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A B S T R A C T   

Mountain grazing lands are key constituents of the natural, economical and cultural heritage, but at the same 
time sensitive to climate and land use change, hence requiring urgent adaptation and management strategies. 
These must be based on a better understanding of the distribution of mountain pastoral resources across space 
and time. 

In this study we model the distribution and the productivity of grassland surfaces in a topographically complex 
protected area (Gran Paradiso National Park, 710 km2) in north-western Italian Alps. The objective of our work 
was threefold: a) modelling the distribution of mountain grasslands across the entire park at a 20-meters spatial 
resolution, b) classify pastoral surfaces according to productivity classes, and c) according to thirteen pastoral 
categories. We used a random forest approach to combine a massive terrain vegetation survey as ground truth, 
with remote-sensing-derived, climatic and topographic layers as predictors. 

Grassland presence/absence was classified with high accuracy (up to 88%) and, compared to the standard 
Copernicus European Grassland Product, revealed the presence of extensive high altitude grassland areas 
potentially available for wild herbivores. Grassland productivity was modelled with remarkably high accuracy 
both according to three broad productivity classes (90% accuracy) and to a more detailed classification into 
thirteen pastoral categories (83% accuracy). Productivity estimates agree well with satellite-derived leaf area 
index maps and with area-averaged NDVI seasonal patterns. 

We conclude that combining tailored field campaigns and high-resolution remote sensing allows for robust 
prediction of grassland distribution and productivity even in complex terrains. This information can contribute to 
improve the management of pastoral resources and promote effective adaptation strategies.   

1. Introduction 

Covering 26% of the global land area, and 70% of the agricultural 
surfaces worldwide (Ramankutty et al., 2008), grasslands stand as one of 
the most prevalent and widespread land cover types. They are important 
regulators of carbon and water cycles (Conant et al., 2010), a biodi
versity reservoir (Körner, 2004) and food for livestock (Pornaro et al., 

2019). Nevertheless, they are threatened by several factors including 
overgrazing, the abandonment of agricultural practices (Garbarino 
et al., 2020), and climate change, which, all together, have reduced 
grassland areas globally (Chang et al., 2021; Urbina et al., 2020; Pon
zetta et al., 2010). 

In the Alps, the vast majority of mountain grasslands are permanent 
grasslands that play important economical and cultural roles, being a 
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key constituent of vertical transhumance systems. Because climate and 
land use change in the last decades are threatening these ecosystems 
(Herzog et al., 2018; Hinojosa et al., 2019; Dibari et al., 2021, 2020), 
several projects were proposed to assess vulnerability, and subsequently 
facilitate the implementation of adaptation strategies for pastoral 
management (Pittarello et al., 2019). For global change adaptation and 
mitigation to take place, detailed quantification of alpine pastoral re
sources (mapping) is pivotal (e.g., Schwieder et al., 2022). It is required 
in order to understand the actual status of mountain grassland ecosys
tems and their current trajectories in terms of gain, conservation or loss 
(Monteiro et al., 2021). For example, these trajectories were found to 
vary considerably across space and time in Tyrol, mediated by socio- 
economical and bio-physical factors (Hinojosa et al., 2019). Moreover, 
several studies documented high responsiveness of climate-warming- 
induced greening in scarcely vegetated, high altitude areas (e.g., 
Choler et al., 2021), but a quantitative assessment of how much these 
changing environments contribute to the pastoral resources remains to 
be conducted. Mapping of mountain grasslands is nevertheless 
hampered by complex topography, remoteness and small scale hetero
geneity that characterize mountain pastures (Orlandi et al., 2016). This 
makes it difficult to map pasture types and productivity exclusively on 
the basis of field surveys (Dibari et al., 2016). Mapping supported by 
earth observation data may be of help, but before the recent Sentinel era 
coarse spatial resolution and long revisiting time strongly limited its use 
in mountain areas. The Copernicus Land Monitoring Service recently 
released a grassland product, consisting of a presence/absence map at 
10-m spatial resolution for the whole Europe and for the year 2018 
(Copernicus, 2018b). This layer was obtained by combining Sentinel S-2 
L2A-data, S-2 LC1-data and S-1 data. A reliability assessment of this 
layer in complex terrain at the scale of small catchments is however 
lacking. Nation-wide mapping of grasslands was recently realized for 
Germany (Griffiths et al., 2020), and for Switzerland (Pazúr et al., 2021). 
In particular, Pazúr et al., 2021 suggested better performance for clas
sification models trained and applied at regional-to-national scale, 
rather than larger scale, due to better parametrization of models. 

Remote sensing data streams are commonly coupled with machine 
learning algorithms for land cover and land use classification (e.g. Abdi, 
2020), crop mapping, and, recently, the detection of mowing and other 
agricultural practices (Kolecka et al., 2018; Reinermann et al., 2020). 
Pixel-based supervised classification exploiting Sentinel-2 data has been 
object of a great number of agro-ecological studies after Sentinel launch 
in 2015 (Phiri et al., 2020; Punalekar et al., 2021). Generally, machine 
learning methods are applied to multispectral satellite data or derived 
vegetation indexes to directly model biomass from in situ measurements 
and vegetation indexes (see Reinermann et al., 2020, and reference 
therein). In this context, it has been suggested that modelling of 
mountain pasture biomass could be strongly improved by coupling 
remotely sensed vegetation indexes and vegetation maps (Magiera et al., 
2017). The use of supervised classification for the determination of 
subtle differences of productivity in mountain grasslands, at a scale as 
fine as the distinction of pastoral categories is still a rather unexplored 
field of application (Crabbe et al., 2020). 

In the context of the EU LIFE project “Pastures vulnerability and 
adaptation strategies to climate change impacts in the Alps” (PASTOR
ALP, Argenti et al., 2018), a joint effort was made to find a common, 
transnational classification key for the most important pasture types in 
two national parks on the French (Ecrins National Park) and on the 
Italian side (Gran Paradiso National Park, GPNP) of the western Alps. 
The resulting classification method identified thirteen grassland cate
gories (Bassignana et al., 2021) and was used in GPNP to map pastoral 
resources in the most important pastoral districts. 

In this work, we combined the results of the PASTORALP surveys 
with remote sensing data through a machine learning approach. The 
main objective of our work was threefold: a) modelling the distribution 
of mountain grassland areas across the whole Gran Paradiso National 
Park at a 20-m spatial resolution; and b) the classification of pastoral 

surfaces according to a broad distinction into three productivity classes, 
and c) the classification of grasslands according to the above-mentioned 
thirteen pastoral categories. 

2. Materials and methods 

2.1. Study area 

This study was conducted in the Gran Paradiso National Park, 
located in the western Italian Alps. Covering a surface of >710 km2 and 
an elevation range of 800–4061 m asl, it is the oldest Italian protected 
area. Grasslands constitute approximately 54% of the park, whereas the 
remaining surface is covered by forests or shrublands (18%), bare sur
faces (20%), and permanent snow and ice (7%; Buchhorn et al., 2019). 
About half of the grassland areas are considered as pastoral surfaces 
(Canedoli et al., 2020), and many of these are located in areas under 
special protection. Consequently, only about one third of them are 
currently subjected to pastoral activities, which consist mainly of cattle 
and goat grazing during the summer months (Canedoli et al., 2020). 

2.2. Ground truth 

In order to model the presence or absence of grasslands (objective 1) 
we used a pre-existent land cover map. In a previous work (Filippa et al., 
2019) vegetation types were mapped by photo-interpretation and 
aggregated in 3 land covers: 1) grasslands, 2) forests, 3) ice/snow/water, 
bare rocks. This map (20 m spatial resolution) is hereafter referred to as 
Carta della Natura (CDN). 

In order to model the productivity and types of grasslands (objective 
2 and 3) we exploited the above mentioned PASTORALP surveys. Pas
tures were mapped and classified in the field following the three most 
important approaches adopted in the western Italian and French Alps 
(Bornard et al., 2006; Cavallero et al., 2007; Jouglet, 1999). The three 
methods were combined in order to obtain a common classification 
scheme that could be deployed in the framework of the LIFE PASTOR
ALP project. Details on this classification harmonization and mapping 
are reported in a dedicated publication (Bassignana et al., 2021). It is 
important to highlight the following features:  

1. A total surface of ∼69 km2 was mapped (i.e., 17% of the grassland 
surfaces of the park), corresponding to the main pastoral districts 
(Fig. 1). These were digitized and stored as polygonal vectors.  

2. Thirteen categories were established based on the physiognomy of 
the pasture, the topography (i.e., altitude, aspect and slope), the 
productivity and the presence of dominant species (Table 1). In 
particular, productivity ranges and potential stocking rates were 
assigned to the thirteen categories based on a historical database of 
dry biomass production (Bornard et al., 2006; Jouglet, 1999), thus 
establishing a direct linkage between pastoral categories and pro
ductivity (Table 1). Additionally, the thirteen categories were further 
grouped into three broader classes of productivity, high (HP), me
dium (MP) and low productive (LP) pastures (Table 2). 

3. A special effort was made to determine the net grazing area of pas
toral surfaces, by identifying the portion of non-grazeable areas at 
the scale of the individual polygons. Features that reduce the grazing 
potential of grasslands include shrubs, single or groups of trees, bare 
rocks, debris, buildings or water bodies. From the remote sensing 
perspective, these features can contribute to increase noise in signal 
retrieval. Accordingly, surfaces were classified as fully grazeable 
(FG) when 95–100% of the surface was mapped as pasture, half 
grazeable (HG) when the net grazeable surface ranged between 50% 
and 95% and poorly grazeable (PG) below 50% (Table 2). 

A representative small-scale map of PASTORALP survey is reported 
in the supplementary material (figure SF1). 
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2.3. Remote sensing and climatic data 

In this section, we describe the gridded datasets that were used to 
predict grasslands distribution and productivity. All the layers were re- 
projected, when needed, to WGS 84 32 N (EPSG:32632). 

2.3.1. Vegetation indices 
We downloaded all the available Sentinel-2 multispectral images 

(tile 32TLR) for the period 2017 to 2019, at the 2A level, atmospheri
cally and topographically corrected with the sen2cor processor. The 
images were filtered on a per-pixel basis with the scene classification 
(SCL) map, retaining only top quality, cloud- and shadow-free pixels. 
NDVI was calculated from 20-m-resolution bands for each available date 
and a maximum yearly composite was calculated for each separate year 
and then averaged over the three-year period. 

In addition to the maximum composite NDVI, we also calculated 
pixel-wise integrals of NDVI seasonl trajectories and averaged the 
resulting maps over the three-year period. Using the same Sentinel im
ages, we computed the Normalized Anthocyanin Reflectance Index 
(NARI, Bayle et al., 2019). Values of this index in autumn are particu
larly effective in the discrimination between grasslands and shrubs such 
as Ericaceae (Bayle et al., 2019). 

The Copernicus tree cover density layer for 2018 (20-m spatial res
olution, Copernicus, 2018c) was used to define dense and sparse forest 
areas. The Copernicus Grassland layer for 2018 at 10 m spatial resolu
tion (Copernicus, 2018b) was used as a comparative layer for the 
grassland absence/presence map. Finally, a maximum composite Leaf 
Area Index was computed from Sentinel-derived S2 multi-temporal Leaf 
Area Index images obtained with the biophysical processor available in 
the Sentinel-2 toolbox (Xie et al., 2019; Weiss and Baret, 2016). 
Although this layer cannot be considered as fully independent, being 
itself derived from Sentinel-2 data stream, it was used as a comparative 
layer for the grassland productivity map. 

2.3.2. Climate and topography 
We used first snow free day maps (FSFD) produced by Theia Data and 

Services centre as part of Sentinel L3B-snow product (Gascoin et al., 
2019). The FSFD (also named SMD, i.e., snow melt-out date) corre
sponds to the last day of the longest snow-covered period in the hy
drological year (starting on 1 September). The 20 m resolution maps for 
the period 2017–2019 were averaged to obtain a mean FSFD map. This 
was included as a predictor itself but also used to compute a growing- 
degree-days map (GDD) where temperatures >0 ◦C were cumulated 
from FSFD until day of the year 270 (September, 26th, a fall date when 
temperature is expected to no longer affect plant development). GDD 
computation is often restricted to the growing season (e.g., the end of 
August; Choler, 2018). Here we decided to extend the time interval to 
doy 270 because several pastoral districts are used until mid September. 
Daily temperature maps at 100-m spatial resolution, used to compute 
GDD, were available for the period 2000-today (Silvestro et al., 2013, 
2015). 

We used a digital elevation model from the Shuttle Radar Topog
raphy Mission (native spatial resolution ∼30 m, Farr et al., 2007) to 
calculate the diurnal anisotropic heating index (DAH; Böhner and 
Antonic, 2009). DAH represents an approximation of the radiative 
heating potential of a given pixel based on its slope and aspect and 
therefore can be used as a proxy of how favourable a location is to plant 
growth in terms of temperature. 

2.4. Data analysis 

2.4.1. Dynamic time warping analysis 
Multitemporal NDVI and NARI stacks were used to perform a dy

namic time warping analysis (DTW, Giorgino, 2009). DTW is a suite of 
algorithms that allows computing distances between time series. We 
used an implementation of the algorithms specific for satellite data 
available in the R package dtwSat (Maus et al., 2019). We first 

Fig. 1. The extent of pastoral areas in the Gran Paradiso National Park that were used as ground truth in this study (black polygons). Color gradient represents digital 
elevation model. Inset: northern Italy with the location of the Park in red. The red rectangle on the western part of the park is the extent of the high resolution image 
in the Supplementary material (figure SF1). 
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identified areas with distinct trajectories of NDVI and NARI belonging to 
1) dense forest (tree cover density 80%), 2) sparse forest (tree cover 
density ∼30%), 3) highly productive pastures, 4) medium productive 
pastures, 5) low productive pastures, 6) bare soil. For each of these land 
cover categories we extracted average NDVI and NARI seasonal trajec
tories representing the templates which each pixel was compared to 
(supplementary material, fig. SF2). Template trajectories were modelled 
by means of a general additive model (GAM) with a single smooth term 
(as a function of time), based on thin plate regression splines (Wood 
et al., 2013). The DTW analysis results in an Euclidean distance map for 
each of the six cover categories listed above. The smaller the distance 
between a pixel and a template time series, the closer the vegetation 
dynamics of the pixel to the given template. 

2.4.2. Modelling framework 
Random forest (RF) was chosen among other machine learning al

gorithms because of better performance, computation speed, easier 
parameter tuning, and the fact that a first cross-validation is intrinsically 
performed with the out-of-the-bag technique (Kuhn, 2020). Moreover, 
random forest algorithm was proven to be successful in remote-sensing 
assisted mapping (e.g., Loozen et al., 2020) and in particular pasture 
classification in the context of climate change analysis (Dibari et al., 
2020). 

Three different RF were fitted to obtain three different maps: (1) the 
binary classification of grassland presence/absence, hereafter referred 
to as grassland mask (GM), (2) the grassland productivity map, i.e., the 
three-level classification of low, medium and high productivity (LP, MP, 
and HP) hereafter referred to as model 3L, and (3) the classification of 
the 13 pastoral categories (Section 2.2, model 13L). The caret package 
was used to fit RF models. It allows for self-tuning of the mtry parameter 
(the number of variables randomly sampled as candidates at each split) 
via resampling methods. We chose the repeated cross-validation method 
with 10-fold CV and 10 repetitions. This means that the 10-fold cross
validation is repeated 10 times, each time varying the mtry parameter. 
The parameters mtry of the final models chosen after self-tuning was 5 
for all three models. The other three random forest parameters were 
deliberately kept constant for the three models, i.e., ntree was set to 500, 
nodesize was set to 1, as recommended for classification problems, and 
maxnodes was not set (i.e., trees can grow to the maximum possible 
number of terminal nodes). 

Table 3 summarizes the predictors used in the models. All predictors 
were normalized prior to model fitting. Random forest performance was 
evaluated by means of the overall accuracy and the kappa (unweighted) 
coefficient (Cohen, 1960). A p-value from McNemar’s test (McNemar, 
1947) was also computed and only significant (p<0.05) models are 
discussed. When pertinent, omission and commission errors were also 
evaluated. For more than two classes, these errors were calculated 
comparing each factor level to the remaining levels (i.e., a ”one versus 

Table 2 
Surface of pastures used as ground truth in this study, separated by productivity 
classes and by grazing area classes. Grazing area class is assigned based on the 
ratio of non grazeable surface to the total of the parcels. FG: fully grazeable, 
95–100% of parcel area classified as pasture, HG: half grazeable (50–95%), PG: 
poorly grazeable (below 50%). Note that non productive pastures were not use for 
the training of Random Forest (model 3L).  

Grouping criteria Group Surface [km2] Surface (%) 

Productivity High productive (HP) 6.7 9.7  
Medium productive (MP) 42.7 62.2  
Low productive (LP) 16.0 23.2  
Non productive 3.4 4.9  

Grazeable area FG 15.5 22.5  
HG 21.3 31  
PG 31.9 46.5  

Total  68.8 km2   
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all” approach). For each of the three models, a multiple linear regression 
model was fitted with the same data input in order to provide a 
benchmark null model useful to evaluate RF model performance. 

Variable importance was calculated as mean decrease in accuracy. 
For the 3L model, partial dependency was evaluated with the pdp R 
package (Greenwell, 2017). 

2.4.3. Grassland mask (GM) 
A subset of CDN (90 k pixels, approximately 10% of the data, 

randomly selected) was used for the random forest model. Data was then 
split: 75% was used for model training and 25% for a first assessment of 
validation. Model output represents a 3 level outcome (grasslands, for
ests and ice/water/rocks). This outcome was then converted to a binary 
absence/presence vector and, after prediction over the spatial extent of 
the GPNP, converted to a gridded grassland mask at 20 m spatial reso
lution (GM). Model performance was assessed trough five steps, sum
marized in Table 4. First, accuracy was assessed on the 25% validation 
subset (labelled GM-V1). Second, a confusion matrix was computed on 
the extent of the CDN map by comparing the predicted map GM against 
CDN (labelled GM-V2). This represents an extension of crossvalidation 
because it includes all pixels not used for training. Third, GM was 
compared against the Copernicus Grassland layer (labelled GM-V3). 
This layer is considered as a partially independent layer, being derived 
itself from S2-data but trough completely different processing steps 
compared to our approach (Copernicus, 2018b). Fourth, GM was 
compared against a spatial subset of the Copernicus Grassland layer (see 
Fig. 2), in a region of GPNP where calibration data (CDN) was not 
available (GM-V4). This represents a spatially independent validation. 
Fifth, GM accuracy was tested against the 69 km2 mapped in PASTOR
ALP surveys (GM-V5). Because field mapping was deliberately not 
exhaustive of all the grassland surfaces of the park, only omission errors 
could be quantified in GM-V5. 

GM was used to mask out grassland productivity predictions pre
sented in the following section. 

Table 3 
Predictors used in random Forest models and their ranges (5th and 95th per
centiles). Details on predictor calculation are provided in the text.  

Predictor [m. 
u.] 

Description q5, q95 

NDVImax [–]  Maximum normalized difference vegetation 
index, a proxy of vegetation maximum 

development 

0.39,0.83 

NARI [–] Normalized antocyanin reflectance index, a proxy 
of antocyanin level in tissues 

0.18,0.31 

FSFD [doy] First snow-free day, a proxy of the beginning of the 
growing season 

84,195 

GDD [◦C] Growing degree days 518,1710 
AUC [–] Area under the seasonal NDVI curve (NDVI 

integral, a proxy of vegetation development 
including phenology) 

3.5,5.5 

DAH [–] Diurnalf anisotropic heating index − 0.23,0.53 
NOvegdistance [–]  DTW distance to bare soil time series 0.28,2.00 
Pasturedistance[–]  DTW distance to pasture time series 0.23,3.91  

Table 4 
Random forest model characteristics and performances. Null models represent multiple linear regressions with the same predictors as RF models and were fitted for 
comparison only on the 25% validation exercise. Accuracy and kappa values are always obtained by computing a confusion matrix. Note that commission and omission 
errors are reported only on binary outcomes, i.e. for the grassland mask model. Table 5 reports omission and commission error rates for the 3L and 13L models.  

Model Validation N 
calibration 

N 
validation 

Omission 
(%) 

Commis-sion 
(%) 

Acc./kappa (RF 
model) 

Acc./kappa (NULL 
model) 

Grassland mask 25% validation (GM-V1) 68k 22k 16 5 0.88/0.84 0.68/0.05  
GM vs CDN (GM-V2) 68k 927k 14 5 0.89/0.76 –  

GM vs Copernicus Grassland (all GPNP, GM- 
V3) 

68k 1775k 24 15 0.76/0.54 –  

GM vs Copernicus Grassland (spatially 
independent, GM-V4) 

68k 848k 26 19 0.76/0.50 –  

GM vs PASTORALP survey, GM-V5) 68k 155k 10 – – –  

Productivity (3L) 25% validation (3L-V1) 25k 8k   0.90/0.84 0.72/0.50  
Full validation (FG+HG+PG) (3L-V2) 25k 155k   0.78/0.50 –  

Pasture categories 
(13L) 

25% validation (13L-V1) 25k 8k   0.83/0.78 –  

Full validation (FG+HG+PG) (13L-V2) 25k 155k   0.52/0.34 –  

Fig. 2. Maps of the classification results 
for grassland detection. a) Comparison 
between grassland mask (GM) and Carta 
della Natura (CDN) rasterized at 20-m 
resolution (GM-V2, see Table 3). Dark 
blue pixels indicate the areas identified as 
grasslands in both GM and CDN. Light 
blue pixels are for the areas identified as 
grasslands in GM but not in CDN. Dark red 
pixels are for the areas marked as grass
lands in CDN but not in GM. Grey pixels 
indicate the areas identified as NON 
grasslands in both GM and CDN. This 
layer was only available for a zone of the 
park (note the extended white areas in the 
South). b) Same as a) but against Coper
nicus Grassland product (GM-V4). See text 
for quantitative accuracy assessment. The 
area delimited in red corresponds to the 

spatial extent of validation GM-V4 in Table 3.   
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2.4.4. Productivity (3L) and pasture category (13L) models 
Data collected in the framework of the PASTORALP project surveys 

was used as training data. Random forest models were trained on best- 
quality ground truth data, corresponding to fully grazeable areas (see 
Table 1 for the definition and acronyms of grazeable areas). The 
following validation steps are valid for both the 3L and the 13L models 
described above. Similar to the GM model, data was split (75% for model 
training and 25% for a first assessment of validation). This first type of 
validation is labelled 3L-V1 and 13L-V1 for the 3L and 13L models, 
respectively. Second, models were validated against the whole set of 
data from the surveys including partially grazeable surfaces (HG) and 
poorly grazeable surfaces (PG, see Table 2). This second validation ex
ercise is labelled 3L-V2 and 13L-V2 for the 3L and 13L models, 
respectively. 

The complete ground truth dataset was used to train two additional 
random forest models (training data constituted by FG +HG, and by 
FG+HG+PG), in an attempt to improve model prediction by increasing 
the quantity of ground truth data at the expense of its quality. These 
additional data sets were used to fit both 3L and 13L Models. 

To examine the capacity of our models to discriminate between the 
various pasture types, we selected four markedly different pastoral 
categories (A-II, A-I , S-II, and S-I ) and extracted NDVI trajectories for 
500 randomly selected pixels for each category. These NDVI time series 
were spatially and temporally averaged resulting in an average-year 
trajectory for the four pasture categories. 

All the statistical analyses, processing and graphics were conducted 
with the R Software for Statistical Computing, version 3.6.3 (R Core 
Team, 2020). 

3. Results 

3.1. Detection of grasslands 

Binary classification of presence/absence of grasslands showed an 
excellent performance, with an accuracy of 0.88 and a kappa of 0.84 in 
validation (GM-V1, Table 4). Correspondent NULL model (i.e. a multiple 
regression with the same predictors) showed much lower accuracy 
(0.68) and a decline in kappa (0.05). The random forest model was then 
used to predict a binary presence/absence classification map at the scale 
of the Park (grassland mask, GM). GM was compared against CDN (GM- 
V2) and the Copernicus Grassland layer (GM-V3, Fig. 2). Classification 
scores remained high when computed against the CDN map (accuracy 
0.89, kappa 0.76), with a sensitivity of 86% (omission error 14%) and a 
specificity of 95% (commission error 5%). The classification score 
assessment against Copernicus Grassland (a partially independent data 
set, because it is also derived from S-2 data) showed fairly good accuracy 
(0.76) and a lower kappa (0.54). The sensitivity and specificity (and 

correspondent omission and commission error) were 76% (24%) and 
85% (15%), respectively. GM was furthermore validated against a 
spatial subset of Copernicus Grassland (area delimited in red in Fig. 2b). 
Accuracy and kappa were 0.76 and 0.50, respectively. GM accuracy 
(omission error only) was tested also against the 69 km2 mapped in the 
PASTORALP survey, and omission error was found to be 10%. 

Variable importance analysis shows that NDVI was the most 
important predictor, followed by DTWdistance to low productive pastures, 
DTWdistance to bare ground and growing degree days (supplementary 
material, fig. SF3). Remaining predictors showed only very limited 
explanatory power. 

3.2. Prediction of productivity 

The model for the discrimination of 3 productivity levels (model 3L) 
showed a high accuracy (0.90) and kappa (0.84) in 25% validation (3L- 
V1, Table 4). Correspondent NULL model (i.e. a multiple regression with 
the same predictors) showed much lower accuracy (0.72) and kappa 
(0.50). Omission and commission errors associated to each of the three 
productivity levels are reported in Table 5. 3L model was also validated 
against the whole surveyed surface (i.e. including partially grazeable 
areas, FG+HG+PG). Accuracy was 0.78 and kappa 0.50 (3L-V2, 
Table 4). 

Variable importance analysis revealed that GDD was the most 
important variable, followed by FSFD, NDVI, AUC and DAH, which 
however showed about one third of the GDD importance (supplemen
tary material, fig. SF4). 

The distribution of S2-derived LAI and NDVI values extracted from 
pixels classified as high, medium and low in the 3L classification showed 
distinct ranges, with increasing LAI and NDVI corresponding to 
increasing levels of predicted productivity (Fig. 3). 

3.2.1. Prediction of pasture categories 
The prediction of the 13 pastoral categories (model 13L, Table 5, 

Fig. 4) showed a slightly lower performance compared to the model 3L. 
Accuracy was found to be 0.83 and kappa 0.78 for the 25% validation 
(13L-V1). Commission and omission errors were calculated for the 10 
most widespread categories (i.e., those predicted to cover more than 2 
hectares) and are reported in Table 5. In general, less represented pas
toral categories tend to show omission errors higher than 20–30%, while 
the most widespread categories show omission errors around or below 
15% (Dibari et al., 2020). Commission errors are consistently much 
lower (6% or less). Similar to model 3L, 13L model was validated against 
the whole surveyed surfaces. Accuracy and kappa were found to be 0.52 
and 0.34, respectively. 

Variable importance analysis for the model 13L showed that, similar 
to the model 3L, GDD was the most important one. DAH and FSFD 

Table 5 
Classification scores for grassland productivity models tested in this study. LP: low productive, MP: medium productive, HP: high productive. We report error rates of 
the 10 pastoral categories (out of 13 analysed) predicted to cover a surface larger than 2 hectares. For category names and full description, please refer to Table 1. 
Omission and commission errors refer to validations labelled 3L-V1 and 13L-V1 for model 3L and 13L, respectively.  

Model Productivity/Pasture category Surface predicted (km2) Omission error (%) Commission error (%) Accuracy kappa  

LP 66 9.7 3.0   
model 3L MP 197 6.9 12.3 0.90 0.84  

HP 32 16.7 2.3     

SA-III 181 10.6 6.1    
SA-II 27 17.6 5.9    
A-I 52 12.7 3.8    
S-I 12 7.2 2.1   

model 13L S-II 5.4 33.5 1.7    
A-II 5.2 35.1 1.5 0.83 0.78  
S-V 3.2 25.2 0.6    
SA-IV 0.45 73.5 0.1    
S-IV 0.15 65.1 0.0    
SA-V 7.68 35.0 0.1    
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followed with half the importance of GDD (supplementary material, fig. 
SF5). 

Spatio-temporal average NDVI trajectories for the four selected 
pasture categories (Fig. 5) showed different NDVI peak absolute values, 
and different phenology, particularly for the beginning of the growing 
period, which showed a difference larger than 2 months between lower- 
elevation productive grasslands (S-I) and high-elevation pastures of the 
nival belt (A-II). 

Performances of the additional random forest models trained on 
lower quality ground truth data, i.e., including also parcels with 
partially grazeable surfaces (FG+HG, and FG+HG+PG) are reported in 
Table 6. Scores were higher for model fit with best quality parcels as 
ground truth (FG) even though they represent only 20% of the ground 
truth data, and decrease when HG and PG areas are included in the 
training set. 

4. Discussion 

In this study, we used random forest models to predict the distribu
tion and the productivity of grassland surfaces in a topographically 
complex Alpine protected area (Gran Paradiso National Park, 710 km2) 
in north-western Italy. We built on a massive terrain vegetation survey 
as ground truth, and on remote-sensing-derived, climatic and topo
graphic layers as predictors. We had three objectives: 1) the detection of 
herbaceous surfaces at 20 m spatial resolution, 2) the classification of 
pastoral surfaces in productivity classes and 3) the discrimination of 
thirteen pastoral categories. 

4.1. Detection of grasslands 

We predicted a total grassland area of 300 km2, corresponding to ∼
42% of the GPNP surface. 

The distribution of grassland surfaces (grassland mask, GM) was 
modelled with an accuracy ranging between 0.76 and 0.88, depending 
on the product used as ground truth (i.e., CDN or Copernicus Grassland). 
Pazúr et al. (2021) classified grassland distribution using random forest 

classifiers across the whole Switzerland achieving accuracies ranging 
between 0.85 and 0.93, depending on the layers used for comparison. 
Similarly, Guo et al. (2020) reported accuracies of 0.85–0.96 in moun
tain grassland detection in China, using deep learning methods. These 
results, obtained in similar environments, and with comparable ap
proaches, are in line with our findings. Some studies coupled multi- 
source optical remote sensing with other data sources such as SAR, 
followed by data reduction techniques (Badreldin et al., 2021) achieving 
even higher classification performances (0.96–0.99). However, the use 
of SAR data in mountain areas is strongly limited by the effect of com
plex topography on backscattering (Imperatore, 2021). 

It must be noted that the definition of ground truth is not trivial, 
because the two comparative maps against which we tested our product 
(GM-V2, GM-V3, GM-V4) cannot be considered error-free and the 
question remains, whether disagreement between maps can be attrib
uted to an error of GM or in the so-called ground truth. A quantitative 
accuracy assessment for CDN is currently lacking, preventing any 
further evaluation. The accuracy assessment of the Copernicus Grass
land Product reported a 0.92 overall accuracy, 25% omission error, and 
24% commission error in the Alpine region (Copernicus, 2018a). A 
direct comparison of our classification scores with Copernicus accuracy 
assessment is clearly not possible, but the fact that scores in our study 
display the same range, if not smaller, corroborates the robustness of our 
approach. A large portion of omission errors is distributed in the south- 
eastern part of the park (Fig. 2b), where ground truth data from CDN 
was missing, corresponding to the white areas of Fig. 2a. We regarded 
this area (delimited by the red border in Fig. 2b), as a spatially inde
pendent subset to evaluate model performance in an area excluded from 
the training, and found a very limited decrease of model performance 
(Table 5). This indicates the robustness of our model even in spatially 
independent areas. However, models such the ones developed in this 
work must be used with caution in pure prediction, paying particular 
attention that the range of predictors in calibration areas (cfr. Table 3) 
be consistent with those in areas to be predicted. 

Commission errors against Copernicus Grassland product are about 
four times higher than omission errors, occur more often at high 

Fig. 3. Violin plot (a combination of density and box plot) showing values of a) Leaf Area Index (LAI, max composite for the period 2017–2019, Sentinel-2 bio
physical processor) and b) NDVI (max composite for the period 2017–2019) extracted from all pixels classified as high, medium and low productive pastures. 
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elevation, across a wider range of NDVI values, and mainly in locations 
with no tree cover (Fig. 6). By comparing with the original land cover 
map (CDN, photo-interpreted), we found that only ∼25% of commission 
error pixels are misclassified as forest (15%) or shrub (10%) pixels, 
whereas the remaining 75% are grass-covered surfaces. Even tough this 
comparison is conducted against a relatively old layer (CDN dates back 
to 2006), and therefore the percentages must be considered as indica
tive, these areas deserve attention. They were not classified as grasslands 

in 2018 (the date of Copernicus product), display however a NDVI peak 
higher than 0.25 and cannot be considered as bare soil. These findings 
suggest that according to our classification, high elevation areas with 
sparse herbaceous vegetation are present, and confirm conclusions of a 
recent alpine-wide study (Choler et al., 2021). These areas, on the edge 
between recently colonized bare ground/debris and true grasslands but 
displaying a highly dynamic evolution towards the second group, 
potentially represent newly available grass resources not currently 

Fig. 4. Prediction maps for GPNP. a) Three level productivity map, b) Pastoral categories map. Inset: histograms of areas for categories displayed in the maps. For 
category names and full description, please refer to Table 1 and supplementary ST2. 
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exploited for domestic pasture, but likely grazed by wild animals. Hence, 
the detailed quantification of these surfaces is a key information for the 
management, especially in protected areas such as GPNP. 

4.2. Prediction of productivity and pasture categories 

The distribution of pasture categories was predicted with an accu
racy ranging from 0.83, for the 13-level classification (pasture cate
gories, 13L), up to 0.90 for the three levels classification (productivity, 
3L). In contrast to the determination of grassland surfaces, an inde
pendent product to quantitatively assess classification performance is 
not available. However, historical above ground biomass estimations 
(Table 1) allowed us to directly link pastoral categories with produc
tivity. Accordingly, we used a maximum composite Leaf Area Index at 
20-m spatial resolution (a standard product derived from Sentinel-2 
biophysical processor) as an estimate of productivity and qualitatively 

evaluated the distribution of LAI and NDVI values from all pixels clas
sified as high, medium and low productive (Fig. 3). Distinct ranges of 
both LAI and NDVI across the three productivity levels support the 
robustness of our classification approach, that can be used for e.g. car
rying capacity estimation on large areas (Yu et al., 2010). 

In order to assess the validity of the pastoral classification, we 
evaluated NDVI seasonal trajectories extracted from pure pasture 
polygons belonging to a subgroup of pastoral categories. In order to 
showcase the different NDVI trajectories across the range of different 
pasture categories, we chose S-I and S-II pastures as representative of the 
high productive class, and A-I and A-II as representative of the low 
productive class. NDVI trajectories show marked differences among 
pastoral categories in terms of phenology (beginning of the growing 
season), maximum NDVI values and shape of the seasonal curve, further 
confirming the validity of our classification approach. 

Fig. 5. Average-year trajectories of NDVI for four different pastoral categories. NDVI was extracted from multitemporal Sentinel-2 images, aggregated across 500 
randomly-selected pixels and over time (period 2017–2019). For category names and full description, please refer to Table 1. 

Table 6 
Classification scores for pasture productivity models trained with data sets with different levels of net grazeable area. FG: fully grazeable, HG: half-grazeable, PG: 
poorly grazeable, 3L: three levels productivity model, 13L: productivity model with the 13 pastoral categories.  

Metric FG FG+HG FG+HG+PG FG FG+HG FG+HG+PG  
model 3L model 3L model 3L model 13L model 13L model 13L 

Accuracy 0.90 0.88 0.87 0.83 0.78 0.76 
kappa 0.84 0.77 0.72 0.78 0.71 0.66  

Fig. 6. Distribution of selected variables in pixels displaying omission and commission errors. a) Histograms of elevation values of pixels displaying omission and 
commission errors, b) same as a) but for NDVI, c) Count of pixels displaying omission and commission for two classes of tree cover density. 
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4.3. Biophysical significance of RF predictors 

Machine learning algorithms such as random forests are usually 
considered as black boxes, making it difficult to find causal relationships 
between predictors and a given outcome. However, the partial depen
dence plots of the most important predictors (e.g., GDD, FSFD, NDVI
max, fig. SF6) suggest the presence of relevant thresholds in predictors. 
For example low productive grasslands were prevalent with GDD <
800◦C and their occurrence probability dropped when GDD exceeded 
this threshold. Similarly, at approximately 1700◦C GDD, the probability 
of occurrence of high productive grasslands became prevalent as 
compared to mid productive ones. AUC displayed a clear break in 
probability around the value of 4, above which the occurrence of mid 
productive pastures becomes more likely compared to low productive 
ones, whereas high productive pasture probability occurrence is rather 
insensitive to AUC changes. Similar thresholds, although less clear 
compared to GDD or AUC, can be hypothesised for FSFD and NDVImax. 
Further studies will help to clarify whether these thresholds are study- 
specific or may be considered valid at larger spatial scales. 

4.4. Quality vs spatial coverage of ground truth data 

In this study, field data (PASTORALP survey) was collected for 
management purposes, but also with the objective of building a sound 
ground truth data set for remote sensing-based classification. Accord
ingly, special attention was devoted to the quantification of non- 
grazeable surfaces within pastoral parcels, which include single trees, 
shrubs, buildings, roads, and severely impact the quality of signals 
detected from space. This led to an invaluable data set that allowed us to 
quantify the sensitivity of predictive modelling to data quality and 
quantity. A total area of 69 km2 of pastures was mapped, but only ∼20%, 
15 km2 of fully grazeable surfaces were used as the training set for 
random forest models (3L, 13L, Table 2). Including the remaining ∼80% 
of pastoral surfaces in the training set did not add predictive power nor 
increased model performance. We conclude, that the quality of ground 
truth data is much more important than its spatial coverage for the 
classification of pastoral categories in Alpine terrains. This information 
may be useful to design ground truth data collection for similar classi
fication purposes, especially in complex landscapes such as the alpine 
and subalpine belts. By concentrating field effort on pure pastoral sur
faces, a high level of accuracy can be achieved with cheaper, shorter and 
tailored sampling campaigns. 

Classification performances decreased when models were validated 
against the whole PASTORALP surveys, i.e., including partially and 
poorly grazeable surfaces, especially for 13L model (Table 4). This is 
likely because the classification at 20 m spatial resolution is able to 
retrieve sub - parcel information that the ground truth survey levelled 
out by assigning the class/category at the parcel level, thus neglecting 
small-scale heterogeneity that the pixel-based classification retains. 

5. Conclusions 

A great, currently unresolved challenge for the management of 
alpine pastoral resources is represented by their accurate quantification. 
In this work, we modelled grassland presence/absence, pastoral pro
ductivity and categories based on a massive field campaign and satellite- 
derived predictors in the Gran Paradiso National Park, a 710 km2 pro
tected area in the north-western Alps. We demonstrated that a high 
accuracy can be achieved with a tailored field campaign that focuses 
sampling effort on pure pastoral surfaces. Resulting data can be com
bined with the state-of-the-art, publicly available satellite products to 
train random forest classification models, in turn used to predict grass
land distribution and productivity with high accuracy and spatial detail 
even in complex mountainous landscapes. This approach can be trans
ferred in space and time, thus representing a potentially strong contri
bution to the management of Alpine grasslands, and to the construction 

of adaptation strategies to climate and land use change. 
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Böhner, J., Antonic, O., 2009. Chapter 8 Land-Surface Parameters Specific to Topo- 
Climatology. In: Hengl, T., Reuter, H.I. (Eds.), Geomorphometry. Developments in 
Soil Science, vol. 33. Elsevier, pp. 195–226. 

Bornard, A., Bassignana, M., Bernard-Brunet, C., Labonne, S., Cozic, P., 2006. Les 
végétations d’alpage de la Vanoise. Description agro-écologique et gestion pastorale. 
Quae Editions, Versailles. 

Buchhorn, M., Smets, B., Bertels, L., Lesiv, M., Tsendbazar, N.-E., Herold, M., Fritz, S., 
october 2019. Copernicus Global Land Service: Land Cover 100m: collection 2: 
epoch 2015: Globe. 
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