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Abstract. This paper investigates the potential of a Wasser-
stein generative adversarial network to produce realistic
weather situations when trained from the climate of a gen-
eral circulation model (GCM). To do so, a convolutional neu-
ral network architecture is proposed for the generator and
trained on a synthetic climate database, computed using a
simple three dimensional climate model: PLASIM.

The generator transforms a “latent space”, defined by a
64-dimensional Gaussian distribution, into spatially defined
anomalies on the same output grid as PLASIM. The analysis
of the statistics in the leading empirical orthogonal functions
shows that the generator is able to reproduce many aspects of
the multivariate distribution of the synthetic climate. More-
over, generated states reproduce the leading geostrophic bal-
ance present in the atmosphere.

The ability to represent the climate state in a compact,
dense and potentially nonlinear latent space opens new per-
spectives in the analysis and handling of the climate. This
contribution discusses the exploration of the extremes close
to a given state and how to connect two realistic weather sit-
uations with this approach.

1 Introduction

The ability to generate realistic weather situations has numer-
ous potential applications. Weather generators can be used to
characterize the spatio-temporal complexity of phenomena
in order, for example, to assess the socio-economical impact

of the weather (Wilks and Wilby, 1999; Peleg et al., 2018).
However, in numerical weather prediction the dimension of a
simulation can be very large: an order of 109 is often encoun-
tered (Houtekamer and Zhang, 2016). The small size of en-
sembles used in data assimilation, due to computational lim-
itations, leads to a misrepresentation of the balance present
in the atmosphere such as an increment in the geopotential
height, resulting in an unbalanced incremented wind because
of localization (Lorenc, 2003). Issues of small finite samples
of weather forecast ensembles could be addressed by con-
sidering larger synthetic ensembles of generated situations.
With current methods it is difficult to generate a realistic cli-
mate state at a low computational cost. This is usually done
by using analogs or by running a global climate model for a
given time (Beusch et al., 2020) but remains costly. Gener-
ators can also be used for super resolution so as to increase
the resolution of a forecast leading to better results than in-
terpolations (Li and Heap, 2014; Zhang et al., 2012).

The last decade has seen new kinds of generative meth-
ods from the machine-learning field using artificial neural
networks (ANNs). Among these, generative adversarial net-
works (GANs) (Goodfellow et al., 2020), and more precisely
Wasserstein GANs (WGANs) (Arjovsky et al., 2017), are
effective data-driven approaches to parameterizing complex
distributions. GANs have proven their power in unsupervised
learning by generating high-quality images from complex
distributions. Gulrajani et al. (2017) trained a WGAN on the
ImageNet database (Russakovsky et al., 2015), which con-
tains over 14 million images with 1000 classes, and suc-
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cessfully learned to produce new realistic images. Several
techniques developed for computer vision with GANs seem
promising for domains in the geosciences. Notable examples
of usage to date include Yeh et al. (2017) to do inpainting,
where the objective is to recover a full image from an incom-
plete one, Ledig et al. (2017) to do super resolution, or Isola
et al. (2017) to do image-to-image translation, where an im-
age is generated from another one, e.g., translate an image
that contains a horse into one with a zebra.

Data-driven approaches and numerical weather prediction
are two domains that share important similarities. Watson-
Parris (2021) explains that both domains use the same meth-
ods to answer different questions. This study and Boukabara
et al. (2019) also show that numerical weather prediction
contains lots of interesting challenges that could be tackled
by machine-learning methods. It clarifies the growing litera-
ture about data-driven techniques applied to weather predic-
tion. Scher (2018) used variational autoencoders to generate
the dynamics of a simple general circulation model condi-
tioned on a weather state. Weyn et al. (2019) trained a convo-
lutional neural network (CNN) on gridded reanalysis data in
order to generate 500 hPa geopotential height fields at fore-
cast lead times up to 3 d. Lagerquist et al. (2019) developed a
CNN to identify cold and warm fronts and a post-processing
method to convert probability grids into objects. Weyn et al.
(2020) built a CNN able to forecast some basic atmospheric
variables using a cubed-sphere remapping in order to allevi-
ate the task of the CNN and impose simple boundary condi-
tions.

While there is a growing interest in using deep-learning
methods in weather impact or weather prediction (Reichstein
et al., 2019; Dramsch, 2020), few applications have been de-
scribed using GANs applied to physical fields in recent years
(Wu et al., 2020). Notable examples include application to
subgrid processes (Leinonen et al., 2019), to simplified mod-
els such as the Lorenz ’96 model (Gagne et al., 2020) or to
data processing like satellite images (Requena-Mesa et al.,
2018). In particular, little is known about the feasibility of
designing and training a generator that would be able to pro-
duce multivariate states of a global atmosphere. A first diffi-
culty is to propose an architecture for the generator, with the
specific challenge of handling the spherical geometry. Most
of the neural network architectures in computer vision handle
regular two-dimensional images instead of images represent-
ing projected spherical images. Boundary conditions of these
projections are not simple, as the spherical geometry also in-
fluences the spread of the meteorological object as a function
of its latitude. These effects have to be considered in the neu-
ral network architecture. Another difficulty is to validate the
climate resulting from the generator compared with the true
climate.

In this study, in order to evaluate the potential of GANs
applied to the global atmosphere, a synthetic climate is
computed using the PLASIM global circulation simulator
(Fraedrich et al., 2005a), a simplified but realistic imple-

mentation of the primitive equations on the sphere. An ar-
chitecture is proposed for the generator and trained using an
approach based on the Wasserstein distance. A multivariate
state is obtained by the transformation of a sample from a
Gaussian random distribution in 64 dimensions by the gener-
ator. Thanks to this sampling strategy, it is possible to com-
pute a climate as represented by the generator. Different met-
rics are considered to compare the climate of the generator
with the true climate and to assess the realism of the gener-
ated states. Because the distribution is known, the generator
provides a new way to explore the climate, e.g., simulating
the intensification of a weather situation or interpolating two
weather situations in a physically plausible manner.

The article is organized as follows. The formalism of
WGAN is first introduced in Sect. 2 with the details of the
proposed architecture. Then, Sect. 3 evaluates the ability of
the generator to reproduce the climate of PLASIM with as-
sessment of the climate states that are produced by the gen-
erator. The conclusions and perspectives are given in Sect. 4.

2 Wasserstein generative adversarial network to
characterize the climate

2.1 Parameterizing the climate of the Earth system

The Earth system is considered to be the solution of an evo-
lution equation

∂tχ =M(χ), (1)

where χ denotes the state of the system at a given time and
M characterizes the dynamics including the forcing terms,
e.g., the solar annual cycle. While χ should stand for con-
tinuous multivariate fields, we consider its discretization in a
finite grid so that χ ∈X with X = Rn, where n denotes the
dimension. Equation (1) describes a chaotic system. The cli-
mate is the set of states of the system along its time evolution.
It is characterized by a distribution or a probability measure,
denoted pclim.

Obtaining a complete description of pclim is intractable
due to the complexity of natural weather dynamics and be-
cause a climate database, pdata, is limited by numerical re-
sources and is only a proxy for this distribution.

For instance, in the present study, the true weather dynam-
ics M are replaced by the PLASIM model that has been
time-integrated over 100 years of 6 h forecasts. Accounting
for the spinup, the first 10 years of simulation are ignored.
Thus, the climate pclim is approximated from the resulting
climate database of 90 years, pdata. The synthetic dataset is
presented in detail in Sect. 3.1.

Thus, pdata lives in the n-dimensional space X, but it is
non-zero only on an m-manifold M (where m� n) that can
be fractal. The objective is to learn a mapping

g : Z 7−→X (2)
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from Z = Rm, the so-called latent space, to X. Moreover, g
must transform a Gaussian N (0,Im) to pdata ⊂M.

The main advantage of such a formulation is to have a
function g that maps a low-dimensional continuous space Z
to M. This property could be useful in the domain of the
geosciences, notably in the climate sciences, where a high-
dimensional space is ruled by important physical constraints
and parameters.

Here the generator is a good candidate for learning the
physical constraints that make a climate state realistic with-
out the need to run a complete simulation. The construction
of the generator is now detailed.

2.2 Background on Wasserstein generative adversarial
networks

To characterize the climate, we first introduce a simple Gaus-
sian distribution pz =N (0,Im) of zero mean and covari-
ance the identity matrix Im, defined on the space Z = Rm,
called the latent space. The objective of an adversarial net-
work is to find a nonlinear transformation of this space Z
to X as written in Eq. (2) so that the Gaussian distribution
maps to the climate distribution, i.e., g#(pz)= pclim, where
g# denotes the push forward of a measure by the map g,
defined here as follows: for any measurable set E of X,
g#(pz)(E)= pz(g

−1(E)), where g−1(E) denotes the mea-
surable set of Z that is the pre-image of E by g. The latent
space, Z, can be seen as an encoded climate space where
each point drawn from pz corresponds to a realistic climate
state and where the generator is the decoder. Looking for
such a transformation is non-trivial.

The search is limited to a family of transformations {gθ }
characterized by a set of parameters θ . Thus, for each θ , the
nonlinear transform of the Gaussian pz by gθ is a distribu-
tion pθ . The goal is then to find the best set of parameters
θ∗ such that θ∗ = argminθdi(pθ ,pclim), where di is a mea-
sure of the discrepancy between the two distributions, so that
pθ∗ approximates pclim. This method is known as genera-
tive learning, where gθ is implemented as a neural network
of trainable parameters θ . Note that, being a neural network,
the resulting gθ is then a differentiable function.

Even with this simplified framework, the search for an op-
timal θ is not easy. One of the difficulties is that the differen-
tiability of gθ requires the comparison of continuous distri-
bution pθ with pclim, which is not necessarily a density on a
continuous set. To alleviate this issue, Arjovsky et al. (2017)
introduced an optimization process based on the Wasserstein
distance defined for the two distributions pclim and pθ by

W(pθ ,pclim)= inf
γ∈5(pθ ,pclim)

E(x,y)
[
‖x− y‖

]
, (3)

where 5(pθ ,pclim) denotes the set of all joint distributions
γ (x,y) whose marginals are, respectively,

∫
y
γ (·,dy)= pθ

and
∫
x
γ (dx, ·)= pclim. The Wasserstein distance, also called

the Earth mover distance (EMD), comes from optimal trans-

port theory and can be seen as the minimum work required
(in the sense of mass×transport) to transform the distribution
pθ into the distribution pclim. Thus, the set 5(pθ ,pclim) can
be seen as all the possible mappings, also called couplings, to
transport the mass from pθ to pclim. The Wasserstein distance
is a weak distance: it is based on the expectation, which can
be estimated whatever the kind of distribution. Hence, the
optimization problem is stated as

θ∗ = argminθW(pθ ,pclim), (4)

which leads to the WGAN approach.
One of the major advantages of the Wasserstein distance

is that it is real-valued for non-overlapping distributions. In-
deed, the Kullback–Leibler (KL) divergence is infinite for
disjoint distributions, and using it as a loss function leads to
a vanishing gradient (Arjovsky et al., 2017). The Wasserstein
distance does not exhibit vanishing gradients when distribu-
tions do not overlap, as did the KL divergence in the original
GAN formulation.

Unfortunately, the formulation in Eq. (3) is intractable. A
reformulation is necessary using the dual form discovered by
Kantorovich (Kantorovich and Rubinshtein, 1958). Refram-
ing the problem as a linear programming problem yields

W(pθ ,pclim)= sup
f∈1−Lipshitzian[

Ex∼pclim

[
f (x)

]
−Ex∼pθ

[
f (x)

]]
, (5)

where 1−Lipshitzian denotes the set of Lipshitzian func-
tions f : Rn→ R of coefficient 1, i.e., for any (x1,x2) ∈ Rn,
|f (x1)−f (x2)| ≤ ||x1−x2||, || · || being the Euclidian norm
of Rn. For any 1−Lipshitzian function f the computation of
Eq. (5) is simple: the first expectation can be approximated
by

Ex∼pclim

[
f (x)

]
≈ Ex∼pdata

[
f (x)

]
, (6)

where the right-hand side is computed as the empirical mean
over the climate database pdata that approximates pclim in the
weak sense Eq. (6). The second expectation can be computed
from the equality

Ex∼pθ
[
f (x)

]
= Ez∼N (0;Im)

[
f (gθ (z))

]
, (7)

where the expectation of the right-hand side can be approxi-
mated by the empirical mean computed from an ensemble of
samples of zwhich are easy to sample due to the Gaussianity.

However, there is no simple way to characterize the set
of 1−Lipshitzian functions, which limits the search for
an optimal function in Eq. (5). Instead of looking at all
1−Lipshitzian functions, a family of functions {fw} param-
eterized by a set of parameters w is introduced. In practice, it
is engendered by a neural network with trainable parameters
w, called the critic.

Finally, if the weights of the network are constrained to a
compact space W , which can be done by the weight-clipping
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method described in Arjovsky et al. (2017), then {fw}w∈W
will be K-Lipschitzian with K depending only on W and
not on individual weights of the network. This yields

max
w∈W

[
Ex∼pdata

[
fw(x)

]
−Ez∼N (0;Im)

[
fw(gθ (z))

]]
≤ sup
f∈1−Lipshitzian

[
Ex∼pdata

[
f (x)

]
−Ez∼N (0;Im)

[
f (gθ (z))

]]
, (8)

which tells us that the critic tends to the Wasserstein distance
when trained optimally, i.e., if we find the max in Eq. (8)
and if f is in (or close to) {fw}w∈W . The weight-clipping
method was replaced by the gradient penalty method in Gul-
rajani et al. (2017) because it diminished the training quality
as mentioned in Arjovsky et al. (2017). Because it results
from a neural network, any function fw is differentiable, so
that the 1−Lipshitzian condition remains to ensure a gradient
norm bounded by 1, i.e., for any x ∈X, ||∇fw(x)|| ≤ 1. To
do so, Gulrajani et al. (2017) have proposed computing the
optimal parameter w̃(θ) as the solution of the optimization
problem

w̃(θ)= argsupwL(θ,w), (9)

where L is the cost function

L(θ,w)= Ex∼pdata

[
fw(x)

]
−Ez∼N (0;Im)

[
fw(gθ (z))

]
+ λEx̂∼p̂

[(
||∇fw(x̂)|| − 1

)2]
, (10)

with λ the magnitude of the gradient penalty and where x̂ is
uniformly sampled from the straight line between a sample
from pdata to a sample from pθ (line 8) of Algorithm 1. The
optimal solution w̃(θ) is obtained from a sequential method
where each step is written as

wk+1 = wk +βk∇wL(θ,wk), (11)

where βk is the magnitude of the step. In an adversarial way,
Eq. (10) could be solved sequentially, e.g., by the steepest
descent algorithm with an update given by

θq+1 = θq −αq∇θW(pθq ,pclim), (12)

where αq is the magnitude of the step. We chose to use the
two-sided penalty for the gradient penalty method, as it was
shown to work well in Gulrajani et al. (2017). At conver-
gence, the Wasserstein distance is approximated by

W(pθ ,pclim)≈ Ex∼pdata

[
fw̃(θ)(x)

]
−Ez∼N (0;Im)

[
fw̃(θ)(gθ (z))

]
. (13)

Hence, the solution of the optimization problem Eq. (4) is
obtained from a sequential process composed of two steps,
summarized in Algorithm 1. In the first step, the weights of
the generator are frozen with a given set of parameters θq and
the critic neural network is trained in order to find the optimal

parameter w̃(θq) solution Eq. (9) (lines 3–11 in Algorithm 1).
In the second step, the critic is frozen and the generator is set
as trainable in order to compute θq+1 from Eq. (12) (lines
12–17 in Algorithm 1). Note that in Algorithm 1, the steep-
est descent is replaced by an Adam optimizer (Kingma and
Ba, 2014), a particular implementation of stochastic gradient
descent which has been shown to be efficient in deep learn-
ing.

The following sections will aim to create a climate data
generator from the WGAN method. The next section will
describe the architecture of the network adapted to the com-
plexity of the dataset used.

2.3 Neural network implementation

WGANs are known to be time-consuming to train, usually
needing a high number of iterations due to the alternating as-
pect of the training algorithm between the critic and the gen-
erator. Our initial architecture used a simple convolutional
network for both, with a high number of parameters, but it
proved difficult to train a fitting multimodal distribution such
as green distributions in the left panels in Fig. 15. That is why
for this study a ResNet-inspired architecture (He et al., 2016)
was chosen. The goal of the residual network is to reduce the
number of parameters of the network and avoid gradient van-
ishing, which is a recurrent problem for deep networks that
results in an even slower training.

A network is composed of a stack of layers; when a spe-
cific succession of layers is used several times, we can refer
to it as a block. The link between two layers is named a con-
nection; a shortcut connection refers to a link between two
layers that are not successive in the architecture. A residual
block (Figs. 2 and 3) is composed with stacked convolution
and a parallel identity shortcut connection. The idea is that it
is easier to learn the residual mapping than all of it, so resid-
ual blocks can be stacked without observing a vanishing gra-
dient. Moreover, a residual block can be added to an N -layer
network without reducing its accuracy because it is easier to
learn F(x)= 0 by setting all the weights to 0 than it is to
learn the identity function. Residual blocks allow building of
deeper networks without loss of accuracy.

One should note that the PLASIM simulator is a spec-
tral model run on a Gaussian grid that consequently enforces
the periodic boundary condition. In order to impose the pe-
riodic boundary condition in the generated samples, it was
necessary to create a wrap padding layer, which takes multi-
ple columns at the eastern side and concatenates them to the
western side and vice versa. In the critic, the wrap padding is
only after the input, since the critic will discriminate the im-
ages from the generator that are not continuous in the west–
east direction. In the generator, the wrap padding layer is in
every residual block; it is necessary because the reduced size
of the convolution kernel compared to the image size makes
it more difficult for the network to extract features from both
sides of the image simultaneously. The north–south bound-
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ary is padded by repeating the nearest line, called the nearest
padding layer. In Figs. 1–5 padding layer arguments have
to be understood as (longitude direction, latitude direction),
where the integer means the number of columns or rows to
be taken from each side and placed next to the other one; e.g.,
Wrappadding (0,3) means the output image is six columns
larger than the input. If the argument is not mentioned, then
the arguments for wrap and nearest padding are (0,1) and
(1,0), respectively.

2.3.1 Critic network

The critic network input has the shape of a sample from the
dataset X ∈ Rnlat×nlon×nfield.

Its output must be a real number because it is an approx-
imation of the Wasserstein distance between the distribution
of the batch of images from the dataset and the one from
the generator that is being processed. The architecture ends
with a dense layer of one neuron with linear activation. The
core of the structure is taken from the residual network and
can be seen in Fig. 1. After the custom padding layers men-
tioned previously, the critic architecture is a classical residual
network, starting with a convolution with 7× 7 kernels, fol-
lowed by a maximum pooling layer to reduce the image size
and a succession of convolutional and identity blocks (Figs. 2
and 3). At each strided convolutional block, s = 2 in Fig. 3,
the image size is divided by a factor 2. It is equivalent to
a learnable pooling layer that can increase the result (Sprin-
genberg et al., 2014). Finally, an average pooling is done, and
the output is fed to a fully connected layer of 100 neurons and
then to the output neuron. Batch normalization is not present

in the critic architecture following Gulrajani et al. (2017); the
batch normalization changes the discriminator’s problem by
considering all of the batch in the training objective, whereas
we are already penalizing the norm of the critic’s gradient
with respect to each sample in the batch.

2.3.2 Generator architecture

The input of the generator network (see Fig. 4) is an m-
dimensional vector containing noise drawn from the nor-
mal distribution Nm(0,Im) for the numerical experiment
m= 64. The output of the generator has the shape of a sam-
ple of the dataset X ∈ Rnlat×nlon×nfield. The input is passed
through a fully connected layer of output shape (8,16,128)
and fed to residual blocks. The rest of its architecture is also
a residual network with a succession of modified convolu-
tional blocks (relative to the one in the critic network). Mod-
ifications of the convolutional block are the following.

1. An upsampling layer is added to increase the image size
for some convolutional blocks.

2. Wrap and nearest padding layers are added in, respec-
tively, the west–east and north–south directions.

3. A batch normalization layer is present after convolu-
tional layers.

One could argue that the ReLU activation function is not
differentiable in 0, but this is managed by taking the left
derivative in the software implementation. The study does
not claim that the network architectures used are optimal: the
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Figure 1. Critic architecture.

computational burden was too high to run a parameter sensi-
tivity study. Guidelines from Gulrajani et al. (2017) were fol-
lowed, and the hyperparameters were adapted to the current
problem. It showcases an example of hyperparameters pro-
ducing interesting results, and inspired readers are encour-
aged to modify and improve this architecture.

2.3.3 Training parameters

For the training phase, the neural network’s hyperparameters
are summarized in Table 1. The training was performed on
an Nvidia Tesla V100-SXM2 with 32 GB of memory over
2 d. The choice of the optimizer, initial learning rate, weight
of gradient penalty (λ in Eq. 10) and ratio between critic and

Figure 2. Residual identity block for the critic.

Table 1. Hyperparameters for training step.

Network
Hyperparameters Generator Critic

Iterations 30 000 150 000
Batch size 128 128
Optimizer Adam Adam
Initial learning rate (lr) 1e−3 1e−3

Learning rate decay every 3000 iterations 0.9 0.9
Number of trainable weights 1.5e6 4e6

λ in Eq. (10) 10
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Figure 3. Residual convolutional block for the critic. If s is different
from 1, it is referenced as a strided convolutional block in Fig. 1.

generator iteration was directly taken from Gulrajani et al.
(2017). The iterations mentioned in Table 1 are the number
of batches seen by each neural network.

The training loss in Fig. 6 was smoothed using exponential
smoothing:

st = αyt + (1−α)st−1, (14)

where yt is the value of the original curve at index t , st is
the smoothed value at index t and α is the smoothing fac-
tor (equal to 0.9 here). An initial spinup of the optimization
process tends to exhibit an increase in the loss of the first
steps of the training phase before decreasing. This can be ex-
plained by the lack of useful information in the gradient due
to the initial random weights in the network. A decrease in
the Wasserstein distance can be seen in Fig. 6, which indi-
cates a convergence during the training phase, although it is
possible to use the loss of the critic as a convergence criterion
because the Wasserstein loss is used and has a mathematical
meaning such as the distance between synthetic and real data

Figure 4. Generator architecture.

distributions and should converge to 0. However, WGAN-
GP is not yet proven to be locally convergent under proper
conditions (Nagarajan and Kolter, 2017); the consequence is
that it can cycle around equilibrium points and never reach
a local equilibrium. Condition on loss derivative is also dif-
ficult because of the instability of the GAN training proce-
dure. Consequently, a quality check using metrics adapted to
the domain on which the GAN is applied is still necessary.
Moreover, at the end of the training, a first experiment was
conducted to see whether the generations are present in the
dataset. The histogram of the Euclidian distance divided by
the number of pixels in one sample between one generation
and all of the dataset can be seen in Fig. 7. Here, one can
see that the minimum is around 0.8, which shows that the
generated image is not inside the dataset. This experiment
shows that the generator is able to generate samples without
reproducing the dataset. It should be noted that in the WGAN
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Figure 5. Residual convolutional block for the generator. The up-
sampling layer can be removed if not necessary and is mentioned
when used in Fig. 4.

framework, the generator never directly sees a sample from
the dataset.

There are no stopping criteria for the training, and it was
stopped after 35 000 iterations in the interest of computa-
tional cost. It should be highlighted that the performance of
generative networks and especially GANs is difficult to eval-
uate. In the deep-learning literature, the quality of the images
generated is assessed using a reference image dataset such as
ImageNet (Russakovsky et al., 2015) and computing the in-
ception score (IS) or the Fréchet inception distance (FID).

Figure 6. Smoothed version of the Wasserstein distance computed
during the training. The vertical axis is in log scale.

Figure 7. Two-norm distance between a generated sample and all
the dataset samples.

Table 2. Variables used in the dataset.

Variables

Name Short name Prognostic Diagnostic

Temperature (K) ta ×

Eastward wind (ms−1) ua ×

Northward wind (Pas−1) va ×

Relative humidity (frac.) hus ×

Vertical velocity (Pas−1) wap ×

Vorticity (s−1) ζ ×

Divergence (s−1) d ×

Geopotential height (gpm) zg ×

ln(surface pressure) P ×

Latitude (degree) lat ×

Nonlin. Processes Geophys., 28, 347–370, 2021 https://doi.org/10.5194/npg-28-347-2021
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Both use the inception network trained on ImageNet: the IS
measures the quality and diversity of the images by classi-
fying them and measuring the entropy of the classification,
while the FID computes a distance between the features ex-
tracted by the inception network and is more robust to GAN-
mode collapse.

Because our study does not apply to the ImageNet dataset,
it is necessary to compute our own metrics. Section 3 pro-
poses an approach for this kind of method in the domain
of geosciences and more precisely the study of atmospheric
fields. Our main objective is to assess the fitting quality of
the dataset climate distribution.

3 Evaluation and exploration of the generator

The metrics by which the results will be analyzed are visual
aspects, capacity to generate atmospheric balances and statis-
tics of the generations compared to climate distribution. For
the latter, the chosen metric is the Wasserstein distance. Be-
cause it is the same metric the generator has to minimize
during the training step, it seems a good candidate to as-
sess the training quality. One could argue that the network is
overly trained on this metric; that is why we use other metrics
such as mean and standard deviation differences and singular
value decomposition to complete our analysis. Finally, be-
cause no trivial stop criteria are available, it is interesting to
see where the magnitude of the Wasserstein distance is large
so as to diagnose some limitations of the trained generator
that would provide some ideas of improvements.

3.1 Description of the synthetic dataset

To create synthetic data, a climate model known as PLASIM
(Fraedrich et al., 2005a) was used, which is a general circula-
tion model (GCM) of medium complexity based on a simpli-
fied general circulation model PUMA (Portable University
Model of the Atmosphere) (Fraedrich et al., 2005b). This
model based on primitive equations is a simplified analog
for operational numerical weather prediction (NWP) models.
This choice facilitates the generation of synthetic data thanks
to its low resolution and reasonable computational cost. Dif-
ferent components can be added to the model in order to im-
prove the circulation simulation such as the effect of ocean
with sea ice, orography with the biosphere or annual cycle.

A 100-year daily simulation was run at a T42 resolution
(an approximate resolution of 2.8◦). We used orography and
annual cycle parameterization; ocean and biosphere mod-
elization were turned off in order to keep the dataset sim-
ple enough for our exploratory study. We removed the first
10 years in order to keep only the stationary part of the sim-
ulation. These resulting 90 years of simulation constitute the
sampling of the climate distribution that we aim to reproduce.
As preprocessing, each of the channels was normalized.

Each database sample is an 82-channel (nfield) two-
dimensional matrix of size 64 (nlat) by 128 (nlon) pixels. The
channels represent seven physical three-dimensional vari-
ables: the temperature (ta), the eastward (ua) and northward
(va) wind, relative humidity (hus), vertical velocity (wap),
the relative vorticity (ζ ), divergence (d) and geopotential
height (zg) at 10 pressure levels from 1000 to 100 hPa, plus
the surface pressure (ps). Another channel was added to rep-
resent the latitude: it is an image going from −1 at the top of
the image (North Pole) to 1 at the bottom (South Pole) in ev-
ery column. It was found that hard coding the latitude in the
data improved the learning of physical constraints, allowing
the network to be sensitive to the fact that the data are repre-
sented by the equirectangular projection of the atmospheric
physical fields, and, for example, the size of meteorologi-
cal objects increases closer to the poles. Finally, the choice
of having diagnostic variables in the dataset was to help the
post-processing, and assessment of their necessity requires
further research.

3.2 Comparison between climate dataset and
generated climate

Our study aims to have a generator able to reproduce the cli-
mate distribution present in the dataset made from the low-
resolution GCM PLASIM. This section proposes a way to
assess the quality of the distribution learned by the WGAN.

The first required property for a weather generator is a
low computational cost compared to the GCM that produced
the data. Here the simulation with the GCM PLASIM took
50 min for a 100-year simulation in parallel on 16 processors,
whereas the generator took 3 min to generate 36 500 samples
equivalent to a 100-year simulation on an NVIDIA Tesla V-
100.

Each generated sample is compared with dataset samples.
Figures 8 and 9 show a sample where only the pressure lev-
els 1000, 500 and 100 hPa are represented for readability. It
should be noted that the generated fields seem to be spatially
noisy compared to the dataset. The periodic boundary is re-
spected knowing that in the dataset the borders are located at
the longitude 0◦ where no discontinuities can be observed. In
the figures, the image is translated in order to have Europe at
the center of the image and to see whether some discontinu-
ities remain.

In order to quantitatively assess the generator quality,
Figs. 10 and 11 show the mean and standard deviation pixel-
wise differences over 10 800 samples (equivalent to 30 years
of data) between normalized dataset and generations. It ap-
pears that fields where small-scale patterns are present are
the most difficult to fit for the generator.

In order to go further in the analysis of the generated cli-
mate states, a singular value decomposition (SVD) was per-
formed over 30 years of the dataset (renormalized over the
30 years). Then the same number of generated data was con-
sidered and projected onto the five first principal components
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Figure 8. Sample on three different pressure levels (1000, 500 and 100 hPa) taken from the dataset. The samples were horizontally transposed
in order to have Europe at the center of the images. Coastlines were added a posteriori for readability. Units available in Table 2.

of the SVD that represent 75 % of explained variance of the
dataset. In Fig. 12 the dot product is represented between
SVD components derived from the dataset (ui)i∈{0,...,4} and
another one derived from the generated data (vi)i∈{0,...,4}.
Figure 12 represents the cross-covariance matrix defined by
sij = ui · vj . Values close to 1 or −1 show that the eigen-
vectors for both datasets (original and generated) are simi-
lar. This is another way of assessing whether the covariance

structure of the original data is being preserved, and Fig. 12
shows that the five eigenvectors are similar. One should note
that the SVD algorithm used from Pedregosa et al. (2011)
suffers from sign indeterminacy, meaning that the signs of
SVD components depend on the random state and the algo-
rithm. For this reason, we consider the dot product close to
both 1 and −1. One should note that an inversion remains
between the components with indexes 3 and 4, which could
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Figure 9. Sample on three different pressure levels (1000, 500 and 100 hPa) generated by the network. The samples were horizontally
transposed in order to have Europe at the center of the images to verify the quality of the periodic boundary. Coastlines were added a
posteriori for readability.

be explained by a difference of eigenvalue order (sorted in
decreasing order) in each dataset that determines the order of
eigenvectors. The fourth principal direction (index 3 in the
figure) of the generated data represents more variation of the
generated dataset than the same direction explains variation
in the original dataset. Figure 13 shows clearly the inversion
of the last principal components between the dataset and gen-

erations. This suggests a way of improving our method in
future work.

Figure 15 shows the temperature (at the pressure level
1000 hPa) distribution at different pixel locations corre-
sponding to the red dots in Fig. 14. Different latitudes (42,
−2 and −70◦) were chosen to represent diverse distribu-
tions. A value of Wasserstein distance is associated with each
plot, representing the distance between the two normalized
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Figure 10. Mean error over 30 years of the normalized dataset and the same number of normalized generated samples on three different
pressure levels (1000, 500 and 100 hPa). The samples were horizontally transposed in order to have Europe at the center of the images.
Coastlines were added a posteriori for readability.

distributions. It is notable that the Wasserstein distance in
the context of GAN training was introduced by Arjovsky
et al. (2017) in order to avoid the mode collapse phenomenon
where the generated samples produced by the GAN are rep-
resenting only one mode of the distribution. In Fig. 15, even
if the figure shows that some bimodal distributions remain
approximated by a unimodal distribution, the span of these
distributions covers the multiple modes of the targeted distri-
bution. This explains why the higher Wasserstein distance in
the figure is in the top-left panel, since despite the bimodal-
generated distribution the high temperature values do not
seem to be represented by the generated samples.

It follows that a good way to see the general statistics
learned by the generator is to plot the Wasserstein distance
for every pixel and for every variable. This result can be vi-
sualized spatially in Fig. 16, where we observe that certain
variables are better fitted by the generator than others. The
figure also shows that areas with more variability such as land
areas and more precisely mountainous areas are the most dif-
ficult to fit. As a way to better interpret this metric, Fig. 17
represents the distributions corresponding to the minimum
and maximum values of the metric. The distribution of the
Wasserstein distance can also be visualized grouped by pres-
sure level and type of variable in Fig. 18. The wap variable
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Figure 11. Standard deviation error over 30 years of the normalized dataset and the same number of normalized generated samples on
three different pressure levels (1000, 500 and 100 hPa). The samples were horizontally transposed in order to have Europe at the center of
the images. Coastlines were added a posteriori for readability.

that represents the vertical velocity seems to be the one with
the higher Wasserstein distance value.

3.3 Analysis of the atmospheric balances

The previous subsection has shown the ability of the gen-
erator to engender weather situations and climate similar to
those of the simulated weather. However, geophysical fluids
are featured by multivariate fields that present known bal-
ance relations. Among these balances, the simplest ones are
the geostrophic and thermal wind balances (see, e.g., Vallis,

2006). The next two sections assess the ability of the genera-
tor to reproduce the geostrophic and thermal wind balances.

3.3.1 Geostrophic balance

The geostrophic balance occurs at a low Rossby number
when the rotation dominates the nonlinear advection term.
Two forces are in competition: the Coriolis force, f k×u,
where k denotes the unit vector normal to the horizontal
(f is the Coriolis parameter and u is the wind) and the pres-
sure term −∇p8, where 8 is the geopotential and where ∇p
denotes the horizontal gradient in the pressure coordinate.
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Figure 12. Scalar product of SVD components derived from a
dataset and generated data.

Asymptotically, the Coriolis force is then balanced by the
pressure term which leads to the geostrophic wind:

ug =
1
f

k×∇p8. (15)

The geostrophic flow is parallel to the line of constant
geopotential, and it is counterclockwise (clockwise) around
a region of low (high) geopotential. The magnitude of the
geostrophic wind scales with the strength of the horizontal
gradient of geopotential Vallis (2006, Sect. 2.8.2, p. 92).

This asymptotic balance Eq. (15) is verified to within 10 %
of error at mid latitude, that is, u= ug+uag, where the mag-
nitude of the ageostrophic wind, uag, is less than 0.1 of the
magnitude of the real wind u.

Figure 19a illustrates a particular boreal winter situation
from the PLASIM dataset, focusing on the mid latitude and
presenting a low area of geopotential in the southwest of Ice-
land. It appears that the wind is well approximated by the
geostrophic wind, which is quantitatively verified in Fig. 20a
that shows the norm of the ageostrophic wind normalized by
the norm of the wind (that is, the relative error when ap-
proximating the wind by the geostrophic wind): the order
of magnitude of the error is around 20 %. Properties of the
geostrophic flow are visible, with a counterclockwise flow
around the low geopotential. The wind is maximum where
the horizontal gradient of geopotential is maximum, while
its change in direction follows the trough.

A similar behavior can be observed in Fig. 19b, which il-
lustrates a weather situation selected from the render by the
generator of some samples in the latent space, so as to rep-
resent a boreal winter situation. This time, a low geopoten-

tial is found in the north of Europe. While the geopoten-
tial field is noisy (it is less smooth than in Fig. 19a), the
wind is again found to be nearly geostrophic, verifying the
geostrophic flow properties to within an error of 35 % (see
Fig. 20b). The geopotential and wind fields were projected
onto the solved dynamic truncation in order to remove the
subgrid component due to the noise in the output of the gen-
erator. Despite the truncation, the geostrophic approximation
seems to not be respected everywhere and could be a quanti-
tative metric to monitor in order to improve our method.

We find that weather situations generated from samples in
the latent space reproduce the geostrophic balance at an order
of approximation that is similar to the one of the real dataset.
This means that the generator is able to produce the realistic
multivariate link between the wind and the geopotential. This
property is essential in operational weather forecasting, e.g.,
in producing balanced fields in the ensemble Kalman filter.

3.3.2 Thermal wind balance

The thermal wind balance arises by combining the
geostrophic wind Eq. (15) and the hydrostatic approxi-
mations, ∂8

∂p
=−

1
ρ

, where ρ is the density (Vallis, 2006,
Sect. 2.8.4, p. 95): taking the derivative of Eq. (15) with re-
spect to the pressure p makes the hydrostatic approximation
appear, so that the vertical derivative of the geostrophic wind
can be written as

∂8

∂p
=−

R

pf
k×∇pT , (16)

where the ideal gas equation, p = ρRT , has been used.
Equation (16) is the thermal wind balance that relates the
vertical shear of the horizontal wind to the horizontal gradi-
ent of temperature. In particular, when the temperature falls
in the poleward direction, the thermal wind balance predicts
an eastward wind that increases with height.

Figure 21a and b show the vertical cross section of the
zonal average of temperature and of the zonal wind for a
particular weather situation in the dataset, corresponding to
a boreal winter situation of the same weather situation rep-
resented in Fig. 21: the temperature is higher in the South-
ern Hemisphere than in the Northern Hemisphere, with a
strong horizontal gradient of temperature in latitude ranges
[−80◦,−40◦] and [40◦,80◦]. At the vertical of the horizontal
gradient of temperature, the wind is eastward and increases
with the height: this illustrates the thermal wind balance
which produces a strong curled jet at the vertical of the strong
horizontal gradient of temperature as shown in Fig. 22a that
illustrates, for the same weather situation, the temperature
at the bottom (800 hPa) with the horizontal wind at the top
(200 hPa) of the troposphere.

The same illustrations are shown in Fig. 21c and d when
considering a generated situation, selected to correspond to a
boreal winter situation: the characteristics related to the ther-
mal wind balance as observed before are found again. This
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Figure 13. Spatial components corresponding to principal components of SVDs applied to the dataset and the generated samples.

results in the generator being able to render a weather sit-
uation that reproduces the thermal wind balance. Moreover,
Fig. 23 shows the thermal wind balance averaged on 30 years
for the dataset (Fig. 23a) and generations (Fig. 23b); both are
very similar.

This section has shown the ability of the generator to
reproduce some important balances present in the atmo-
sphere. In particular, the generator is able to produce mid-
latitude cyclones whose velocity field is in accordance with
the geostrophic balance. The authors emphasize that it is nec-
essary to conduct more analysis of the weather situations out-

putted by the generator, which is beyond the scope of this
study. For example, it would be interesting to assess whether
other inter-variable balances are present, such as the ω equa-
tion or vertical structures. Note that adding advanced diag-
nostic fields in the output of the generator could be investi-
gated to improve the realism.
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Figure 14. Location from where the temperature distributions are plotted in Fig. 15. The Wasserstein distance value associated for each plot
was computed on normalized data.

Figure 15. Temperature distribution at different locations for 5000 samples from dataset (green) and generated (blue).

3.4 Exploration of the latent space structure and its
connection to the climate

An exploratory study was done on the property of the la-
tent space and its consequence in the climate space in regard
to climate domain problematics. If the generator is perfectly

trained, then each sample generated with it should represent
a typical weather situation. It is hard to figure out what the at-
tractor of the climate is. However, the geometry of the Gaus-
sian in high dimension being known, it is easy to characterize
the climate in the latent space.
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Figure 16. Wasserstein distance between 5000 datasets and generated samples on each pixel and each channel.

Figure 17. Distributions with the higher (a) and lower (b) Wasser-
stein distances computed on normalized data. The coordinates of
corresponding pixels are, respectively, in latitude and longitude.

3.4.1 Geometry of the normal distribution

For a normal law in the high dimension space Z = Rm, i.e.,
with m larger than 10, the distributions of the samples are
all located in a spherical shell of radius

√
m and of thickness

on order 1
√

2
(see, e.g., Pannekoucke et al., 2016). Because

the covariance matrix Im is a diagonal of constant variance,
no direction of Rm is privileged, leading to an isotropic dis-
tribution of the direction of the sampled vectors: their unit
directions uniformly cover the unit sphere. Another property

Figure 18. Wasserstein distance between 5000 datasets and gener-
ated samples on each pixel grouped by pressure height (a) or vari-
ables (b).
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Figure 19. Geostrophic and ageostrophic wind derived from geopo-
tential at 500 hPa. Situation taken from dataset (a) and gener-
ated (b).

Figure 20. Relative error in the norm between geostrophic wind
and normal wind shown in Fig. 19 for the situation taken from
dataset (a) and generated (b).

is that the angle formed by two sampled vectors is approx-
imately of magnitude π

2 : two random samples are orthogo-
nal. These are simple consequences of the central limit the-
orem which predict, for instance, that the distance of a sam-
ple to the center of the sphere is asymptotically the Gaussian
N (
√
m, 1

2 ).
Considering these properties, one can introduce a

two dimensional pseudo-representation which preserves the
isotropy of the distribution as well as the distribution to the
origin: a random sample vector x = (x1,x2, · · ·,xm) in Rm is
represented by the projection P2(x)= ||x||

1√
x2

1+x
2
2

(x1,x2),

where || · || stands for the Euclidian norm in Rm.

Figure 24 illustrates this low-dimensional representation
of an ensemble of 10 000 samples of the normal law in di-
mension m= 64. For instance, points A and B represent two
independent samples: their distance to the origin is closed to
√
m= 8, and their angle is closed to π

2 . While m= 64 can
be considered a very small dimension, it appears that the dis-
tribution of the point’s distance to the origin is well fit by the
Gaussian N (

√
64, 1

2 ) (see inset figure in Fig. 24). Hence, it
results that for this dimension, the interpretation of a Gaus-
sian distribution as a spherical shell applies, with interesting
consequences for extremes or typical states. A typical sample
of this normal law is a point near the sphere of radius

√
64,

while an extreme sample has a norm lying in the tails of the
distribution N (

√
64, 1

2 ).
This suggests evaluating whether the extremes of the latent

space correspond to those of the meteorological space.

3.4.2 Connection between extremes in the latent and
physical spaces

Knowing what are the extremes in the latent space might be
helpful to determine what are the extremes of the climate,
at least to determine what are extreme situations closed to a
given state.

For any sample in the latent space, say point A, we can
construct the point on the sphere

√
m along the same direc-

tion of A, A, which can be considered the most likely typical
state near A. Along the same direction of A, we can also
construct the extreme situations A± whose distances to the
origin,

√
m± 3

√
2
, lay, respectively, in the left and right tails

of the Gaussian distribution N (
√
m, 1

2 ).
Figure 25 represents the weather situation generated from

a randomly drawn latent vector from a 64-dimensional Gaus-
sian N (0,1) sample A (Fig. 25a). Panel (a) represents a la-
tent vector with a Euclidian norm equal to 7.69, close to the
mean of the radial distribution of the hypersphere mentioned
in Sect. 3.4.1. In the climate space this sample shows a me-
teorological object above northern Europe in the shape of a
geopotential minimum which can be interpreted as a storm.
This sample is the same as the one represented in Figs. 19b,
21b, and 22b.

The most likely typical state A (Fig. 25b) is the radial pro-
jection of the latent vector A onto the mean of the radial dis-
tribution; thus, its Euclidian norm is equal to 8. Because sam-
ple A has a norm close to sample B, the weather situations
are very similar at the geopotential height at z1000. This is an
expected effect because by construction of the generator the
input space is continuous, so two points in the latent space
must be similar. Extreme situation A± along the direction
of A is represented in Fig. 25c and d. Both panels shows
clear differences in the geopotential height. First the panel
(Fig. 25c) shows a decrease in the storm located above north-
ern Europe; the same effect is visible in the south of South
America. However, the weather situation is very similar to
Fig. 25a. By contrast, Fig. 25d represents a deeper geopoten-
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Figure 21. Temperature (K) and zonal wind (ms−1) latitude zonals from a boreal winter situation: the thermal wind balance. Left panels
correspond to a situation taken from the dataset. (a) Zonal temperature and (c) zonal wind. Right panels correspond to a situation taken from
the generator. (b) Zonal temperature and (d) zonal wind.

Figure 22. Thermal wind balance from the boreal winter situation
shown in Fig. 21: (a) sample from the dataset; (b) sample generated
by the generator. The temperature (K) is from pressure level 800 hPa
and the wind (ms−1) from 200 hPa.

tial height minimum at the pre-existing storm of sample A.
Thus, Fig. 25 seems to show a certain structure of the latent
space generator where the radial direction could represent the
strength of the meteorological objects such as storms above
Europe, for example. It could be explained by the fact that the

generator aims to map a distribution (64-dimensional Gaus-
sian in the latent space) to another (weather distribution in
the PLASIM physical space). Rare events exist in the latent
space on the tails of the Gaussian distribution’s potentially
extreme weather situations. One of the ways to do a such
mapping is to use the radial direction to represent high- or
low-probability states of the climate. An important conclu-
sion is that, for a given situation, the most likely state and the
extremes are interesting physical states. This could open new
possibilities to study an extreme situation close to a given
one, which is an important topic, e.g., for insurance or to
improve the study of high weather impact in ensemble fore-
casting.

The link of the animation of such interpolation is available
on GitHub1 of the project.

3.4.3 Interpolation in the latent space

Even if there are no dynamics in the latent space, which
makes it impossible to construct a prediction from this space,
we can consider how to interpolate two latent states. A naive
answer is to compute the linear interpolation between two
samples of the latent space A and B,

Mt =G((1− t)A+ tB), (17)

which results in the red chordal illustrated in Fig. 24. The
chordal interpretation highlights a major drawback of the lin-
ear interpolation: middle points of the chordal are extremes;
these intermediate points should not correspond to typical (or
even physically realizable) weather situations.

1https://github.com/Cam-B04/Producing-realistic-climate-data-
with-GANs (last access: 15 January 2021)
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Figure 23. Temperature (K) and zonal wind (ms−1) latitude zonals averaged on the 30-year subsample. Left panels correspond to a situation
taken from the dataset: (a) zonal temperature and (c) zonal wind. Right panels correspond to a situation taken from the generator: (b) zonal
temperature and (d) zonal wind.

Figure 24. Pseudo-spherical metaphorical representation of 10 000
samples of the normal distribution in Rm with m= 64 and the dis-
tribution of the distance of samples to the center of the spherical
shell. For a sample A, A± denotes two extreme situations along the
direction of A. Any second sample B, typical of the distribution,
appears orthogonal to A. The inset figure represents the radial dis-
tribution compared with the asymptotic central limit theorem (CLT)
Gaussian distribution N (

√
m, 1

2 ) (thin red curve).

Figure 25. Generations obtained by radial interpolation in the latent
space. Panel (a) is the image corresponding to a randomly drawn la-
tent vector A (two-norm: 7.69), (b) is its projection onto the mean
of the same direction A (two-norm: 8.0), and (c) and (d) are the
projection onto, respectively, inferior A− (two-norm: 5.87) and su-
perior A+ (two-norm: 10.12) 1 % quantile (see Fig. 24).

So as to preserve the likelihood of the interpolated weather
situations, it is better to introduce a spherical interpolation.
This kind of interpolation has also been used in image pro-
cessing, where, e.g., White (2016) uses the formula

Mt =G

(
sin((1− t)θ)

sinθ
A+

sin(tθ)
sinθ

B

)
, (18)

where θ is the angle Â,B and for t ∈ [0,1] such as M0 =

G(A) and M1 =G(B).
This interpolation will connect point A to point B within

the spherical shell of typical states, as illustrated by the or-
ange curve line in Fig. 24. Figure 26 shows snapshots of
the climate generated from a spherical interpolation in the
latent space between sample A and another random sample
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Figure 26. Spherical interpolation snapshots. Respectively, pan-
els (a–f) correspond to values of t in Eq. (18) of 0, 0.2, 0.4, 0.6,
0.8, and 1.

Figure 27. Linear interpolation in the latent space interpolation
snapshots. Respectively, panels (a–f) correspond to values of t in
Eq. (17) of 0, 0.2, 0.4, 0.6, 0.8, and 1.

B. For the sake of comparison, Figs. 27 and 28 are, respec-
tively, snapshots of a linear interpolation in the latent space
described in Eq. (17) and in the image space using the fol-
lowing equation:

Mt = (1− t)G(A)+ tG(B). (19)

The objective of this experience is to be able to pro-
duce realistic intermediate states. This can be visible in
Fig. 26, where the storm above Europe emerges by first a
smaller minimum in geopotential height that increases in
size, whereas in both linear interpolations, in the latent and
image spaces, the storm appears first as a long and thin
geopotential minimum and then broadens in the latitude di-
rection. Such a property can be helpful in the context of fluid
dynamics for initial and boundary conditions of a local area
model to avoid error correlated with user-defined parameters
such as in lateral boundary conditions (Davies, 2014). An in-
teresting generator property would be able to choose some
characteristics of the generated climate such as meteorologi-
cal objects at certain locations. In the next section, an exper-

Figure 28. Linear interpolation in the image space. Respectively,
panels (a–f) correspond to values of t in Eq. (19) of 0, 0.2, 0.4, 0.6,
0.8, and 1.

iment is conducted to see whether it is possible to change the
location of such meteorological objects.

3.4.4 Coherent structure perturbation from the latent
space

In this section, the goal is to study the difference between
two climate states coming from close latent points. In this
experiment, sampleG(A) will be the reference climate state,
and we added noise to A such as A= A+ εi with εi taken
from N (0,0.1).

Figure 29 shows the different climate states corresponding
toG(A) andG(A+εi) in the first column and the difference
with the reference in the climate states G(A)−G(A+ εi) in
the second column. The second column shows dipoles that
represent the movement of meteorological structures, for ex-
ample, in the South American area of panel d. We remarked
that the perturbation of one latent vector is translated in the
climate state by a dipole creation when the difference is done
between the reference and perturbed versions. This shows the
possibility of moving the meteorological object by remaining
on the manifold of the realistic climate state. This is an inter-
esting asset for the climate domain, where it is complicated
to interpolate between two states where a storm is at two dif-
ferent locations as mentioned in Hergenrother et al. (2002).
The WGAN could be a way to propose realistic intermediate
states.

4 Conclusions

Our study shows that it is possible to map the climate distri-
bution output of a GCM to a much simpler low-dimensional
distribution using a highly nonlinear neural-network-based
generator. It also proposes ways to assess the quality of the
generator by evaluating statistical quantities as well as with
respect to physical balance properties.
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Figure 29. Geopotential height: the first column reference corre-
sponds to G(A), and panels (a–d) correspond to G(A+ εi) and the
second column G(A)−G(A+ εi).

In this article, a weather generator based on the WGAN
method able to produce realistic states of the atmosphere
was created. Metrics such as SVD principal component com-
parison, Wasserstein distance on pixel value distribution and
mean and standard deviation comparison were used in order
to be compared to other future proposed methods.

A comparison of the atmospheric balance was realized be-
tween samples and averaged over 30 years of data, showing
promising results. Coherence between variables as well as
spatial coherence were also shown to be promising.

Interesting properties of such a generator were discussed
with regard to possible applications in insurance, weather
simulation and data assimilation. The generator is able to
generate intermediate realistic climate states with coherent
structures, interpolate between two defined states with other
plausible states, and create realistic perturbations around a
climate state, all at a low computational cost compared to a
GCM.

A study was also done on the interpretability of the latent
space and the connections between the extreme events in the
data space and the latent space. It highlighted the radial di-
rection as the direction of the intensity of climate events.

Our results highlight the ability of the method to handle
the mapping of a high-dimensional distribution onto a mul-
tivariate Gaussian. We believe this is an important step that
opens many opportunities for climate data exploration. Some
extensions of this work as well as potential application are
highlighted in the following.

First, the WGAN could be conditioned by the season or
by the day in the year. Such conditioning would give ac-
cess to other quantitative methods to assess the quality of the
weather generator. It would be also an important step towards
application in the risk assessment area, for example.

Optimization can be done to find specific states in the la-
tent space by defining an objective function such as Euclidian
distance in the climate space. The network gradient with re-
spect to its inputs being accessible, direct minimization can
be used to find climate states that fit observations in data as-
similation problems. More advanced strategies, such as train-
ing a separate inference network (Chan and Elsheikh, 2019),
are also possible to apply Bayes’ rule without using a particle
filter. It is also possible to condition the generations to a spe-
cific date in the annual cycle with slight modifications in the
network architecture. One could think to condition the output
of the generator by a forcing field in input such as forcing
fields like SST fields for data assimilation application, which
should be possible but with more important modifications of
the network architecture and a possible impact on the speed
of the training procedure.

A more sophisticated dataset could be used, such as a true
climate reanalysis, to see the effect of the dataset complexity
on the method’s performance. The optimization of the net-
work’s architecture and a sensitivity study on the hyperpa-
rameters such as the dimension of the latent space, for ex-
ample, would be useful. Moreover, it would be interesting
to see whether it is possible to take advantage of the GAN
trained in PLASIM to facilitate the training of a GAN on the
reanalysis.

The structure of the latent space and its interpretability is
also a critical way to exploit the specificities of the method.
The opportunity to find similar climate states with extreme
events is also something not possible with other weather gen-
erators and could have lots of application for risk assessment
applications.

The definition of additional metrics to assess the quality of
the generator should be the main focus following this study
to identify improvement of the method and facilitate the par-
ticipation from diverse researcher communities.

Finally, we could consider restarting the GCM from a gen-
erated state to assess how well balanced the generated fields
are, which could have important implications in data assimi-
lation methods.

The study is a first step towards deep-learning weather
generation; while many challenges remain to be solved, it
shows several potential applications of GANs to improve the
effectiveness of current approaches.
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