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An anisotropic formulation of the parametric Kalman
filter assimilation

By OLIVIER PANNEKOUCKE1,2,3�, 1INPT-ENM, Toulouse, France; 2CNRM, Universit�e de Toulouse,
M�et�eo-France, CNRS, Toulouse, France; 3CERFACS, Toulouse, France

(Manuscript Received 12 September 2020; in final form 2 March 2021)

ABSTRACT
In geophysics, the direct application of covariance matrix dynamics described by the Kalman filter (KF) is
limited by the high dimension of such problems. The parametric Kalman filter (PKF) is a recent alternative
to the ensemble Kalman filter, where the covariance matrices are approximated by a covariance model
featured by a set of parameters. The covariance dynamics is then described by the time evolution of these
parameters during the analysis and forecast cycles. This study focuses on covariance model parametrized by
the variance and the local anisotropic tensor fields (VLATcov). The analysis step of the PKF for VLATcov
in a 2D/3D domain is first introduced. Then, using 2D univariate numerical investigations, the PKF is shown
to be able to provide a low numerical cost approximation of the Kalman filter analysis step, even for
anisotropic error correlation functions. Moreover the PKF has been shown able to reproduce the KF over
several assimilation cycles in a transport dynamics. An extension toward the multivariate situation is
theoretically studied in a 1D domain.

Keywords: data assimilation, parametric Kalman filter, univariate analysis, multivariate analysis

1. Introduction

In geophysical applications, the aim of data assimilation
is to estimate the state of a system (e.g. ocean, atmos-
phere, concentration of a chemical species for air quality).
Currently, the size of such a numerical representation can
be extremely large, on the order of 107–109 degrees of
freedom. However, due to the sensitivity to the initial
conditions, the heterogeneity of the observational net-
work and noise that affect the observations, the real state
can only be estimated with uncertainty (Daley, 1991).

A major theoretical and numerical tool used in assimi-
lation is the Kalman filter (Kalman, 1960), which relies
on assumptions of Gaussianity for the uncertainty and of
linearity for the dynamics (and the observational opera-
tors). Therefore, due to its Gaussianity, any probability
distribution is then entirely determined by the knowledge
of its mean state and its error covariance matrix. The lin-
earity assumption preserves the Gaussianity of the uncer-
tainty during the time evolution from the dynamics and
the update from the analysis step. The Kalman filter
describes the time evolution of the mean state and the
error covariance matrix during the analysis and forecast
steps. Despite the theoretical framework offered by the

Kalman filter, practical implementations are limited by
the huge sizes of the problems considered in geophysics,
only a few applications exist of the standard purely linear
Kalman filter, with explicit temporal evolution of the
complete covariance matrix of forecast error e.g. in air
quality (M�enard et al., 2000; M�enard and Chang, 2000).
For example, the size of the covariance matrices can
reach a number of degrees of freedom on the order of
1014–1018, far beyond the current capacities of
supercomputers.

To bypass these limitations, ensemble methods have
been introduced to approximate the state error covariance
matrices using ensemble estimations such as the ensemble
Kalman filter (EnKF) (Evensen, 2009). In this way, it is
possible to account for the nonlinear behaviour of the
dynamics and to handle the huge error covariance matri-
ces during the analysis and forecast steps. Operational
implementations of the EnKF have shown the ability of
this algorithm to be applied in geophysics (Houtekamer
et al., 2005; Coman et al., 2012; Sakov and Sandery,
2015). The EnKF is a robust algorithm that has been
applied to a wide range of systems, from theoretical sys-
tems, e.g. the classic Lorenz-95 system (Bocquet et al.,
2015), to operational systems in the ocean or atmosphere.
Because it is problem-independent, EnKF is easy to apply�Corresponding author. e-mail: olivier.pannekoucke@meteo.fr
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to a multitude of different situations. However, the
EnKF also suffers from some drawbacks. In fact, the
independence from the problem is also a limitation: the
EnKF does not take advantage of possible simplifications
related to type of dynamics governing a system. For
instance, for a transport dynamics (advection of a scalar
field by the wind), the forecast error variance field
evolves by the same transport equation, that is simple to
compute e.g. the variance field is predicted by using the
same numerical scheme as the one used for solving the
transport dynamics of the scalar field (Cohn, 1993;
Pannekoucke et al., 2016, 2020). When using an EnKF,
the variance field for the transport equation is performed
as follows: the initial uncertainty is pushed forward by
forecasting each member of the ensemble, then the vari-
ance is estimated. This routine to compute the variance is
the same for any dynamics e.g. a Lorenz63 or the weather
(Evensen, 2009). Hence, the EnKF does not take advan-
tage of the partial differential equations that govern the
dynamics of geophysical flows or the transport of the
mixing ratio in atmospheric chemistry. While the EnKF
is naturally parallelized, ensemble predictions are often
performed at a lower resolution than the operational
forecast to balance the computational burden from run-
ning the multiple model runs required for an ensemble.
Since only a dozen members are generally considered, the
small ensemble size leads to large distant correlations due
to the sampling noise and implies the need to consider
localization strategies.

In a recent study, another route to approximating the
Kalman filter (KF) error covariance dynamics was pro-
posed. This approach, called the parametric Kalman filter
(PKF), consists of a parametric formulation where the
forecast and the analysis error covariance matrices are
approximated by a covariance model. For example, when
choosing the covariance model based on the diffusion
equation (Weaver and Courtier, 2001), the time evolution
of the KF error covariance matrices can be approximated
by the dynamics of the error variance and the error diffu-
sion tensor field during the analysis and forecast steps
(Pannekoucke et al., 2016, 2018b). An illustration using
the 1D advection–diffusion of a passive tracer has shown
the potential of this approach. In particular, this simple
framework illustrates the complex interactions due to the
physical diffusion process, which causes a coupling
between the error variance and the error diffusion metric
tensor to appear. This simple framework also demon-
strates interactions due to stretching via advection. In its
forecast step, the PKF relies on the equations that govern
the dynamics and this problem dependency is both the
strength and the weakness of the PKF. It is a weakness
because the dynamics of the parameters has to be

designed from the specific partial differential equations of
the system; however, this is the price for not using an
ensemble. The strength of the method is to dramatically
reduce the numerical cost of calculating the covariance
forecast. Note that a splitting method exists that can help
build new parameter dynamics from already known
dynamics. The splitting method has been used in nonlin-
ear dynamics with the nonlinear advection–diffusion
equation (or Burgers’ equation), which confirmed the
potential of the PKF approach to solve the extended
Kalman filter via a Gaussian second-order filter in the
forecast step (Pannekoucke et al., 2018a). This extension
to a nonlinear dynamics problem revealed challenges fac-
ing the design of the parameter dynamics by highlighting
difficulties when handling some processes, for example,
physical diffusion. However, it also illustrated the benefits
of formulating the dynamics of the uncertainty resulting
from the concurrence between the advection and the
physical diffusion; for this simple system, the PKF repro-
duces the KF for the mid-term forecast in the tangential
linear regime. If forecasting the uncertainty is a real chal-
lenge, it only represents one part of the KF, and being
able to write equations for the parameter update during
the analysis step is an astonishing result with interesting
consequences. One of these consequences is that the PKF
does not suffer from spurious long-range correlations
when the modelled correlation functions are compactly
numerically supported, which is the case for the correla-
tions modelled from the diffusion equation.

Because the PKF has been primarily designed in 1D, it
is essential to extend the PKF analysis step in 2D and 3D
and to assess its ability to produce a correct update of
the anisotropy of the forecast error statistics. The formu-
lation of the PKF analysis update should be done only
one time for each choice of covariance model: the equa-
tion for the analysis update is independent of the forecast
dynamics. However, in its initial derivation, the PKF
analysis only weakly represents the anisotropies because
it relies on locally homogeneous Gaussian functions. In
addition, the update of the forecast-error anisotropy ten-
sor has only been settled in 1D with an extrapolation to
higher dimensional cases. These two points appear to be
the main drawbacks of the PKF analysis step and need
to be addressed. As another point, if the PKF is able to
describe the update of the forecast error statistics with an
appropriate description of the anisotropy, then it should
also be possible to estimate the analysis state.

To tackle these three points, the current contribution
focuses on the analysis step, assessing the ability of the
PKF formulation to approximate the KF analysis statis-
tics, a prerequisite for real applications. To do so, we
consider the family of covariance models parametrized by
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the variance field and the local anisotropic tensors
(VLATcov); and introduce then evaluate the PKF
for VLATcov.

This manuscript is organized as follows. Section 2
reviews some background on the KF and introduces the
PKF. Then, Sec. 3 focuses on the PKF for VLATcov.
The covariance model based on a diffusion equation is
presented and a surrogate for this covariance model is
introduced, both covariance model are VLATcov.
Numerical investigations are then presented in Sec. 4,
which first compares the PKF to the KF analysis step for
a univariate assimilation in a 2D domain followed by a
comparison over several assimilation cycles (analysis and
forecast steps) for a transport equation. In order to better
understand the limits of this work, Sec. 5 presents a sim-
ple multivariate experiment in a 1D domain. Conclusions
are made in the final section, Sec. 6.

2. Background and new analytical results on
Kalman filter

2.1. Analysis step in the Kalman filter

In operational forecasting, the true state X t of a system
(e.g. the ocean, the atmosphere or the mixing ratios of
chemical species in atmospheric chemistry) is unknown.
Data assimilation aims to compute the optimal estimation
of X t, that is, the analysis state Xa, by combining the
observations Yo and the forecast state X f : The dimen-
sions of X t and Yo are denoted by n and p, respectively.
For linear dynamics and additive Gaussian errors uncor-
related in time, the formalism that describes the evolution
of the uncertainty over time, and that relies on the
Bayesianity, is given by the Kalman filter (KF) equations
(Kalman, 1960). The analysis step updates the forecast
uncertainty to account for the information from the
observations following

Xa ¼ X f þ K Yo �HX f
� �

, (1a)

Pa ¼ ðIn�KHÞPf , (1b)

where K ¼ PfHTðHPfHT þ RÞ�1 is the gain matrix with
the superscript T denoting the transpose operator; H is
the (linear) observation operator that maps the model
state into the observation space; Pf ¼ Eðef ef TÞ is the
covariance matrix of the forecast error defined by ef ¼
X f�X t, where E denotes the expectation operator; Pa ¼
EðeaeaTÞ is the covariance matrix of the analysis error
defined by ea ¼ Xa�X t; R ¼ EðeoeoTÞ is the covariance
matrix of the observation error defined by eo ¼ Yo�HX t;

and In is the identity matrix with dimension n. In above,

the Gaussianity of the error means that the errors are
modelled as Gaussian processes with zero mean i.e.
Eðef Þ ¼ 0, EðeoÞ ¼ 0, and EðeaÞ ¼ 0: Note that the ana-
lysis step Eq. (1) coincides with the best linear unbiased
estimator (BLUE): a sub-optimal estimator which only
needs the existence of a covariance matrix for the
unbiased error, and relaxes the Gaussian assumption
(Daley, 1991).

While the KF equations are simple relations from lin-
ear algebra, their use is limited to problems with small
sizes. Moreover, little analytical results are known about
the KF equations that could be used in practice.

2.2. Analysis state and variance update for a single
observation assimilation

In general, the matrix inversion in the analysis equation,
Eq. (1a), makes it difficult to simplify this relation.

However, the assimilation of a single direct observation
can leads to some analytical results. For an observation
located at a grid point xl and of value YoðxlÞ, when the
observation operator is the linear projector HX f ¼
X f ðxlÞ, the analysis equation becomes

XaðxÞ ¼ X f ðxÞ þ rf ðxÞqfxl ðxÞ
rf ðxlÞ

Vf ðxlÞ þ VoðxlÞ ðY
oðxlÞ�X f ðxlÞÞ,

(2)

where VoðxlÞ ¼ E eoðxlÞ2
h i

is the observational-error vari-
ance associated with the observation, Vf ¼ E ðef Þ2

h i
is the

field of forecast-error variance and standard-deviation
rf ¼

ffiffiffiffiffiffi
Vf
p

, and qfxl ðxÞ is the forecast-error correlation
function defined by qf ðxl, xÞ ¼ E ef ðxlÞef ðxÞ

� �
=

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vf ðxlÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vf ðxÞ

p
Þ:

Therefore, the forecast is modified around the observa-
tion location with a pattern characteristic of the forecast
error correlation. This simplified expression, which does
not apply to non-local observations, such as satellite radi-
ance data, constitutes one of the classic results of optimal
interpolation.

Because the forecast is locally updated, the variance
field also changes in the vicinity of the observation pos-
ition leading to the second classic result (Daley, 1991, pp.
146–147):

VaðxÞ ¼ Vf ðxÞ 1� qfxl ðxÞ
h i2 Vf ðxlÞ

Vf ðxlÞ þ VoðxlÞ

 !
, (3)

for which the origin is given in Appendix B for self-
consistency.

AN ANISOTROPIC FORMULATION OF THE PARAMETRIC KALMAN FILTER ASSIMILATION 3



Like for the variance field, the shape of the correlation
functions is influenced by the assimilation of an observa-
tion as discussed now.

2.3. Update of the local shape of the error-
correlation function for a single observation
assimilation

This part details how to characterize the local shape of
the error-correlation function and how it is modified by
the assimilation of a single observation.

2.3.1. Definition and diagnosis of the local shape. When
the forecast-error is a differential random field, the local
shape of the correlation is characterized by the so-called
local forecast-error metric tensor gf ðxÞ,

gfijðxÞ ¼ �@2
xixjq

f ðx, yÞjy¼x, (4)

that appears in the Taylor expansion of the correlation
function (Daley, 1991; Hristopulos, 2002; Pannekoucke et
al., 2014),

qf ðx, yÞ� 1� 1
2
jjy�xjj2gf ðxÞ: (5)

In particular, gf ðxÞ is a symmetric positive-definite
matrix that prevents the correlation value from being
larger than one. The metric tensor is related to the statis-
tics of the random field ef according to the formula (Belo
Pereira and Berre, 2006)

gfijðxÞ ¼ E @xi
ef

rf

� �
@xj

ef

rf

� �	 

ðxÞ, (6)

where rf ¼
ffiffiffiffiffiffi
Vf
p

denotes the forecast-error stand-
ard deviation.

The expression Eq. (6) of the metric tensor proves very
useful during theoretical manipulations (a proof of Eq. (6)
is provided in Appendix A). Eq. (6) ensures that the result-
ing metric tensor is symmetric, but also positive: for any

vector dx, dxTgf ðxÞdx ¼ E ðdxTr ef

rf

� �
Þ2

h i
� 0; but the

definiteness of gf results from the differentiability of ef

(Hristopulos, 2002). In geoscience, where the flow is gov-
erned by PDEs with some physical (or turbulent) diffusion,
the assumption of error differentiability makes sense.

In practice, the geometry of the local metric tensor is
contravariant: the direction of largest correlation anisot-
ropy corresponds to the principal axes of smallest eigen-
value for the metric tensor. Thus, it is useful to introduce
the local aspect tensor (Purser et al., 2003) whose the
geometry goes as the correlation, and defined as the
inverse of the metric tensor

s f ðxÞ ¼ g f ðxÞ
� ��1

, (7)

where the superscript �1 denotes the matrix inverse. The
metric as well as the aspect tensor can be used to charac-
terize correlation functions, according to the following
definitions: when the aspect tensor is the same for each
position, then the correlation functions are said to be
homogeneous, and when the aspect tensor is proportional
to the identity matrix, the correlation is isotropic; con-
versely, when the aspect tensor is different for each pos-
ition, the correlation functions are heterogeneous, and
when the aspect tensor is not proportional to the identity
matrix, the correlation is anisotropic. These definitions
result from the local aspect tensor field being considered
as a diagnostic of the correlation functions; however, a
more rigorous global definition of the homogeneity and
the isotropy can be found in Gaspari and Cohn (1999).

To quantify the magnitude of the anisotropy, the local
aspect tensor s can be compared to its isotropic part
defined as

siso ¼ 1
d
TrðsÞId ,

where Trð�Þ denotes the matrix trace operator and d
denotes the spatial dimension. Therefore, the isotropy
deviation can be defined as the distance

diso ¼ 1
d � 1

jjjsðsisoÞ�1�Id jjj, (8)

where jjj � jjj is the multiplicative norm defined by
jjjUjjj ¼ maxjjxjj¼1 jjUxjj for any matrix U: This isotropy
deviation is a simple scalar diagnostic for which diso 2
½0, 1�: An isotropy deviation of diso ¼ 0 stands for an iso-
tropic tensor, while a deviation of diso ¼ 1, for d¼ 2,
stands for a purely anisotropic tensor i.e. a singular ten-
sor. In addition, the isotropic part generates an isotropic
length scale defined as

Liso ¼ ðTrðsÞ=dÞ1=2, (9)

which describes the spread of the local error correlation
functions within a single scalar field. When the scale of
variation of the aspect tensor is smaller than the isotropic
length scale (Eq. (9)), the correlation is said to be locally
homogeneous.

2.3.2. Update of the local metric tensor for a single
observation. As far as we know, there is no classical for-
mula for updating the metric tensor field, whereas it
should change at the observation point, but also in its
vicinity. After some calculations, which are given in
Appendix B, the local metric tensors update as

4 O. PANNEKOUCKE



gaðxÞ ¼ Vf ðxÞ
VaðxÞ g

f ðxÞþ
1

4Vf ðxÞVaðxÞ rV
f ðrVf ÞT

h i
ðxÞ�

1
VaðxÞ

Vf ðxlÞ
Vf ðxlÞ þ VoðxlÞ

rðrfqfxl Þ rðrfqfxl
� �T	 


ðxÞ�
1

4ðVaðxÞÞ2 rV
aðrVaÞT

h i
ðxÞ:

(10)

Note that, because the analysis metric tensor appears
as the difference of symmetric positive tensors, there is no
guarantee that the numerical computation will lead to a
positive matrix. However, when the analysis and forecast
error variance fields are locally homogeneous, i.e. when
1
Vf rVf and 1

VarVa can be neglected, the analysis error
metric tensor field simplifies to

gaðxÞ� Vf ðxÞ
VaðxÞ g

f ðxÞ, (11)

which can be written, in terms of the local aspect tensor,
as

saðxÞ� VaðxÞ
Vf ðxÞ s

f ðxÞ, (12)

which is a surprisingly simple result that ensures the posi-
tiveness of the tensor in numerical computations (for all
positions x, 0 � VaðxÞ � Vf ðxÞ).

2.4. Discussion on the KF

It is important to note that Eqs. (2), (3) and (10) are
valid in 1D domain as well as in 2D or 3D domains.
Moreover they also apply in the multivariate case in
which the correlation function qxl ðxÞ then denotes the
multivariate correlation function (see Appendix B
for details).

Until now, the EnKF has been the main approach for
computations of analysis statistics in complex situations,
approximating the covariance matrices via ensemble esti-
mations. Note that variational assimilation has been
influenced by the ensemble approach since it can deliver
some flow dependency in the background error covari-
ance matrix (Berre et al., 2007; Bonavita et al., 2012).

Another approximation of covariance matrices is intro-
duced in the following section, opening a new possible
implementation of the KF equations in realis-
tic situations.

3. The parametric Kalman filter (PKF)

3.1. Analysis step in the PKF

The idea of the PKF (Pannekoucke et al., 2016, later
denoted P16) is to approximate the state error covariance
matrices using a covariance model, denoted by PðPÞ and
characterized by a set of I parameters P ¼ ðpiÞi2½1, I�:
Therefore, there exists a set of forecast parameter values
Pf and analysis parameter values Pa such that the covari-
ance matrices PðPf Þ and PðPaÞ approximate the forecast
and analysis error covariance matrices Pf and Pa,
respectively. One criterion for the choice of the parameter
sets could be, for example, that the covariance matrix
and its parametrized approximation share the same diag-
nostics (e.g. variance and anisotropy characteristics).

For the analysis step, the critical issue is then to com-
pute the analysis parameters Pa from both the forecast
parameters Pf and the set of observations to be assimi-
lated. The update of the covariance model parameters
depends on the covariance model itself, while the choice
of covariance model is problem dependent.

Inspired by the sequential processing of batches of
observations in the EnKF (Houtekamer and Mitchell,
1998), a sequential update of the covariance parameters
can be considered. More precisely, in the KF, when the
observation errors are uncorrelated, the statistics resulting
from the assimilation of a set of observations are equal
to the statistics resulting from the sequential assimilation
of each single observation while updating the error statis-
tics. This property reduces the core of the KF algorithm
to the assimilation of a single observation. Therefore, in
the parametric approximation, this amounts to comput-
ing how the parameters of the error statistics update
from the assimilation of a single observation.

The assimilation of the observation set is performed as
follows: Starting from the initial forecast parameters
Pf

0 ¼ Pf , successive assimilations of single observations,
indexed by l, are considered to compute the analysis
parameters Pa

l from the forecast parameters Pf
l : After

each iteration l, the forecast parameters are updated from
the analysis parameters, i.e. Pf

lþ1  Pa
l : Iterations stop

when all the observations have been assimilated. For p
observations, the final analysis parameters are Pa

p: When
the covariance model is well suited to the prob-
lem, Pa

p�Pa:

The present contribution now focuses on a particular
family of covariances.

3.2. PKF analysis step for VLATcov models

In this section, we introduce the PKF for covariance
model characterized by the variance and the local aniso-
tropic tensor (VLATcov). This will take the form of two

AN ANISOTROPIC FORMULATION OF THE PARAMETRIC KALMAN FILTER ASSIMILATION 5



implementations given by Algorithm 1 and Algorithm 2.
Hence, a VLATcov model can be either denoted by
PðV, gÞ or PðV, sÞ depending if the anisotropy is charac-
terized by the metric tensor or by the aspect tensor, the
two characterizations being equivalent. From theoretical
results on KF recalled in Sec. 2.2 and introduced in Sec.
2.3, we deduce that PKF equations, which remain to esti-
mate the analysis-error covariance matrix PðVa, gaÞ from
the forecast-error covariance matrix PðVf , gf Þ when
assimilating an observation at a point xl, are given by

XaðxÞ ¼ X f ðxÞ þ rf ðxÞqfxl ðxÞ
rf ðxlÞ

Vf ðxlÞ þ VoðxlÞ ðY
oðxlÞ�X f ðxlÞÞ, (13a)

VaðxÞ ¼ Vf ðxÞ 1� qfxl ðxÞ
h i2 Vf ðxlÞ

Vf ðxlÞ þ VoðxlÞ

 !
, (13b)

gaðxÞ ¼ Vf ðxÞ
VaðxÞ g

f ðxÞþ
1

4Vf ðxÞVaðxÞ rV
f ðrVf ÞT

h i
ðxÞ�

1
VaðxÞ

Vf ðxlÞ
Vf ðxlÞ þ VoðxlÞ

rðrfqfxl Þ rðrfqfxl Þ
� �T	 


ðxÞ�
1

4ðVaðxÞÞ2 rV
aðrVaÞT

h i
ðxÞ:

(13c)

where the function qfxl ðxÞ ¼ qðgf Þðxl, xÞ is the correlation
function associated with the covariance matrix PðVf , gf Þ:

This enables the basic idea of the PKF: to forecast and
update the covariance model parameters during the entire
assimilation cycle. For VLATcov models, Eq. (13) is the
core of the PKF analysis update of the forecast error statis-
tics from the assimilation of a single observation. Thus, the
PKF analysis step, resulting from the sequential assimilation
of single observations, can be summarized as Algorithm 2.

In the particular case where the variance field is locally
homogeneous, the PKF can be simplified considering the
update of the local aspect tensor field sa following Eq. (12),
which leads to a second algorithm, Algorithm 1. Hereafter,
the full PKF implementations given by Algorithm 2 and
Algorithm 1 are called the second-order PKF and the first-
order PKF denoted PKF O2 and PKF O1, respectively.

Algorithm 1: Iterated process building the analysis state
and its error covariance matrix for the first-order PKF
(PKFO1) for VLATcov models where the local anisot-
ropy is parametrized by the local metric tensors g:

Require: Fields of gf and Vf ,Vo and locations xl of the p
observations to assimilate
for l ¼ 1 : p do

0—Initialization of the intermediate quantities

Yo
l ¼ YoðxlÞ,X f

l ¼ X f ðxlÞ
Vf

l ¼ Vf
xl ,V

o
l ¼ Vo

xl

1—Set the correlation function from the VLATcov model

qlðxÞ ¼ qðgf Þðxl,xÞ
2—Computation of the analysis state and its error statistics

Xa
x ¼ X f

x þ rfxqlðxÞ
rf l

Vf
l þ Vo

l

Yo
l � X f

l

� �
Va

x ¼ Vf
x 1� qlðxÞ½ �2 Vf

l

Vf
l þ Vo

l

 !
gax ¼

Vf
x

Va
x
gfx

,

3—Update of the forecast state and its error statistics

X f
x  Xa

x

Vf
x  Va

x
gfx  gax

end for
Return fields Xa, ga and Va

Algorithm 2: Iterated process building the analysis state
and its error covariance matrix for the second-order PKF
(PKFO2) for VLATcov models where the local anisot-
ropy is parametrized by the local metric tensors g:

Require: Fields of gf and Vf ,Vo and locations xl of the p
observations to assimilate
for l ¼ 1 : p do

0—Initialization of the intermediate quantities

Yo
l ¼ YoðxlÞ,X f

l ¼ X f ðxlÞ
Vf

l ¼ Vf
xl ,V

o
l ¼ Vo

xl

1—Set the correlation function from the VLATcov model

qlðxÞ ¼ qðgf Þðxl,xÞ
2—Computation of the analysis state and its error

statistics

Xa
x ¼ X f

x þ rfxqlðxÞ
rf l

Vf
l þ Vo

l

Yo
l � X f

l

� �
Va

x ¼ Vf
x 1� qlðxÞ½ �2 Vf

l

Vf
l þ Vo

l

 !
gaijðxÞ ¼

Vf
x

Va
x
gfijðxÞ þ

1

4Vf
xVa

x

@iVf
x

� �
@jVf

x

� �
� 1
Va

x
@iðqlðxÞrfxÞ@jðqlðxÞrfxÞ

Vf
l

Vf
l þ Vo

l

� 1

4ðVa
xÞ2

@iVa
x

� �
@jVa

x

� �
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3—Update of the forecast state and its error statistics

X f
x  Xa

x

Vf
x  Va

x
gfx  gax

end for
Return fields Xa, ga and Va

For both algorithms, a parallel implementation can be
considered by sequentially applying the PKF to distant small
batches of observations in place of a single loop over all
observations, as is done in the EnKF implementation
(Houtekamer and Mitchell, 2001). Parallel implementation
is possible when the correlation functions are very localized.

As discussed in Sec. 2.4, it is important to note that the
PKF for VLATcov model, Eq. (13), apply in 1D domain as
well as in 2D or 3D domains. It also apply in the multivari-
ate case in which the correlation function qxl ðxÞ then
denotes the multivariate correlation function. By so, the
PKF applies in the multivariate framework as far as the
VLATcov model is multivariate. Unfortunately, as far as
we know, no simple multivariate VLATcov model exists,
this is discussed in Sec. 5.

For the univariate case, an example of family of
VLATcov model can be deduced from the Theorem 1 of
Paciorek and Schervish (2004), which states that, for any
homogeneous correlation function qhðjjx�yjjÞ in R

d of
aspect tensor Id and any differential field of symmetric
definite positive tensors s, it is possible to form a hetero-
geneous correlation function q defined by

qðsÞðx, yÞ ¼
sxj j1=4 sy



 

1=4
1
2 ðsx þ syÞ


 

1=2 qh jjx� yjj 1

2ðsxþsyÞ½ ��1
� �

, (14)

for which the aspect tensor at x is approximately sx, and
where j � j stands for the matrix determinant. Hence, this
defines a class of VLATcov PðV, s,qhÞ, For instance, qh

can be a Mat�ern correlation as well as a Gaussian for
which the heterogeneous covariance is given by

Phe:gaussðV , mÞðx, yÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðxÞVðyÞp sxj j1=4 sy



 

1=4
1
2 ðsx þ syÞ


 

1=2

exp � 1
2
jjx� yjj21

2ðsxþsyÞ½ ��1
� �

:

(15)

This formulation Eq. (15) constitutes what is later
called the heterogeneous Gaussian. Note that the heteroge-
neous Gaussian VLATcov model can replace the local-
homogeneous Gaussian approximation used in P16 which
was not a covariance model (the local-homogeneous
Gaussian does not leads to a symmetric matrix). Note
that, the restriction of correlation functions to a manifold

of R
d , e.g. a sphere or a torus, defines correlation func-

tions on the manifold (Gaspari and Cohn, 1999). So the
distance jjx�yjj between two points x and y of the mani-
fold is their distance R

d and not the geodesic distance on
the manifold, otherwise this can break the positiveness of
the resulting symmetric matrix. For instance, on a sphere,
the distance jjx�yjj in R

d reads as the chordal distance
between the point x and y of the sphere, which is not the
great-circle distance (the geodesic distance on the sphere).
However, when the anisotropy is relatively small, leading
to a rapid convergence of the Gaussian to zero as the dis-
tance enlarges, taking the geodesic distance in place of
the distance in R

d does not break the positiveness of the
resulting matrix (at the numerical level).

In summary, this section extends P16 by considering a
consistent formulation of the PKF, where at each iter-
ation of the sequential assimilation, a parametric covari-
ance matrix is updated. This was not the case in P16
where the correlation where approximated by a local
Gaussian that was not consistent. Moreover, Algorithm 2
and Algorithm 1 apply for the large class of VLATcov
model. Note also that the computation of the analysis is
carried out at the same time as the update of the error
covariance. This new implementation of the PKF is more
consistent with the KF equations, and it apply for 1D
domains, as well as 2D or 3D domains.

4. Numerical investigation of the univariate PKF
in a 2D domain

This section aims to assess the PKF analysis step in a
domain defined as the bi-periodic 2D domain ½0,LÞ 	
½0,LÞ, where the length is set to L¼ 1 and the coordi-
nates are labelled (x, y). The domain is discretized with
141 points in each direction leading to a grid spacing
of dx ¼ dy� 0:007:

Hereafter, we will consider the situation where the
anisotropy is not too large so to use the geodesic dis-
tance, with no influence on the positiveness of the result-
ing correlation matrices.

The differences between PKF O2 and PKF O1 are first
discussed, followed by a comparison of the KF and its
PKF approximation in a synthetic heteroge-
neous situation.

4.1. Comparison of PKF O2 and PKF O1

As pointed out in Sec. 3.2, two implementations of the
PKF can be considered: PKF O2 in Algorithm 2, which
describes the full update of the analysis aspect tensor
field, and PKF O1 in Algorithm 1, which is an approxi-
mation that should be valid for locally homogeneous
configurations.
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To demonstrate the difference between the algorithms,
a simple experiment is considered: the assimilation of a
single observation placed at the centre of a domain. The
forecast error covariance Pf is set to an isotropic and
homogeneous Gaussian correlation:

Pf ðLhÞðx, yÞ ¼ exp � 1
2L2

h

jjx� yjj2
 !

, (16)

with a correlation length scale of Lh ¼ 9dx� 0:06: For
this covariance matrix, the standard deviation field is the
constant field rf ¼ 1:0: Two standard deviations are con-
sidered for the observation error: ro ¼ 1:0 corresponding
to the usual situation where ro is of same order as rf and
ro ¼ 0:5, which simulates the situation where a set of
observations is assimilated, acting like a super-
observation.

At the observation position, the strength of the fore-
cast correction toward the observation, Vf

l =ðVf
l þ Vo

l Þ in
Eq. (13a), is moderate with a value of 0.5 for the stand-
ard deviation of ro ¼ 1:0, whereas it is strong with a
value of 0.8 for the standard deviation of ro ¼ 0:5: For
this single-observation experiment, the analysis, Eq.
(13a), and variance, Eq. (13b), fields of both PKF algo-
rithms are identical to the KF statistics. Therefore, the
comparison between PKF O1 and PKF O2 is reduced to
comparing how the error aspect tensor fields update in
the two formulations.

Because the aspect tensor s is a symmetric positive-def-
inite matrix, it can be geometrically interpreted as an
ellipse of the Cartesian equation jjxjj2s�1 ¼ 1: Therefore,

the aspect tensor field is represented by a field of ellipses
that depicts the local spread and anisotropy of the correl-
ation functions. For the isotropic and homogeneous fore-
cast-error aspect tensors considered here, all of the aspect
tensors are equal to L2

hI2 and each ellipse is a circle of
radius Lh.

Figure 1 represents the analysis-error aspect tensor
fields computed from PKF O1 (yellow ellipses) and PKF
O2 (black ellipses); panel (a) shows the result when the
observation error standard deviation is set to ro ¼ 1:0,
while panel (b) shows the same for ro ¼ 0:5: To improve
the readability, the ellipses are scaled by 0.5. Far from
the observation position, the ellipses equal the circles of
the initial forecast-error statistics. The impact of the
observation modifies the forecast-error aspect tensors at
the observation position but also in a vicinity of radius
3Lh around the centre. Furthermore, the two experiments
illustrate a known effect of the assimilation of observa-
tions: the reduction of the forecast error length scale by
the observational network (Bouttier, 1994). Both PKF O1
and PKF O2 are able to reproduce this reduction, and
this is particularly visible at the centre of the domain
where the yellow and black circles superimposed on both
panels in Fig. 1 have radii of 0:7Lh (panel (a)) and 0:44Lh

(panel (b)), which are much smaller than the initial circle
of radius Lh. However, some differences appear near the
observation position: PKF O1 predicts local circles,
whereas PKF O2 produces local ellipses. While the fore-
cast-error aspect tensor is isotropic with an isotropy devi-
ation that is identically zero (diso ¼ 0), the isotropy

Fig. 1. Analysis-error aspect tensor fields for both PKF O2 (black ellipses) and PKF O1 (yellow ellipses): an observation placed at the
centre (red dot) is assimilated with an observation error standard deviation of ro ¼ 1:0 in panel (a) and ro ¼ 0:5 in panel (b). One in
five ellipses is shown here with a zoom on the centre of the domain and a scaling of 0.5 for the ellipse representation. The isotropy
deviation diso computed for PKF O2 is superimposed on the fields (the grey shading).
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deviation disoðPKFO2Þ computed for PKF O2 shows a
peak in the anisotropy centred at the observation location
(the grey shading in Fig. 1) with a maximum deviation of
0.13 in panel (a) and 0.3 in panel (b): this production of
anisotropy, for PKF O2, is due to the gradient terms in
Eq. (13c). Note that such a change in the anisotropy is
not possible in PKF O1, where the analysis-error aspect
tensors are scaled from the forecast error aspect tensors.

In this experiment, the PKF O2 statistics are identical
to the KF statistics (not shown here), which validates the
theoretical computation of the metric update Eq. (13c).
Moreover, the PKF O1, with the simplification Eq. (12),
only approximates the KF with an accuracy that depends
on the amount of anisotropy introduced during the
assimilation. The next section illustrates the PKF in a
realistic situation.

4.2. Assessment of the PKF in an heterogeneous
test-bed

A first aim of this section is to illustrate the ability of the
PKF formulation to provide an accurate approximation
of the KF analysis state and its error statistics. For this
experiment, the PKF for VLATcov model given by the
PKF O2 (Algorithm 2) and its local homogeneous
approximation PKF O1 (Algorithm 1) are considered,
using the heterogeneous Gaussian Eq. (15) as
VLATcov model.

The comparison is conducted in a synthetic test-bed
that mimics a heterogeneous situation similar to those
encountered in real applications. The experiment is
organized as follows. First we present the synthetic test-
bed where a forecast-error covariance is introduced.

Then, a comparison of the KF and PKF analysis steps
is made.

4.2.1. Synthetic anisotropic test-bed. In order to con-
sider a realistic forecast-error aspect tensor field, an iso-
tropic tensor field of length scale of 4dx� 0:03 has been
deformed by a non-divergent flow, shown in Fig. 2(a)
and integrated from t¼ 0 to t¼ 3. The resulting aspect
tensor field sf , is represented by some ellipses superim-
posed to the isotropy deviation (in Fig. 2b) and to the
isotropic length-scale (in Fig. 2c).

The forecast-error aspect tensor field shows strong ani-
sotropies. The field of the isotropy deviation (Eq. (8))
ranges from 0.003 to 0.95 with an average of 0.58, which
means that all types of situations are encountered from
nearly isotropic to nearly singular tensors (see panel (b)
in Fig. 2). Further, the isotropic length scale (Eq. (9))
normalized by the grid spacing varies from 3.9 to 7 (see
panel (c) in Fig. 2), which is in agreement with the range
of variations observed in geophysics, see e.g. Wu et al.
(2002), Belo Pereira and Berre (2006) and Pannekoucke
and Massart (2008). With these setting, the forecast error
aspect tensor field is relevant because it is similar to vari-
ous typical situations encountered in the realm of geo-
physical data assimilations.

Note that in real applications, if the PKF has not been
considered for the forecast step, the variance and the
aspect tensor fields can be diagnosed from an ensemble
of forecasts, fX f

kgk2½1,N� (at a given time), where N is the
number of members. Hence, the estimator of the variance
is

cVf ðxÞ ¼ 1
N � 1

XN
k¼1

X f
kðxÞ � X f ðxÞ

� �2
, (17)

Fig. 2. Illustration of the non-divergent velocity field (a) whose integration from 0 to 3 has been used to transforms an isotropic
aspect tensor field into an anisotropic one taken as the forecast error aspect tensor field. The ellipses in panel (b) and (c) show some of
the forecast error aspect tensors, superimposed with the diagnosis of the deviations from isotropy (b) (0 indicates an isotropic tensor and
1 indicates a purely anisotropic tensor) and the isotropic length scale normalized by the grid spacing (c). The ellipses in the two panels
(b) and (c), are the same, and the panels differ only by the shading.
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where X f ¼ 1
N

PN
k¼1 X f

k is the ensemble average. The
metric tensor, defined from Eq. (6), is estimated by

bgfij ðxÞ ¼ 1
N

XN
k¼1

@i
eef kðxÞ@j eef kðxÞ, (18)

where eef k ¼ 1ffiffiffiffiffibVf

p ðX f
k�X f Þ is the normalized error.

When the PKF is implemented in an assimilation cycle,
the forecast error variance and the metric tensor fields
are propagated over the forecast time step, as in standard
KF, from the values obtained at the previous ana-
lysis time.

For the latter numerical experiments, the forecast-error
covariance matrix Pf , is defined as the covariance matrix
based on a diffusion equation (Weaver and Courtier,
2001) with the diffusion tensors set as 1

2 s
f (Pannekoucke

and Massart, 2008; Mirouze and Weaver, 2010). In par-
ticular, Pf has been stored explicitly as follows. Each col-
umn j of the matrix is associated with one of the 19881
grid-points, xj, and the column is computed as the time
integration of the Dirac positioned at xj, dj, by the het-
erogeneous diffusion equation computed from time 0 to
time 1/2 i.e. e

1
2r� 1

2s
frð Þdj: Then, the resulting matrix is nor-

malized so that the variance is 1.0, which leads to Pf :

In the experiment conducted here, we use the heteroge-
neous Gaussian VLATcov model Phe:gaussð1:, sf Þ to
approximate Pf : Figure 3 illustrates the correlation func-
tions of Pf (a) and Phe:gaussð1:, sf Þ (b) set from the aspect
tensor in Fig. 2. For the sake of simplicity, only 1 in 20
correlation functions are shown and each function is

represented by level sets of the iso-correlation values of
0.5, 0.7 and 0.9, coloured from light to dark grey. For
each point selected for the illustration, the correlation
function presents a non-elliptic anisotropic shape, and the
correlation functions vary from one point to another.
The correlation functions produced by the heterogeneous
Gaussian are very similar to the one of the reference Pf :

This proximity is confirmed by the computation of the

relative error jjPhe:gaussðVf , mf Þ�Pf jj=jjPf jj ¼ 7:6%, where

jjUjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðUUTÞ

q
, for any U denotes the Frobenius

norm of the matrix. Therefore, the correlation functions
based on the heterogeneous Gaussian function are an
accurate approximation of the correlation functions mod-
elled from the diffusion equation.

The next section describes the details of the assimila-
tion experiment and how the KF analysis uncertainty is
performed to provide a reference for a comparison with
the PKF algorithms.

4.2.2. Details of the assimilation experiment and the
computation of the KF analysis statistics. The true state
X t considered here is shown in Fig. 4(a), including the
observational network (the red dots). This network
presents a contrast between the left and right parts of the
domain, where the network is more dense in the left part.
In the left part, 1 in 15 grid points are depicted along the
zonal and meridional directions. In the right part, a dense
path mimics a flight corridor with two observed grid
points for each observed zonal position. In the numerical

Fig. 3. Prescribed forecast-error correlation functions as specified from a diffusion formulation (a), and the heterogeneous Gaussian
correlations (b), and defined from the aspect tensor field Fig. 2. The level sets of the iso-correlations f0:5, 0:7, 0:9g are represented from
light to dark grey.

10 O. PANNEKOUCKE



experiment, the observational error covariance matrix is set
to R ¼ ðroÞ2Ip with a standard deviation of ro ¼ 1:0: An
observation vector is generated such that Yo ¼ HX t þ eo,
where eo ¼ R1=2fp, fp is a sample of the Gaussian law with
zero mean and a covariance matrix Ip and the superscript
1=2 denotes the square-root operator for symmetric positive-
definite matrices. A particular forecast state was generated
from the true state in accordance with the forecast error sta-
tistics (Fig. 4b). This forecast state is obtained as X f ¼
X t þ ef , where ef ¼ Pf 1=2fn and fn is a Gaussian sample
with zero mean and a covariance matrix In:

The Kalman filter analysis step Eq. (1) has been com-
puted explicitly from its matrix formulation: each matrix
is of size ð19881, 19881Þ which represent 3.2GB of mem-
ory. The CPU time for the computation of the gain
matrix K is 0.96 seconds (on an Intel Core i7-7820HQ
CPU at 2.90GHz x 8), the analysis state is performed in
0.001 seconds and the analysis-error covariance matrix
requires 101 seconds. In particular, the analysis-error

covariance matrix Pa is exactly known (to within the
numerical error due to the precision of the machine), and
it can be used to assess the quality of the PKF approach.

4.2.3. The KF analysis versus its PKF approximation.
To compare the analyses, emphasis is given to the analysis
increment, which is defined as the difference dXa ¼ Xa�X f :

The three analysis increments, dXaðKFÞ, dXaðPKFO1Þ and
dXaðPKFO2Þ, are shown in Fig. 5.

All analysis increments provide a correction of the
forecast in the vicinity of the observations. This correc-
tion is a combination of the different forecast error cor-
relation functions, some of which are illustrated in Fig. 3,
resulting in a very complex field. Due to the heterogen-
eity of the observation network between the left and right
sides of the domain, the analysis increments are nearly
zero on the right side, except in the neighbourhood of
the tracks.

Fig. 4. The (a) true X t and (b) forecast Xf states considered in the experiment with the observational network (the red dots in panel
(a)) of 80 observed positions.

Fig. 5. Analysis increments for (a) the KF, (b) PKF O1 and (c) PKF O2.
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This similarity between the analysis increments was
confirmed via a quantitative diagnosis. Compared to the
KF analysis increment, the relative errors of the analysis
increments computed from PKF O1 and PKF O2 are
8.9% and 9.3%, respectively (see Table 1, first column). A
more attentive examination of Fig. 5 indicates that the
PKF O1 (panel b) and the PKF O2 (panel c) are able to
produce curved patterns that are connected to the under-
lying vortices of the flow and very similar to the patterns
produced by the KF (panel a).

Note that, since PKF O1 and PKF O2 produce the
same analysed fields in the case a unique observation is
assimilated with the same background statistics, the dif-
ference in analysis increments must come from the fact
that the two algorithms are cycled sequentially over all
the observations.

Therefore, this experiment indicates that the PKF algo-
rithms are able to estimate the KF analysis. However, the
complexity of PKF O2 compared to PKF O1 does not
provide any clear advantage.

The analysis error variance is examined in the
next section.

4.2.4. KF analysis error variance versus its PKF approxi-
mation. The analysis-error variance fields are shown in
Fig. 6. The KF analysis variance field is obtained as the
diagonal of the fully computed analysis-error covariance
matrix Pa in Eq. (1b).

The analysis-error variance fields are all similar, show-
ing a strong variance reduction in the vicinity of each
observation. This reduction of the error variance is max-
imal where the observation network is dense, e.g. on the
right side of the domain along the simulated flight path,
where the reduction is 75% of the initial forecast error
variance. Relative to the KF analysis error variance field
(see Table 1, second column), all the error variance fields
are very close to the KF reference with relative errors on
the order of 1%. In this case, PKF O2 provides very little
improvement compared to PKF O1 with a relative error
of 1.0% versus 1.2%. Note that, analysis-error variance
fields estimated from EnKF methods are often polluted
by sampling noise. Here, because no ensemble is used in
the PKF formulations, no fluctuation is visible in the
PKF panels.

Therefore, in this experiment, the PKF O1 and PKF
O2 formulations are shown to be capable of computing
an accurate approximation of the analysis error vari-
ance field.

We end the comparison by considering the analysis
error correlation anisotropy.

4.2.5. KF analysis-error aspect tensor versus the PKF
approximation. The diagnosis of the KF analysis-error
local aspect tensors relies on the computation of the local
metric tensors. In the present experiment, the local metric
tensors are diagnosed from the fully computed analysis
error covariance matrix Eq. (1b): for each position
x, gaðxÞ is obtained from the analysis error correlation
function qaðx, �Þ by Eq. (4). Then, the diagnosis of the
local analysis-error aspect tensor for the KF is saðxÞ ¼
ðgaðxÞÞ�1: The KF analysis-error aspect tensors (not
shown here) are similar to the one of the forecast, where
some of the ellipses are shown in Fig. 2, except in the
vicinity of the observations due to the assimila-
tion process.

Table 1. Relative error for the analysis increment and error
statistics with the KF as the reference.

PKF
jjdXað:Þ�dXaðKF Þjj
jjdXaðKF Þjj

jjV að:Þ�V aðKFÞjj
jjV aðKFÞjj

P
x
jjsaxð:Þ�saxðKF ÞjjP
x
jjsaxðKF Þjj

O1 8.91% 1.26% 9.14%
O2 9.35% 1.01% 8.86%

jj � jj stands for the L2 norm. The results have been
approximated to the hundredth of a percent.

Fig. 6. Analysis-error variance fields for the KF (a), the PKF O1 (b), and the PKF O2 (c).
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The analysis-error aspect tensors obtained from the
PKF are similar to the KF. This is confirmed quantita-

tively by taking the ratio
P

x
jjsaxðPKFÞ�saxðKFÞjjP

x
jjsaxðKFÞjj

as a global

indicator of the relative error to the KF (see Table 1,
third column): it appears that all formulations are able to
approximate the KF analysis-error aspect tensors with an
error of the order of 10%, the PKF O2 provides the best
approximation here, with a relative error of 8.9%.

To evaluate the results obtained from the different PKF
approximations, a representation of ellipses, as given in
Fig. 2, is informative but difficult to show in details. In
place of the ellipses, the comparison is made by looking at
the scalar field of the relative variation of the local iso-
tropic length scales, Eq. (9), which is defined as

rafiso ¼
La
iso�Lf

iso

Lf
iso

: (19)

This relative variation depicts the evolution of the
spread before and after the assimilation of the observa-
tions. The rafiso fields for the KF and PKF formulations
are shown in Fig. 7.

All the analysis-error aspect tensor fields show a reduc-
tion of the isotropic length scale in the vicinity of each
observation, which is a known consequence of the assimi-
lation of observations (Bouttier, 1994). However, the
reduction can also be surrounded by an augmentation of
the correlation spread, as noted in P16 who have
observed an overshoot of analysis-error correlation
length-scale in the vicinity of the position of an assimi-
lated observation (note that this kind of overshoot is also
visible and discussed in Sec. 5.2). Such an increase in the
correlation spread appears moderately in the KF statistics
near the simulated flight tracks and is reproduced by
PKF O2 e.g. the purple shading visible on the right side
of Fig. 7c for the ordinates y� 0:3 and y� 0:4; this is
also present in Fig. 7a but less visible by eyes. The local

increase in the correlation spread has its origin in the
contribution of the gradients in the last three terms of the
error analysis metric tensor in Eq. (13c).

No increase of the correlation spread appears in Fig.
7b for the PKF O1 (no purple shading near the flight
tracks), whose the update by Eq. (11) is without spatial
derivatives. For the PKF O1, the spread of analysis-error
aspect tensors can only decrease from the forecast ones
because Va=Vf � 1, and without change in the anisot-
ropy (as shown in Sec. 4.1).

In addition, compared to Fig. 7a and 7c, PKF O1 pro-
duces larger patterns of isotropic length-scale reductions
near each observation: the gradient terms in Eq. (13c)
have the effect of localizing the reduction of the spread
of the KF and PKF O2 in a smaller vicinity than that of
PKF O1. Moreover, the minimum reduction of the iso-
tropic length scale appears to be smaller than the true
reduction of the KF and that proposed by PKF O2; this
is especially visible for the simulated flight tracks.

To summarize the comparison of the analysis-error
aspect tensors in this example, we conclude that the PKF
is capable of providing an accurate approximation of the
KF analysis-error aspect tensors.

4.3. Illustration of assimilation cycles

While this contribution is focused on the analysis step, a
simple illustration of the PKF assimilation over several
cycles is now introduced.

4.3.1. Setting of the experiment. We consider the 2D
transport of a scalar field X by the stationary wind field
u ¼ u0 þ u0, where uo ¼ ð0:04, 0:04Þ is a mean flow and u0

is the non-divergent fluctuation shown in Fig. 2a. The
advection time associated to the mean flow is
L=jjuojj � 17:6, and the maximum magnitude of u0 is 62%
of jjuojj: Hence, the transport equation reads

Fig. 7. Relative variation of the isotropic length scale, rafiso ¼
La
iso�L

f

iso

Lf
iso

, for the KF (a), the PKF O1 (b), and the PKF O2 (c). The white
colour indicates values larger than those within the colour range.
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@tX þ u � rX ¼ 0, (20)

integrated over the 2D domain described in the previous
section i.e. ½0,LÞ2, with L¼ 1, and discretized with 141
points along each directions which represents n¼ 19,881
grid points, and dx ¼ dy� 0:007:

The cycled assimilation experiment relies on a simu-
lated experiment where a reference state at t¼ 0, X t

0,
evolves in time with Eq. (20), and is observed as each
Dt ¼ 0:5 at the observational network shown in Fig. 4a.
In this experiment, X t

0 is the isotropic Gaussian function
positioned at the center of the domain and of scale par-
ameter 10dx: The observations at a time tq ¼ qDt, are
generated as Yo

q ¼ HX t
q þ eoq, where X t

q ¼ X tðtqÞ and
where eoq is a sample of the Gaussian Nð0, IpÞ where
p¼ 80 is the number of observation in the network. With
this setting, the observational error variance is Vo ¼ 1:
The initial uncertainty is defined as the Gaussian of mean
X f

0, that is set to the zero vector, and of covariance
matrix Pf

0 the isotropic covariance Eq. (16) with the
length-scale Lh ¼ 4dx� 0:03 i.e. Vf

0 ¼ 1 and sf0 ¼ L2
hI2:

The aim of the experiment is to compare the results
given by the parametric the PKF O1 and PKF O2, versus
the Kalman filter, over 19 assimilation cycles, starting
from an analysis step at t¼ 0 and ending by the assimila-
tion at time t19 ¼ 9 (the flow covers almost half of the
domain during the period ½0, 9�). Thus, three experiments
of assimilation cycles are performed considering respect-
ively the KF, the PKF O1 and the PKF O2 at the assimi-
lation times tq.

The VLATcov model considered for the PKF is the
heterogeneous Gaussian, Eq. (15). For this covariance
model, a forecast step of the PKF O1 and PKF O2, con-
sists in predicting the mean X f

qþ1, the variance field
Vf

qþ1 and the aspect tensor field sfqþ1 from their respective
analysis values at tq i.e. Xa

q,Va
q and saq: For the transport

dynamics, this prediction is performed by the time inte-
gration, from tq to tqþ1, of the system

@tX f þ u � rX f ¼ 0, (21a)

@tVf þ u � rVf ¼ 0, (21b)

@tsf þ u � rsf ¼ ruð Þsf þ sf ruð ÞT þ gr2sf , (21c)

where these equations correspond to the dynamics of, the
mean in Eq. (21a), the forecast-error variance in Eq.
(21b) and the forecast-error aspect tensor in Eq. (21c).
Equation (21) corresponds to the true uncertainty dynam-
ics (Cohn, 1993; Pannekoucke et al., 2016, 2018a), plus a
slight additional diffusion of coefficient g ¼ dx2: This dif-
fusion has been introduced in order to regularize strong
anisotropy during the time evolution.

The transport Eq. (20) being linear, we denote by
Mqþ1 q its linear propagator. Hence, the KF predictions
of the covariance error matrix read

Pf
qþ1 ¼Mqþ1 q Mqþ1 qPa

q
� �T : (22)

Because of the numerical cost needed to perform Eq.
(22), we approximated the dynamics by considering an
EnKF of Ne ¼ 1000 members. The assimilation steps are
also performed by using an ensemble, here an ensemble
transform method has been considered (Hunt et al.,

2007). The ensemble at time 0, ðX f
0, kÞk2½1,Ne �, has been

generated as follows: each member is set as X f
0, k ¼

X f
0 þ Pf

0
1=2gk where gk is a sample of the Gaussian

Nð0, InÞ, with n¼ 19,881 being the number of grid points.
The diagnosis of the analysis-error variance and aspect
tensor fields are performed from the ensemble estimation
detailed, respectively, in Eqs. (17) and (18), and applied
to the ensemble of analysis. In particular, a localization
of the forecast-error covariance has been considered
within the assimilation, using the compactly-supported
correlation Eq. (4.10) of Gaspari and Cohn (1999), with a
localization length-scale defined at tq as the spatial aver-

age of 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lf
q, xL

f
q, y

q
where Lq, x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sfq,xxðtqÞ

q
and Lq, y ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sfq, yyðtqÞ
q

are the correlation length-scale along each

directions, computed at times tq.
In the numerical simulation, the dynamics Eqs. (20)

and (21) have been spatially discretized with a finite dif-
ference method, where the first order spatial derivatives
are computed with a centered scheme (consistent at the
order dx2). For the time integration, a fourth-order
Runge-Kutta scheme, of time step dt¼ 0.01, has been
used. Note that, to perform an ensemble prediction of the
error covariance matrix with the EnKF, 1000 forecasts of
Eq. (20) are computed, while the PKF only needs a single
forecast of Eq. (21).

4.3.2. Comparison from the numerical simulation. We
compare now the analysis increment (see Fig. 8), the ana-
lysis-error variance field (see Fig. 9) and the relative vari-
ation of the isotropic analysis-error length-scale with
respect to the initial isotropic length-scale Lh, rahiso ¼ La

iso�Lh

Lh

(see Fig. 10), resulting from the PKF O1 and the PKF O2
assimilation cycles, versus the EnKF (the proxy for the true
KF solution). These results show the analysis-error statis-
tics at times 0, 3.5 and 9, while the relative error between
the PKF results and the EnKF is shown for each assimila-
tion times in Fig. 11. As for the assimilation experiment,
the only difference between the PKF O1 and PKF O2 is the
update of the anisotropy; the prediction steps are per-
formed by the same dynamics, Eq. (21). In this simulation,
the PKF O2 fails at time 4. because an aspect tensor
became non-positive with a negative determinant.

At first sight, the PKF implementations are able to
reproduce the EnKF solution: the analysis-increment, the
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variance field and the isotropic length-scale are very simi-
lar from one assimilation experiment to another. A more
complete evaluation is now detailed.

We first consider the results obtained at time 0.
Compared with the full matrix computation of the previous
sections Secs. 4.1 and 4.2, this time, the EnKF approxima-
tion of the KF makes appear a sampling noise. This sam-
pling noise is particularly visible on the analysis-error
variance, that should be exactly 1 far from the observa-
tions, but that fluctuates here around 1: in Fig. 9a the val-
ues larger than 1.1 are in white. More precisely, we
observed that the ensemble estimation of the forecast-error
variance field at 0, Vf

0 , fluctuates from 0.83 to 1.2 around

the mean 1.0 and with a standard-deviation of 0.044; in
accordance with the theoretical magnitude of the estima-
tion error,

ffiffiffiffi
2
Ne

q
Vf

0 (central limit theorem), which implies a
relative error of 4.4% for Vf

0 ¼ 1:0 and an ensemble size of
Ne ¼ 1000. The magnitude of the fluctuations explains the
relative error observed at t¼ 0, where the difference
between the EnKF and the PKF is 5.6% (5.5%) for the
PKF O1 (the PKF O2) (see Fig. 11b): this amount of error
comes from the sampling noise plus an error due to the
PKF itself (1% of error according to Table 1).

Before considering the variation of the various diag-
nostics with time, we first evaluate the ability of the
EnKF to reproduce the true KF dynamics in this

Fig. 8. Analysis increments resulting from the assimilation cycles using an EnKF of 1000 members (left column), the PKF O1 (middle
column) and the PKF O2 (right column). Only the results at time 0 (top line), 3.5 (middle line) and 9 (bottom line) are shown, while an
assimilation is performed each Dt ¼ 0:5 which represents 19 assimilation cycles. PKF O2 fails after t ¼ 4:
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framework. Note that the dynamics of the KF statistics
evolves by Eq. (21) without the diffusion (g¼ 0): this is
an exact result for the transport dynamics (Cohn, 1993;
Pannekoucke et al., 2018a, 2020). As a consequence, an
initially homogeneous variance field should be stationary:
the forecast-error variance field should be equal to its ini-
tial constant value. This stationarity property is tested by
considering an ensemble of 1000 forecasts over the win-
dow ½0, 9�, without assimilation, and the statistics are
shown in Fig. 12. In this pure ensemble forecast experi-
ment, the spatial average of the forecast-error variance,
shown at time 9 in Fig. 12a, is 1.03 which represent a
slight increases of 3% of the averaged variance value: this
is in accordance with the stationarity of homogeneous

variance field in the transport dynamics. However, the
forecast-error variance field becomes heterogeneous over
the time. For instance, at time 9 (see Fig. 12a), the vari-
ance field varies from 0.6 to 1.9 with a standard deviation
of the spatial variations of 0.2; while the KF predicts a
constant variance equal to 1—to within the sampling
noise in this ensemble experiment. But fluctuations of
magnitude 0.2 are much larger than the fluctuation of a
sampling noise that has shown to be 0.044 in this situ-
ation. Hence, the heterogeneity cannot be explained from
a sampling noise, and should result from the effect of a
model error. Following Pannekoucke et al. (2020), the
understanding of the discretization error can be deduced
from the so called modified equation associated with a

Fig. 9. Same as for Fig. 8 but for the analysis-error variance fields. In panel (a), the white colour indicates values larger than those of
the colour range.
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numerical scheme, that is the differential equation verified
by the numerical solution (Warming and Hyett, 1974).
For Eq. (20) considered here, the modified equation, only
associated with the spatial discretization at the second
order in dx and dy, reads

@tvþ u � rv ¼ � dx2u
6

@3
xv�

dy2v
6

@3
yv, (23)

where u ¼ ðuðx, yÞ, vðx, yÞÞ: Since a fourth-order Runge-
Kutta scheme implies a fourth-order error in dt, that can
be neglected compared to the second-order error in space,
the dynamics of the numerical solution of Eq. (20) is well
approximated by Eq. (23). Hence the model error is

mainly due to the spatial discretization. Here, Eq. (23)
makes appear additional processes in its right hand-side,
given by a third order spatial derivative (a dispersive
term). From the computation of the PKF dynamics
(Pannekoucke et al., 2018a), the effect of a third-order
spatial derivative (like every spatial derivative of order
strictly larger than 1) is to introduce a coupling between
the forecast-error variance and aspect tensor fields during
the time evolution. In this case (not detailed), the dynam-
ics of the variance is mainly a conservation law, that con-
serves the spatial average but may breaks the
homogeneity of an initially constant field because of the
heterogeneity of the anisotropy field. The coupling

Fig. 10. Same as for Fig. 8 but for the relative variation of the isotropic analysis-error length-scale with respect to the initial isotropic
length-scale Lh ¼ 4dx, rahiso ¼

La
iso�Lh

Lh
:
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appears here by a reorganization of the variance field
which becomes larger over areas of short isotropic length-
scale (compare panels (a) and (b) in Fig. 12).

This interlude shows that it is can be difficult to evalu-
ate the PKF from a comparison with an EnKF taken as
a proxy for the true KF, because the EnKF also suffers
from defects. Hence, for the quantitative evaluation, we
chose to compare the PKF and the EnKF by measuring
the relative error with respect to the PKF O1. Taking the
PKF O1 as the reference for the score, also facilitates the
evaluation of the benefit of using the PKF O2 in cycled
assimilations.

Now, we evaluate the statistics along the assimilation
cycles. It appears that the analysis-increment, the variance
and the isotropic length-scale fields are similar from one
method to the other, with a reduction of variance and
isotropic length-scale near the observations, followed by
a transport of the variance and a stretching of the anisot-
ropy by the low (see Figs. 8–10).

The amplitude of the analysis increments decreases
over the successive assimilation cycles (see Fig. 8). This is
not surprising since one can expect the amplitude of the
forecast error, and therefore of the correction to be made
on the forecast, to decrease as the assimilation proceeds
(until of course the process eventually saturates).

The variance fields at time 3.5 show a large area of small
variance and length-scale (points in
ðx, yÞ 2 ½0:6, 0:8� 	 ½0:35, 0:45�) at the north of the “flight
corridor,” the small magnitudes are due to the observations
while the spatial extension is due to the transport (see pan-
els (d-e-f) in Figs. 9 and 10). The PKF algorithms are able
to reproduce the transport of the variance, leaving the vari-
ance equal to 1 in the area not influenced by the observa-
tions e.g. in the area ðx, yÞ 2 ½0:6, 0:8� 	 ½0:6, 0:8�, while the
EnKF presents a variance lower than 1.

Note also that the PKF O1 appears to underestimate
the isotropic length-scale compared with the EnKF and
the PKF O2, while the values obtained by PKF O2 are
closed to the EnKF.

However, the PKF O2 fails after time 4: a non-positive
metric tensor appears during the assimilation process in
the vicinity of the over-shoot of isotropic length-scale vis-
ible in 10-(f), of coordinate ð0:8, 0:35Þ and where the
length-scale presents rapid variations. At time 9, the ana-
lysis-error statistics of the PKF O1 and of the EnKF are
similar to within the attenuation of the variance observed
in the EnKF field (compare panels (g) and (h) in 9). The
isotropic length-scales present some difference of ampli-
tude and phase: in 10, an area of large length-scale value
appears in the PKF O1 at the vicinity of ð0:8, 0:2Þ (see
panel h) while this corresponds to an area of moderate
length-scale value for the EnKF (see panel g). The diver-
gence between the method clearly appears in 11 where
the relative errors increase with the time. The divergence
of the EnKF tends to grow more rapidly than the one of
the PKF O2, this may be due to the model error affecting
EnKF. Until its failure, the PKF O2 is similar to the
PKF O1.

To conclude, this experiment shows that the PKF can
be implemented over successive assimilation cycles, and
that it is able to reproduce the KF characteristics.
However, while these results are promising, it is hard to
speculate long term behaviour of the PKF versus the KF
and further experiments are needed. Note that, for this
experiment, while it would have been preferable to con-
sider an end-to-end computation of the KF without any
ensemble, in order to limit the numerical cost, an ensem-
ble method has been introduced to compute an estima-
tion of the KF cycles. However, the EnKF only provides
a proxy for the true KF statistics, and the numerical inte-
gration has shown some differences with the theoretical
behaviour of the KF. Hence, the validation of the PKF
has to be understood to within the numerical defects
observed for the EnKF as implemented here.

The next section collects all the results and discusses
about the potential of both the PKF O1 and PFK O2
implementations.

Fig. 11. Relative error of the EnKF and of the PKF O2 vs. the PKF O1 solution computed for the analysis state (a), the analysis-
error variance field (b) and the analysis-error isotropic length-scale field (c). An assimilation is performed each Dt ¼ 0:5:
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4.4. Discussion on the ability of the PKF
formulations to approximate the KF analysis step

The three previous sections indicate that both PKF O2
and PKF O1 are able to provide a reliable approximation
of the KF analysis uncertainty when the forecast-error
covariance matrix is a diffusion based covariance.
Because the diffusion operator is used in variational data
assimilation (Massart et al., 2012; Weaver and Mirouze,
2013), the PKF appears as a simple way to provide an
estimation of the analysis-error statistics in complement
of the usual methods (the computation of the Hessian of
the cost-function or ensemble estimation in ensemble of
data assimilation).

While PKF O2 and PKF O1 lead to similar analysis
states and analysis-error variance fields, the analysis-error
aspect tensor fields computed from PKF O2 is better
than that from PKF O1.

However, PKF O2 is computationally more costly
than PKF O1 because, in Algorithm 2, the aspect tensor
is obtained from the inverse of the metric tensor and the
computation of three gradients, while for PKF O1, the
analysis-error aspect tensor is only proportional to the
forecast-error aspect tensor with a scaling deduced from
the ratio between the analysis-error and the forecast-error
variances. In particular, the simplicity of PKF O1, Eq.
(12), makes it very robust because it preserves the sym-
metric definite positiveness of the aspect tensor, which
may not be the case for PKF O2, where the metric tensor
results from the differences of local tensors in Eq. (13c).
Moreover, the difference between the PKF O1 and PKF
O2 in Table 1 are small, and the experiment conducted
over several assimilation cycles has shown that the two
algorithms lead to similar results with a progressive diver-
gence from one to the other.

The cost of the PKF implementation depends on the
number of observations. For a single localized observa-
tion, the analysis update of the PKF is much smaller
than any of the usual ensemble-based estimations. When
the number of observations is large, a parallel implemen-
tation of the PKF can be considered, similar to the batch
implementation of the EnKF. In addition, the cost of the
EnKF can increase depending on the implementation of
the localization, while there is no localization needed for
the PKF. In the present experiment with 80 observations,
the CPU times for PKF O1 and PKF O2 were 0.102 s
and 0.218 s, respectively. For the KF computed with the
full representation of the matrices, the CPU time is
102.0 s (see Sec. 4.2.2). For this experiment, an ensemble
method takes 0.59 s and 15.6 s for 100 and 1000 members
and the results are affected by the sampling noise. For
the forecast step, the transport dynamics Eq. (20) needs
0.04 s while the PKF dynamics Eq. (21) takes 0.20 s (aver-
aged time over 100 integrations). Hence, for this experi-
ment, the PKF integration represents the cost of 5 single
integrations of the transport dynamics. Said differently,
the PKF forecast step cost the equivalent of an ensemble
of 5 or 6 members, but the accuracy of the PKF is about
the same as the one of an ensemble of 1000 members. It
is interesting to use these times to determine the real cost
of the present experiment; however, it is difficult to
speculate what the performance should be in real
applications.

The KF equations Eq. (1) being equivalent to the
BLUE estimator, the PKF provides a sub-optimal estima-
tion which relaxes the Gaussian assumption for the distri-
bution of the error. Moreover, while the KF equations
for the forecast step rely on a linear dynamics which
maintains the Gaussianity, the PKF applies for nonlinear

Fig. 12. Forecast-error variance (a) and relative isotropic length-scale (b) resulting from an ensemble of 1000 forecasts, integrated
from time 0 to 9 without assimilation.

AN ANISOTROPIC FORMULATION OF THE PARAMETRIC KALMAN FILTER ASSIMILATION 19



dynamics at a second-order (Pannekoucke et al., 2018a).
Relaxing the Gaussianity, during the analysis and forecast
steps, makes the PKF to be a nonlinear Kalman-like filter
Cohn (1993). However, the PKF dynamics has to be deter-
mined which can represent a lot of work (Pannekoucke et
al., 2018a). But then the PKF can be cycled over several
assimilations as shown by the experiment using the trans-
port equation. While the PKF O2 leads to a better solution
than the PKF O1, this implementation appears sensitive in
area or intense heterogeneity. While less precise at the
assimilation time, the PKF O1 has shown a robustness,
that is an important property for real applications.

We conclude the discussion by the major result of this
part: for uncorrelated observational errors, the PKF for
VLATcov model is able to estimate the KF results in a
2D domain in a univariate framework. The PKF algo-
rithms extend in 3D domains as well without any new
theoretical developments. Compared with the 2D, in 3D
the metric (or the aspect) tensors are 3	 3 tensors while
in 2D they are 2	 2 tensors.

However, these promising results have to be balanced by
the assumptions introduced in the design of the PKF. First
of all, the quality of the PKF depends on the choice of the
parametric covariance model. For instance, we presented
the PKF for VLATcov models with Gaussian-like correla-
tions: with this formulation, it is not possible to represent
negative correlations that can occur in real applications,
and other kind of VLATcov correlation should be consid-
ered if the modelling of negative correlation is important.
The second assumption is that the observational errors are
uncorrelated. These assumptions can apply for local obser-
vation e.g. the in situ temperature measured at a station,
but in general observational errors are correlated e.g. satel-
lite data (Bormann et al., 2003). To avoid taking account
of observational error correlations, the observation net-
work is often sub-sampled to limit the correlations: this
strategy applies for the PKF, but then many observations
are not considered during the assimilation. It would be
interesting to extend the formalism of the PKF to the case
where the observations are correlated.

Another limitation of the PKF analysis presented here
is due to the univariate setting that is a preliminary for
the multivariate assimilation, and that is not addressed
here. However to tackle this issue we end this contribu-
tion by a simple multivariate experiment that help to
understand the potential of the present contribution and
the work that remains to achieve.

5. Investigation toward a multivariate
formulation of the PKF

This section addresses the multivariate analysis step in
the periodic 1D domain ½0,LÞ, where the length is set to

L¼ 1 and the coordinate is denoted by x. The domain is
discretized with 241 points leading to a grid spacing
of dx� 0:004:

The aims of the section are to assess the ability of the
theoretical analysis update Eqs. (2), (3) and (10), to apply
in a multivariate framework, that would lead to feed a
guideline toward the design of a multivariate PKF.

To do so, a multivariate framework is first introduced,
then, the study of a single observation assimilation
experiment is presented leading to a discussion on the
multivariate PKF.

5.1. Construction of a multivariate forecast-error
covariance matrix

It is not easy to handle multivariate covariance matrix,
and to do so, we consider a model of multivariate covari-
ance based on balance operators, as introduced in vari-
ational data assimilation (Derber and Bouttier, 1999;
Fisher, 2003; Weaver et al., 2005). To proceed, we first
remind basics on multivariate covariance modelling based
on the balance operators, and then we present the multi-
variate forecast error considered to evaluate the
PKF algorithm.

5.1.1. Basics on multivariate covariance modelling based
on balance operators. The idea of this kind of multivariate
covariance model is to decompose the error of a field in
two parts: one part that can be explained from the errors
of the other fields thanks to the balances, the so-called
balance part of the error, and a residual part correspond-
ing to the remaining part not explained from the balan-
ces, the so-called unbalanced part of the error.

For the illustration we consider two fields / and u,
over the 1D domain, related by the balance

u ¼ a@x/ (24)

where a is a scalar. While the balance Eq. (24) is arbi-
trary without physical content, it mimics the kind of bal-
ance encountered in geoscience e.g. the mass (/)/wind (u)
linear balance (Derber and Bouttier, 1999), or the nonlin-
ear balance equation, or the quasi-geostrophic omega
equation (Fisher, 2003). In the present situation, because
of balance Eq. (24), a part of the error of u, eu, can be
explained from the error of /, e/, which suggests to
decompose the errors as

e/ ¼ f/, (25a)

eu ¼ a@xf/ þ fu: (25b)

where f/ and fu are two uncorrelated univariate fields
whose covariance matrices are denoted Pu

/ and Pu
u:

Hence, the balance part of eu is a@xf/, while fu is the
unbalance error. Observe that the error e/ coincide with
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its unbalanced part f/ because no other independent field
can be used to explained this error: the balance between
u and / has already been used in Eq. (25b). More gener-
ally, in the multivariate covariance modelling, the
dependency between the multivariate and the univariate
errors takes the form of a triangular system (Derber and
Bouttier, 1999).

Consequently, the multivariate forecast-error covari-
ance matrix reads as the product

Pf ¼ I 0
D I

	 

Pu
/ 0
0 Pu

u

	 

I DT

0 I

	 

¼

Pu
/ Pu

/D
T

DPu
/ DPu

/D
T þ Pu

u

" # (26)

where I is the identity matrix in dimension 241 and D is
the discretization of the derivative operator a@x (hereafter
we consider the second order centered finite-difference
discretization). In particular, Pf is the multivariate covari-
ance matrix

Pf ¼ P// P/u

Pu/ Puu

	 

(27)

where P// ¼ E e/eT/
h i

¼ Pu
/ and Puu ¼ E eueTu

� � ¼
DPu

/D
T þ Pu

u are respectively the error auto-covariances
of / and u; and Pu/ ¼ E eueT/

h i
¼ DPu

/ ¼ P/u
T is the error

cross-covariance between / and u. The interest of this
modelling appears now clearly: the multivariate modelling
based on the balance operator comes back to the model-
ling of univariate covariance matrices i.e. the univariate
covariance matrices, Pu

/ and Pu
u, of the unbalanced part

of the error. The remark concerning the triangular shape
of the system Eq. (25) is crucial for the estimation of the
unbalanced covariance matrices, because it implies that
Eq. (25) is invertible of inverse the system

f/ ¼ e/, (28a)

fu ¼ eu�a@xe/: (28b)

As a consequence, the estimation of the univariate
unbalanced statistics are made as follows: the unbalanced
errors are first computed from the triangular system Eq.
(28), then the univariate covariances are estimated thanks
to Pu

/ ¼ E f/f
T
/

h i
and Pu

u ¼ E fuf
T
u

h i
: When the computa-

tion relies on an ensemble, the estimation of the variance
and the anisotropy mentioned in Sec. 4.2.1 still applies.
When the multivariate covariance Eq. (27) is known, then
the univariate unbalance covariances are computed from

Pu
/ ¼ P//, (29a)

Pu
u ¼ Puu�DPu

/D
T : (29b)

Hence, the univariate covariances are performed from
a sequential process, where Pu

/ is first computed (Eq.
(29a)), followed by Pu

u (Eq. (29b)).

We now use this example to create a multivariate
covariance matrix.

5.1.2. Description of the multivariate covariance.
Hereafter, we consider a multivariate covariance matrix
given as Eq. (26), where it is enough to specify the uni-
variate covariance matrices of the unbalanced part of
the error.

For this numerical experiment, the univariate error
covariance matrices, Pu

/ and Pu
u, are set as the covariance

matrix of variance field 1 and of homogeneous correlation

function qðx, yÞ ¼ exp � 1
2L2

h
ðx�yÞ2

� �
, with Lh ¼

5dx� 0:02: Consequently, Pu
/ and Pu

u are two instances of a

heterogeneous Gaussian VLATcov model, characterized
by the homogeneous variance fields Vu

/ ¼ 1 and Vu
u ¼ 1;

and by the homogeneous aspect tensor fields su/ ¼ L2
h and

suu ¼ L2
h: The result is that P

f defined in Eq. (26) is designed

from the two VLATcov matrices Pu
/ and Pu

u: Thus, P
f is a

parametric covariance matrix Pf ðPuÞ characterized by the
set of parameters Pu ¼ ðVu

/,V
u
u , s

u
/, s

u
uÞ which correspond to

the parameters the univariate covariance matrices, Pu
/ and

Pu
u, of the unbalanced part of the error. Note that Pf ðPuÞ is

not a VLATcov matrix itself because the covariance model
does not explicitly depends on the variance and the anisot-
ropy, ðV/,Vu, s/, suÞ, of the multivariate fields / and u.

A single observation assimilation in this multivariate
framework is now considered.

5.2. Single observation assimilation experiment

We now evaluate the ability of the PKF to perform the
analysis-error covariance in the multivariate setting. To
do so, a single observation assimilation experiment is first
conducted that update the variance and the anisotropy,
ðV/,Vu, s/, suÞ, of the multivariate fields. However,
Pf ðPuÞ being not a VALTcov matrix, we have to describe
how to update the unbalanced parameters Pu: That is
done below in a second phase (see Sec. 5.2.2).

5.2.1. Evaluation of the PKF in the multivariate setting.
Applying the PKF with the multivariate covariance Pf

remains to compare how the variance and the anisotropy,
ðV/,Vu, s/, suÞ, of the multivariate fields is updated dur-
ing the assimilation of an observation, with the diagnosis
of the analysis-error variance and anisotropy resulting
from the KF.

To this end, a single observation of / in x¼ 0.5 is
assimilated. The multivariate correlation function with
respect to the field / at the position x¼ 0.5 is shown in
Fig. 13 where the auto-correlation of / is in panel (a)
while the cross-correlation with u is in panel (b). This
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correlation function is the 121th column of the 482	 482
matrix Pf in Eq. (26).

Now we focus on the analysis-error covariance matrix,
explicitly computed from Eq. (1b) for the KF, and whose
the variance and the aspect tensor (a scalar field in this
1D situation) are shown in panels (c–d) for the variance
and (e–f) for the aspect tensor. The assimilation of an
observation of the field / implies a reduction of the fore-
cast-error variance of / near the observation location,
but also a reduction of the forecast-error variance of u,
except at the observation point, while the field u is not
observed. This is due to the multivariate covariance
between the two fields / and u. An equivalent result is

found for the aspect tensor for the field u that changes
during the assimilation.

These diagnosis are now compared with the results
provided by the PKF algorithms. This time, the computa-
tion of the PKF O2 and PKF O1 are done by using the
multivariate correlation function of Pf , illustrated in pan-
els (a, b). The analysis-error variance computed from the
PKF are similar to the KF, the PKF O2 being nearly
identical to the KF. For the analysis-error aspect tensor,
the PKF O2 coincide with the KF while the PKF O1
only captures the reduction of the aspect tensor and not
the overshoot. Note that, while the decrease of the ana-
lysis-error aspect tensor, from the background value for

Fig. 13. Assimilation experiment of a single observation of / at x¼ 0.5. The multivariate correlation q/, 0:5 is shown in (a) and (b).
The analysis-error variance fields are shown in (c) and (d) for the KF and the PKF computed from the multivariate Algorithm 2 and
normalized by the initial forecast-error variance (V f

/ and V f
u). The aspect tensor are shown in (e) and (f) for the KF, the PKFO2 and

the PKFO1, and normalized by the initial forecast-error aspect tensor (sf/ and sfu).
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the observed variable /, corresponds to what is well
known, the increased for the variable u is new (as far as
we know), and it is successfully captured by the PKF O2.

For this experiment, we conclude that the PKF applies
in multivariate statistics, leading to the appropriate vari-
ance and aspect tensor fields ðV/,Vu, s/, suÞ: To continue
using the PKF by assimilating another observation, one
need to update the correlation functions. However, since
a covariance model of the kind of Eq. (26) relies on the
parameters Pu of the univariate unbalanced matrices Pu

/

and Pu
u, one has to determine Pu from ðV/,Vu, s/, suÞ:

Hence, an additional step is needed, and we detail how to
proceed at a theoretical level.

5.2.2. Update of the parameters of the unbalanced
univariate VLATcov matrices. The computation of Pu is
performed from the sequential process described from
Eq. (29), where the parameters of Pu

/ are first computed
followed by those of Pu

u :

Since P// ¼ Pu
/ in Eq. (29a), the unbalanced parame-

ters for / are directly obtained from ðVu
/, s

u
/Þ ¼ ðV/, s/Þ:

It remains to compute the unbalanced parameters of u,
ðVu

u , s
u
uÞ, which can be deduced from the difference Eq.

(29b) that reads Pu
u ¼ Puu�DP//DT : As the covariance

matrix DP//DT is the covariance matrix of a@xe/, the
variance, denoted by Va@x/ and it metric, denoted by
ga@x/, are given by

Va@x/ ¼ a2E ð@xe/Þ2
h i

, (30a)

ga@x/ ¼ a2E @x
@xe/ffiffiffiffiffiffiffiffiffiffiffi
Va@x/

p !( )2
24 35: (30b)

Using the definition of the metric field associated with
e/ (see Eq. (6)) the variance and the metric tensor of the
balanced part reads (see e.g. Eq. (45) in Appendix B)

Va@x/ ¼ a2 V/g/ þ
1

4V/
ð@xV/Þ2

� �
, (31a)

where g/ ¼ ðs/Þ�1, and

ga@x/ ¼
a2

Va@x/
E ð@x2e/Þ2
h i

� a2

4V2
a@x/

@xVa@x/ð Þ2: (31b)

Note that Eq. (31b) involves the high order statistic
E ð@x2e/Þ2
h i

that is unknown in practice but for which a
so-called Gaussian closure exists (Pannekoucke et al.,
2018a). When no closure exists, a machine learning
approach can be introduced to estimate a closure adapted
to the application. To do so, automatic generation of
neural networks can be useful (Pannekoucke and Fablet,
2020). Then, the statistics of the unbalance part of u
reads

Vu
u ¼ Vu�Va@x/, (32a)

guu ¼
1
Vu

u
Vugu � Va@x/ga@x/
� �

, (32b)

where Eq. (32b) is obtained from a local homogeneous
assumption (Pannekoucke et al., 2020, see the proof in
their Appendix B), with gu ¼ s�1u ; leading to suu ¼ ðguuÞ�1:

5.2.3. Discussion on the PKF in the multivariate setting.
We have shown that it is possible to compute the param-
eters Pu from the results of the PKF algorithms 1 and 2,
leading to a PKF formulation for the multivariate para-
metric model Eq. (26): in algorithms 1 and 2, an add-
itional step is added after the update of the variance and
metric tensor fields of the multivariate statistics to update
the unbalanced variance and metric tensors fields.

So, the design of a PKF implementation for the ana-
lysis in the multivariate framework that relies on
VLATcov models, is possible, but needs to be adapted
for the particular multivariate model used.

Note that, the theoretical expressions of the update of
the unbalanced parameters, that have been introduced
here, offer a new insight into multivariate analysis.
However, particular attention should be given to the case
when closure issues occur, and in practice other alterna-
tives to analytical closures can be investigated e.g. the
estimation of the unbalanced parameters leveraged on
machine learning techniques. This kind of strategy can
increase the cost of the PKF. Thus, the interest of the
PKF depends on the cost of using other alternatives to
compute the analysis-error covariance matrix, so it
depends on the application we consider.

As a final comment, observe that the batch strategy
can still be used in the multivariate situation, as far as
the observational-error correlation can be neglected.

6. Conclusions

The parametric Kalman filter (PKF) is a new nonlinear
Kalman-like filter where the error covariance matrices are
approximated using a parametric covariance model
(Pannekoucke et al. 2016, 2018a, P16). We considered the
parametric covariance model based on a diffusion equation
used in NWP, for which the set of parameters is reduced to
the variance and the local diffusion tensor fields. The diffu-
sion covariance model is an example of covariance model
parametrized by the variance field and the local anisotropic
tensors (VLATcov). Another example of VLATcov model
has been considered from Theorem 1 of Paciorek and
Schervish (2004), and in particular the heterogeneous
Gaussian VLATcov which appears here as a surrogate for
the diffusion VLATcov. In this contribution, the PKF ana-
lysis step for VLATcov model has been detailed, which
extends the original 1D version of the PKF of P16 to
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dimension larger than one and to a wider family of covari-
ance models. Two consistent implementations of the PKF
for the VLATcov has been presented for the heterogeneous
Gaussian VLATcov model: the PKF O2 and its local
homogeneous version, the PKF O1.

This study constitutes a theoretical contribution to the
realm of data assimilation, featuring analytical results for the
analysis uncertainty and illustrating these results using numer-
ical experiments. The validation of the PKF was conducted in
a 2D test-bed. A univariate numerical framework with aniso-
tropic forecast error correlation functions was introduced to
show the ability of the PKF analysis step to reproduce the KF
statistics. Then an experiment of several assimilations cycles
has shown the ability of the PKF to reproduce the KF statis-
tics which have been computed from an ensemble estimation.
In particular, the PKF O1 has shown to be a more robust
implementation than the PKF O2. Thus, the PKF O1 may be
preferred in applications since it appears as a compromise
between precision and robustness. The multivariate situation
has been explored at a theoretical level. This contribution pro-
vides a new insight into univariate and multivariate assimila-
tions e.g. the expression of how the metric tensor updates in
2D/3D domains; and draws some ways to adapt the univariate
PKF toward the multivariate case.

The strength of the PKF is that it applies to continuous
fields, making its numerical cost less sensitive to the dimen-
sion of discretization than for methods based on matrix
computation. In the experiment conducted here, the numer-
ical cost of the PKF analysis step is well below the numerical
cost of an ensemble Kalman filter (EnKF), which makes the
PKF an interesting alternative to the EnKF, especially for
real-time applications, e.g. now-casting of high impact wea-
ther situations as encountered in chemical transport models
for chemical accidents and volcanic ash prediction.
Moreover, the single observation experiment applies to both
univariate and multivariate settings, bringing the PKF closer
to real-world applications. However, an additional step has
to be introduced in multivariate statistics that depends on
the multivariate parametric model used for the covariance.

But there is still work to be done for using the PKF ana-
lysis in NWP. In its current form, the PKF does not take
into account correlation in observation errors. Note that
the sequential assimilation, used in the PKF, can apply
when observational errors are correlated by considering a
sub-sampled observational network (as it is often done in
NWP data assimilation). Furthermore, the modelling of
multivariate error covariance is still a challenge: the bal-
ance operator modelling of the variational assimilation
appears as an interesting way to start. While the PKF fore-
cast step has been already discussed for linear and nonlin-
ear dynamics in univariate statistics (Pannekoucke et al.,
2016, 2018a), the multivariate case remains to be devel-
oped. The promising results obtained here, also suggest

considering a data-driven strategy to learn the update of
the covariance parameters, taking advantage of machine
learning for the analysis step as well as for the forecast step:
convolutional neural networks would be adapted for this
(Pannekoucke and Fablet, 2020).

As other applications, the PKF analysis could replace
the often-used optimal interpolation, providing an update
of the uncertainty during the sequential assimilation.
Observation targeting could also benefit of the low-cost
computation of the analysis error statistics given by the
PKF. Note that the 2D/3D univariate formulation devel-
oped here can be used without further developments in
some important applications e.g. in air quality where the
operational assimilation often updates chemical concentra-
tions independently each others; or to accelerate the assimi-
lation for the prediction of the consequences of industrial
accidents. To this end, the illustration of the PKF over sev-
eral assimilation cycles shows the potential of the PKF to
perform an approximation for the KF.

Note that, more generally, the PKF not only leads to
practical implementations of the KF equations, but it
also provides theoretical tools for understanding the data
assimilation process e.g. the exploration of the model-
error covariance due to the numerical discretization
(Pannekoucke et al., 2020).
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Appendix A: derivation of the local metric
tensor from error statistics

Here, a differentiable random field e with zero mean is
considered (i.e. EðeÞ ¼ 0).

The two-point correlation is defined as

qðx,xþ dxÞ ¼ E
e
r
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E½eðxÞ2�
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where the little-o fðxÞ¼a oðgðxÞÞ means that
limx!a

fðxÞ
gðxÞ ¼ 0, and the correlation Eq. (A1) can be

written as
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Because the variance field E
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homogeneously equal to one, it follows that
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Since the spatial derivative @xi commutes with the E,
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from which it can be deduced that
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ðxÞ

	 

¼ 0:

�E @xi
e
r

� �
ðxÞ@xj e

r

� �
ðxÞ

	 

:

(A7)

Therefore, the correlation can be written as

qðx, xþ dxÞ ¼
1�
X
i, j

1
2
dxidxjE @xi

e
r

� �
ðxÞ@xj e

r

� �
ðxÞ

	 

þ

oðjjdxjj2Þ:
(A8)

Because the local metric tensor gðxÞ is defined via the
Taylor expansion,

qðx,xþ dxÞ ¼ 1� 1
2
jjdxjj2gðxÞ þ oðjjdxjj2Þ: (A9)

Identifying the local metric tensor in the last two
expressions of the correlation leads to the identity

g½ �ijðxÞ ¼ E @xi
e
r

� �
ðxÞ@xj

e
r

� �
ðxÞ

	 

: (A10)

Appendix B: PKF analysis step for a single
observation assimilation

By introducing the true state and the error fields
Xa ¼ X t þ ea, Xf ¼ X t þ ef and YoðxlÞ ¼ X tðxlÞ þ eoðxlÞ,
the analysis equation, Eq. (13a), becomes
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eaðxÞ ¼ efðxÞ þ rfðxÞqfxlðxÞ
rfðxlÞ

V fðxlÞ þ V oðxlÞ eoðxlÞ � efðxlÞ
� �

:
(B1)

Then, it is straightforward to compute the analysis
error variance field V aðxÞ ¼ EðeaðxÞ2Þ, which can be
written as

V aðxÞ ¼ V fðxÞ 1� qfxlðxÞ
h i2 V fðxlÞ

V fðxlÞ þ V oðxlÞ

 !
: (B2)

This is a classic result of optimal interpolation (Daley,
1991, pp. 146–147).

From the definition of the local metric tensor, Eq. (6),
the analysis error local metric tensor, expanded in terms
of the variance, is written

gaðxÞ ¼ 1
V aðxÞE re

aðreaÞT
h i

ðxÞ�
1

4ðV aðxÞÞ2 rV
aðrV aÞT

h i
ðxÞ:

(B3)

As the observation and the forecast errors are assumed
uncorrelated, so that Eðef ðxÞeoðxlÞÞ ¼ 0 (since E½ef � ¼ 0
and E½eo� ¼ 0), and using the fact that
EðefðxÞefðxlÞÞ ¼ rfðxÞrfðxlÞqfðxl, xÞ is the covariance

relative to the position xl, the gradient of Eq. (B1) yields

E reaðreaÞT
h i

ðxÞ ¼ E ref ðref ÞT
h i

ðxÞ�
V fðxlÞ

V fðxlÞ þ V oðxlÞ rðr
fqfxlÞ rðrfqfxlÞ

� �T	 

ðxÞ:

(B4)

Using the definition of the forecast error metric tensor,

gf ðxÞ ¼ 1
V fðxÞE re

f ðrefÞT
h i

ðxÞ�
1

4ðV f ðxÞÞ2 rV
f ðrV fÞT

h i
ðxÞ,

(B5)

the analysis error metric tensor can be written in
arbitrary dimensions as

gaðxÞ ¼ V fðxÞ
V aðxÞ g

fðxÞþ
1

4V fðxÞV aðxÞ rV
fðrV fÞT

h i
�

1
V aðxÞ

V f ðxlÞ
V fðxlÞ þ V oðxlÞ

rðrfqfxlÞ rðrfqfxlÞ
� �T	 


ðxÞ�
1

4ðV aðxÞÞ2 rV
aðrV aÞT

h i
ðxÞ:

(B6)
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