−7 ; 1.1574× 10−6 10−7;10−6;10−5

Dm [m2/s] 1.6× 10−10 10−9

H [m] 1.0 0.1

ϕ [-] 0.01 0.1

ϕth [-] - 0.0;0.1;0.15

n [-] 1 2

k [s−1] 0.0 ; 1.7797× 10−9 0.0;10−9;10−8;10−7;10−6

Table 2: Parameter values associated with the fracture-matrix configuration shown in

Figure 1. ϕ is the porosity value when considering homogeneous porosity fields and the

average value for heterogeneous porosity field with ϕth the porosity threshold (Figure 2).

heterogeneity field when increasing parameter ϕth. Figure 2 illustrates such236

heterogeneous porosity fields described with the harmonic, geometric and237

arithmetic averages equal to 0.01. This field is generated with 1,000 pixels238

in each direction. However, when a larger number of pixels is necessary, we239

extend its size by duplicating the porosity field in the required direction(s).240

The numerical simulations are performed by setting the size of each mesh241

element to 5 × 10−5 m for both R-TDRW and UR-TDRW. The number242

of particles and time steps used ranges from 104 to 108 and from 10 to243

105, respectively, depending on the considered configurations. Injection of244
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(a) (b) (c)

0

0.005

0.01

0.015

0.02

Figure 2: Heterogeneous porosity fields from multi-gaussian distribution with ϕth set to

(a) 0.0, (b) 0.01 and (c) 0.015. Color scale denotes porosity.

solute at the inlet of the fracture is simulated by inserting particles in the245

corresponding pixel at the beginning of the simulations. The concentration246

at the oulet is evaluated by recording the particle arrival times in the fracture247

pixel located at x = L.248

4.2. Validation of the numerical methods249

The numerical methods and upscaling strategy are validated with the250

analytical solution provided by Tang et al. [23] for a continuous injection in251

a single fracture surrounded with an infinite matrix. Assuming no diffusion252

in the fracture (i.e., Dm = 0 m2/s in the fracture), the solute concentration253

at position x along the fracture relatively to the injected concentration is254
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expressed as255

Cf (x, t) =
e−kx/u

2

[
e−

√
kx/(uA)erfc

( x

2uAT
−
√
kT
)

256

+e
√
kx/(uA)erfc

( x

2uAT
+
√
kT
)]
, (11)257

A =
b

2ϕ
√
D0

, T = H(t− x/u)
√
t− x/u,258

259

where k is the decay constant of the chemical reaction r = kc.260

Figure 3a shows the good agreement between analytical solution (11) and261

the numerical methods R-TDRW and UR-TDRW for the set of parameters262

Param1, thus providing a first validation of both the numerical methods and263

upscaling strategy. For L = 0.1 m (thick black and blue curves in Figure 3a),264

these parameters come from the reactive transport problems studied in Tang265

et al. [23] with u = u1 = 1.1574×10−6 m/s and u = u2 = 1.1574×10−7 m/s,266

denoted as ”high and low-velocity” cases in Tang et al. [23], and k = k1 = 0267

and k = k2 = 1.7797 × 10−9 s−1, corresponding to inert and reactive trans-268

port. The parameters used to run the R-TDRW simulations are provided in269

Table 2, while those required for UR-TDRW simulations are given in Table 3270

with the upscaled parameter γ computed from the R-TDRW simulations as271

explained in Section 3. The probability density function (pdf) of local im-272

mobile times Pτim and the survival probability S, computed from R-TDRW273

simulations and also required for UR-TDRW simulations (see Section 3),274

are provided in Figure 3b and c (black curves), respectively. The results275

presented in Figure 3a for L = 0.1 m show that the considered chemical276

reaction does not impact the relative concentration observed at the fracture277

outlet for the high-velocity case (u = u1), since the curves overlap for k = k1278

(no reaction) and k = k2 (corresponding to half life of t1/2 = 12.35 years). In279
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this case, the solute exits the system through the fracture outlet before ex-280

periencing a decrease in concentration due to the radioactive decay. On the281

contrary, applying the decay constant k2 for the low-velocity case (u = u2)282

results in decreasing the solute concentration of late arrival times in com-283

parison with the inert case (k = k1), for which the relative concentration Cf284

reaches 1 for long times. Results without reaction for a smaller value of L are285

also plotted to show the impact of this parameter on the transport behavior286

(thin red and green curves in Figure 3a). It results in the same curve shapes287

for which the concentrations are observed at earlier times and upscaled with288

the same upscaled parameters and functions.289

L [m] 0.05 ; 0.1

u [m/s] 1.1574× 10−7 ; 1.1574× 10−6

Dm [m2/s] 0.0

γ [s−1] 0.0013

Table 3: Parameter values that are used in the UR-TDRW simulations for the inital set of

parameters Param1 given in Table 2. L, u and Dm correspond to the fracture parameters

defined in Figure 1 and γ to the upscaled parameter described in Section 3 and obtained

for a homogeneous matrix.

The R-TDRW method and upscaled methodology are also validated by290

comparing the upscaled functions Pτim and S, determined from R-TDRW291

and used in UR-TDRW, with analytical solutions. In Figure 3b, the black292

solid line corresponds to Pτim computed with R-TDRW and the magenta293

thick solid line to the analytical solution presented in Appendix A. The294

differences observed between these two curves for short times is explained295
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by the numerical approximations that are made below the pixel size and the296

similar behavior of the curves after these short times validates the numerical297

method.298

The additional curves shown in Figure 3b are presented for comparing299

the impact of the matrix heterogeneities on the distribution of local immobile300

times Pτim . We observe that Pτim is similar when considering a homogeneous301

porosity field with ϕ = 0.01 and a heterogeneous porosity field with average302

porosity set to 0.01 and no porosity threshold (black curve). Pτim is modified303

when applying a porosity threshold equal and larger than 0.01 (from dashed304

blue to dotted green). Increasing the porosity threshold ϕth from 0.01 to 0.017305

results in decreasing the proportion of large values of Pτim showing that the306

matrix heterogeneity prevents the particles from spending long times in the307

matrix. In other words, increasing the threshold value acts as decreasing the308

effective depth of the matrix.309

Finally, in Figure 3c, the solid lines represent the analytical solution310

S(t) = exp (−kt), (12)311
312

which denotes the relative concentration c(t)/C0 when considering the reac-313

tion dc/dt = −kc with the initial concentration C0. We see that this solution314

overlaps with the survival probability computed with the R-TDRW method315

(crosses) for various values of the half-time t1/2.316

5. Results and analysis317

In this section we aim at evaluating how the structural, physical and318

chemical properties impact the transport of reactive elements in fracture-319

matrix systems. To do so, we consider the set of parameters Param2 in320
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Table 2 and compute the corresponding breakthrough curves (BTCs) with321

R-TDRW and UR-TDRW for various Péclet numbers, porosity fields and322

chemical reactions (Figure 4). The upscaled functions and parameters, which323

are computed with the R-TDRW simulations and used for the UR-TDRW324

simulations, are shown in Figure 5 and Tables 4 and 5, and the computational325

performances of both methods are discussed in Section 5.4.326

ϕ [-] 0.1 0.11 0.113085 0.12

γ [s−1] 0.00801581 0.00966572 0.0102022 0.0114561

Table 4: Values of the upscaled parameter γ for homogeneous porosity fields.

ϕth [-] 0.0 0.1 0.15 0.2

γ [s−1] 0.0109525 0.00933908 0.00248995 0.0

Table 5: Values of the upscaled parameter γ for heterogeneous porosity fields with the

arithmetic, harmonic and geometric porosity means equal to 0.113085, 0.105057 and

0.109444, respectively.

5.1. Hydraulic properties327

Figure 4a shows the BTCs for various values of the Péclet number that328

is defined as Pe = ub/D0 with u, b and D0 the configuration parameters329

described in Figure 1. As expected, we observe that decreasing the Péclet330

number (i.e., decreasing the contrast between the advective and diffusive331

properties) results in changing the shape of the BTCs. It goes from an332

asymmetric curve with a large quantity of particles arriving at early times333

due to advection and a slope of -3/2 showing late arrival times due to diffusion334
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(Pe = 1, solid black curve), to a symmetric curve characteristic of purely335

diffusive process (Pe = 10−2, dash-dotted red curve). For Pe = 1 and336

Pe = 10−1, the slope is modified at time t̄H = 5× 107 s (vertical thin dashed337

black line), which corresponds to the averaged time required to reach the338

matrix wall (i.e., the time required to cover the matrix width distance H),339

showing the impact of the finite matrix block size on the arrival times.340

Figure 4a also shows how the upscaled modeling approach UR-TDRW341

can be used to reproduce the results obtained with the small-scale simula-342

tions. This is done by using the pdf of local immobile times defined for a343

homogeneous matrix from the R-TDRW method (black curve in Figure 5a)344

and setting the upscaled parameter γ to 0.008 (Table 4). The results pro-345

vided by UR-TDRW fit well that from R-TDRW, except for the early times346

of Pe = 10−2, which shows the limitation of representing a (almost) purely347

diffusive behavior (i.e., small Péclet numbers) with a mobile-immobile (or348

fracture-matrix) upscaled representation.349

5.2. Structural heterogeneities350

Considering the hydraulic properties associated with Pe = 1, Figure 4b351

shows the impact of the matrix heterogeneities on the BTCs considering352

multi-Gaussian distributions for the heterogeneous porosity fields (Figure 2).353

Changing the matrix porosity field from homogeneous (with ϕ = 0.1, black354

curve) to heterogeneous (with ϕth = 0.0, dashed blue curve) does not impact355

the particle arrival times since the curves overlap. However, increasing the356

parameter ϕth from 0.0 (dashed blue curve) to 0.1 (dash-dotted red curve)357

results in increasing the proportion of early arrival times and thus decreas-358

ing the quantity of particles that arrive at late times. This phenomenon is359
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enhanced when we keep increasing ϕth from 0.1 to 0.15 (from dashed red to360

dash-dotted green curves) where we observe in addition an earlier peak of361

arrival times. This is observed until ϕth reaches the value 0.2 above which362

no changes are observed and the curve is similar to the case ϕ = 0.0 (solid363

magenta curve), i.e., it behaves as if there is no matix. These results show364

that increasing the porosity threshold results in decreasing the mass transfer365

from fracture to matrix until that there is no mass transfer (when ϕth ≥ 0.2),366

corresponding to a pure fracture configuration (without surrounding matrix).367

Note also that, for ϕth ≥ 0.1, particles exit the matrix before they reach the368

matrix wall, since the distribution of trapping times is cut off before the369

characteristic time t̄H as shown in Figure 4a.370

For all these cases, we see that the UR-TDRW method fits well the small-371

scale simulations. These results are obtained with the pdfs of local immobile372

times shown in Figure 5a. From this figure, we observe that adding het-373

erogeneities in the porosity field does not impact the distribution Pτim since374

the curves for a homogeneous (solid black curve) and heterogeneous matrix375

without threshold (dashed blue curve) overlap. Increasing the porosity field376

complexity (by increasing ϕth from dashed blue to dotted green curves) leads377

to a decrease in the late arrival times and slightly increases the porportion378

of short arrival times, showing that it is harder for the particles to circulate379

deep into the matrix.380

In addition to the distributions Pτim displayed in Figure 5a, the values381

of the upscaled parameter γ shown in Tables 4 and 5 are used to obtain the382

UR-TDRW results shown in Figure 4b. From Table 4, we see that when ϕ383

increases from 0.1 to 0.12 (for homogeneous porosity fields), γ increases from384
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0.008 to 0.011, leading to more transfer from the fracture to the surrounding385

matrix. Note that these values of ϕ correspond to the various averaged386

values (arithmetic, harmonic and geometric) of the multi-Gaussian porosity387

field considered in the heterogeneous case with ϕth = 0.0. However, these388

changes in γ are too small to impact the particle arrival times since they389

lead to the same UR-TDRW BTCs (black and blue crosses in Figure 4b).390

When considering heterogeneous porosity fields with ϕth ranging from 0.0 to391

0.2, γ varies from 0.01 (which is equivalent to the homogeneous case with the392

porosity set to the arithmetic mean) to 0.0 (Table 5). This shows that (i) the393

value of γ associated with the heterogeneous case with no threshold (γ =394

0.01 for ϕth = 0.0) is similar to that of γ associated with the homogeneous395

porosity set to the arithmetic mean of the multi-Gaussian field (γ = 0.01396

for ϕ = 0.11) and (ii) γ decreases from 0.01 to 0.0 when ϕth increases from397

0.0 to 0.2, showing that increasing the matrix heterogeneities reduces the398

fracture-matrix transfers. This is observed until the extreme case ϕth = 0.2399

for which there is no fracture-matrix transfer and the system behaves as a400

single fracture with no surrounding matrix. Here we focused on the impact401

of structural heterogeneity of the matrix on the trapping rate. Note however,402

that varying the fracture aperture b also impacts on the trapping rate. [9]403

show for a homogeneous fracture-matrix system that the trapping rate is404

inversely proportional to the fracture aperture.405

5.3. Chemical reactions406

We consider now that the transported solute is subject to the chemical407

reaction described by the reaction term r. For simplicity, we assume that the408

same reaction occurs in the fracture and matrix but different reactions could409
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be modeled if needed. To focus on the impact of the chemical properties,410

the simulations are run with the homogeneous porosity field described before411

and, as in the previous cases, the Péclet number is set to 1. Figures 4c412

and d show the BTCs computed with TDRW and UR-TDRW for the linear413

reaction r = kc and the non-linear reaction r = kc2, respectively. The414

survival probabilities that are computed from TDRW and used in UR-TDRW415

are shown in Figures 5b-c, and the upscaled parameter γ is set to the value416

obtained for a homogeneous porosity field with ϕ = 0.1, i.e., γ = 0.008.417

Figure 4c shows the BTCs for various values of the Damkhöler number418

Da defined as Da = k/(DmLH). From these results, we observe that (i) sim-419

ilar values are obtained for 0 ≤ Da ≤ 10−2 (solid black curve) implying that420

in these cases the reaction rate coefficient k is too small to impact the parti-421

cle arrival times whose behavior is defined by the transport properties, and422

(ii) when Da ≥ 10−1 the chemical reaction impacts the particle arrival times423

with a decrease of the proportion of long arrival times when increasing Da.424

In the latter cases, the mass transported by the particles that remain a long425

time in the system is consumed by the chemical reaction, whereas no impact426

is observed on the short arrival times. The same behavior is osberved for the427

non-linear reaction (Figure 4d) with a less important impact of the reaction428

on the arrival times due to the inital mass transported by the particles that429

is smaller than 1.430

Figure 4c-d also shows that the results provided by R-TDRW and UR-431

TDRW overlap, which demonstrates the ability of the UR-TDRW method to432

reproduce linear and non-linear reactions considered at the small scale. The433

behavior of the survival probabilities S (Figures 5b-c) is consistent with the434
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observations made on the BTCs with (i) no impact of the chemical reaction435

for 0 ≤ Da ≤ 10−2 with S = 1 (i.e., 100% of the particles survive), (ii) a436

decrease of the survival probability (i.e., an increase of the mass consumed437

by the reaction), when Da ≥ 10−1 increases, and (iii) larger values of S438

when considering the non-linear reaction (i.e., less mass consummed by the439

reaction) because the initial transported mass is smaller than 1.440

5.4. Computational performances441

The computational performances of the TDRW and UR-TDRW methods442

are analyzed in the sense of the computational time required to perform the443

simulations. In order to evaluate the impact of the Peclet and Damkhöler444

numbers on these performances, we report in Table 6 the computational445

times required to obtain the results presented in Figures 4a and c. All the446

TDRW and UR-TDRW simulations are run with 106 and 105 particules,447

respectively, except when the Peclet number is set to 10−1 and 10−2 for448

TDRW and Pe = 10−2 for UR-TDRW for which Np and NP are set to 105449

and 104, respectively. These changes in the number of particles are neces-450

sary to maintain reasonable computation times when decreasing the Peclet451

number. When doing so, high computation times are observed because it452

leads to configurations where there is more exchange between the fracture453

and surrounding matrix, i.e. more particles transfer from the fracture to454

the matrix. These additional transfers result in additional operations that455

increase the computation times for both TDRW and UR-TDRW, to which is456

added the time spent by diffusion in the matrix for TDRW. This is illustrated457

by (i) similar computation times when decreasing the number of particles of458

one order of magnitude while decreasing Pe from 1 to 10−1 for TDRW and459
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from 10−1 to 10−2 for UR-TDRW, and (ii) an increase of one order of mag-460

nitude of the computation time when decreasing Pe from 10−1 to 10−2 with461

the same number of particles for TDRW.462

On the contrary, we observe that working on a large range of the Damkhöler463

number does not impact the computation time and the required number of464

particles since increasing the reactivity of the system does not require addi-465

tional operations in the implemented methods.466

Finally, comparing the computation times of the TDRW and UR-TDRW467

methods for all the simulations considered in Table 6, shows that the up-468

scaling method results in reducing the computational times from one to two469

orders of magnitude.

Da = 0 Da = 0− 10

Pe = 1 Pe = 10−1 Pe = 10−2 Pe = 1

T
D
R
W Np [-] 106 105 105 106

ts [s] 1.4× 104 1.5× 104 1.2× 105 [1.4× 104 : 1.5× 104]

U
R
-T

D
R
W

NP [-] 105 105 104 105

Ts [s] 118 965 854 [118 : 129]

Table 6: Computational performances for the results presented in Figure 4a (Da = 0 and

Pe = 1, 10−1, 10−2) and Figure 4c (Da = 0− 10 and Pe = 1) with Np and ts the number

of particles and CPU time, respectively, associated with the TDRW method, and NP and

Ts their counterparts for the UR-TDRW method.

470

24



6. Conclusions and discussion471

The multi-scale modeling strategy presented in this work enables us to472

provide upscaled simulations of transport processes in fracture-matrix sys-473

tems. This is done by taking into account (i) the contrast in transport474

properties between fracture and matrix (advection in the fracture and dif-475

fusion in the matrix), (ii) the structural heterogeneities at the matrix scale476

with heterogeneous porosity fields and (iii) the reactivity of the system with477

linear and non-linear reactions. Defining statistical functions that describe478

the structural heterogeneities on one side, and the reactivity of the system479

on the other side, enables us to decouple these two features that have a de-480

terminant impact on the breakthrough curves. The good agreement between481

the results obtained at different scales shows the validity of the multi-scale482

procedure, which could be used in future work for large-scale fractured rocks483

simulations with multi-species transport and reactions.484

Our study also shows the good computational performance offered by485

the upscaling method compared to the small-scale modeling approach. In486

addition, this performance can be easily grealty improved by using parallel487

computing since the changes in transport and reactivity of each particle are488

independent. For the small-scale models, the interest of parallel comput-489

ing needs to be evaluated because it requires to stop the particles at each490

chemical time step in order to gather the information needed to simulate the491

chemical reaction. This analysis will need to be done to conduct more com-492

plex small-scale simulations such as 3D heterogeneous problems, which will493

require additional computing resources. Reducing the computational cost of494

more complex configurations could also be done by using hybrid models that495
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combine different scales and kinds of solutions [e.g., 24, 25, 26].496

For modeling specific realistic multi-species chemical systems, a chemi-497

cal reaction rate parameter rs = f(Cj, C
∗
j , S, ...) can be defined for each of498

the Ns species and parametrized by the species concentration Cj(x, t) (with499

j = 1, ..., Ns), some chemical constants denoting for instance the equilibrium500

concentration or the concentration required for nucleation C∗
j and any other501

time-dependant and, or, space dependent parameters such as the reactive502

surface area S(x, t). The impact of the reactions on the structural properties503

of the system can also be considered by taking into account the changes in504

matrix porosity and fracture aperture (and for instance the induced changes505

in the reactive surface area) due to precipitation and dissolution reactions.506

The structural properties will be assumed constant over a chemical time step507

during which particles are moved, and they will be updated at the end of508

each time step when the chemical reactions are considered.509

The upscaling approach embraced in this paper uses a statistical char-510

acterization of the small scale transport and reaction processes in order to511

establish the upscaled reactive transport model. While details on the exact512

small scale behaviors are not retained, as in general in upscaling or coarse-513

graining efforts, the proposed approach retains statistical information on the514

fluctuations of small scale processes, which are encoded in the distribution of515

residence times in the matrix, the representation of trapping as a Poisson pro-516

cess, and the survival probabilities that account for chemical reaction. The517

parameters of the upscaled model reflect the small scale physical processes,518

namely advective-diffusive transport (U andDm) and reaction (survival prob-519

ability Ss
m) in the fracture, and mass transfer between fracture and matrix520
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(trapping rate γ), and retention (immobile time distribution Pτim) and re-521

action (Ss
im) in the matrix. The number of parameters remains the same522

when increasing the complexity of the system by introducing a distribution523

of porosities in the matrix. However, if complexity is added by introducing524

additional physical processes, additional parameters need to be included to525

represent these additional processes in the large scale. The numerical sim-526

ulations of the detailed small scale processes are an important step in the527

upscaling effort, because it enables to gain a physical understanding of the528

small scale processes and their impact on the large scale behavior, which529

enables the systematic derivation of a physically sound large scale model.530
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Appendix A. Analytical solution for Pτim534

The distribution of trapping times inside the matrix is obtained from

the solution of a first passage or, strictly speaking, a first return problem.

The distribution of trapping times is given by the distribution of times that

particles spend in the matrix after they enter the matrix at the fracture

matrix interface. This is a well-known problem, and it is also well-known

that there is a conceptual problem regarding the return problem, which is

solved by considerding diffusion on a grid and place the particle initially at a

distance ϵ from the interface. Thus, we solve now the first-passage problem

from a point close to the interface across the interface. This means, we
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consider the diffusion problem

∂c(y, t)

∂t
−D

∂2c(y, t)

∂y2
= 0, (A.1)

where D is the diffusion coefficient in the immobile region. We consider an

instantaneous point injection at y = y′ and a zero flux boundary at y = H.

This problem can be solve straightforwardly in Laplace space. The Laplace

transform of (A.1) reads as

λc ∗ (y, λ)−D
∂2c∗(y, λ)

∂y2
= δ(y − y′), (A.2)

The solution for c∗(y, λ) is

c∗+(y, λ) = cosh [(y −H)] sinh

(
y′
√
λ

D

)
B (A.3)

for y > y′ and

c∗−(y, λ) = cosh [(y′ −H)] sinh

(
y

√
λ

D

)
B, (A.4)

for y < y′. We used that concentration is continuous at y = y′. The Dirac

Delta on the right side of (A.2) implies a jump condition for the flux. This

means that

y′+ϵ∫
y′−ϵ

dy

[
λc∗(y, λ)−D

∂2c∗(y, λ)

∂y2

]
= 1. (A.5)

Due to continuity of c∗(y, λ) at y = y′, this equation implies that

∂c∗−(y, λ)

∂y
−
∂c∗+(y, λ)

∂y
=

1

D
. (A.6)

Thus, we obtain for B

B =
1√

λD cosh(L
√
λ/D)

. (A.7)
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Thus, the solution for c∗(y, λ) is

c =


cosh[(y−H)] sinh

(
y′
√

λ
D

)
√
λD cosh(H

√
λ/D)

y > y′

cosh[(y′−H)] sinh
(
y
√

λ
D

)
√
λD cosh(H

√
λ/D)

y < y′.

(A.8)

The first passage time distribution is given by the solute flux through the

boundary at y = 0, this means

ψ∗(λ|y′) = D
∂c∗−(y, λ)

∂y

∣∣∣∣
y=0

. (A.9)

Thus, we obtain the explicit Laplace space expression

ψ∗(λ|y′) =
cosh

[
(1− y′

H
)
√
λτD

]
cosh(

√
λτD)

, (A.10)

where we defined τD = H2/D. In the limit H → ∞, we obtain the Levy

distribution

ψ∗(λ|y′) = exp

(
−y′
√
λ

D

)
, (A.11)

This expression can be Laplace inverted in closed form, which gives the Levy-

Smirnov density

ψ(t) =
y exp(−y2/4Dt)√

4Dt3
(A.12)

The memory function is defined in terms of the trapping time distribution

as

φ∗(λ) = lim
y′→0

1

λ⟨τ⟩
[1− ψ∗(λ)] . (A.13)

The mean trapping time is obtained from (A.10) as

⟨τ⟩ = − ∂ψ∗(λ|y′)
∂λ

∣∣∣∣
λ=0

. (A.14)
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Thus, we obtain

⟨τ⟩ = y′

H
τD. (A.15)

Inserting (A.10) and (A.15) gives

φ∗(λ) =
1√
λτD

tanh
(√

λτD

)
, (A.16)
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Figure 3: (a) Relative concentration in the fracture at position L = 0.05 m (red and green

curves) and 0.1 m (black and blue curves) for the set of parameters Param1 computed

with solution (11) (lines), R-TDRW (crosses) and UR-TDRW (circles). (b) Immobile local

time distribution computed from solution (A.10) (large solid magenta line) and R-TDRW

for various porosity fields (from solid black to dotted green lines). (c) Survival probability

computed with solution (12) (solid lines) and R-TDRW (crosses) for various values of t1/2.
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Figure 4: Breakthrough curves obtained with the R-TDRW (lines) and UR-TDRW (sym-

bols) methods for various values of (a) Pe, (b) ϕth and (c,d) Da. (a,c,d all curves and

b solid black line) Homogeneous and (b from dashed blue to dotted green lines) hetero-

geneous porosity fields are considered with (a,b) no reaction (Da = 0), (c) linear and

(d) complex reactions.
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Figure 5: (a) Pdfs of local immobile times for homogeneous (solid black line) and het-

erogeneous (from dashed blue to dotted green lines) porosity fields and (b-c) survival

probabilities for homogeneous matrix with (b) linear and (c) non-linear reaction for vari-

ous values of Da. These results are computed with the R-TDRW method.
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