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Abstract. Climate change projections indicate that extreme
snowfall is expected to increase in cold areas, i.e., at high
latitudes and/or high elevation, and to decrease in warmer
areas, i.e., at mid-latitudes and low elevation. However, the
magnitude of these contrasting patterns of change and their
precise relations to elevation at the scale of a given moun-
tain range remain poorly known. This study analyzes annual
maxima of daily snowfall based on the SAFRAN reanaly-
sis spanning the time period 1959–2019 and provided within
23 massifs in the French Alps every 300 m of elevation. We
estimate temporal trends in 100-year return levels with non-
stationary extreme value models that depend on both eleva-
tion and time. Specifically, for each massif and four eleva-
tion ranges (below 1000, 1000–2000, 2000–3000, and above
3000 m), temporal trends are estimated with the best extreme
value models selected on the basis of the Akaike information
criterion. Our results show that a majority of trends are de-
creasing below 2000 m and increasing above 2000 m. Quan-
titatively, we find an increase in 100-year return levels be-
tween 1959 and 2019 equal to +23 % (+32kgm−2) on aver-
age at 3500 m and a decrease of−10 % (−7kgm−2) on aver-
age at 500 m. However, for the four elevation ranges, we find
both decreasing and increasing trends depending on location.
In particular, we observe a spatially contrasting pattern, ex-
emplified at 2500 m: 100-year return levels have decreased
in the north of the French Alps while they have increased in
the south, which may result from interactions between the
overall warming trend and circulation patterns. This study
has implications for natural hazard management in mountain
regions.

1 Introduction

Extreme snowfall can generate casualties and economic
damage. For instance, it can cause major natural hazards
(avalanche, winter storms) that might be intensified with high
winds and freezing rain. Heavy snowfall can also disrupt
transportation (road, rail, and air traffic), tourism, electricity
(power lines), and communication systems with a significant
impact on economic services (Changnon, 2007; Blanchet
et al., 2009). Subsequently, snow overloading can lead to the
collapse of buildings such as a shed, a greenhouse, or some-
thing as large as an exhibition hall (Strasser, 2008). It re-
mains a counterintuitive phenomenon that extreme snowfall
can increase in a warming climate, at least transiently, i.e., as
long as local temperatures are cold enough (Frei et al., 2018).
Therefore, to adapt protective measures, it is crucial to deter-
mine temporal trends in extreme snowfall for various areas
(regions, elevations) and timescales, and to understand the
underlying causes of these trends.

Extreme snowfall stems from extreme precipitation oc-
curring in a range of optimal temperatures slightly below
0 ◦C according to O’Gorman (2014). This optimal range
of temperatures favors both high precipitation intensities
and percentages of precipitation falling as snow close to
100 %. Thus, changes in extreme snowfall depend on a trade-
off between trends in extreme precipitation and changes in
the probability of experiencing temperature in this optimal
range.

On a global scale, extreme precipitation is expected to in-
crease with the augmentation of global mean temperature.
Specifically, the most intense precipitation rates are theoret-
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ically expected to roughly increase at a rate of 7% ◦C−1,
i.e., 7% ◦C−1 of global mean warming, due to an increase
in maximum atmospheric water vapor content according to
the Clausius–Clapeyron relationship (O’Gorman and Muller,
2010). In practice, the observed global mean temperature
scaling for annual maxima of 1 d precipitation is 6.6 % ◦C−1

(Sun et al., 2021). On the other hand, the probability of expe-
riencing temperature in the optimal range for extreme snow-
fall is expected to decrease in warm areas, i.e., mid-latitude
and low-elevation regions, as temperatures are expected to
shift away from 0 ◦C. However, this probability may increase
in cold areas, i.e., high-latitude and/or high-elevation regions,
where temperatures are expected to shift toward 0 ◦C while
remaining below 0 ◦C (Frei et al., 2018).

In the European Alps, past observations show both that
the warming rate is larger than the global warming rate and
that trends in extreme precipitation depend on the season and
on the region. Indeed, past trends in mean annual surface
temperature point to a temperature increase in high moun-
tain regions of central Europe, with a warming rate rang-
ing from 0.15 to 0.35 ◦C per decade since 1960 (Fig. 2.2 of
IPCC, 2019) against a range from 0.08 to 0.14 ◦C per decade
since 1951 for the global warming rate (IPCC, 2013). Fur-
thermore, past trends in daily maxima of precipitation largely
depend on the season (Fig. 7 of Ménégoz et al., 2020).
In winter, daily maxima precipitation (which may generate
extreme snowfall) has trends that vary between −40 % to
+40 % per century depending on the location. On the other
hand, projected trends in winter precipitation in the Euro-
pean Alps indicate mostly positive trends in 100-year return
levels (Fig. 12 of Rajczak and Schär, 2017). For instance,
an increase between 5 % and 30 % is expected under a high
greenhouse gas emission scenario (comparing 2070–2099 to
1981–2010 for RCP8.5).

In and around the French Alps, studies analyzing extreme
snowfall are rare (Beniston et al., 2018). A few papers de-
scribe the trends in extreme snowfall depending on eleva-
tion (Table 1). On one hand, past observations for Swiss
stations below 1800 m present either a majority of decreas-
ing trends or insignificant changes in the mean annual maxi-
mum of snowfall (Marty and Blanchet, 2012; Scherrer et al.,
2013). On the other hand, climate projections for the Pyre-
nees and the Alps under a high greenhouse gas emission
scenario (SRES A2 and RCP8.5, respectively) show that
the mean seasonal maximum of snowfall is expected to de-
crease below a transition elevation and increase above it.
López-Moreno et al. (2011) estimated a transition elevation
of around 2000 m for the Pyrenees (comparing 2070–2100
to 1960–1990), while Frei et al. (2018) estimated a transi-
tion of around 3000 m for the Alps (comparing 2070–2099 to
1981–2010). In the French Alps, despite the existence of suf-
ficient snowfall records and of previous studies that exploited
them in an explicit extreme value framework, temporal trends
in extreme snowfall remain poorly described. Indeed, earlier
works focused rather on the spatial non-stationarity (with re-

spect to latitude and longitude) of 3 d maxima of snowfall
with max-stable processes (Davison et al., 2012). For in-
stance, Gaume et al. (2013) estimated conditional 100-year
return level maps at a fixed elevation of 2000 m, while Nico-
let et al. (2016) found that the spatial dependence range of
extreme snowfall has been decreasing.

This study addresses the gap identified above, by assess-
ing past temporal trends in the 23 massifs of the French Alps,
with special emphasis on the 100-year return levels of daily
snowfall. We rely on the SAFRAN reanalysis (Durand et al.,
2009) available for the period 1959–2019, which provides,
among other variables, time series of daily snowfall (from
which annual maxima can be computed) for each massif and
every 300 m of elevation between 600 and 3600 m (Vernay
et al., 2019). In order to properly account for the specific sta-
tistical nature of maximal daily snowfall, our methodology
relies on non-stationary extreme value models that depend
on both elevation and time. Specifically, for each massif and
four ranges of elevations (below 1000, 1000–2000, 2000–
3000, and above 3000 m), temporal trends in 100-year return
levels are estimated with a model selected on the basis of the
Akaike information criterion.

2 Snowfall data

We study annual maxima of daily snowfall in the French
Alps, which are located between Lake Geneva to the north
and the Mediterranean Sea to the south (Fig. 1). This re-
gion is typically divided into 23 mountain massifs of about
1000km2, which correspond to 23 spatial units covering the
French Alps (Vernay et al., 2019), the climate being consid-
ered homogeneous inside each massif for a given elevation.

The SAFRAN reanalysis (Durand et al., 2009; Vernay
et al., 2019) combines large-scale reanalyses and forecasts
with in situ meteorological observations to provide daily
snowfall data, i.e., snow water equivalent of solid precipi-
tation measured in kgm−2, available for each massif from
August 1958 to July 2019. We consider annual maxima of
daily snowfall centered on the winter season; e.g., an annual
maximum for the year 1959 corresponds to the maximum
from 1 August 1958 to 31 July 1959. Thus, we study annual
maxima from 1959 to 2019.

The SAFRAN reanalysis focuses on the elevation depen-
dency of meteorological conditions. Indeed, this reanalysis
is not produced on a regular grid but provides data for each
massif every 300 m of elevation. As illustrated in Fig. 1,
we consider four ranges of elevation: below 1000 m, be-
tween 1000 and 2000 m, between 2000 and 3000 m, and
above 3000 m. For instance, the maxima for the range “below
1000 m” correspond to the maxima at 600 m and the maxima
at 900 m. We note that for each massif, we do not have any
maxima above the top elevation of the massif.

The SAFRAN reanalysis has been evaluated both directly
with in situ temperature and precipitation observations and
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Table 1. Temporal trends in extreme snowfall with respect to elevation in and around the French Alps. Elevations are in meters above sea
level (m a.s.l.). SNd denotes the annual maximum of snowfall in N consecutive days.

Location Indicator Temporal trend Time period Dataset Reference

Past trends Switzerland S3d Decrease for the
majority of stations

1930–2010 25 stations, all except
one below 1800 m

Marty and Blanchet (2012)

Swiss Alps S1d Insignificant changes 1864–2009 9 stations, all except
one below 1000 m

Scherrer et al. (2013)

Projected trends Pyrenees 25-year re-
turn
level of S1d

Decrease below 1500 m
Increase above 2500 m

1960–1990 vs.
2070–2100

1 HIRHAM RCM
and SRES A2

López-Moreno et al. (2011)

Western and
central Europe

December–
February
S1d

Increase almost only in
high mountain ranges

1961–2100 8 KNMI RACMO2
RCM and RCP8.5

de Vries et al. (2014)

Alps September–
May S1d

Decrease below
3000 m
Increase above 3000 m

1981–2010 vs.
2070–2099

14 EURO-CORDEX
GCM–RCM and
RCP8.5

Frei et al. (2018)

Figure 1. (a–d) Time series of annual maxima of daily snowfall from 1959 to 2019 for the Vanoise massif (purple region in e) clustered by
the four ranges of elevations considered. (e) Topography and delineation of the 23 massifs of the French Alps (Durand et al., 2009).

indirectly with various snow depth observations compared
to snow cover simulations of the model Crocus driven by
SAFRAN atmospheric data (Durand et al., 2009; Vionnet
et al., 2016; Quéno et al., 2016; Revuelto et al., 2018; Vion-
net et al., 2019). Specifically, in Vionnet et al. (2019), the
SAFRAN reanalysis has been evaluated for snowfall against
two numerical weather prediction (NWP) systems for winter
2011–2012. The authors find that the seasonal snowfall aver-
aged over all the massifs of the French Alps reaches 546 mm
in SAFRAN, 684 mm in the first NWP, and 737 mm in the
second NWP. In detail, they find that SAFRAN significantly
differs from the two NWP systems in (i) areas of high ele-
vation, probably due to the limited number of high-elevation
stations and gauge undercatch, and (ii) areas on the windward

side of the different mountain ranges due to the assumption
of climatological homogeneity within each SAFRAN massif.
In Ménégoz et al. (2020), the SAFRAN reanalysis has been
compared to the regional climate model MAR which uses
ERA-20C as forcing. The authors found that the vertical gra-
dient of the annual mean of total precipitation of SAFRAN
is generally smaller than those simulated by MAR.

3 Method

3.1 Statistical distribution for annual maxima

Following the block maxima approach from extreme value
theory (Coles, 2001), we model annual maxima of daily
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snowfall with the generalized extreme value (GEV) dis-
tribution. Indeed theoretically, as the central limit theo-
rem motivates asymptotically sample means modeling with
the normal distribution, the Fisher–Tippett–Gnedenko theo-
rem (Fisher and Tippett, 1928; Gnedenko, 1943) encourages
asymptotically sample maxima modeling with the GEV dis-
tribution. In practice, if Y is a random variable representing
an annual maximum, we can assume that Y ∼ GEV(µ,σ,ξ).
Then, if y denotes an annual maximum,

P(Y ≤ y)=


exp

[
−
(
1+ ξ y−µ

σ

)− 1
ξ

+

]
if ξ 6= 0 and where u+ denotes max(u,0),

exp
[
−exp

(
−
y−µ
σ

)]
if ξ = 0; in other words Y ∼ Gumbel(µ,σ ),

(1)

where the three parameters are the location µ, the scale σ >
0, and the shape ξ . The GEV distribution encompasses three
sub-families of distribution called reversed Weibull, Gumbel
and Fréchet, which correspond to ξ < 0, ξ = 0, and ξ > 0,
respectively.

3.2 Elevational–temporal models

We consider non-stationary models that depend on both ele-
vation and time. Such models combine a stationary random
component (a fixed extreme value distribution, e.g., GEV
distribution) with non-stationary deterministic functions that
map each covariate to the changing parameters of the dis-
tribution (Montanari and Koutsoyiannis, 2014). Specifically,
for each massif and each range of elevation (below 1000,
1000–2000, 2000–3000, and above 3000 m), if Yz,t repre-
sents an annual maximum at the elevation z (within one of
the four ranges of elevation) for the year t (between 1959
and 2019), we assume that

Yz,t ∼ GEV(µ(z, t),σ (z, t),ξ(z)). (2)

As illustrated in Table 2, we consider eight models that
verify Eq. (2). For a model M, we denote as θM the set
of parameters of µ(z, t),σ (z, t), and ξ(z). Following a pre-
liminary analysis with pointwise distributions (Sect. 4.1), we
consider models with a location and a scale parameter that
vary linearly with respect to elevation. Then, the shape pa-
rameter is either constant or linear with respect to elevation.
Finally, the location and/or the scale can vary linearly with
time. As shown in Table 2, we assume that the temporal and
elevational effects are separable inside each range of ele-
vation. Thus, we do not consider models with cross terms,
i.e., terms involving both the elevation and the years such as
z× t . We discuss this assumption in Sect. 5.1.

First, models are fitted with the maximum likelihood
method. Let y = (yz1,t1 , . . .,yz1,tM , . . .,yzN ,t1 , . . .,yzN ,tM )

represent a vector of annual maxima from year t1 to tM
and for the range of elevations containing z1, . . .,zN for a

given massif (Sect. 2). We classically assume that maxima
are conditionally independent given θM. For each model
M, we compute the maximum likelihood estimator θ̂M
which corresponds to the parameter θM that maximizes the
likelihood p(y|θM), where p(y|θM)=

∏
z

∏
t
∂P (Yz,t≤yz,t )

∂yz,t
.

Then, we select the model with the minimal Akaike infor-
mation criterion (AIC) for each massif and range of eleva-
tions. Indeed, the AIC is the best criterion in a non-stationary
context with small sample sizes (Kim et al., 2017). AIC
equals 2×[#θM−p(y |̂θM)], where #θM is the number
of parameters for the model M. Thus, minimizing the AIC
corresponds to selecting models that both have few parame-
ters, i.e., low #θM, and fit the data well, i.e., high p(y |̂θM).
Goodness of fit is assessed with Q–Q plots which show a
good fit for the selected models (Appendix A).

3.3 Return levels

The T -year return level, which corresponds to a quantile ex-
ceeded each year with probability p = 1

T
, is the classical

metric to quantify hazards of extreme events (Coles, 2001;
Cooley, 2012). We set p = 1

100 = 0.01 as it corresponds to
the 100-year return period which is widely used for hazard
mapping and the design of defense structure in France, no-
tably for snow-related hazards (Eckert et al., 2010). Let M
denote a model from Table 2 and θ̂M the corresponding
maximum likelihood estimator. Then, the associated return
levels yp, which depend on the elevation z and the year t ,
can be computed as follows:

P(Yz,t ≤ yp(z, t)|̂θM)= 1−p↔ yp(z, t)= µ(z, t)

−
σ(z, t)

ξ(z)

[
1− (− log(1−p))−ξ(z)

]
. (3)

We study trends in return levels. For any considered
model, the time derivative of the return level ∂yp(z,t)

∂t
is con-

stant and quantifies the yearly change in return level. Thus,
for each range of elevations, a massif is said to have an in-
creasing trend if the associated return level has increased,
i.e., if ∂y0.01(z,t)

∂t
> 0. A massif has a decreasing trend if

∂y0.01(z,t)
∂t

< 0. In the Result section, we display changes in
100-year return levels between 1959 and 2019, i.e., over the
last 60 years, which equal 60× ∂y0.01(z,t)

∂t
. If ∂y0.01(z,t)

∂t
6= 0,

i.e., if the selected model is temporally non-stationary, we
compute the significance of the trend with a semi-parametric
bootstrap resampling approach (Appendix B). We generate
B = 1000 bootstrap samples using the parameter θ̂M. For
each bootstrap sample i, we compute the time derivative of

the return level ∂yp(z,t)
∂t

(i)
. Finally, a massif with an increas-

ing trend is said to have a significant trend if p̂( ∂y0.01(z,t)
∂t

>

0|̂θM)= 1
B

∑B
i=11 ∂y0.01(z,t)

∂t

(i)
>0
> 1−α, where α = 5% is

the significance level. In other words, the trend is signifi-
cantly increasing when the percentage of bootstrap samples
for which the return levels are increasing is above the thresh-
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Table 2. Elevational–temporal models considered rely on the GEV distribution. For the elevational non-stationarity, the location and the
scale parameters vary linearly with the elevation z, while the shape is either constant or linear with z. For temporal non-stationary models,
the location and/or the scale vary linearly with time t . See Sect. 3.2 for a full description of the terms used in the table.

Temporal stationarity Model name µ(z, t) σ (z, t) ξ(z) #θM

Stationary M0 µ0+µz× z σ0+ σz× z ξ0 5
Mξz ξ0+ ξz× z 6

Non-stationary Mµt µ0+µz× z+µt × t σ0+ σz× z ξ0 6
Mµt ,ξz ξ0+ ξz× z 7

Non-stationary Mσt µ0+µz× z σ0+ σz× z+ σt × t ξ0 6
Mσt ,ξz ξ0+ ξz× z 7

Non-stationary Mµt ,σt µ0+µz× z+µt × t σ0+ σz× z+ σt × t ξ0 7
Mµt ,σt ,ξz ξ0+ ξz× z 8

old 1−α. Likewise, a massif has a significant decreasing
trend if p̂( ∂y0.01(z,t)

∂t
< 0|̂θM) > 1−α.

3.4 Workflow

In Sect. 4.1, we analyze changes in pointwise distribution
of annual snowfall maxima with elevation in the 23 mas-
sifs of the French Alps, which helped us define the eight
elevational–temporal models considered (Sect. 3.2). Point-
wise distribution stands for a distribution fitted on the an-
nual maxima from a single elevation of one massif. Specif-
ically, we fit a pointwise GEV distribution with the maxi-
mum likelihood method for each massif every 300 m of ele-
vation from 600 to 3600 m. We exclude physically implausi-
ble distributions; i.e., ξ 6∈ [−0.5,0.5] (Martins and Stedinger,
2000). Then, we compute elevation gradients for the three
GEV parameters and the 100-year return level with a linear
regression.

In Sect. 4.2, we compare pointwise distributions with our
approach based on piecewise elevational–temporal models.
Piecewise models stand for models fitted on the annual max-
ima from a range of elevation of one massif. We present the
elevational–temporal models selected in each massif for each
range of elevations (below 1000, 1000–2000, 2000–3000,
and above 3000 m) obtained with the methodology described
in Sect. 3.2. First, we fit the eight models from Table 2 with
the maximum likelihood method. Then, we select one model
with the AIC. Finally, if the selected model is temporally
non-stationary, we assess the significance of the trend using
a semi-parametric bootstrap resampling approach with a sig-
nificance level α = 5% (Sect. 3.3).

In Sect. 4.3, we present for each massif and range of eleva-
tions the temporal trends in 100-year return levels obtained
from selected models. We compute 100-year return levels
in 2019 and their changes between 1959 and 2019 with the
selected elevational–temporal models (Sect. 3.3). For each
range of elevations, a massif has an increasing (decreasing)
trend if the associated return level has increased (decreased).

4 Result

4.1 Pointwise distribution for each elevation.

According to pointwise fits, the location and scale parame-
ters increase linearly with elevation (Fig. 2a and b). R2 co-
efficients are always larger than 0.8, except for the Bauges
massif for the scale parameter (Fig. 3b). The average ele-
vation gradient for the location and the scale parameters is
equal to 2.1kgm−2/100m and 0.39kgm−2/100m, respec-
tively (Fig. 3a and b). In particular, this linear augmenta-
tion is also valid for any range of elevations considered
to fit elevational–temporal models. Thus, as explained in
Sect. 3.2, we assume for elevational–temporal models loca-
tion and scale parameters that vary linearly with respect to
elevation. On the other hand, changes in the shape parame-
ter rarely follow a linear relationship with elevation between
600 and 3600 m. Indeed, only seven massifs have R2 coef-
ficients larger than 0.5 (Fig. 3c). However, as illustrated in
Fig. 2c, it does not preclude the shape parameter from vary-
ing linearly with the elevation locally, i.e., within an eleva-
tion range. Therefore, as explained in Sect. 3.2, we assume
for elevational–temporal models that the shape parameter is
either constant or linear with respect to elevation.

In Fig. 2d we show the change in 100-year return lev-
els with elevation, while in Fig. 3d we display their eleva-
tion gradients. Return levels augment linearly with eleva-
tion, which is confirmed by R2 coefficients always larger
than 0.8. The largest return levels and elevation gradients
correspond to the Mercantour (Southern Alps) and Haute-
Maurienne massif (eastern part of the French Alps).

4.2 Elevational–temporal models for each range of
elevations

Figure 4 illustrates selected models for each massif and each
range of elevations. The most selected model is a temporally
non-stationary models Mµt ,σt , which is selected for 54% of
the massifs and is significant for 32% of the massifs. Further,
the temporally stationary model M0 and Mξz have been se-
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Figure 2. Changes in GEV parameters (a–c) and in 100-year return levels (d) with the elevation for the 23 massifs of the French Alps. GEV
distributions are estimated pointwise for the annual maxima of daily snowfall every 300 m of elevation.

lected for 28% and 1% of the massifs. The remaining tem-
porally non-stationary models have been selected for 17%
of massifs. We notice that the four-most-represented tempo-
rally non-stationary models have a linearity with respect to
the years t for the scale parameter (which impacts both the
mean and the variance of the GEV distribution), potentially
indicating that often both the intensity and the variance of
maxima are changing over time.

Furthermore, we observe that the shape parameter values
remain between −0.4 and 0.4, which is a physically accept-
able range (Martins and Stedinger, 2000). Except a majority
of Weibull distributions (massifs displayed in green in Fig. 4)
at 500 m in the northwest of the French Alps and a clear ma-
jority of Fréchet distributions (yellow massifs) at 2500 m, we
do not find any clear spatial/elevation patterns for the shape
parameter.

Figure 5 exemplifies the differences between point-
wise distribution and our approach based on piecewise
elevational–temporal models. We consider annual maxima
from 600 to 3600 m of elevation for the Vanoise massif
(Sect. 2). First, our approach makes it possible to interpolate
GEV parameter values (and thus to deduce 100-year return
levels) for each range of elevations (blue line) rather than
having point estimates (green dots). Furthermore, it reduces
confidence intervals for return levels (shaded areas) which
were computed with an approach based on semi-parametric
bootstrap resampling (Appendix B). Finally, our approach
accounts for temporal trends. For example, for the Vanoise
massif above 3000 m, the selected model is a temporally non-
stationary model (Fig. 4) with an increasing trend in return
levels (Fig. 8). This explains why return levels in 2019 es-
timated from the elevational–temporal model exceed return
levels estimated from the pointwise distribution.

The Cryosphere, 15, 4335–4356, 2021 https://doi.org/10.5194/tc-15-4335-2021
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Figure 3. Elevation gradients for the GEV parameters (a–c) and 100-year return levels (d) for the 23 massifs of the French Alps. GEV
distributions are estimated pointwise for the annual maxima of daily snowfall every 300 m of elevation. Elevation gradients are estimated
with a linear regression. The R2 coefficient is written in black for each massif.

4.3 Temporal trends in return levels

Figure 6 shows that both increasing and decreasing trends
in 100-year return levels are found for all elevation ranges.
We also observe that a majority of trends are decreasing be-
low 2000 m and increasing above 2000 m. If we analyze only
significant trends, the elevation pattern remains the same. On
one hand, more than 30 % of massifs are significantly de-
creasing below 2000 m: 40 % below 1000 m and 30 % for
the range 1000–2000 m. On the other hand, roughly 30 % of
massifs are significantly increasing above 2000 m: slightly
less than 30 % for the range 2000–3000 m and slightly less
than 40 % above 3000 m. We note that the sign and the sig-
nificance of the trends (summarized with the percentages in
Fig. 6) remain largely similar for the trends in events of 10-
and 50-year return periods (Appendix C).

In Fig. 7, we show distributions of changes and relative
changes in 100-year return levels between 1959 and 2019.
We find a temporal increase in 100-year return levels be-
tween 1959 and 2019 equal to +23 % (+32kgm−2) on aver-
age at 3500 m and a decrease of−10 % (−7kgm−2) on aver-

age at 500 m. For intermediate elevations, i.e., between 1000
and 3000 m, we observe that the distributions of changes
and of relative changes remain roughly negative (decrease)
at 1500 m and positive (increase) at 2500 m. This result holds
for all massifs, for the subset of massifs with a selected model
temporally non-stationary, and for the subset with a selected
model that is temporally non-stationary and significant.

In Fig. 8, we display the change in 100-year return lev-
els between 1959 and 2019 for each range of elevations. At
500 m, we observe that eight massifs have a stationary trend
and five massifs located in the center of the French Alps have
a significant decreasing trend. We also note that two massifs
located in the western French Alps have an increasing sig-
nificant trend, with an absolute change in the 100-year return
level close to+20kgm−2. At 1500 m, six massifs in the cen-
ter of the French Alps have decreasing trends. At 2500 m,
we observe a spatially contrasting pattern: most decreasing
trends are located in the north, while most increasing trends
are located in the south. We discuss this pattern in Sect. 5.4.
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Figure 4. Selected models and shape parameter values for each range of elevations in the 23 massifs of the French Alps. We write the suffix
of the name of each selected model on the map; e.g., we write µt ,σt for the model Mµt ,σt . We underline the suffix when the model has a
significant trend (Sect. 3.3). Hatched grey areas denote missing data, e.g., when the elevation is above the top elevation of the massif. Shape
parameter values are computed at the middle elevation for each range, e.g., at 1500 m for the range 1000–2000 m.

At 3000 m, we observe that the six massifs with a significant
increasing trend are located in the south of the French Alps.

In Fig. 9, we display the return level in 2019 for each range
of elevations. Combining Figs. 8 and 9 enables us to pin-
point massifs both with high return levels in 2019 and with
an increasing or decreasing trend. For instance, at 2500 m,
the Haute-Maurienne massif has one of the highest 100-year
return levels in 2019 (185kgm−2), but it is decreasing with
time. On the other hand, at 2500 and 3500 m, most massifs

in the south have high 100-year return levels values in 2019
and increasing trends.

5 Discussion

5.1 Methodological considerations

We discuss the statistical models considered to estimate tem-
poral trends in 100-year return levels of daily snowfall.
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Figure 5. Comparison of pointwise distributions with our approach based on piecewise elevational–temporal models for the Vanoise massif.
GEV parameters (a–c) and 100-year return levels with their 80 % confidence intervals (d) are shown from 600 to 3600 m of elevation.

For small-size time series of annual maxima, e.g., a few
decades, return level uncertainty largely depends on the un-
certainty in the shape parameter (Koutsoyiannis, 2004). In or-
der to reduce the uncertainty in the GEV parameters, models
are often fitted using the information from several time series
e.g., using regionalization methods (Hosking et al., 2009) or
using scaling relationships between different aggregation du-
rations (Blanchet et al., 2016). In this work, we fit models to
time series from several elevations. In the literature, elevation
is often not treated as a covariate but rather accounted for
by a spatial distance (Blanchet and Davison, 2011; Gaume
et al., 2013; Nicolet et al., 2016). In practice, as illustrated in
Fig. 5, we compute the uncertainties in return levels for all
the massifs and find that elevational–temporal models effec-
tively decrease confidence intervals compared to pointwise
distributions fitted to one time series.

Then, we fit the models to at least two time series,
i.e., from at least two elevations. As illustrated in Fig. 1, for
each range of elevations, we always have at least two time se-
ries, i.e., more than 100 maxima to estimate 100-year return
levels. However, in practice annual maxima from consecu-
tive elevations are often dependent. At low elevations, four
time series contain zeros, i.e., years without any snowfall,
which may lead to misestimation for the models. A potential
solution would be to rely on a mixed discrete–continuous dis-
tribution: a discrete distribution for the probability of a year
without any snowfall and a continuous GEV distribution for
the annual maxima of snowfall. However, this would require
at least one additional parameter for the discrete distribution
and even more if we wish to model some non-stationarity.
In practice, to avoid overparameterized models, we removed
one time series which had more than 10 % of zeros.
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Figure 6. Percentages of massifs with significant/non-significant
trends in 100-year return levels of daily snowfall for each range of
elevation. A massif has an increasing/decreasing trend if the 100-
year return level of the selected elevational–temporal model has in-
creased/decreased.

Afterwards, for different ranges of elevation containing at
most three consecutive elevations, we fit the models using
all corresponding time series. For each model, this ensures
that the temporal non-stationarity can be assumed to not de-
pend on the elevation. Indeed, initially we intended for each
massif to fit a single model to time series from all elevations.
However, to account for decreasing trends at low elevations
and increasing trends at high elevations, this led to complex
overparameterized models that often did not fit well. We de-
cided to consider a piecewise approach, i.e., simpler mod-
els fitted to ranges of consecutive elevations at most sepa-
rated by 900 m (Figs. 1 and 5). This ensures that we can as-
sume that the temporal non-stationarity (no trend or decreas-
ing/increasing trend) is shared between all elevations from
the same range. Otherwise, we observe that annual maxima
from consecutive altitudes are dependent (Fig. 1). We did
not account for this dependence in our statistical model. In-
stead, we assumed that maxima are conditionally indepen-
dent given the vector of parameters θM (Sect. 3.2).

Finally, for each range of elevations, we consider mod-
els with a temporal non-stationarity only for the location
and scale parameter. Indeed, in the literature, a linear non-
stationarity is considered sometimes only for the location
parameter (Fowler et al., 2010; Tramblay and Somot, 2018)
but more often for both the location and the scale (or log-
transformed scale for numerical reasons) parameters (Katz
et al., 2002; Kharin and Zwiers, 2004; Marty and Blanchet,
2012; Wilcox et al., 2018). Otherwise, the shape parameter
is typically considered temporally stationary in the literature,
and we followed this approach.

5.2 Implication of the temporal trends in 100-year
return levels

In Fig. 8, we emphasize massifs with a strong increase in
100-year return levels between 1959 and 2019, e.g., mas-
sifs filled with medium/dark red correspond to increase ≥
+50kgm−2. Settlements in these massifs should ensure that
the design of protective measures and building standards
against extreme snow events are still adequate after such
an increase. Hopefully, this might concern few settlements
as such strong increases are always located above 2000 m.
However, this might impact ski resorts which should ensure
that the design of avalanche protection measures takes this
change into account. We note that extreme snow events can
sometimes be triggered by one snowfall event but often de-
pend on other factors such as accumulated snow or wind.
Therefore, to update structure standards for ground snow
load (Biétry, 2005), we should account for both this increas-
ing trend in annual maxima of daily snowfall and trends in
annual maxima of ground snow loads (Le Roux et al., 2020).
Indeed, most known snow load destructions result from such
intense and short snow events, sometimes combined with liq-
uid precipitation, which is not considered in this study. In
general, in mountainous regions around the French Alps, if
the past trends continue into the future, for extreme snowfall
we can expect decreasing trends below 1000 m and increas-
ing trends above 3000 m, as this agrees with both our results
and the literature (Table 1).

5.3 Data considerations

Following the evaluation of the SAFRAN reanalysis cited
in Sect. 2, we can conclude that this reanalysis most likely
underestimates high-elevation precipitation (above 2000 m),
which probably leads to an underestimation of high-elevation
snowfall. This deficiency does not affect the main contri-
bution of this article, i.e., a majority of decreasing trends
below 2000 m and a majority of increasing trends above
2000 m. However, this deficiency affects the value of ex-
treme snowfall, i.e., the 100-year return level and the scale
of its changes, which may be underestimated above 2000 m.
For future works, we note that a direct evaluation of extreme
snowfall could help to better pinpoint the locations where re-
turn levels might be biased.

5.4 Hypothesis for the contrasting pattern for changes
in 100-year return levels

In Fig. 8, at 2500 m, we find a spatially contrasting pattern
for changes in 100-year return levels of snowfall: most de-
creasing trends are located in the north, while most increas-
ing trends are in the south.

These changes contradict expectations based on the cli-
matological differences between the north and south of the
French Alps. Indeed, since the north is climatologically
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Figure 7. (a) Distributions of changes in 100-year return levels between 1959 and 2019 for one elevation in each range of elevation. The
mean and the median are displayed with a green triangle and an orange line, respectively. (b) Same as (a) but for the relative changes.
Distributions of changes are computed at the middle elevation for each range, e.g., at 1500 m for the range 1000–2000 m.

colder than the south in both winter and summer (Fig. 5
of Durand et al., 2009), we would have expected the in-
verse pattern for an intermediate elevation, i.e., increasing
trends in the north and decreasing trends in the south. In-
deed, extreme snowfall stems from extreme precipitation oc-
curring in a range of optimal temperatures slightly below
0 ◦C (O’Gorman, 2014; Frei et al., 2018). Thus, under global
warming, we would have expected for an intermediate el-
evation that the probability of being in the range of optimal
temperatures would be increasing in the north (because mean
temperatures would shift toward the optimal range) while de-
creasing in the south (because temperatures would be shift-
ing away from the optimal range). Therefore, we would have
observed an increase in extreme snowfall in the north and a
decrease in the south.

Thus, this spatial pattern of changes cannot be solely ex-
plained by the spatial pattern of mean temperature. In partic-
ular, we believe that dynamical changes, i.e., heterogeneous
changes in extreme precipitation in the French Alps, may
have contributed to generate this contrasting pattern. In Ap-
pendix D, we apply our methodology (Sect. 3) on daily win-
ter precipitation from the SAFRAN reanalysis for the period
1959–2019. We focus on winter precipitation because win-
ter is the season when most annual maxima of daily snow-
fall occur below 3000 m (Appendix E). We observe that at
2500 m (and at all elevations) changes in 100-year return lev-
els of winter precipitation show the same contrasting pattern
as 100-year return levels of snowfall

This contrasting pattern is observed at all elevations for
changes in 100-year return levels of winter precipitation. The
literature also confirms that changes in extreme precipitation
are not homogeneous. For instance, we observe for the pe-
riod 1903–2010 that trends in daily maxima of winter pre-

cipitation are stronger in the south (+20 %–40 % per cen-
tury) compared to the north (from −10 % to +20 % per cen-
tury) of the French Alps (Fig. 7 of Ménégoz et al., 2020).
We also observe for the period 1958–2017 that the 20-year
return level of winter precipitation has decreased in the north
of the French Alps and has slightly increased or remained
the same in the south (Fig. 8 of Blanchet et al., 2021). This
observation might be due to a stronger increasing trend in
extreme precipitation for the Mediterranean circulation than
for the Atlantic circulation. Indeed, precipitation maxima in
the north of the French Alps are frequently triggered by the
Atlantic circulation, while maxima in the south are often due
to the Mediterranean circulation (Blanchet et al., 2020). Fur-
thermore, increasing trends in extreme snowfall have already
been observed in the proximity of the Mediterranean Sea.
For example, Faranda (2020) identified a certain number of
Mediterranean countries showing positive changes in snow-
fall maxima. D’Errico et al. (2020) propose a physical expla-
nation of this phenomenon: the Mediterranean Sea is warm-
ing faster than any other ocean, which enhances convective
precipitation and favors heavy snowfalls during cold-spell
events.

In practice, this increasing trend in extreme snowfall in
the south should be temporary. Indeed, with climate change,
temperatures are expected to shift further away from the opti-
mal range of temperatures for extreme snowfall. Thus, in the
long run, extreme snowfall is expected to decrease as the in-
crease in extreme precipitation shall not compensate for the
decreasing probability of being close to the optimal range of
temperatures.
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Figure 8. Changes in 100-year return levels of daily snowfall between 1959 and 2019 for each range of elevations. The corresponding
relative changes are displayed on the map. Hatched grey areas denote missing data, e.g., when the elevation is above the top elevation of the
massif. Changes in return levels are computed at the middle elevation for each range, e.g., at 1500 m for the range 1000–2000 m. Massifs
with non-significant trends are indicated with a pattern of whites dots.

6 Conclusions and outlook

We estimate temporal trends in 100-year return levels of
daily snowfall for several ranges of elevation based on the
SAFRAN reanalysis available from 1959 to 2019 (Durand
et al., 2009). Our statistical methodology relies on non-
stationary extreme value models that depend on both ele-
vation and time. Our results show that a majority of trends
are decreasing below 2000 m and increasing above 2000 m.
Quantitatively, we find an increase in 100-year return lev-

els between 1959 and 2019 equal to+23 % (+32kgm−2) on
average at 3500 m and a decrease of −10 % (−7kgm−2) on
average at 500 m. For the four investigated elevation ranges,
we find both decreasing and increasing trends depending on
location. In particular, we observe a spatially contrasting pat-
tern, exemplified at 2500 m: 100-year return levels have de-
creased in the north of the French Alps while they have in-
creased in the south. In the discussion, we highlight that this
pattern might be related to known increasing trends in ex-
treme snowfall in the proximity of the Mediterranean Sea.
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Figure 9. The 100-year return levels in 2019 of daily snowfall for each range of elevations. The 100-year return levels are both illustrated with
colors (elevation-range-dependent scale) and written on the map. Hatched grey areas denote missing data, e.g., when the elevation is above
the top elevation of the massif. Return levels are computed at the middle elevation for each range, e.g., at 1500 m for the range 1000–2000 m.

Many potential extensions of this work could be consid-
ered. First, reanalyses are increasingly available at the Eu-
ropean scale (e.g., Soci et al., 2016), which could be used
for extending this work to a wider geographical scale. In this
case, instead of considering close massifs as spatially inde-
pendent, we believe that our methodology may benefit from
an explicit modeling of the spatial dependence (Padoan et al.,
2010). Then, climatic projections could enable us to explore
temporal trends up to the end of the twenty-first century. In
these circumstances, it might be more relevant to use global
mean surface temperature as a temporal covariate to combine
ensembles of climate models. Finally, future research should
focus not solely on mountain regions but also on lowland re-
gions such as around the Mediterranean Sea. Indeed, such re-
gions are often heavily impacted by snow-related hazards be-

cause they are ill-equipped for such rare events. For instance,
extreme snowfall over Roussillon, a Mediterranean coastal
lowland, caused major damage in 1986 (Vigneau, 1987),
while in 2021 heavy snowfall over Spain caused at least
EUR 1.4 billion of damage (The New York Times, 2021).
In these regions, temperatures below the rain–snow transi-
tion temperature, i.e., roughly below 0 ◦C, may tend to be
rare in the future. Therefore, in these cases, in addition to di-
rectly studying trends in snowfall extremes, we should focus
on trends in the compound risk of cold wet events (De Luca
et al., 2020).
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Appendix A: Quantile–quantile plots

A quantile–quantile (Q–Q) plot is a standard diagnosis
tool based on the comparison of empirical quantiles (com-
puted from the empirical distribution) and theoretical quan-
tiles (computed from the expected distribution). For non-
stationary extreme value models, the approach is two-fold
(Coles, 2001; Katz, 2012). First, we transform observa-
tions into residuals with a probability integral transformation
fGEV→Standard Gumbel. Then, we construct a Q–Q plot to as-
sess if the residuals follow a standard Gumbel distribution.
If the Q–Q plot reveals a good fit, it means that the non-
stationary extreme value model has a good fit as well.

We start by transforming the observations
yz1,t1 , . . .,yz1,tM , . . .,yzN ,t1 . . .,yzN ,tM into residuals. Let
Yz,t ∼ GEV(µ(z, t),σ (z, t),ξ(z)) with parameter θM.
By definition of the probability integral transformation
fGEV→Standard Gumbel, we obtain that

fGEV→Standard Gumbel(Yz,t ;θM)=

1
ξ(z)

log
(

1+ ξ(z)
Yz,t −µ(z, t)

σ (z, t)

)
∼ Gumbel(0,1). (A1)

Figure A1. Q–Q plots of the selected elevational–temporal models for the Vanoise massif for the four ranges of elevations considered (see
Fig. 1 for the time series). (a) Below 1000 m. (b) Between 1000 and 2000 m. (c) Between 2000 and 3000 m. (d) Above 3000 m.

The transformed observations, a.k.a. residuals, are de-
noted as εz,t = fGEV→Standard Gumbel(yz,t ;θM). Afterwards,
we construct a Q–Q plot to assess if the residuals follow
a standard Gumbel distribution. On one hand, the N ×M
empirical quantiles correspond to the ordered values of the
residuals εz1,t1 , . . .,εz1,tM , . . .,εzN ,t1 . . .,εzN ,tM . On the other
hand, we compute the corresponding N ×M theoretical
quantiles, which are the quantile i

N×M+1 of the standard
Gumbel distribution, where i ∈ {1, . . .,N ×M}.

In Fig. A1, we display Q–Q plots for the selected model
for the time series displayed in Fig. 1. We observe that they
show a good fit, as the points stay close to the line. In general,
most retained models show a good fit. Furthermore quantita-
tively, if we rely on an Anderson–Darling statistical test with
a 5 % significance level to assess if the residuals follow a
standard Gumbel distribution, we find that the largest parts
of the tests are not rejected (not shown).
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Appendix B: Semi-parametric bootstrap method

In the context of maximum likelihood estimation, uncer-
tainty related to return levels can be evaluated with the delta
method, which quickly provides confidence intervals in both
the stationary and the non-stationary cases (Coles, 2001;
Gilleland and Katz, 2016). However, due to the dependence
between maxima from consecutive elevations (Fig. 1), we
decided to compute confidence intervals with a bootstrap re-
sampling method (Efron and Tibshirani, 1993). This resam-
pling method allows us to estimate the uncertainties result-
ing from in-sample variability. In this article, we rely on
a semi-parametric bootstrap resampling method adapted to
non-stationary extreme models (Kharin and Zwiers, 2004;
Sillmann et al., 2011).

We generate B = 1000 bootstrap samples using the
parameter θ̂M. For each bootstrap sample i, the
semi-parametric bootstrap method is four-fold. First,
as explained in Appendix A, we compute the resid-
uals εz1,t1 , . . .,εz1,tM , . . .,εzN ,t1 . . .,εzN ,tM . Then, from
these residuals we draw with replacement a sam-
ple of size M ×N . We denote these bootstrapped
residuals as ε̃z1,t1 , . . ., ε̃z1,tM , . . ., ε̃zN ,t1 . . ., ε̃zN ,tM . Af-
terwards, we transform these bootstrapped residu-
als into bootstrapped annual maxima as follows:
ỹz,t = f

−1
GEV→Standard Gumbel(ε̃z,t ;θM). Finally, we esti-

mate the parameter θ̂
( i )

M of model M with the bootstrapped
annual maxima ỹz1,t1 , . . ., ỹz1,tM , . . ., ỹzN ,t1 . . ., ỹzN ,tM .
To sum up, this bootstrap procedure provides a set
{̂θ
(1)
M, . . ., θ̂

( i )

M, . . ., θ̂
(B )

M } of B parameters for the model M.
In practice, we rely on this set of GEV parameters to obtain

80% confidence intervals for 100-year return levels (Fig. 5)
or for time derivatives of 100-year return levels (Sect. 3.3).
For instance, in the latter case we have p̂(

∂y0.01(z,t)
∂t

>

0|̂θM)= 1
B

∑B
i=11 ∂y0.01(z,t)

∂t

(i)
>0

, where ∂y0.01(z,t)
∂t

(i)
is the

time derivative of 100-year return levels for the parameter
θ̂
( i )

M.
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Appendix C: Sensitivity to the return period

The 100-year return period was chosen because it is the
largest return period considered in the Eurocodes for building
structures (Cabrera et al., 2012). We believe that this return
period is the most familiar return period for non-experts as it
corresponds to a centennial event. For smaller return periods
(5–10 years), our results also apply. In Fig. C1, we illustrate
our results for the 10-, 50-, and 100-year return periods. We
observe that the overall distribution of increasing/decreasing
trend for the return levels is almost insensitive to the choice
of the return period. For instance, the only noticeable dif-
ference between the 10- and 100-year return periods is that
for the elevation range 1000–2000 m and for the elevation
range 2000–3000 m, we observe that one massif shows an
increasing trend for the return period of 10 years, while it is
decreasing for the return period of 100 years.

Figure C1. Percentages of massifs with significant/non-significant trends in return levels of daily snowfall for each range of elevation and
for a return period equal to (a) 10, (b) 50, or (c) 100 years. A massif has an increasing/decreasing trend if the return level of the selected
elevational–temporal model has increased/decreased.
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Appendix D: Trends in 100-year return levels of winter
precipitation

We apply the same methodology as in our study (Sect. 3) to
daily winter (December to February) precipitation obtained
with the SAFRAN reanalysis and spanning the period 1959–
2019. First, a preliminary analysis with pointwise fits indi-
cates that a linear parameterization with respect to the ele-
vation for the location and scale parameters is also valid for
the winter precipitation (Fig. D1). In Fig. D2, we illustrate
changes in the 100-year return level of winter precipitation.
We observe a spatially contrasting pattern at all elevations,
i.e., increase in the south and decrease in the north. This un-
derlines that the spatially contrasting pattern observed for
changes in the 100-year return level of snowfall at 2500 m
may result from the circulation patterns of precipitation.

Figure D1. Changes in GEV parameters (a–c) and in 100-year return levels (d) with the elevation for the 23 massifs of the French Alps.
GEV distributions are estimated pointwise for the annual maxima of daily winter precipitation every 300 m of elevation.
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Figure D2. Changes in 100-year return levels of daily winter precipitation between 1959 and 2019 for each range of elevations. The
corresponding relative changes are displayed on the map. Hatched grey areas denote missing data, e.g., when the elevation is above the
top elevation of the massif. Changes in return levels are computed at the middle elevation for each range, e.g., at 1500 m for the range
1000–2000 m. Massifs with non-significant trends are indicated with a pattern of white dots.
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Appendix E: Seasons when the annual maxima of daily
snowfall occurred

In Fig. E1, we study the seasons when the annual max-
ima of daily snowfall occurred. For elevation range 1 (be-
low 1000 m) and for elevation range 2 (between 1000 and
2000 m), we observe that the annual maxima mainly oc-
curred (> 60 %) between December and February, i.e., the
coldest part of the snow season. For elevation range 3 (be-
tween 2000 and 3000 m) more than 40 % of maxima oc-
curred in winter, while slightly less than 30 % occurred in
autumn and in spring. For elevation range 4 (above 3000 m)
the seasons of occurrence are more spread, even if we ob-
serve that more than 40 % of maxima occurred in autumn. In
conclusion, we find that below 3000 m, most annual maxima
of daily snowfall occur in winter, while above 3000 m they
mostly occur in autumn.

Figure E1. Seasons when the annual maxima of daily snowfall occurred for elevation range 1 (below 1000 m), elevation range 2 (between
1000 and 2000 m), elevation range 3 (between 2000 and 3000 m), and elevation range 4 (above 3000 m).
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