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Abstract. The parametric Kalman filter (PKF) is a computa-
tionally efficient alternative method to the ensemble Kalman
filter. The PKF relies on an approximation of the error co-
variance matrix by a covariance model with a space—time
evolving set of parameters. This study extends the PKF to
nonlinear dynamics using the diffusive Burgers equation as
an application, focusing on the forecast step of the assimi-
lation cycle. The covariance model considered is based on
the diffusion equation, with the diffusion tensor and the er-
ror variance as evolving parameters. An analytical derivation
of the parameter dynamics highlights a closure issue. There-
fore, a closure model is proposed based on the kurtosis of the
local correlation functions. Numerical experiments compare
the PKF forecast with the statistics obtained from a large en-
semble of nonlinear forecasts. These experiments strengthen
the closure model and demonstrate the ability of the PKF to
reproduce the tangent linear covariance dynamics, at a low
numerical cost.

1 Introduction

Covariance functions in geophysical flows are known to
evolve in both time and space (e.g. Bouttier, 1993; Snyder
et al., 2003). Yet, an accurate solution of the covariance dy-
namics is one of the major challenges in data assimilation and
probabilistic forecasting. The Monte Carlo method, which
is the most common approach, addresses nonlinear dynam-
ics and is computationally efficient with parallel computers.
However, it suffers from non-uniform sampling noise, which
is a function of the true signal covariance.

Another route can be investigated that relies on analyti-
cal derivation of covariance tensor dynamics (Cohn, 1993),
which has inspired application in chemical transport models
(Ménard et al., 2000). Despite the theoretical interest result-
ing from the analytical derivation of covariance dynamics, it
is still difficult to take advantage of this formulation in real
applications. Moreover, the system presents a closure prob-
lem for the diffusive error dynamics. A hybrid approach that
mixes the Monte Carlo method based on an ensemble and an
approximate propagation of the correlations by a surrogate
model has also been proposed (Bocquet, 2016).

An intermediate formulation, between the approximation
by an ensemble and the theoretical formulation by analytic
derivation, has recently been introduced by Pannekoucke
et al. (2016) who proposed to approximate the forecast er-
ror covariance matrix by a parametric covariance matrix, in
which the dynamics of parameters stand for the dynamics of
the full covariance matrix. This formulation, called the para-
metric Kalman filter (PKF), has been illustrated on linear
advection-diffusion equation similarly to the equations en-
countered in chemical transport models. As defined for gen-
eral parametric covariance models, the PKF has been illus-
trated for the particular case in which the covariance model is
based on the diffusion equation (Weaver and Courtier, 2001).
Hence, the error covariance matrix is reduced to the knowl-
edge of its variance field and its local diffusion tensor field.
The time evolution all along the forecast and the analysis
steps of the data assimilation process is expressed in terms
of variance and local diffusion tensor evolution.

As mentioned earlier, the PKF formulation has been tested
so far on linear dynamics. It is thus interesting for more gen-
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eral applications to consider extension to a nonlinear setting.
The goal of the present work is to formulate and illustrate the
forecast step of the PKF for the nonlinear dynamics given by
the Burgers equation.

The Burgers equation is a nonlinear advection-diffusion
model that usually involves one variable in a one-
dimensional space — u# — the wind. It is one of the simplest
equations that display important features of geophysical in-
terest, such as advection, frontogenesis, and one-dimensional
turbulence (Burgers, 1974; Hopf, 1950; el Malek and El-
Mansi, 2000 and references therein). The Burgers equation
has been used in several data assimilation studies to ex-
amine the effect of nonlinearity error propagation and in
Kalman filtering methods (Cohn, 1993; Ménard, 1994; Ver-
laan and Heemink, 2001), in maximum likelihood ensemble
filtering (Zupanski et al., 2008), in adjoint methods (Apte
et al., 2010), in model error estimation using 4D-Var (Lak-
shmivarahan et al., 2013), and in 4DEnVar and localization
(Desroziers et al., 2014, 2016).

However, preliminary numerical tests have shown that the
treatment of the physical diffusion, as proposed in Pannek-
oucke et al. (2016) and deduced from analytical solutions,
was not able to reproduce the complexity of the Burgers dy-
namics. Hence, we need to develop a higher order represen-
tation of the PKF equation for the physical diffusion process.

In Sect. 2 the parametric formulation based on the covari-
ance modelling with the diffusion equation is first recalled,
and we specify the methodology for developing the paramet-
ric dynamics under a systematic treatment. This method is
then applied to the Burgers equation, in Sect. 3, taking ad-
vantage of the operator splitting. In Sect. 4, numerical sim-
ulations are conducted to illustrate the ability of the para-
metric dynamics to reproduce the main features of the true
covariance dynamics emerging from a forecast Monte Carlo
experiment. The conclusions are given in Sect. 5.

2 Parametric formulation of covariance dynamics

2.1 Background on the uncertainty propagation and
covariance dynamics

Geophysical flow dynamics can be represented as a nonlinear
system of the form

[ oru = M), )

u(x,0) =ux),

which describes the time evolution of a state function u# and
where a unique solution is assumed to exist for any initial
condition x° within an appropriate set.

Due to the lack of precise knowledge of the initial condi-
tion, u is generally represented as a random state u° = u0 +
&Y, where &0 is a centred Gaussian random field characterized
by its two-point covariance function P%(x, y) = £0(x)&0(y),
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where (-) stands for the expectation operator. The covari-
ance function can be described by its variance field V?,
where V,? = PO(x, x) denotes the variance at position x and
by its error correlation function p%(x, y) = P%(x, y)/ a,?oyo,

where 6 = /V{ and o)) =, /V are the standard deviations

at point x and y, respectively. When a first-order Taylor ex-
pansion accurately approximates the error dynamics, then the
tangent linear dynamics of the initial error £°

[ 9 = Me, )

e(x,0) =&%x),

makes the error about the mean state u evolve. M = 9, M
is the tangent linear dynamics along the nonlinear trajectory,

i, solution of Eq. (1) starting from the initial condition u0.

The two-point covariance function ¢(x, t)e(y, t) of the er-
ror field € at a given time ¢ defines the covariance function
P(x,y,t). Thereafter, the covariance function is computed
as a covariance matrix: when space is discretized, with the
grid-point positions denoted by Xx;, the restriction of the co-
variance function to the grid-point positions is the matrix P
defined by P;; (1) = P(x;, xj, t). With the discretized version
of the tangent linear model M now being the matrix M, the
dynamics of the covariance matrix is then given by the fore-
cast error covariance equation

4p_Mp+PMT

a (3)
P(t =0) = P°,

where MT stands for the adjoint of the tangent linear model

M. Thereafter, since the statistics depend on the time evolu-

tion, explicit reference to the time ¢ is dropped, except for the

initial time # = 0 identified by superscript (-)°.

The numerical cost of solving Eq. (3) for high-dimensional
dynamics is beyond supercomputer capacity. Different op-
tions have been considered in the literature to approximate
the solution, among which one finds the Monte Carlo method
employed in the ensemble Kalman filter (Evensen, 1994).

The ensemble Kalman filter is a robust algorithm that ap-
plies to low-order dynamical systems as well as to large di-
mension systems encountered in geophysical applications.
The main difference for geophysical applications is that the
covariance matrix is closely related to the continuous covari-
ance function, which may not be the case for all discrete low-
order models. Thereafter, it is assumed that a discrete model
results from the discretization of a continuous model, mak-
ing a clear connection between the discrete and the continu-
ous covariance representations. This offers simplifications in
the following derivations. To that end, in what follows, the
covariance function P (x,y) and its grid-point matrix repre-
sentation P are considered as equivalent and are denoted by
the matrix notation.

We now give details about another approximation, which
relies on the continuum, namely the parametric formulation.

www.nonlin-processes-geophys.net/25/481/2018/
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2.2 Parametric formulation of the covariance forecast
dynamics

Pannekoucke et al. (2016) have proposed to parameterize the
covariance matrix by the covariance model, and they have il-
lustrated this approach by considering the covariance model
based on the pseudo-time diffusion equation (Weaver and
Courtier, 2001).

The diffusion covariance model factorizes the covariance
matrix as

pift — yLLTET, 4)

where X denotes the diagonal matrix of standard deviation

\/822, and L is the propagator of the diffusion equation
0 =V -(wVa), (5)

integrated from the pseudo-time 7 from t =0to t =1/2,
thus giving L = e2V0V) The pseudo-time diffusion equa-
tion is a recipe to build Gaussian random fields with
Gaussian-like correlation functions. Note that the pseudo-
time 7 has no link with the physical time ¢ of Eq. (1). In
this formulation the variance field V (deduced from X) and
the local diffusion tensor field (v) are the only parameters to
be determined.

Knowing the dynamics of the variance field V and the lo-
cal diffusion tensor field v provides a means to approximate
the true covariance dynamics (Eq. 3), where P would be re-
placed by the covariance model P4- parameterized by using
the diffusion equation (Eq. 4). This constitutes the parametric
formulation of the dynamics. The challenge is now to deter-
mine the dynamics of the two parameter fields.

The dynamics of the variance field V = &2 can straightfor-
wardly be obtained from the trend 9, ¢ following

8,V =2¢ed,¢. (6)

However, the dynamics of the diffusion tensor is not as
obvious to derive. A possible way to describe its dynamics is
to consider some approximations that we will describe in the
next section.

2.3 Approximate dynamics for the diffusion covariance
model

The dynamical equations of the local diffusion can be ob-
tained taking advantage of approximations used in data as-
similation for the estimation of the local diffusion tensor
from ensemble data.

Following Pannekoucke and Massart (2008), Mirouze and
Weaver (2010), and Weaver and Mirouze (2013), the lo-
cal diffusion tensor field can be deduced from the correla-
tion functions when assuming that the random error field is
smooth. For a given position X, the local Taylor expansion of

www.nonlin-processes-geophys.net/25/481/2018/

the correlation function p(x,x + éx) is related to the local
correlation function in the form

0 1 2 2
p(x,x+8x)=l—zll8xllgx+0(||8xII ), @)

where g, denotes the local metric tensor at point x, with
||5x||% = 8xTESx. In this expression, the little 0 means that
for two functions, fi and f, fi Zo(fr) is equivalent to
limy_q {gg;} = 0. From Eq. (7) we can define a diffusion
tensor at X by

|
Vx = _gx . (8)

2

The importance of the metric tensor comes from its direct
connection with the error field. In dimension one, the met-
ric is the scalar g, = (9,£,)2, where & denotes the normal-
ized error field €, = i—f (see Appendix A). It is meaningful
to relate the metric to a typical scale of correlation, the so-
called error correlation length scale (Daley, 1991; Pannek-
oucke et al., 2008):

szl/\/g_x~ )

In dimension two (three), the metric is a 2 x 2 (3 x 3) matrix
gr = [gij(x)] given by

8ij = 0,i€0,,¢. (10)

Consequently, an approximation for the dynamics of the
parametric formulation based on the diffusion equation is
given by

9,V =2zde, (11a)
i gij = 0 (0,i80,j€) . (11b)

Equation (11a and 11b) have the advantage that we should
be able to compute the time evolution of covariances for
any error dynamics. This will be illustrated with the Burg-
ers equation, which is a one-dimensional dynamical model
with nonlinear advection and diffusion processes similar to
those of geophysical flows.

3 Dynamics of forecast error for the Burgers model

Here, we consider the dynamics associated with the Burgers
equation in 1-D:

du 4+ udeu = kd’u. (12)

For any smooth function x°(x), there exists a unique so-
lution u(x, t) to Eq. (12) with the initial condition u(x,0) =
u%(x). A particular initial condition is now considered, where
u%(x) is a sample of a smooth random field of mean field

u_o(x). Hence, each sample 1 is decomposed as u®(x) =

Nonlin. Processes Geophys., 25, 481-495, 2018
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u9(x) +&%(x), where €° is a smooth random field. The dy-
namics of the mean u(x, t) and of higher order statistical mo-
ments are obtained from the Reynolds equations. Similarly to
Cohn (1993), the fluctuation—-mean flow dynamics deduced
from the Reynolds equations is considered, in place of the
more classical tangent linear dynamics. Compared with the
tangent linear dynamics, fluctuation-mean flow dynamics
calculates the mean flow depending on the fluctuation statis-
tics evolution, which enlarges the tangent linear setting. Note
that the fluctuation—mean flow interaction leads to the Gaus-
sian second-order filter (Jazwinski, 1970, Sect. 9.3), and is
important in nonlinear Kalman-like filters (Cohn, 1993). The
next section presents the fluctuation—-mean flow dynamics
and how it is used to describe the time evolution (Eq. 11a,
11b) of the two-point error covariance parameters.

3.1 Derivation of the fluctuation-mean flow dynamics
for small error magnitudes

The random field # can be decomposed into its ensemble-
averaged and fluctuating parts u =u + &, where u(x,t) =
u(x,t) denotes the expectation of the random field u, and
& =u —u is a random field of zero mean. From this expan-
sion, the mean flow dynamics is the ensemble average of the
dynamics. Equation (12) then reads

0,7 + 10, 1 = k37 — 0, .

(13a)

The dynamics of the fluctuation ¢ is deduced from the dif-
ference between the full dynamics (Eq. 12) and the mean
flow dynamics (Eq. 13a), yielding

e +Mdye = —£0, 7 + 8056 +k02e — £0, . (13b)

Hence, the dynamics of the mean flow and of the fluctua-
tions are described by the coupled system (Eq. 13a, 13b).

Note that the term —¢d, ¢ is the offset of the mean state due
to the fluctuations. The offset term does not affect the statis-
tical properties of the perturbations ¢, while it is crucial to
the dynamics of u. From the commutativity of the ensemble
mean with spatial derivative, m = 3x6, the offset term
£0y6 = %aXSZ can be written as a function of the variance
V =g2, 60,8 = 53, V.

If the magnitude of the perturbation ¢ is small, Eq. (13a,
13b) can be simplified into the fluctuation—mean flow dy-
namics

1
O/ + 0 1 = k% — SV, (14a)

de +udye = —£0, 7 + %axVﬂafs, (14b)
where the product €9, ¢ has been discarded while keeping the
fluctuation—-mean flow interaction term %BXV = ed,¢e. Note
that the tangent linear dynamics corresponds to Eq. (14a,
14b) but where the offset term %Bx V is discarded. More-
over, as pointed out in Ménard (1994), Eq. (14a) is the exact

Nonlin. Processes Geophys., 25, 481-495, 2018

ensemble mean for the Burgers dynamics, while Eq. (14b)
is an approximation for the dynamics. As a consequence, if
the variance field is the true one, then the mean predicted
by Eq. (14a) is the true ensemble mean (Ménard, 1994,
Sect. 5.5.2).

The aim is now to determine the dynamics of the two-
point error covariance function, £,€,, which corresponds, af-
ter spatial discretization, to the time evolution of the covari-
ance matrix P in data assimilation. Following the splitting
strategy developed in Pannekoucke et al. (2016), the evolu-
tion of the perturbation ¢ is decomposed considering the ef-
fect of each process. The splitting strategy is a theoretical
method to deduce the so-called infinitesimal generator of an
evolution equation, by taking advantage of the Lie—Trotter
formula to separate each processes (or appropriate arrange-
ments of the processes). This strategy should not be confused
with numerical time-splitting, which introduces numerical
errors (Sportisse, 2007). Here, as seen in Eq. (14b), four pro-
cesses influence the error statistics: (i) a production term due
to the transport of the mean flow by the perturbation —ed,u,
(ii) the transport of the perturbation by the mean flow ud, e,
(iii) a diffusion term Kafe, and (iv) an offset term %8x V due
to the averaged nonlinear self-interaction of the perturbation
g0y €.

Since the offset (iv) modifies the mean but not the higher
statistical moments of ¢ and without loss of generality, only
the first three elementary processes are needed for the de-
scription of the covariance dynamics:

de = (—om)e, (152)
d& = —Tdye, (15b)
de =xd’e. (15¢)

The effect of each process in Eq. (15a, 15b, 15¢) onto the
dynamics (Eq. 11a, 11b) of the variance and the local diffu-
sion tensor is now described.

3.2 Separate contribution of elementary processes

The contribution of the production term (Eq. 15a) is first ex-
amined, then the transport (Eq. 15b), and finally the diffusion
(Eq. 15c¢).

3.2.1 Contribution of the production term

The production term describes the amplification of the error
due to the gradient of the mean field u. This process can be
viewed as a diagonal operator in the function space where the
random field ¢ lies. As a consequence, this error dynamics
affects the variance but not the metric tensor. This leads to
the following parameter dynamics:

oV =—-Q20u)V,
3,\) =0.

(16a)
(16b)

www.nonlin-processes-geophys.net/25/481/2018/
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3.2.2 Contribution of the transport term

The time evolution of the variance and the diffusion fields
due to the transport term (Eq. 15b) is now tackled. Since the
derivation is archetypal of how to proceed, the calculus is
detailed.

The dynamics of error variance fields, deduced from
Eq. (11a), yields

8,V =2e(—udce) = —udy e, 17

From the commutation of the ensemble average and the
partial derivative, this simplifies to

3V = —ud, V. (18)

Since V = o2, the dynamics of the standard deviation is
given by

d0 = —id,0. (19)

The dynamics of the metric tensor is deduced from
Eq. (11b):

0rg = at(axg)zs

=202%50,%
=20, [at (5)] 0, F

1 € ~
=20, —3,8——23t0 0y €.
o o

With the normalized error € = %e and the dynamics of the
standard deviation (Eq. 19), the dynamics of the metric reads

B g = 20, [—Kax (0F) + iy lna] 0,F,
o

= —20,11(0,%)2 — 210, £02%.

From the identity 9y (0x€0x€) = 28,658%5, and from g =
(0,8)2, we obtain

08 +udyg =—2(0xu)g. (20)

Hence, the variance and the local diffusion v = ﬁ evolve
following

0,V +uo, V=0,
0V +udyv =2(0,u)v.

(21a)
21b)

These equations represent the transport of the variance and
of the diffusion by the mean flow: the variance is conserved,
while the diffusion tensor is warped by the mean flow.

www.nonlin-processes-geophys.net/25/481/2018/

3.2.3 Contribution of the diffusion term

Following the same procedure, the dynamics of V and g
(Eq. 11a, 11b) is given for the diffusion process (Eq. 15¢)

by
2 1 2
&V =« (ax V=25 @V) ) —2gkV, (22a)
1, 1 5 1
0:g =2KgV8xV —ZgKW(axV) +/{8XgV8)c V+
K02g + 2%k — 2k (82%)2. (22b)

As is expected while dealing with Reynolds equations, a

closure problem appears since the term (92)? cannot be
deduced from either V or g. Hence, a parameterization is
needed to proceed.

To proceed further, we take advantage of the link between
the unknown quantity (32%)2 and the fourth-order term K,
of the Taylor expansion of the error correlation function (see
Appendix A):

1
p(x, x+8x)=1— ng(sz +8:8x3 + K 8x* +0(8xY), (23)

where

gx = Ox&xOxEx, (24a)
1

Sy = —Zaxgx, (24b)
1 W 1 2

szﬁ(axax) —Eaxgx. (24¢)

The quantities Sy and K, are later called the skewness
and the kurtosis of the correlation function p(x, -). Note that
due to the symmetry of the two-point correlation functions,
p(x,y) = p(y, x), the skewness S, is entirely determined by
the metric field g. As a result, a choice of the kurtosis implies
choice of the closure.

Two particular cases are interesting to discuss: when the
random field is statistically homogeneous and, moreover,
when the correlation function is a Gaussian function. In the
case where the error random field is homogeneous, the error
correlation function is homogeneous too: p(x,y) = p(x +
8,y +6),Vs € R. As a result, the fields of metric, skewness,
and kurtosis are constant fields denoted by g, §”, and K”.
Due to the homogeneity of the metric field g", the skew-
ness (Eq. 24b) is zero, and the kurtosis (Eq. 24c) is K h —
i(agzx)? In the case where the homogeneous correlation

5x2
function is the Gaussian pg(x,x +8x) = e 246, where Lg
stands for the homogeneous error correlation length scale,
the Taylor expansion reads

2
1 1 1
Xx+8x)=1— —8x2+ - — ) sx* +0(6xY), 25
0G( ) 22 2(2Lé) (6x7) (25)

Nonlin. Processes Geophys., 25, 481-495, 2018
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and by identification with Eq. (23), gg = Sg =0, and

L2 ’
Kg = %gé

We propose to use these results to formulate a closure
model: for a general smooth error random field of the metric
field g, the kurtosis K, (Eq. 24c¢) is approximated by

]
K€ =cai- lzﬁﬁgx, (26)

where the first term of the right hand side is the kurtosis of
the equivalent local homogeneous Gaussian correlation func-
tion. This closure is hereby called the locally homogeneous
Gaussian closure or simply the Gaussian closure.

With this Gaussian closure (Eq. 26), the dynamics of dif-
fusion (Eq. 22a, 22b) is

11
8,V =k (afv — EV(ax V)z) —2gkV, (27a)
1 1 5
0:g —2/<g 8 \% —2KgW(8xV) +
1
KaxgvaxV—i-/ca)%g —4g2/c. (27b)

In the one dimensional case, the dynamics of the local
diffusion tensor is deduced from the dynamics of the met-
ric from 9,v = —2v%9, ¢ with g = % Thus, the variance and
local diffusion tensor evolution are equivalently expressed as

2 1 2 K
0V =V = 5@V ) =V, (28a)
v —2/<—2—a V+2 (a V)2 +
1
Kvaxvaxvﬂagv—zx—(axv) . (28b)
V

Contrary to the production (Eq. 16a, 16b) and the transport
(Eq. 21a, 21b) processes, the effect of the diffusion process
(Eq. 28a, 28b) creates a nonlinear coupling between the vari-
ance and the local diffusion field.

The parametric covariance dynamics for the Burgers equa-
tion is now expressed collecting all these results.

3.3 Parametric covariance dynamics of the Burgers
equation

From Eq. (16a, 16b), Eq. (21a, 21b), and Eq. (28a, 28b),
the complete parametric covariance dynamics for the Burgers
equation under the Gaussian closure is given by the coupled

Nonlin. Processes Geophys., 25, 481-495, 2018

system
1
O + W0 =K 32U — SV, (29a)
&V w0,V =—2(0m)V +kd>V
K1 K
———av2——v, 29b
2V( V) (29b)

Qv + W0y v =2(d, W)V + 2k — 2Va§v + 2—(3 V)2

1
xvaxvaxv + k920 — 2K—(3xv)2. (29¢)
v

Equation (29a, 29b, and 29c¢) exhibit a nonlinear coupling
between the variance (Eq. 29b) and the local diffusion tensor
(Eq. 29¢), which illustrates the intricacy of the action of the
diffusion process on the error dynamics. Moreover, Eq. (29a,
29b, and 29c) differ from its tangent linear equivalent by the
term —%BX V in Eq. (29a).

A numerical experiment is now proposed to illustrate and
assess these theoretical results.

4 Numerical experiment

A numerical experiment is proposed to illustrate the ability of
the PKF forecast to reproduce the statistical evolution of the
errors in the diffusive Burgers model. The numerical setting
is first introduced, followed by an evaluation of the kurtosis
closure. Then, the PKF is assessed using a large ensemble of
nonlinear forecasts (6400 members). A sensitivity test on the
different terms in the PKF concludes the section.

4.1 Numerical setting

For the numerical validation, a front-like situation is con-
sidered on a periodic domain of length D = 1000 km,
discretized with N =241 grid points. The initial ref-
erence state, shown in Fig. 1, is the velocity field
u0(x) = Umax [1 4+ cos@2m(x — D/4)/D)] /2, with Umax =
20kmh~!. From the nonlinear forecast of Eq. (12) starting
from Y, the maximum, initially at 250 km, develops a front
structure at 750km after 7 =24 h of forecast. The simu-
lations considered here are integrated from the initial time
t =0 to the final time # = T'. The Burgers equation (Eq. 12)
has been numerically integrating considering a classical fi-
nite difference spatial scheme and a fourth-order Runge—
Kutta time scheme, with 6t = 0.0027 and « = 0.0025D? /T.

The random perturbation at initial time, €Y, is set as a ho-
mogeneous random field of Gaussian distribution. Follow-
ing Gaspari and Cohn (1999), the homogeneous correlation
function is set, in accordance with the geometry of the circle,
as the chordal distance Gaussian correlation

dxy)?

P,y =e Mo, (30)

where the homogeneous correlation length scale is Lg =
20km and where d(x,y) = % |sin%(x — y)} is the chordal

www.nonlin-processes-geophys.net/25/481/2018/
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1.0 1

0.8 1

0.0 A

0.0 0.2 0.4 0.6 0.8 1.0
x/D

Figure 1. Nonlinear solution of the diffusive Burgers equation for
the times # = {0,0.2,0.4,0.6,0.8, 1} 7.

distance between the two geographical positions x and y.
Since the length scale L is much smaller than the perime-
ter D, the Gaussian correlation (Eq. 30) with the arc-length
distance d(x, y) = |x — y|? is numerically very close to the
one with the chordal distance (while at the theoretical level,
the arc-length Gaussian is not strictly a correlation function
on the circle; see Gaspari and Cohn, 1999) and leads to the
same numerical results.
The covariance function is then defined as

POx,y) = (6%)%0°(x, y), 31)

where o is the constant standard-deviation field. There-
after, four magnitudes of standard deviation ¢® are consid-
ered: 010% =0.01 Upax, ‘7?0% = 0.1 Unax, aé)o% = 0.2 Unax,
and 0500% = 0.5 Upax.-

The time evolution of the true error covariance functions is
computed considering a large ensemble of N, nonlinear fore-
casts of Eq. (12), with N, = 6400. From the non-parametric
convergence, the expected sampling error should thus repre-
sent about 1/4/N, = 1.25 % of the real statistics. In order to
limit the differences when comparing the results and due to
the sampling noise, a single large ensemble of normalized
error (€x)kef1,n,] has been generated as g, = C!/2¢;., where
C!/2 is the square root of the correlation matrix deduced from
the correlations (Eq. 30), and ¢ is a sample of a random
Gaussian noise of zero mean and covariance matrix the iden-
tity matrix. The ensemble of initial perturbation is then gen-
erated as g, = 0%, with o € {a{)%, O o5 T s 0500%}.

Since the parametric covariance dynamics (Eq. 29a, 29b,
29c) has been theoretically derived for small perturbations,
it has to be compared with the statistics from the ensemble
of small magnitude noise. Hence the validation is later con-
ducted by considering the ensemble generated from the ini-
tial standard deviation Uf)% . Limits of predictability of the
parametric covariance dynamics (Eq. 29a, 29b, 29c¢) are also
addressed considering the ensembles of larger initial uncer-
tainty, from 0100  tO 6500 % -
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Figure 2 illustrates the time evolution of the four perturbed
initial conditions whose perturbations are generated from the
normalized perturbation ] scaled with the initial standard
deviations from O'P% in panel (a) to 0500% in panel (d).

These ensembles are first used to tackle the closure of kur-
tosis, as discussed now.

4.2 Evaluation of the kurtosis closure

The aim of this section is to compare the kurtosis diagnosed
from the true error covariance (Eq. 24c), with the kurtosis re-
sulting from the Gaussian closure (Eq. 26). This validation is
a crucial step since the quality of the closure will affect the
skill of the parametric covariance dynamics (Eq. 29a, 29b,
29c). Even though the closure is likely to be wrong for an
arbitrary covariance matrix, it is expected to apply to most
statistics encountered in applications. The large ensemble,
whose initial perturbations are sampled by using 0¥ = 0100% ,
is considered for the validation. The results are equivalent
for the other error magnitudes. For this experiment, the error
covariance matrices at times ¢t = 0 and t = T are representa-
tive of intermediate covariance matrices; the computation of
the true kurtosis and its closure is achieved by considering
the ensemble at both times. The computation of the closure
(Eq. 26) relies on the local metric tensor, which has to be
diagnosed from the ensemble.

The local metric and kurtosis can be computed from the
ensemble considering Eq. (24a) and (24c). It is also possible
to compute these quantities from the direct estimation of the
local correlation function expansion (Eq. 23), with the benefit
of validating the theoretical derivations made in Eq. (24b) for
the skewness and Eq. (24c) for the kurtosis. This motivates
the estimation of these quantities from the computation of
local polynomial expansions, which are computed as follows.

For each position x, the fourth-order polynomial ap-
proximation of the correlation function p(x,:) is esti-
mated as the Lagrange interpolating polynomial Q,(X) =
z,%zl_zp(x,xk)l'[,-#k (()i:fc', )), computed from the five cor-
relation values (o (x, xk))ke[—2,2], Where x; = x + kdx. Ex-
panding the Lagrange interpolating polynomial as Q,(X) =
o+ p1X + paX? 4 p3X3 4 pyX*, one obtains g, = —2p;
and Ky = p4.

Figure 3 illustrates the results computed from the ensem-
ble at # =0 (panel a) and r = T (panel b), the length scale
Ly =1/,/gx (top panels) and the kurtosis (bottom panels)
shown by the continuous line, normalized by the initial ho-
mogeneous Gaussian values, Lg and Kg = gé /8, with gg =
1/ Lé. The kurtosis’ closure (Eq. 26) computed from the met-
ric is shown by the dashed line (bottom panels).

At t =0, the length scale (the kurtosis) field is homoge-
neously equal to the initial values Lg (Kg). The small fluc-
tuations visible at this time are due to the sampling noise. For
t =T, the length scale is larger than at the initial time, and
presents an area of small values in the vicinity of the front
position x = 0.75D. The kurtosis is negligible, except at the
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vicinity of the front position, where the field is oscillating.
For both times, it appears that the kurtosis’ closure is able
to reproduce the main behaviour of the true kurtosis, with
a low relative error ||K — K9€||/||K|| of 5.2% (21.5%) at
time 0 (7'), where || - || stands for the L2 norm. At time 7', the
maximum difference between the two normalized kurtosis is
0.05.

Note that all the previous results are similar for the smaller
initial uncertainty magnitude oP% , with a relative error of
5.2% (14.5 %) at time O (T') (not shown here). For the larger
error magnitudes 0200% and 0500% , the relative error at time
T is 40% and 63 % respectively. Hence, for this numerical
simulation, the Gaussian closure proposed for the kurtosis
appears relevant to approximate the real feature of the cor-
relation shape. This is now used to explore the ability of the
PKF to accurately predict the error statistics.

4.3 Parametric vs. ensemble statistics

The parametric setting is based on the time integration of the
nonlinear coupled system (Eq. 29a, 29b, 29¢) considering an
equivalent numerical scheme to the one solving the Burgers
equation (Eq. 12), i.e. finite difference and RK4, with the
same time step as detailed in Sect. 4.1. The numerical cost
is of the order of a nonlinear time integration of the nonlin-
ear Burgers equation. In this one-dimensional case, only two
scalar fields are propagated: the variance V and the local dif-
fusion field v.

The mean, the error variance, and length-scale fields are
reproduced in Figs. 4, 5, and 6, respectively, considering a
range of initial errors. These figures compare the diagnosis
from the ensemble of nonlinear forecasts of Eq. (12) with the
statistics predicted by the parametric model (Eq. 29a, 29b,
29c¢). The means diagnosed from the ensemble and predicted
by the parametric model are considered first.

4.3.1 Comparison of the means

In order to appreciate the differences between the ensemble
and the parametric means, the discussion is focused on the
results at the final time 7. When the initial error magnitude
is small (Fig. 4a), corresponding to the tangent linear regime,
the ensemble mean (continuous line) and the mean state pre-
dicted from the parametric model (dashed line) coincide with
the reference state u%(7T, x) (grey solid line, reproduced from
Fig. 1). This is within the tangent linear validity regime in
which the small magnitude of the fluctuation has no impact
on the ensemble mean, which is then equal to the reference
trajectory. For larger error magnitudes, the ensemble mean is
expected to deviate from the reference trajectory due to the
nonlinear interaction between the fluctuation and the mean.
In the Burgers equation, the deviation is due to —%BXV in
Eq. (29a), which implies here that the ensemble mean de-
creases as if the diffusion increased with the error magnitude
(panels b, ¢, d). The mean predicted by the parametric model
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is very close to the ensemble mean (panels b, ¢) for the mod-
erate error magnitudes of o10¢ and o20¢, but presents an
anomalous distortion at the inflexion point for the larger er-
ror magnitudes (panel d). Hence, for the particular case of
the Burgers dynamics, the parametric prediction of the mean
is an accurate approximation of the ensemble mean, even for
mild error magnitudes.

4.3.2 Comparison of the variance and length-scale
statistics

The variance (Fig. 5) and length-scale (Fig. 6) statistics are
now discussed. For the small error magnitude, as seen in pan-
els (a), the uncertainty is spreading at the initial time due to
the physical diffusion, resulting in a strong dampening of the
variance. This is accompanied by a global increase of the
length scale, except in the vicinity of the inflection point lo-
cated near x = 0.5D (see Fig. 1). Then, as time goes on, the
dynamical front generates a source of uncertainty, whereby a
beam of variance appears and increases with time, yielding
a maximum of 10.0 times the initial variance at r = T'. The
length scale remains short close to the front position, except
for a peak emerging from time ¢t = 0.67, evolving with the
flow at the inflection point. Comparing to the ensemble statis-
tics, the PKF is able to capture all the details of the dynam-
ics. This strongly supports Eq. (29a, 29b, 29c¢) as well as the
underlying assumptions: the derivation of the tangent linear
dynamics for the error variance and length-scale fields, and
the Gaussian closure for the kurtosis. In particular, the area
of large length-scale values visible at the inflection point of
the front is a real signal and not a numerical artefact of the
diagnosis, since it is produced in both simulations.

The case of the error magnitude of o710 ¢, in which the tan-
gent linear approximation should not be valid anymore, is
now considered (see panels b). Key features previously de-
scribed are still present: the emergence of a beam of uncer-
tainty and the increase of the length scale except in the vicin-
ity of the front. However, two differences appear compared
to the ensemble statistics reference. Firstly, the magnitude
of the uncertainty is lower than in the tangent linear case;
the maximum of variance beam at = T is now close to 6.0
times the initial variance. Secondly, the local large length-
scale value as depicted in the tangent linear setting is nearly
flat at the bottom of the small length-scale basin associated
to the front. The main features of the PKF predictions are
recovered: the variance beam has a lower magnitude than in
the tangent linear case, and there is still a low length-scale
area near the front.

Beyond the variance attenuation, a maximum at t = 7' of
7.8 times the initial variance is much greater than the ensem-
ble statistics result, with a relative error of 29 %. Moreover,
the length-scale field displays a peak at the front, similar to
the one described for the tangent linear model.

In order to assess the role of the nonlinear term, £0,¢, in
the error dynamics (Eq. 13b), an evaluation with an ensem-
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Figure 4. Mean state at time t = 7 computed from the ensemble of forecasts (solid line) and predicted from the parametric model (Eq. 29a,
29b, 29¢) (dashed line), for the initial perturbations of magnitude (a) a?% ,(b) 0100% ,(0) ogo %> and (d) 0500% . The reference state is in grey

solid line.

ble has been performed. The results are displayed in Fig. 7,
which shows, at r = T, the error variance and length-scale
fields estimated with Eq. (29a, 29b, 29¢) (dashed line), com-
pared to the fields diagnosed from a large ensemble (con-
tinuous line, and also shown in Figs. Sb and 6b). Then it
shows the statistics computed from an ensemble of forecast
of the tangent linear dynamics (Eq. 14a, 14b) (small dashed
line) (finite difference and RK4), and using the Reynolds
equations (Eq. 13a, 13b) (dashed-dotted line) (also finite dif-
ference and RK4). It appears that the statistics computed
from the tangent linear dynamics are equivalent to the error
variance and length-scale fields predicted by the parametric
model, while the statistics from the Reynolds equations equal
those deduced from the ensemble of nonlinear forecasts of
Eq. (12). Hence, the difference is well explained by the con-
tribution of the nonlinear term £0,¢.

The case of the larger initial error magnitudes of 0799, and
0509 shows similar results to the magnitude o1 ¢, case: the
small length-scale area is captured by the PKF but with a
spurious oscillation not present in the ensemble estimation
(Fig. 6¢, d), and the position of the beam of uncertainty is
well predicted by the PKF but with a larger magnitude than
the ensemble estimation (Fig. Sc, d). Since the magnitude of
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the variance predicted by the PKF seems to increase faster
than the ensemble estimation, it is interesting to investigate
what happens for a longer time window.

4.3.3 Long-term behaviour

The increase of the PKF variance prediction might be a side
effect due to the tangent-linear-like derivation of the PKF
which could fail to predict the saturation of the error magni-
tude. In order to tackle the long-term behaviour, a compari-
son is conducted with a longer time window of [0, 5T']. Since
the location of the uncertainty beam is well predicted by the
PKF, the comparison focuses on the magnitude of the vari-
ance fields’ maximum. The time series of the variance maxi-
mum predicted by the PKF and estimated from the ensemble
is shown in Fig. 8. The time evolution is equivalent for all the
initial error magnitudes: after a short transition (where the
variance decreases), two phases are seen, where the variance
increases (phase 1) then saturates and decreases in the long
term (phase 2). The time at which the maximum of variance
is reached shifts with the magnitude of the initial error: it oc-
curs after (before) the time T for o9, (050%). We associate
the increase to the advection contribution that includes the
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Figure 5. Parametric (dashed line) vs. ensemble estimated (continuous line) variance fields for initial perturbations of standard deviation
magnitude o{)% (a) (tangent linear dyanmics), 0100% (b) (weakly nonlinear dynamics), ago% (¢), and 090% (d). The fields are represented

only for the times t = {0,0.2,0.4,0.6,0.8, 1}T.

source term —2(d,u)V in the variance dynamics (Eq. 29b),
while the damping is related to the diffusion. Thanks to the
competition between the advection and the diffusion, the in-
crease of the variance first saturates then decreases. The PKF
reproduces the two phases with a magnitude prediction close
to but different from the ensemble estimation. For the small
initial error magnitude o7 ¢, the PKF underestimates the vari-
ance for the long-term behaviour, while the variance is over-
estimated for larger initial error magnitudes. From numer-
ical investigations with smaller error magnitude at the ini-
tial time, the PKF prediction of phase 2 appears more dif-
ficult than for phase 1. This could be related to the choice
of closure made for the kurtosis: while the locally homoge-
neous Gaussian closure is in accordance with the one diag-
nosed from the ensemble, a heterogeneous closure might im-
prove the results. Beyond these deficiencies, it is interesting
to maintain that the theoretical derivation of the parametric
model, which is partly based on the tangent linear assump-
tion, is able to capture the main part of the uncertainty dy-
namics in the Burgers equation.

4.3.4 Discussion

From these results, we can conclude that the PKF forecast, as
implemented by Eq. (29a, 29b, 29¢), reproduces the tangent
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linear evolution of the statistics as given by the covariance
forecast (Eq. 3). Put differently, the PKF forecast reproduces
the tangent linear covariance dynamics occurring in the ex-
tended Kalman filter. Since the PKF forecast model is de-
duced from a small error expansion, it is not meant to recover
strongly nonlinear effects, which has been verified in the nu-
merical experiment. However, even when the nonlinearity is
stronger and the tangent linear assumption is invalid, the so-
lution of the PKEF still shares some features with the empirical
ensemble statistics. This may not be the case anymore for the
long-time integration of more complex geophysical dynam-
ics. However, this suggests that some of the statistics could
be predicted, at least for medium-range forecasts.

5 Conclusions

This study focused on the forecast step of the parametric
Kalman filter (PKF) applied to the nonlinear dynamics of the
diffusive Burgers equation. The parametric approach consists
in approximating the error covariance matrix by a covariance
model with evolving parameter fields. Here the covariance
model considered is based on the diffusion equation, parame-
terized by the error variance and local diffusion fields. Hence,
the forecast of the error covariance matrix, which is com-
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initial perturbation of standard deviation magnitude O’P% (a), U?O% (b), ago % (¢), and ag)o% (d).

putationally very demanding in real applications with high-
dimensional systems, amounts to the forecast of the error
variance and local-diffusion fields, whose numerical cost is
of the order of a single nonlinear forecast. In comparison,
ensemble methods need dozens of members for the covari-
ance forecast (which could be parallelized though), as well
as localization to address the rank deficiency.

The derivation of the PKF dynamics was first rigorously
deduced from the dynamics of the perturbation under a small
error magnitude assumption. However, a closure problem ap-
pears due to the physical diffusion process. This closure issue
has been related to the fourth term in the Taylor expansion of
the correlation function, the kurtosis, and a closure has been
proposed based on a homogeneous Gaussian approximation
for the kurtosis.

Numerical experiments in which the true covariance evo-
lution has been diagnosed from an ensemble forecast were
performed. First, a comparison with the PKF prediction
showed the relevance of the closure, even for large error mag-
nitudes. Moreover, these experiments have demonstrated the
ability of the parametric formulation to reproduce the main
features of the error dynamics when the tangent linear ap-
proximation is valid. When the tangent linear dynamics is
not valid anymore, the PKF can only reproduce a part of the
error statistics evolution, at least for mid-term forecasts.

This contribution is a step toward the PKF formulation
of more complex dynamics in geophysics. From the present
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study, we learned the difficulties of handling the higher order
derivatives, since the coupling between the error variance and
diffusion fields has been due to the physical diffusion. The
Gaussian closure, similar to the one introduced in the kurto-
sis’ treatment, will be useful in providing prognostic dynam-
ics. But we expect that the main difficulties will be encoun-
tered in the forecast of multivariate statistics that govern the
balance between geophysical fields. Theoretically, the PKF
formulation enables the forecast of covariance matrices in
high dimensions. Hence, it might offer new theoretical tools
to approximate and to investigate important aspects of the
dynamics of errors, such as the unstable subspace of chaotic
dynamics. These points will be investigated in further devel-
opments.

Data availability. No data sets were used in this article.
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Appendix A: Fourth-order expansion of correlation
functions

The aim of this section is to show the following theorem
(given here for d=1).

Theorem. For a smooth and centred error random field ¢,
with a smooth normalized error random field defined by £, =
&x /0y, the error correlation function p(x, y) =§X_§y locally
expands as

1
plx,x+86x) = 1—zgx8x2+Sx8x3+Kx5x4+0(8x4), (A1)

with

8x = axgx axgm (A2a)
1

Sy = _Zaxgxa (A2b)
| 5=—==— 1,

Ky = —02%8, 028, — —0;gx- (A2c)

24 12

Proof. For a smooth normalized error field, the Taylor ex-
pansion reads

~ _ = ~ Lo oo, T o3
Extox = Ex + 0xExSx + 28X£x8x + 63x8x6x +

1,
ﬁajexsx“ +o(]18x1Y). (A3)

Multiplication by 2, yields the correlation function
= = T 1,\#
(X, x +8x) =72 +5,0,8,0x + Eex8§8x8x2+
l=—=— l —=
gexagexaﬁ + ﬁexa;*sxs;c“ +o0(5x%). (Ad)

The aim is to reformulate terms of the form 2, 9%z, in or-
der to specify links between the coefficients.

The variance €2 of the normalized error field is first stud-

ied. From linearity of the expectation operator it can be de-

duced that ;2_3 = ﬁs)% = 1. Hence, the zero-order term of the

Taylor expansion l(Eq. Ad)isequal to 1.
The term €0, ¢ is now considered. Since 8{5)2( =28, 0,&,,
the commutation rule 9,:(-) =d,:(-) and the stationarity

of the normalized variance field €2 =1 imply that 9,2 =
0582 =0 = 28,08, Or

&x0x6x =0, (AS)

so that the first-order term of the Taylor expansion (Eq. A4)
is zero.

For the term %,32¢,, by using the identity 9, (EX BXEX) =
0y Ex 0y Ex + & 3/%2‘:\;, and the commutation rule, we calculate
that €,028, = 0y (€x0x€x) — 0x&x 0xEx. With Eq. (A5), this
simplifies into

5,028, = — 0,8, 058y (A6)
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Identifying with Eq. (A1), the second order term of the
Taylor expansion (Eq. A4) can be written as

8x = 8)(5)( axgx . (A7)

The third-order term £,03¢, is reformulated as fol-
lows: 8X(Ex835x)=8x'§x835x+5x355x, which implies

2,038, = 0, (Ex 83’5,() — 0y8,028y, which is transformed

using Eq. (A6) into €,078, = —0, (9x&x 0x8x) — OxEx 07Ey.
However, with 0, (0,€,0,8x) = 20,8y 8%%, it follows that

N~ A~ 1 — —
08,028, = §8x 0y Ex OxEy ), (A8)

and then

= 2~ 3 —~ =
£x038, = —Eax (058 OxEx). (A9)

Identifying with Eq. (A1), the third order term of the Taylor
expansion (Eq. A4) can be written as

1

Sy = ——0x8x.

2 (A10)

For the last fourth-order term 2,9#g,, the computation
of the derivative 0, (éxag‘gx) = 0, &y 83’5)5 +% Bf'éx leads to

7,09, =0, (Ex d 3’5x) — 0,3, 038, From Eq. (A9), this reads

£,0%8, = —%83 (0&x BXEX) — 0,€,07€,. The last term can
be deduced from the use of the homogeneity of the normal-

ized error variance €2 = 0. Since 3482 = 87[2%, 8,2, ], the
Leibniz rule states

382 =2 (a;}zx 0xFy +3022,028, + 30,5,07%, + 5y ajsx) . (AlD

With the ensemble average, it follows that 9,2,93%, =

—}TEX A%e, — %8)%?3} 02¢,. Hence,
5,048 = —207 (0xex Oyx ) + 028, 925, (A12)

Identifying with Eq. (A1), the fourth order term of the Taylor
expansion (Eq. A4) can be written as

l ——— 1
K, = ﬁagex 928, — —02g,. (A13)
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