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ABSTRACT: 

Soil moisture plays a key role in various processes at the soil-vegetation-atmosphere interface, such as evapotranspiration, infiltration 
and runoff. In this study, we firstly propose a global analysis of Sentinel-1 (S1) & Sentinel-2 (S2) data potential to retrieve soil 
moisture. Two approaches are tested. The first one is based on neural network approach; it uses Integral Equation Model (IEM) 
coupled to Water Cloud Model for vegetation cover backscattering simulation (El Hajj et al., 2017). The second approach considers 
change detection methodology. It estimates change of soil moisture with the driest and highest moisture levels, and also change of 
moisture between successive radar acquisitions (Gao et al., 2017). The proposed approaches are validated over three agricultural 
regions, south of France, Urgell (Spain) and Merguellil (Tunisia). In these different sites, important ground campaigns have been 
realized over reference fields with different types of measurements (soil moisture and roughness, Leaf area Index of vegetation 
cover). The retrieved accuracy of estimated volumetric soil moisture is about 5 vol.%. Based on estimated moisture products, two 
methodologies are considered to map irrigated areas (Gao et al., 2018, Bousbih et al., 2018). An analysis of different metrics (mean, 
variance, correlation length, etc.) of radar signal time series and surface parameters (moisture and NDVI) are tested. The proposed 
classification of irrigated areas is based on a combination of Support Vector Machine (SVM) and decision tree methodologies. For 
Urgell and Merguellil sites, a mapping of irrigated fields is proposed. The accuracy of mapping is higher than 75% for the two 
studied sites. 

1. INTRODUCTION

The soil moisture plays an essential role in different transfers 
between continental surfaces and the atmosphere. It has a key 
role in the distribution of rainwater between different processes 
(infiltration, runoff and evapotranspiration). This soil property 
is particularly important in the context of semi-arid areas where 
irrigation may be essential for agriculture. Soil moisture 
conditions guide managers in irrigation choices. 
Soil water content is often measured by instruments at a local 
point scale. These are especially measurements made by 
thetaprobes or TDR. These measures do not allow spatialization 
essential for the managers and also the scientists interested in 
agriculture, hydrology or meteorology. In this context, for more 
than twenty years, remote sensing has shown great potential to 
estimate the properties of agricultural surfaces and particularly 
the soil water content. Microwave remote sensing has shown the 
greatest potential for estimating soil moisture. For several years, 
passive microwave radiometers have shown a high accuracy of 
this estimate with RMS errors close to 4-5% (Zribi et al., 
2011a). SMOS and SMAP sensors are currently in orbit and 
provide near-daily estimates of soil moisture. The difficulty 
with these sensors is the limitation of their spatial resolution 
which is of several kilometers, which can be a real brake to the 
use a local scale, like that of the agricultural fields. 
Simultaneously with these developments, Synthetic Aperture 
Radar (SAR) technique has shown for over twenty years a high 

potential to estimate the water content at high spatial resolution 
(Tomer et al., 2015, Gorrab et al., 2015, El Hajj et al., 2016). 
During the 2000s, several sensors are launched (ASAR, 
TERRASAR-X...). They have allowed several developments of 
algorithms to restore the water content condition and soil 
roughness. Backscatter models were developed, essentially 
physical such as AIEM or semi-empirical (Fung et al., 1992). 
These models made it possible to understand the physics of 
radar scattering before switching to inversion step. Concerning 
the estimation of the soil water content, the proposed 
approaches are numerous, they are empirical approaches based 
on one or more radar configurations (incidences, polarizations), 
approaches based on the inversion of physical or semi- 
empirical (Fung et al., 1992, Oh et al., 1992), approaches using 
neural networks or methods based on change detection (El Hajj 
et al., 2017). The estimation of soil moisture is generally with 
an accuracy of about 4-6%. In the case of soils with vegetation 
cover, the Water Cloud Model (Attema et al., 1978) is 
frequently used to model the radar signal with a first soil 
scattering component and a second vegetation scattering 
component. In order to characterize the vegetation cover, there 
is an increasing tendency to go through an optical / radar 
synergy. The vegetation cover parameters (Prévot et al., 1993) 
are retrieved through different satellite indices (NDVI, LAI, 
etc.). 
In this context, there have also been several methods developed 
for mapping irrigated areas (Thenkabail et al., 2004, Gumma et 
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al., 2011, Fieuzal et al., 2011). The most used methods are 
based on one optical image or optical time series. The irrigation 
indicator is often linked to the development of vegetation cover. 
In this article, we first explain different approaches used to 
estimate soil moisture content using S1 and S2 data. There are 
two methods, one based on neural networks, one using change 
detection. The soil moisture estimates are validated on different 
study sites (southern France, Merguellil and Urgell). Two 
approaches to mapping irrigation are then proposed. The first 
one is based on the analysis of the S1 radar data series. The 
second uses moisture products estimated from S1 & S2 data. 
 

2. STUDIED SITES ET DATABASE 

2.1 Studied sites 

The first site is Merguellil site located on the plain of Kairouan 
(Zribi et al., 2011b), located in the center of Tunisia. This 
region is characterized by a semi-arid climate with 300mm of 
annual precipitation. The site is agricultural, with mainly annual 
crops (wheat, barley, vegetables) and olive groves. 
The second site of 20km by 20km is identified on the basin of 
Urgell in Spain (Gao et al., 2017). It is a semi-arid site with 
annual rainfall of 370 mm. It is an agricultural site with a strong 
presence of irrigation. 
Soil property measurements are carried out on the different 
study sites. This is particularly the point soil moisture measured 
simultaneously to the passage of the satellite S1 for different 
reference fields. These data are used to calibrate and validate 
the algorithms proposed in this study. 
The third site is a flat area located in the south west of France. 
The climate of the study site is Mediterranean with a rainy 
season between mid-October and March and an average 
cumulative rainfall of approximately 750 mm. The average air 
temperature varies between 3°C and 29°C. The study site is 
composed mainly of forest, vineyard, grassland, maize, and 
wheat.  
2.2 Satellite data 

Sentienl-1A and Sentinel-1B images were acquired between 
December 2015 and March 2017. The two satellites are in the 
same orbit. They operate in C-band (5.4 GHz) and 
Interferometric Wideswath (IW) mode, with a spatial resolution 
of 10 m. Each satellite has a revisit time of 12 days, which 
implies a final revisit time equal to six days. The sensors 
provide dual-polarization imagery (VV and VH) at an incidence 
angle ranged between 39° and 40°. We used Level-1 Ground 
range detection (GRD) products that consist of focused SAR 
that has been detected, multi-looked and projected to ground-
range using an Earth Ellipsoid Model. 
The image processing was executed using the Toolbox in the 
Sentinel Application Platform (SNAP). The first step was to 
convert the signal in order to obtain the backscattering 
coefficient. A terrain correction was then applied to correct 
geometric distortions using a Digital Elevation Model (DEM), 
more precisely those proposed by the SRTM (Shuttle Radar 
Topography Mission) at 30 m spatial resolution. Finally, 
thermal noise removal and a Lee filter were applied to reduce 
the speckle effect. The backscattering coefficient was averaged 
for each reference field.  
Optical images were obtained from the Sentinel-2A satellite on 
dates close to Sentinel-1 images acquired from December 2015 
to March 2017. The S-2A images were downloaded and 
processed from THEIA, a French open-source land data service 
center website (https://www.theia-land.fr/). 
The data were derived from cloud-free images with radiometric 
and atmospheric corrections. The Normalized Difference 

Vegetation Index (NDVI) was then computed, using Band 4 and 
Band 8, which represent the Red Reflectance (RED) and the 
Near-Infrared Reflectance (NIR), expressed by:  
 
               𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (NIR −  RED)

(NIR +  RED)�                    (1) 

The NDVI values were averaged for each reference field to 
characterize the vegetation.  
 

3. SOIL MOISTURE ESTIMATION 

3.1 Radar signal modeling  

The Water Cloud Model (Attema et al., 1978) was developed in 
order to simulate the radar signal when it is backscattered and 
affected by the soil surface moisture and the plant canopies. The 
total backscattering coefficient (σ0) in this model is given by the 
following expressions: 
 
                       𝜎𝜎0 = 𝜎𝜎𝑣𝑣𝑒𝑒0 + 𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣/𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0 + 𝜏𝜏2                                 (2) 
 

                        𝜏𝜏2 = 𝑒𝑒𝑒𝑒𝑒𝑒�−2𝐵𝐵 𝑉𝑉 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)�                                  (3) 
 

 
Vegetation backscattering is modeled as:  
 
                    𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣0 = 𝐴𝐴 𝑉𝑉 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)(1 − 𝜏𝜏2)                              (4) 
 

Soil backscattering is modeled by IEM model or by a linear 
model as:  
 

                            𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠0 = 𝐶𝐶. 10𝐷𝐷.𝑚𝑚𝑚𝑚                                         (5) 
 
  
Which is taken to be a linear relationship between soil moisture 
and radar signal in dB scale, with parameters C and D to 
calibrate. τ2 is the two-way vegetation transmissivity, mv is the 
soil moisture, θ the incidence angle and V the vegetation 
parameter. The σ0

veg/soil is related to multiple scattering effects, 
which can often be neglected in the case of wheat 
scattering.This model was calibrated using ground 
measurements from different studied sites and satellite data 
(radar and optical data).  
Two approaches are then considered to retrieve soil moisture: 
Neural network and change detection. 
 
3.2 Neural network  

Our first approach for soil moisture estimates uses the neural 
networks technique to invert the radar signal and estimate the 
soil moisture (Paloscia et al., 2013, El Hajj et al., 2017). First, a 
parameterized Water Cloud Model combined with the Integral 
Equation Model (IEM) were used to generate a synthetic 
database of the backscattering coefficient in the polarizations 
VV and VH (incidence angle between 20° and 45°) for a wide 
range of soil moisture (2 < mv (vol.%) < 40), soil roughness (0.5 
< Hrms (cm) < 3.8), and vegetation conditions (0 < NDVI 
<0.75). Second, a gaussian noise is added to synthetic database 
to obtain more realistic data. These databases were divided in 
two sets, a first one to train the neural network, a second one to 
validate the trained neural network. Finally, the trained neural 
network is applied to the real database to estimate soil moisture. 
The retrieved soil moisture RMS errors are about 5%.The figure 
1 below shows a map of soil moisture in the Occitanie region 
(southern France). 
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Figure 1. Retrieval of soil moisture over Occitanie region 

(France) 

  
3.3 Change detection approach 

Temporal variations in soil moisture can be directly related to 
the dynamics of the radar signal. When radar signals are 
considered for the same 100 × 100m cell, and for approximately 
the same NDVI index, the roughness effect can be considerably 
reduced by computing the difference between two radar signals 
recorded at two dates (Gao et al., 2017). 
For a given NDVI (retrieved from S2 data), by taking all of the 
corresponding radar data into account, the minimum value of 
σ°, corresponding to the driest signal, can be determined for 
each cell. The radar signal difference for a given cell (i,j), 
between one radar signal at date d and the driest signal, can be 
written as follows: 
 
∆𝜎𝜎(𝑖𝑖,𝑗𝑗)

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜎𝜎(𝑖𝑖,𝑗𝑗),𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
0 (𝑑𝑑) − 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑,(𝑖𝑖,𝑗𝑗),𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

0                    (6)
= 𝐻𝐻(𝑖𝑖,𝑗𝑗)(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀) 

 
where 𝜎𝜎(𝑖𝑖,𝑗𝑗),𝑁𝑁𝐷𝐷𝑉𝑉𝑉𝑉

0 (𝑑𝑑)  is the backscattered signal from cell (i,j) 
at date d, with the corresponding NDVI computed from the (S2) 
optical images; 
𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑,(𝑖𝑖,𝑗𝑗),𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
0  is the lowest backscattered signal, corresponding 

to the driest conditions, and computed using the S1 time-series 
using the same NDVI as for the data recorded on date d 
(𝜎𝜎(𝑖𝑖,𝑗𝑗),𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

0 (𝑑𝑑)), and 𝐻𝐻(𝑖𝑖,𝑗𝑗)(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀) is a function of the 
NDVI and soil moisture Mv  in cell (i,j). 
Radar signal change is modeled as a function of moisture 
change and NDVI. With the increasing of vegetation cover, the 
radar signal change due to soil moisture decreases. A 
relationship is established between radar signal change and soil 
moisture for NDVI between 0 and 0.7. The proposed approach 
is validated with ground measurements carried out in two 
demonstration fields in Urgell site (Spain). The estimated 
(volumetric) RMS soil moisture errors is approximately 8.7 
vol.%. Figure 2 illustrates a mapping of soil moisture with this 
approach over Urgell site. 

 
 

Figure 2. Retrieved soil moisture map obtained using change 
detection approach over Urgell site (Spain). 

 
4. IRRIGATION MAPPING 

Two approaches are considered to map irrigation, a first one 
considering S1 time series and a second considers output of 
satellite products from S1&S2. 
 
4.1 Approach based on S1 time series 

Over a period of two years, the S1 time series are analyzed (Gao 
et al., 2018). The mean of the radar signals, its variance and the 
temporal correlation length are estimated from the radar time 
series. These indicators are used to separate irrigated and non-
irrigated classes. Three classes are identified. The results show a 
very good accuracy of 81% using the SVM approach (Figure 3). 
The average radar signal is the best indicator for separating 
irrigated areas from non-irrigated areas. Variance and 
correlation length are considered to separate irrigated trees and 
irrigated annual crops. Validations of the classification are 
based on the SIGPAC database over 26,434 fields in the whole 
study area. The use of Random forest approach gives the same 
results as for SVM. 
 

 
 

Figure 3. Mapping of irrigated areas 
 

4.2 Approach based on satellite products 

The classification process was used to discriminate between 
irrigated and non-irrigated fields. Two classifications were used 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W6, 2019 
ISPRS-GEOGLAM-ISRS Joint Int. Workshop on “Earth Observations for Agricultural Monitoring”, 18–20 February 2019, New Delhi, India

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W6-357-2019 | © Authors 2019. CC BY 4.0 License.

 
359



 

(Bousbih et al., 2018). The first one concerns the SVM 
classification to delineate between the irrigated and rainfed 
agricultural fields, using the means and variance soil moisture 
time series. The second one uses the Decision Tree 
classification to produce the irrigation map over the study site 
(the Kairouan plain). Areas including water and salt bodies, 
reliefs, urban areas are masked out, only agricultural areas were 
considered.  
Figure 4 provides the irrigation map derived from the soil 
moisture estimation, using the mean and variance times series 
from January to March, corresponding to the period of 
maximum vegetation growth. Validation involves the use of 
confusion matrix, which compares the classified fields to the 
reference fields. The results provide an overall accuracy about 
77 %. The results showed that the soil moisture is a reliable 
indicator for irrigation detection, particularly in semi-arid area. 

 
Figure 4. Irrigation map using soil moisture parameters for 

irrigated and non-irrigated areas. 
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