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Abstract. This contribution addresses the characterization ofresentation of the small scales and how this in uences the
the model-error covariance matrix from the new theoreticallarge scales. Stochastic physics such as stochastic kinetic
perspective provided by the parametric Kalman Iter method energy backscatter (Shutts, 2005) or the stochastically per-
which approximates the covariance dynamics from the paraturbed parametrization tendencies (Palmer et al., 2009) are
metric evolution of a covariance model. The classical ap-examples of methods encountered in NWP for this part of
proach to obtain the modi ed equation of a dynamics is re- the model error.
visited to formulate a parametric modelling of the model- Although some theoretical studies have been conducted
error covariance matrix which applies when the numericalin the past, which elucidate the generic behaviour related to
model is dissipative compared with the true dynamics. As arthe model error from the dynamical system perspective and
illustration, the particular case of the advection equation isin connection with the data assimilation (e.g. Nicolis, 2003;
considered as a simple test bed. After the theoretical derivavannitsem and Toth, 2002; Carrassi and Vannitsem, 2010),
tion of the predictability-error covariance matrices of both as far as we know there has been little investigation of the ef-
the nature and the numerical model, a numerical simulatiorfect of the discretization of partial derivative equations on the
is proposed which illustrates the properties of the resultingmodel error and on model-error covariance in particular (Du-
model-error covariance matrix. binkina, 2018; Hat eld et al., 2018; Grudzien et al., 2020).
One reason why the effect of numerical schemes is rarely
considered is because it tends to be quite dif cult to describe
the dynamics of large covariance matrices as encountered in
1 Introduction the Kalman lter.

It has been noted in Kalman Itering and ensemble
A signi cant portion of the work being carried out in state- Kaiman Itering (EnKF) that the propagation of error covari-
of-the-art data assimilation concerns the treatment of thegnce with a discretized advection model produces a model
forecast-error covariance matrix. Actually, the forecast er-grrqr (variance) in the form of a variance loss (Ménard et al.,
ror is composed of two parts. While one part of it is re- 2000, 2020). This error is related to the spatial splitting error
lated to the uncertainty in the initial condition, another part jn covariance propagation that exists with discretized models
is due to the model error (Daley, 1991; Dee, 1995). Theand not in continuous propagation of covariance functions,
model error corresponds to the difference between the simure_ the propagation by the true equations of the dynamics.
lation and the true behaviour of a system, and several repre- Recently, Pannekoucke et al. (2016, 2018b) (P16) have
sentations of the model error can be introduced in numerproposed to solve the Kalman lter equations, and their

ical weather prediction (NWP) (Houtekamer et al., 2009). second-order extension for non-linear dynamics, using ap-
For instance, the model error can be related to the misrep-
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2 O. Pannekoucke et al.: Model-error covariances due to the discretization scheme

proximated covariance matrices through a covariance modelvhere the subscrif is used to denote the tintg.
characterized by certain parameters, leading to the so-called Due to the imperfect knowledge of the nature and the lim-
“parametric Kalman lter” (PKF). With this approximation, itations encountered during the computation, the nature dy-
the dynamics of the covariances is replaced by the dynamicaamics is only approximated by
of the parameters. For instance, when considering the class
of covariance matrices parameterized by the variance eld@X D M .t; X/; 3
and the local anisotropic tensors (VLATcov), the evolution
of the matrices is deduced from the evolution of the variancewhereM is the numerical dynamics. Compared with the na-
and the local anisotropic tensors (Cohn, 1993; Pannekouckdure, the time evolution of the true state (Eg. 2) is now related
2020). This approach relies on the partial differential equa-to the numerical dynamics as
tions encountered in geosciences that are often non-linear.

The aims of the present work are to study how the paraXqc1 DM ter to-Xg/  "gea-Xqf; (4)
metric dynamics for covariance matrix evolution can help ) )
to characterize the model-error covariance matrix, and mordvhere”ge,. Xg/ is themodel errorwith respect to the true
precisely, to determine if is it possible to capture some partState, and wheregz,, is the vector-valued function de ned
of the model-error covariance which is due to the numericalty
scheme. In this methodological contribution, we will limit
ourselves to diffusive numerical errors whose uncertainty dy- acC1 DMiger t¢ Ntger 1o ®)

namics can be explored from the results of Pannekoucke et ajl._h del ety lectively th
(2018a) (P18). e model error'tr;. Xg represents collectively the nu-

The paper is organized as follows: the background in date{nerical discretization error and the effect of unresolved pro-
assimilation is reviewed in Sect. 2 from which the formal- C6SS#5- Itis often modelled as a random eld of zero mean,

ism of the model-error covariance matrix is detailed with the i-6-E "gt1-Xq/ D 0, and of covariance matrix
introduction of modelling that could apply when the numer-
ical model is dissipative. The model-error covariance ma-
trix based on the PKF is illustrated for the particular one-
dimensional transport equation in Sect. 3 in the context of
the Euler-upwind and semi-Lagrangian schemes. A numeriwhereE[ ] denotes the expectation operator.

cal test bed is proposed in Sect. 4 to assess the ability of the In practice, the true staté; is unknown and only an es-
PKF approach to successfully model the ow-dependent partimation can be deduced from a priori information and the
of the model-error covariance matrix to numerical schemesvailable observations. This estimation is called the “analy-
in a one-dimensional setting. A discussion on the results issis state” X 2, and it is expanded as

proposed in Sect. 5. Conclusions and perspectives are givena C ua
in Sect. 6. Xq D Xq C "q; (7)

T
PaciDE "feiXq! "gea Xyl (6)

_ _ _ where"2 stands for the so-called “analysis error” that is
2 Theoretical considerations modelled ah a randdm eld of zero mean and covariance ma-
trix PADE "§." g/T . The forecast state is the prediction

2.1 Background in uncertainty propagation and the made from the analysis state,

model error
f ay.
Here, we assume that thatureis governed by the determin- Xac1 DM tger tq-Xgl: ©)
istic equation

@X DN .X/; 1)

Similarly to the analysis state, the forecast state expands as

Xf D Xt C uf : 9
whereX stands for the state. Note thétcan be either dis- ~ 9t~ 79¢1 ™~ dCl ®)
cre@e or cqntmuoug: the d|scr§te case Iead_s to r_natnx of alge\ivhere"f <, stands for the so-called “forecast error” that is
braic relations, while the continuous case is suitable for the, . o -t a5 arandom eld of zero mean and covariance ma-
oretical treatment with partial differential equations. There- tix PDE "f . "t T
after, for any statéX of a suitable set, there exists a single qCc1* gqct® - o
trajectoryX; D N o.X/, whereN; o stands for the prop- The forecast-error covariance matrix is related to the
agator of the dynamics ,(Eq 1) from OtoHence, ifX ! de- analysis-error covariance matrix through a deterministic re-

. X

notes the true state of the nature at tiguethen the true state lation as follows. From the de nition of the forecast error
of the nature at timeycy is (Eg. 9), its dynamics is given by (see Eq. A2 in Appendix A)

Xic1 D Niger tg-Xg/s 2 "teaDM"§CUgb1 Xyl (10)
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O. Pannekoucke et al.: Model-error covariances due to the discretization scheme 3

whereM is a simpli ed notation forMy,., tg:X& thatis for  address this error. In particular, the various assumptions en-
the tangent linear (TL) propagator along the analysis trajeccountered in data assimilation may be considered as subop-
tory. The TL dynamics, with respect to the analysis state, istimal ways to model this error. For instance, assuming that

de ned by the model error is unbiased leads to modelling the bias as
. . some variance and overestimates the effective model-error
@' D Mg;xa" (11 variance. Then, assuming a decorrelation between the anal-

ysis and the model errors is certainly wrong for determin-

whereM¢;xa D dM ji:x a is the differential oM at.t; X&. 7. . o
This TL model governs the evolution of small perturbations istic error, as for the model error due to the discretization
of the dynamics, but it may not apply for highly non-linear

along the forecast trajectory starting from the analysis state,
Note that the validity of the TL dynamics depends on the processes as for the turbulent processes and transport by the

turbulent processes. Again, assuming the decorrelation be-

error magnitude and on the forecast range. Moreover, th‘?ween the analysis and the model errors leads to overesti-
decomposition of the forecast error (Eq. 10) makes the pre- y

dictability error" P appear de ned by mat!ng the true effect of the model error with an overesp-
mation of the true forecast-error uncertainty. However, with
" 201 D M--g; (12) these assumptions, or actually this modelling, some part of
the model-error statistics can be estimated from the data. For
Consequently, the forecast-error covariance matrix becomesnstance, with the assumption that the analysis and the model
errors are decorrelated, leading to Eq. (15), it is possible to

ch1 D P2C1 C P&“m c Vggl c 'VE&/T; (13) estimate the homogeneous correlation and the stationary part

where of the climatological model-error covariance (Daley, 1992;
Boisserie et al., 2013).

nglD MngT (14) By some aspects, the understanding and the speci ca-

_ _ N _ _ tion of the model-error covariance matrix look like the de-
is the predictability-error covariance matrix (Daley, 1992) velopment of the background-error covariance matrix some
T . . T
and Vpgl DE " pCl "mc1-Xé/ denotes the cross- decades ago. Indeed, in varlat|ongl data assimilation, the
- A q _ N background-error covariance matrix was a constant ma-
covariance matrix between the predictability error and thetix estimated from the climatology (Derber and Bouttier,

model error. _ 1999). Then, the ensemble methods provided an estimation
When the analysis error and the model error are decorrepf the predictability error statistics of the day, leading to

e.g. Berre et al., 2007). Nonetheless, the situation of the
model-error covariance matrix is different since, up to now,

Note that, in the case where the true nature is used to fore10 equations have been known to characterize its properties.
cast the uncertainty, the forecast-error covariance matrix colt seems that the prospect of estimating the model-error co-
incides with the predictability-error covariance matrix. In the variance matrix of the day is out of reach.
latter, the predictability error with respect to the nature dy- Because the model error can mean different things, to
namics plays an important role. So in order to avoid any con-understand the context in which we are using model error,
fusion with the predictability error associated with the nu- 1€t us consider the situation sketched in Fig. 1. This g-
merical model, the notatianis used when the dynamics is Uré mimics the evolution of the analysis uncertainty with

f .
Pyc1D PQCl C Phes: (15)

the nature, i.e. respect to the nature and the numerical model. The initial
Gaussian analysis error is characterized by the analysis state
PaCl D?’gCl D NPSNT; (16) (the black point) and the analysis-error covariance matrix

h i (the black ellipse). Under the TL assumption, the analysis
with®' DE afaf T ,Wher&aCl D N"2 denotes the fore- uncertainty evolving by the nature dynamics (blue arrow)

cast error in the particular case where the dynamics is théS @ Gaussian of mean and covariance given, respectively,
nature, which coincide with the predictability error in this PY the analysis forecasted by the nature (blue point) and by
case, i-eéam D égcﬁ and whereN is a simpli ed notation the predictability-error covariance matrix represented by the

for the propagatoN «.xa solution of the TL dynam- blue ellipse. Note that in this case, the predictability-error
ics governed b)Nt'an‘cE) qujt-xa (the differential ofN at covariance matrix coincides with the forecast-error covari-
1Nt 1Nt

£ X3, ance matrix. Similarly, the analysis evolving by the numeri-
ot cal model (red arrow) is a Gaussian of mean and covariance
2.2 Discussion on the modelling of the model error given, respectively, by the analysis forecasted by the model

(red point) and by the predictability-error covariance matrix
The modelling of the model error can be seen as a traderepresented by the red ellipse. The evolution of the true state
off between its real properties and the lack of knowledge to(pink crosses) is also represented (pink arrow). Figure 1a and

https://doi.org/10.5194/npg-28-1-2021 Nonlin. Processes Geophys., 28, 1-22, 2021



4 O. Pannekoucke et al.: Model-error covariances due to the discretization scheme

@) (o)

Figure 1. lllustration of the evolution of the uncertainty by the nature and the numerical model: the generic sifajptind the particular
situation where the forecast lies within the nature uncertainty and where the model is diff)siVke predictability-error covariance of the
natureNPgNT (of the modeMPgMT) is indicated by the blue (red) ellipse. The forecast-error covariance matrix is indicated by the orange
ellipse.

b illustrate what would be the forecast-error covariance ma-can only be known from a climatological study, this leads to
trix (orange ellipse) in two situations. a static matrix which is not ow dependent.

Figure la represents the case where the forecast state Thereafter, we consider the situation sketched in Fig. 1b,
Xém is out of the predictability uncertainty of the nature: which suggests decomposing the forecast-error covariance
in that case, a model-error estimate is heeded to enlarge thmatrix as
predictability-error covariance of the numerical model so that
the forecast-error covariance is large enough to account foPac1  Pac C 5 Ge1 € Qacts (17)
the uncertainty of the nature. In this situation, it seems dif-
cult to speculate about what would be the characteristic ofWhere
the model error beyond any climatological estimate. This sit-- m DNPANT  mPaMmT

; ; ; C1
uation could be the typical picture for a long-term forecast. ~ ¢ q 4

Figure 1b represents the situation where the time inteWou|d account for the OW_dependent part of the model-
gration is not too |0ng, so the forecast state lies within theerror covariance matrixl while the remaini@]Cl, a resid-
predictability uncertainty of the nature. This situation is en- yal model-error covariance, would account for the bias and
countered when the numerical model is more dissipative thaquld be estimated from the climatology, e.g. by considering
the nature, e.g. the resolution of an advection by a semiz chi-squared diagnostic (Ménard et al., 2000).

Lagrangian scheme. Then the model-error uncertainty, re- Thys, 5 gﬂCl D@Zm P2c1 measures how the
quired to correct the predictability error of the numerical predictability-error covariance of the numerical model
model, should be at least large enough to provide an uncetshould be modi ed to nd the one of the nature. We think
tainty similar to the predictability-error covariance of the na- that 5 m., could be a useful proxy to characterize the
ture. So if we are able to quantify the predictability-error co- ow-dependent part of model-error covariance matrix. Note
variances of the nature and of the numerical model, then ithat the matrix5 ?fc1 is symmetric but not necessarily
would be able to specify a ow-dependent part of the model- positive. However, under the assumption depicted in Fig. 1b,
error covariance matrix. To account for the bias, a climato-ye will assume thas m., is positive. Note also thai T,
logical residual covariance matrix would be necessary, whichg different from the model-error covariance matﬂgglcf; if
corresponds to a static matrix which depends on the duratiofnere is no analysis uncertainty, theffy., is zero.

of the forecast. Note that this decomposition of the model- The decomposition (Eq. 17) can be justi ed from the de-

error covariance matrix into a ow-dependent and a static composition of the forecast error that can be written as (see
part should not be confused with the decomposition of thegq. A6 in Appendix A)

model error itself. In particular, the decomposition of the

model-error covariance matrix does not mean that the part 201 Dégmc "g‘Cl.Xé‘/; (19)

of the model error related to the bias is static; this not true, as

the bias depends on the situation. However, the estimation ofvhich makes the forecast error appe‘a[{Cl, as the pre-
the bias needs the knowledge of the nature dynamics that igjctapility error of the natureg ., D N"2, plus a drift

never known. Because the statistical contribution of the bias: m.1-X&. Note that, with the analysis staXe' being known,

(18)

Nonlin. Processes Geophys., 28, 1-22, 2021 https://doi.org/10.5194/npg-28-1-2021



O. Pannekoucke et al.: Model-error covariances due to the discretization scheme 5

the model errot mCl.XC?/ is easier to handle tha‘rg‘crxé/ they predict was larger, due to the same diffusive process that
in Eq. (10), which is de ned with respect to the true state gives rise to the loss of variance. To cope with the loss of
X! that is never known in practice. Now, when assuming thatvariance, M2000s proposed to correct the predictability-error
the errors in Eq. (19) are degorrelated; and when the modevariance (the diagonal ¢ in Eq. 14) so that its magnitude
X is unbiased § "frqnc1-X§/ D0) and of co- IS con;erved, as itis .sup.posed to be apcordmg to the the-
T ory. This renormalization introduced an increase of correla-
variancekE "g“Cl.XC?/ "g‘Cl.x;/ D Qqca1, it results that  tion length that was corrected by a Schur product of the new
. o . covariances with a homogeneous isotropic correlation model
the forecast-error covariance matrix is also written as .
whose length scale has been determined so that the total co

nm
error qc1

f p . variance is conserved over time.
Pac1 D Paca € Qacr: (20) Indeed, M2000s introduced a modelling of the model-
Hence, the modelling of the model-error covariance as error covariance matrix similar to Eq. (21) introduced here,
although they did not explicitly formalize it in this way: their
P{]“Cl 5 g’Cl C Qqc1 (21)  objective was not to characterize the model-error covariance

matrix but to correct the predictability-error covariance ma-

allows us to connect the two formulations (Eqgs. 15 and 20)trix that they considered erroneous from a theoretical point
of P&cr In fact, while Egs. (15) and (20) result from a decor- of view.
relation assumption of the errors in Egs. (10) and (19), and |n particular, M2000s have observed that the Kalman lter,
becauseb g, is not necessarily a covariance matrix, then with the corrected predictability-error covariance, required
expression oPgCl, proposed in Eqg. (17), is more like that of less residual model err (see Ménard et al., 2000, Sect. 5)
Eq. (13), where there is no decorrelation assumption. and improved the analysis-error statistics (see Ménard et al.,

Compared with climatological modelling of the model- 2000, Fig. 11): the ow-dependent modelling (Eg. 21) of the
error covariance matrix, as usually encountered in data asmodel error is in better agreement with the real forecast un-
similation, the model foP™ in Eq. (21) is a state-dependent certainty.
model of the model-error covariance. Note also that, in At a computational leveb g‘Cl in Eq. (18) appears easier
Fig. 1b, assuming that there is no bias, while there is oneto obtain than the model-error covariance malﬂggl, as de-
leads us to interpret the bias as a residual model-error whos@ed by Eq. (6): the predictability-error covariance matrices
magnitude can be estimated from the climatology. Hencepf the modeIPpCl (Eq. 14) and of the natu@pcl (Eq. 16)
P™ modelled by Eq. (21) is a hybrid model that balancesare based only on the TL forecasts with respect to the known
the model error of the day with the climatological effects of analysis stateX 2, while the model errof‘g‘Cl.Xé/ (Eq. 4)
the model error. In particular, if the initial state is perfectly depends on the true stemg that is never known.

known, thens M. is zero, and the model error is character- ;o @P p .
ized by the clin%tolo ical residual te : the source of However, computin€yc, andPyc, remains a challenge.
cd by the ( 9 "Quc1: _First of all, the nature dynamicé is generally unknown; e.g.
this uncert:_:unty corresponds to a forcing term that appears inyimitive equations are only an approximation of the geo-
the dynamics of the model error (see, €.g. Eq. 4 in Nicolis,p,sica| uid dynamics. Then, when the nature dynamics is
2003); this source term is not explored here and its contribu{ag5ymed) known, e.g. when it is given by partial differential
tion is incorporated irQ whose magnitude depends on the gqations (PDES), there is often no analytical solution, which
forecast time. , ) , means that the problem must be solved numericalliv as
Note that the modelling equation (Eq. 21) ff" is ac-  hreisely the numerical approximationf, the only way to

tually supported by at least one real experiment. In the ast,mnyteP . is to introduce a high-order numerical approx-
similation of a chemical tracer using a Kalman Iter, Mé- | a

nard et al. (2000) and Ménard and Chang (2000) (MZOOOSj
have observed a loss of variance: the variance they forecast

was lower than the theoretical variance that was tranSportemerical state encountered in practice, the direct computation
by the ow for the advection equation (Cohn, 1993). Said T .
y g ( ) of Pgm NPENT andPgCl D MP2MT is impossible, even

differently, in their experiment, the predicability-error vari- ; ek v able to handle a f
ance computed from the numerical model was lower than2" SUPErcomputers, which are only able 'o nandie a few nu-

the predicability-error variance of the nature they Consid_merical states at full resolution: it is the limitation that mo-
ered, and M2000s related the loss of variance to the disyvated the ensemble estimation to solve the Kalman Iter

cretization of the continuous dynamics. This loss ofvarianceeq_llfatlons (Evenst(;n, 2%09)' limitati hiah-order di
is also encountered when considering an ensemble forecast tc') ciyerlgorr}eN ?Ilz qv;e (Ijml adl(?nff,] al ttlg -oraer 'IS'
of the uncertainty, as later illustrated in the numerical partCre 1zation’y of - will be Introduced In the 1atter numerica

(see Sect. 4.2.1) and also observed in 3-D domain simulgSimulation in place o , e.g. in the ensemble estimation of

: ®P al T _
tions (Ménard et al., 2020). Accompanying the loss of vari- _the _covanance matn?qu_ RIPgFlI only usTed for tse v_al
ance, M2000s also observed that the correlation length scaliglation. But the computation &%, D NPGN" andPg, is

mation of the nature dynamicﬂ , whose numerical error is
uch smaller than the one & . And nally, it remains to
omputePl ., andPf;. But due to the large size of the nu-

https://doi.org/10.5194/npg-28-1-2021 Nonlin. Processes Geophys., 28, 1-22, 2021
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investigated through an alternative to the ensemble estima- Following Pannekoucke et al. (2018a), the parametric dy-
tion, as now introduced in the next section. namics of a VLATcov model is deduced from the dynamics
of the errors from

2.3 Parametric dynamics for VLATcov models
@V D 2E["@"]; (26a)

The parametric formulation provides a framework where a _ " )
limited number of covariance parameters (based on the con@IJ D@ E @ pv @ 197 '

tinuous PDE) of the nature can be computed. The paramet- . L
ric formulation works as follows. IP.P/ denotes a covari- where the expectation operator and the temporal derivative

ance model characterized by a set of paramé&dds.pi/2) , commute,@E[ 1D E[@], as used in I_Eq. (_26a). Therefore,
there exists a se®{ featuring the forecast-error covariance the Qynam|c_s of the VLATCOV model is writte V'i; g/ or
matrix so thaP.P{/  P{; and there is a s@®featuringthe "V t/, which are equivalent. . .
analysis-error covariance matrix so tiaP?% P2, In re- Now, we apply.the para.metrlc covariance dynamics for
verse, if the dynamics of the parameté’q&is known, then model-error covariance estimation.

P.P// approximates the dynamics & without using the
full matrix computation. This approach constitutes the so-
called parametric Kalman Iter (PKF) approximation, intro- From now, we will assume thd& ™ is a covariance matrix

duced by Pannekoucke et al. (2016, 2018a) (P16, P18).  and that there is no residual model-er€in order to focus
The family of covariance models parameterized by thepns ™M alone, so that

variance eld and the local anisotropic tensors, the VLATcov _ m
models, are of particular interest (Pannekoucke, 2020): thequ01 5 qC1 (27)
parameters are directly related to the grid-point statistics ofieads to model the forecast-error covariance matrix as
the error eld”. When the error is modelled as an unbiased D mo
random differential eld,E["] D 0, the variance at a poit ~ Pgc1 Pgc1C S qer (28)
is written as

h i
V.XIDE ".x/? : (22)

(26b)

2.4 The model-error VLATcov approximation

With the notations of the previous paragraph, aFg%lalso
exists for the predictability-error covariance matrix, leading
to the approximatio®.P{/  P}.

If the dynamics of the parametd?§ is known, then start-
ing from the initial conditionPg D P2it is possible to ap-
proximately determin@tp without solving Egs. (14) and (16)

The anisotropy of the correlation function. x;y/ D
pV1=VE ".x/".yl is de ned, from the second-order expan-
xVy

sion, explicitly.
Hence, thanks to the parametric dynamics in the case
X xC x 1 }jj ijs L (23) v_vhere the nature is known from its partial derivative equa-
2 ' tions, a new method to compute the model-error covariance

matrix can be proposed as follows. By considering the TL dy-
namics for the numerical model and for the nature, Eq. (26)
provides a way to compute both the predictability-error co-
" " variance matrice®P (Eg. 14) andP® (Eq. 16) from which
gi XDE @ P @ P (24)  the model (Eq. 27) oP™ can be evaluated. For the covari-
ance model based on the diffusion equation, the model-error
(see, e.g. Pannekoucke, 2020, for details). A VLATcov variance diagnosed from Eq. (18) is the difference:
mode_I is.then a covariance model parameterized/bgnd  \,;m 5 gp VP (29a)
g, which isP.V; g/.
For instance, the diffusion operator of Weaver and Courtierwhere ¥P and VP denote the predictability-error variance
(2001) is an example of a VLATcov model: the local elds of the nature and of the numerical model. The eld of
anisotropic tensors are related to the local diffusion tensorsthe metric tensor of the model error is approximately given

by the local metric tensag.x/. An interesting result is that
the metric tensor can be obtained from the error as

, from by
1
1 m p PP -
Xngxl; (25) g D_Vm 9Pg® VPP ; (29b)

wheregP andgP, respectively, denote the predictability-error
where the superscript! denotes the matrix inverse opera- metric tensor elds of the nature and of the numerical model
tor (Pannekoucke and Massart, 2008; Weaver and Mirouze(see Appendix B for details).
2013). Equation (25) holds under the local homogeneous as- In the next section, we apply the parametric model-error
sumption; that is, when the spatial derivatives are negligible dynamics to a transport equation.
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3 Parametric characterization of the model-error The PKF approximation of the forecast-error covariance ma-
covariance for the one-dimensional advection trix relies on the dynamics of the variance and of the diffu-
equation sion elds deduced from Eq. (26). The equation for the vari-

ance is computed from Eq. (26a) by replacing the trend by
The transport equation of a passive scaldoy the wind  the TL dynamics (Eq. 32), so that
u.t;x/ is written as

@9PD2E &P u@tP D 2uE &P@eP : (33)
@ Cu@cD 0; (30)

From @.8P/2 D 28P@8P and by the commutativity between
and takes the place of the nature dynamics (Eqg. 1). Note thathe expectation operator and the spatial derivative, the vari-
dynamics (Eq. 30) is linear, meaning that the tangent-lineaance dynamics becomes
dynamics is also given by Eq. (30). The advection equation h
has two aspects. The rst side is given by the PDE (Eq. 30),@?P D 2E 6P u@P® D u@E &P
which is referred to as the Euler point of view. The other side
is the analytico-geometric perspective known as the metho@y using the de nition of the variance (Eq. 22), it results that
of characteristics (see, e.g. Boyd, 2001, Chap. 14) where thghe dynamics for the variance can be stated as
dynamics can be solved as a local system of ordinary differ-

i
2. (34)

ential equations, given by @°D u@9”: (35)

dx D u: 31a The computation of the metric dynamics (Eq. 26b) is simi-

ot u; (31a) lar to the above computation made for the variance dynamics

dc _ and is detailed in P16 and P18, where the interested reader

at DO (31b) s referred. It results that the PKF evolution for the nature is
written as

Each system of Eq. (31) describes the evolution of the cou-

ple .x.t/;c.t/l starting from an initial positiorx.0/ where ~ @¥PCu@¥PD 0; (36a)

the scalar value is.0; x. 0// . At the geometric level, Eq. (31) @PCu@ePD .2@ule”: (36b)

remains to compute the trajectory of a mobile point of coor-

dinatex.t/, the characteristic curve, solution of the dynamics Note that a similar system has been rst obtained, in data
(Eq. 31a) and transporting the scatavhose valuee.t/ co-  assimilation, by Cohn (1993) (see their Egs. 4.30a and 4.34
incides with the eld ValU&.t;X.t// . The transported value when written without stochastic model error)_
c.t/ evolves following Eq. (31b). In the present situation,  From Eq. (36), it results that the variance and the diffusion
since the right-hand side of Eq. (31b) is naliis conserved  are independent quantities. The variance is conserved while
along the curve. This second point of view is referred to asit js transported by the wind. The diffusion is not only trans-
the Lagrangian description for the transport. ported, but it is also modi ed by the source ter@@u/eP
Two discretization methods are interesting to study forwhich results from the deformation of correlations by the
the transport equation: the nite-difference approach and theyradient of the owu: the diffusion tensor is not conserved
semi-Lagrangian method resulting from the Lagrangian in-by the ow.
terpretation of Eq. (30). Hence, in this subsection, the predicability-error covari-
The aim of this section is to detail the model-error covari- gnce for the nature (Eqg. 16) has been computed for the linear
ance matrix for both schemes. This theoretical part is Orgatransport (Eq 30) and Corresponds to the time integration of

nized as follows. The error covariance parametric dynam-+he uncoupled system of Eq. (36) starting from prescribed
ics for the nature is rst described considering the covari- gnalysis-error variance and diffusion tensor elds.

ance model based on the diffusion equation; then both nite- The nite-difference scheme is now considered as a rst
difference and semi-Lagrangian schemes are introduced withumerical integration method for Eq. (30), with the deriva-

their particular parametric dynamics. tion of the predictability-error covariance matrix.
3.1 PKF dynamics for the linear advection equation 3.2 Finite-difference scheme and its equivalent PKF
dynamics

To describe the time evolution of the predictability-error co-
variance matrix, Eq. (16), it is necessary to detail what iswhen the velocity eldu is positive (which is assumed from
the TL dynamics for the linear transport, Eqg. (30). Since thisnow without loss of generality), a conditionally stable dis-

transport dynamics is linear, the error evolves according tocretization scheme is given by the Euler-upwind scheme:
the same dynamics, and the TL dynamics can be written as
I R R

@PCu@PD 0: 32 D u-——= (37)
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Stability is assured as long as the Courant—Friedrichs—Lewydispersive processes (associated with derivatives of odd or-
(CFL) condition t < x= Maxjuj is satis ed. Moreover, the der).

X . . . . .
scheme is consistent since in the limit of smalland t, _From the PKF point of view, the modi ed equation is cru-
the dynamics (Eq. 30) is recovered from the discrete equaSial since it converts a discrete dynamics into a partial d_|f-
tion (Eq. 37). Thanks to the consistency and the stability, theferential equation, which appeared from P16 and P18, which
equivalence theorem of Lax and Richtmyer (1956) assures & much simpler to handle when considering error covariance
the convergence of Eq. (37) toward the true solution. Equadynamics. Thanks to the modi ed equation (Eg. 38), itis now
tion (37) stands as an illustration of model dynamics (Eq. 3)_pOSSIb|e to compute j[he TL evolutlon' of the predictability er-

While the numerical solution computed with the aid of a for for the Euler-upwind scheme, which can be expressed as
given numerical scheme can converge toward th_e true SO|U@-p CU@'PD @up: (39)
tionast! Oandx! O0,whent and x are of nite am-
plitude, the numerical solution often differs from the theo- Equations of the PKF forecast can be computed under a
retical one. Actually, there exists another partial differential similar derivation as in Sect. 3.1. To simplify the computa-
equation which offers a better t to the numerical solution tion work ow, a splitting method has been introduced in P16
and highlights the properties of the numerical scheme (Hirt,and P18. Due to the diffusion process appearing in Eq. (39),
1968): the consistency, the stability as well as the dissipativéhe PKF formulation faces a closure issue for which a closure
and dispersive nature of the numerical scheme can be descheme has been successfully proposed in P18: the Gaussian
duced from the so-called “modi ed equation” (Warming and closure. The interested reader is referred to P18 for the de-
Hyett, 1974). Hence, while it is supposed to solve Eq. (30),tails. Note that an alternative to the Gaussian closure can be
the numerical solution computed from Eq. (37) is actually deduced from the data through machine learning (Pannek-
the solution of the modi ed equation. oucke and Fablet, 2020). Hence, the resulting dynamics for

More precisely, ifC denotes a smooth function solution of the parameter of the predictability-error covariance model is
the iterations (Eq. 37) witle.q t;i x/ D Ciq, then the mod-  given by
i ed equation is the partial differential equation veri ed by ) 02
C and at a given order of precision it gnd ;( Here, it is @/PCU@VPD Ve C @vP .@VP/ (40a)
straightforward to show that at ordéx. t <; x </, the partial p 2VP

differential equation best tted by is given by (see Ap- p PD 2 p PC o
pendix C) @PCU@ PD.2@U/ PC @ PC

2.@ PI? 2@VP
@ CU@CD @cC; (38a) —— ctea’ ;- ¢
where 2
@VP 2@VP 2.@VP/
t t =" p =" p o=FT P

UDu —@C-u@u @8 v & ve @ C—Vm & (40D)
and Compared with the PKF dynamics of the nature (Eq. 36),

u the PKF for the Euler-upwind scheme gives rise to additional

D-.x ut/ (38c)  terms which result from the numerical diffusion of magni-

2 tude . Moreover, this time, the PKF for the Euler-upwind

are two functions of andx. scheme presents a coupling between the variance and the

Compared with the nature (Eq. 30), the modi ed equation diffusion, the coupling being a consequence of the numer-
that best ts the Euler-upwind numerical scheme (Eq. 37)ical diffusion only. Note that a coupling between the vari-
presents a correction of the wind which depends on the tren@nce and the correlation scale also appeared in Eqgs. (4.30a)
@u and the self advection@u of the windu. The mag-  and (4.34) of Cohn (1993) but without a link to the discretiza-
nitude of the correction scales dsand is null at the limit  tion scheme.

t ! 0. But this is not the only modi cation of the dynam- The model-error covariance matrix, Eq. (27), associated
ics, as a more critical difference emerges from the numericalvith the Euler-upwind scheme can be deduced from the
discretization: a diffusion term whose magnitude depends orpredictability-error covariance matrix approximations: start-
the CFL numbem t= x . In particular, the diffusion coef- ing from the initial analysis-error variance and diffusion
cient is negative when the CFL number is larger than 1. eld, integration of the parametric-error covariance equa-
The diffusion breaks the conservation property of the initial tions of the nature (Eqg. 36) and of the numerical discretiza-
dynamics (Eq. 30). This example shows the importance oftion (Eg. 40) provides the predictability-error variand®$

the modi ed equation: this provides a way to understand andandVP, and the diffusiomP and P, which are used to com-
characterize the defects due to the numerical resolution. Irpute the model-error covariance parameter (Eq. 29).

one dimension, for the evolution equation, this can be diffu- As another example, the model-error parameters for the
sive processes (associated with derivatives of even order) asemi-Lagrangian scheme are now discussed.
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3.3 Semi-Lagrangian scheme and its equivalent PKF tails) which is stated as follows:
dynamics o 0
< g d AR _
The modi ed equation technique has been previously consid- ~ ,c{ D ui q for ui >0
ered for semi-Lagrangian (SL) schemes. For instance, Mc- 4 —-D u-S—; forui<0
Calpin (1988) has shown for the case of constant advection
velocity that a linear interpolation leads to an effective Lapla-which gives rise to the Euler-upwind/downwind schemes.
cian dissipation, while the quadratic and cubic interpolationsThen, following the same derivation as previously presented
lead to a biharmonic dissipation. in Sect. 3.2, the modi ed equation resulting from the scheme
Because we want to focus on the method to addres§EQ. 42) is given as the PDE veri ed by a smooth solut®n
the issue of the model error, and since uncertainty predicof Eq. (42). From the derivation detailed in Appendix D, the
tion of diffusive dynamics has been detailed by P18, wemodi ed equation is
limit the presentation to the linear interpolation in the semi-
Lagrangian scheme, and we present the modi ed equation o @ CU@C D 5-@C; (43a)
Eq. (30) for the study of its model error.
The Lagrangian perspective (Egs. 31 to 30) suggests tavhere
build curves along whicle is constant. While simple, the t t
drawback of this analytico-geometric method is the possi-U D u E@JC EU@U (43b)
ble occurrence of curve trajectory collapses which prevent
us from describing the time evolution ofthroughout the  and
geographical domain. It is possible to take advantage of the o
g_eorrjetrical resolution whi_le avoidiqg the collapse by con- sLp lﬂ_ X joujt/ (43c)
sidering the so-called semi-Lagrangian procedure. 2
In the Lagrangian way of thinking, starting from a given
positionx,, the question is where the mobile point lies along
the time axis, which evolves the computation grid forward in
time. The semi-Lagrangian perspective reverses this questio
by _a_sking from whic.h pos?tiowo originates the mpbile poin't also given by Eq. (40), replacing by its SL counterpart
arriving atxo at a given t|me: Henpe, the sem|-Lagranglqn value St
2fehpesmoef lﬁaewiﬁtsetgreat?g?v?/;tizﬂ%Tt%rédtﬁg(:stzgre:i;\:/irl\tze UME Note that the derivation leading to the Euler-upwind and
More precisely for the particular dynamics of Eq. (30) by} as_EuIer—downwind schemes is due to the choice of the lin-
' ' ear interpolation. The bridge between the SL and the Euler-

e o e o2 PO 0. upuindldounvind procedures s o  rovly. The derva
' . tion has been carried out since it offers an insight into how to
as build a modi ed equation for the SL scheme and also for the
self-consistency of the presentation. In the general situation,
the modi ed equation for the SL scheme is hard to obtain, if
at all possible, and it is not the idea to claim the procedure
as universal. But it provides a new insight into the model-
error covariance matrix for the SL scheme, which is one of

(42)

are both functions of andx.

Hence, since this corresponds mainly to the modied
equation (Eq. 38) encountered for the Euler-upwind scheme
UEq. 37), the parametric predictability-error covariance is

ctC t;xi/ Dc.t;x;/; (41)

wherex; is the origin of the trajectory at timtewhich arrives
atx; attimet C t. Since the point of origir; is unlikely to
be a point of the computational grid (except for very partic-

ular situations), the valuet;x. / is computed as an interpo- theTrr]naln goals O.f the present (r:]ontrlbuthn. | .
lation of the known values af at timet. e next section presents the numerical experiments car-

In its present form, the semi-Lagrangian procedure is not'ied out to assess the ability of the PKF to characterize the

suited to the PKF method since it does not give rise any par_model-error covariance matrix.

tial differential equation which lies at the core of the para-

metric approximation for covariance dynamics. To proceed 4 Numerical validation

further and to obtain PDESs, additional assumptions are intro-

duced to translate the semi-Lagrangian procedure (Eq. 411.1 Setting and illustration

into a discrete scheme from which the modi ed equation is

deduced. _ o _ In this experimental test bed, the domain is assumed to be
In the case where the discretization satis es the CFLine one-dimensional segmemt D/ with periodic boundary

condition t < x= Maxju.x/j and for linear interpolation, it conditions, whereD D 1. The domain is discretized into a

is straightforward to write the semi-Lagrangian procedureregular grid ofn D 241 pointsx; D i x for i 2 T0; 240Uand

(Eq. 41) into a discrete scheme (see Appendix D for the de-x D D=n  4:110 3.
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(a) Wind velodity for nature and model
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Model-error covariances due to the discretization scheme
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Figure 2. (a)Wind eld speci ed for the nature dynamics and the one seen in the discretized model from Eq. (38b)dpaeptesents the
numerical diffusion coef cient due to the discretization equation (Eq. 38c), normalized By x 2= t.

(a) Nature

10} Buler-upwind scheme

02 0.4 0%

x|D

x|D

Figure 3. Nature(a) and numerical modé€b) runs for times front D 0 tot D T and represented eachlU.

The wind eld u for one-dimensional transport (Eq. 30) is while the

set as the stationary eld

0:6 2
u.x/DO:4C7 1Ccos H'X D=4/ ; (44)

initial analysis-error covariance matrix is

set as the homogeneous Gaussian covariance matrix
d.><;y/2
PlooX;y/ De 2§ with 1,D0:05D 12x, where

d.x;y/ D Ej sing.x ylj is the chordal distance between

the two geographical positionsandy (Pannekoucke et al.,

shown in Fig. 2a, which appears as a jet with the entrance18a, see Eq. 3). The analysis-error standard deviation is

(exit) atx D 0:75D (x D 0:25D): the ow accelerates (de-
celerates) untik D 0:25D (x D 0:75D). For the latter, the

lead time isT D 2:0.

set to the homogeneous value o1
For numerical validation, since no simple analytical solu-
tion of the partial differential equation (Eqg. 30) exists, this

In order to verify the CFL condition, the time step for the dynamics is integrated considering a fourth-order Runge—

numerical simulation is set ta@ D 0:002, leading to a CFL

Kutta time scheme applied on the nite-difference discretiza-

value of Q48 < 1. The magnitude of the numerical diffusion tjon:

, EQ. (38c¢), associated with this setting is shown in Fig.
normalized by the diffusion coef ciente D x 2=t.
For the numerical experiment, the initial state éois set
to
2
c.0;x/ D exp D=2/ ;

X (45)

1
2.0150/2°" 2

Nonlin. Processes Geophys., 28, 1-22, 2021

2b,
Gci1 G 1,

@c; D U|T, (46)

where the spatial derivative is approximated by a centred
second-order scheme. This constitutes the high-order dis-
cretization® of the natureN , as introduced in Sect. 2.8
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is assumed to better reproduce the natlréhan the model puted as S;k D .P{DO/F2 k with ¢ a sample of the Gaussian
M. random vector of zero mean and covariance matrix of the
Figure 3 shows the trajectory computed from the natureidentity matrixI. Thbs large size limits the sampling noise to
approximated byb and the numerical modéll . Since the  arelative errorof £ Ng  1:25%.
transport equation conserves the value of the glthe ex- Because the dynamics are linear, the TL nature and model
tremal values o€ do not change along the integration and the are independent of any analysis state, and the ensemble is
wind u > 0 causes the initial structure to move to the right. computed from the forecasts by the high-order discretization
While the eld is conserved, it is also deformed by the wind. of the naturd? and the modeWl of the ensemble of analysis
For the particular choice of the initial condition made here, errors." O;k/'
the signal is of larger (smaller) scale in the regko? TO; 0:5U
(x 2T0:5; 14 than its initial shape. Figure 3a shows that the 4.2.1 Validation of the PKF for the nature
nature approximatiorrh is able to reproduce the conserva-
tion of ¢ as well as the stretching of the signal along the time The predictability-error covariance dynamics for the nature
axis. Hence, the nature approximatiﬂnis good enough to is rst considered. Since the variance of the nature (Eq. 36a)
capture the main features of the nature dynamics, which justiis conserved, it results that, with the choice of an initial ho-
es the use of this approximation in place of the true dynam- mogeneous variance, the trend is null and the variance eld
ics in the following. In contrast, the mod®l fails to main-  is the stationary homogeneous eld@}. This theoretical re-
tain the magnitudes of the extrema (Fig. 3b), in accordancesult is well reproduced in Fig. 4a from the PKF integration,
with the modi ed equation (Eq. 38a) of the Euler-upwind while the ensemble estimation (Fig. 4c) also shows this as
scheme (Eqg. 37) which presents a non-physical diffusion prostationary but within the sampling noise. The length scale
cess resulting from the numerical discretization. Note that(Fig. 5a) shows a periodic evolution where, starting from the
the coef cient of the numerical diffusion is heterogeneous homogeneous eld of valuk, the length scale rstincreases
over the domain with a typical value of thereabolit @ (see  (decreases) in the entrance (exit) of the jet; then these evolu-
Fig. 2b). This heterogeneity is due to the scale variation oftions are attenuated and then compensated with the transport.
the signal, stretched by the wind shear: when the signal iSThen ensemble estimation (Fig. 5¢) presents the same vari-
of smaller (larger) scale to its initial shape, the second-ordeitions (again to within the sampling noise), which validates
derivative is larger (smaller), which leads to an intensi ca- the PKF dynamics for the nature. As a consequence, the PKF
tion (reduction) in the numerical diffusion term in Eq. (38a). dynamics (Eq. 36) can be used to understand the dynamics
Having validated the two numerical moddls andM | it of the uncertainty. In particular, the length-scale eldtd@
is now possible to look at the covariance dynamics and how0:1T is well explained by the source/sink term@u/eP in
the model-error covariance error can be estimated from thé=q. (36b) whose magnitude, which lies betweem004 and

PKF prediction. 0:004, implies a rapid emergence of a heterogeneity leading
to large (small) length scales far2 T0; 0:25D U[T0:75D;D U
4.2 Assessment of the PKF in predicting the (for x 2 T0:25D; 0:75D U, where@u > 0 (@Qu < 0); and by
predictability-error covariance dynamics of the the transport termu@eP that shifts the elds to the right.
nature and of the numerical model Note that, by introducing the spatialaverage operator de-

ned for any functionf by H i.t/ D % f.t;x/ dx as rep-
The PKF predictability-error covariance matrix dynamics for resented in Fig. 6, the averaged length s¢BRi.t/ ranges
the transport equation (Eq. 30) is given by the system ofwithin TL2 x; 17:5 x U(see Fig. 6b), while th&@Pi.t/ is a
Eq. (36). The PKF predictability-error covariance matrix dy- constant 1 (see Fig. 6b).
namics resulting from the Euler-upwind integration (Eq. 37)
is given by Eq. (40). Both systems are numerically integrated4.2.2  Validation of the PKF for the numerical model
by considering, respectively, an explicit RK4 time scheme for
the nature and an Euler time scheme for the Euler-upwindThe predictability-error covariance dynamics for the numeri-
scheme. The time step used for the integrationh B 0:002. cal model is now discussed. For the Euler-upwind scheme,
The predictability-error variance elds are shown in Fig. 4. the numerical diffusion resulting from the spatiotemporal
The predictability-error correlation length-scale elds, de- discretization in Eq. (38a) implies a damping of the vari-
ed from the one—dirﬂen_sional diffusion elds bgPD ance along the time axis (see Fig. 4b). The attenuation of the
2P (nature)and.? D ° 2 P (numerical model), are shown uncertainty governed by Eq. (40) leads to a heterogeneous
in Fig. 5. The variance and the length scale are shown for thelamping over the domain and appears much stronger in the
PKF and an ensemble estimation, the latter being only commiddle of the domainX D 0:5) than near the boundaries
puted for the validation of the PKF (the ensembles are not(x D 0 andx D 1) while transported by the ow. The length
needed nor used for the computation of the PKF systems). scale (Fig. 5b) increases by the diffusion, while the shear pro-
To do so, an ensemble dfc D 6400 analysis errors has duces similar patterns as for the forecast-error statistics. The
been generated; 3;k/k211;NeU where each member is com- ensemble estimation in Fig. 4d and Fig. 5d shows the same
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{2) Variance for Nature (from PKF) 12 () Variance for Buler-upwind (from PKF)

12
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Figure 4. Predictability-error variance eld®P.t;x/, for the nature (Eq. 30), computed from the PKF (Eq. @§)and predictability-error
variance eld,VP.t;x/, for the numerical model resulting from the nite-difference and Euler discretization equation (Eq. 37), computed
from the PKF (Eg. 40§b). Panelqc) and(d) are the ensemble estimation for pan@lsand(b), where the nature dynamics is approximated

by Eq. (46) dynamics in panét) (6400 members are used here). Fields are represented for timesfré@tot D T and represented each
0:1T.

signal as the PKF prediction (within the sampling noise) damping of the variance; it is also responsible of the hetero-
which validates the system of Eq. (40). As for the nature,geneity at the prime instants: with the length sdafebe-

it appears that the PKF dynamics for the numerical model,ing heterogeneous, the damping will be more (less) intense
Eqg. (40), explains the dynamics of the uncertainty. In par-in the areas of small (large) length scales (compare Fig. 4b
ticular, again, the length-scale eld &b 0:1T is well ex-  with Fig. 5b fort D 0:1T). In terms of spatial average, with
plained by the source/sink strain tern@u/eP in Eq. (40b)  the assumption that the variations around each averaged eld
and by the transport term@eP, but this time, compared with are small so that for any eldé andg the approximation

Eq. (36b), the source term 2n Eq. (40b) implies anincrease Hgi h f ihgi applies, the spatial average of the dynamics
of the length scal& P. Note that the in uence of the remain- (Eq. 40) is written as

ing terms in Eq. (40b) can be neglected at the prime instants

of the dynamics: this is becausetdd 0, VP and P are con- o hi oo
stant elds (YP.t DO/ D 1and P.t D 0/ D 12=2). Compared @v'ib WW : (472)
with the nature, the behaviour of the predictability-error vari- @hPiD 2hi: (47Db)

ance of the numerical model presents some source/sink terms

(right-hand side of Eq. 40a) that explain the emergence of,qre the property that for any functibnand integek > 0,
a heterogeneity of the variance eld. In particular, with the h@f iD 0, has been used to eliminate all the other terms.
term VP being strictly negative, it is responsible of the gq,ation (47) can be solved analytically, and its solutions
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(@) Length-Scale for Nature (from PKF) w0 (o) Length-Scale for Buler-upwind (from PKEF)

02 Q.4 0.6 02 Q4 0.6

xID ' " XID

nd {from ensermbley < \C) Length-Scale for Nature (from ensembie)

Q2 Q.4 Q%
X|D

Figure 5. The length-scale counterpart of Fig. 4 representing the predictability-error length-scal€ Fefdature) ancll.pp (numerical model)

in panels(a, ¢) (in panelsb—d). The length scales are diagnosed from the diffusion coef cients from the formbla 2 and normalized

by the grid spacingx . Panelga) and(b) are computed from the PKF, while) and(d) are estimated from the same large ensemble of
forecasts as considered in Fig. 4. Fields are represented for time$ Bdiriot D T and represented eactT.

are written as the predicability-error covariance dynamics of the nature
h P of 1=2 (Eq. 30) and of the numerical model, which corresponds to
WPit/ DhVPi.O/ —————— (48a) the discretization of the true dynamics given by Eq. (37).
hPiLO/C 2h it These results are now considered to provide an estimation
hPi.t/ DhPi.0/C2h it: (48b)  of the model-error covariances.

The analytical solution (Eq. 48) successfully reproduces the4 Model i ; he PKF predict
time evolution of the statistics in the present experiment. -3 odel-error covariance from the prediction

For the length scale, Eq. () reproduces the increase (see

Fig. 6b), with an underestimation because this solution doed oM the previous section, the Euler-upwind discretization

not account for the oscillation due to the strain term that hasOf t_he advecti(;]r? E]qu'_r 30) Iehadz to a _heterfogheneous o!issli-
been neglected in the dynamics (Eq. 47). For the variance‘,)z"t've term, which affects the dynamics of the numerica

Eq. (48a) explains a linear decrease at the prime instant, fol_[nOdeI uncertamty by damping the variance ‘_Nh'le Increas-
lowed by an attenuation in 22 (see Fig. 6a). ing the correlation length scale. When the bias due to the

model error is lower than the predictability-error variance
4.2.3 Intermediate result of the nature and the numerical model is dissipative, then

the modelling (Eq. 21) of the model-error covariance ma-
As a conclusion of this section, the PKF appears abletrix can be introduced, which is a ow-dependent modelling
to predict the variance and the length-scale features obf the model-error covariance plus a climatological resid-
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(a) Spatial averaged variance (b) Spatial averaged length-scale
1.01 —— (L) (pkf data)
x (LP) (pkf data)
B 5| — (LA (pkfanalytic)
0.8 (] ——=- (L™) (pkf data)
-g === (L™) (pkf analytic)
=
c
Y o6 > 20
c @©
.o E— €
fu PRty )
© L2l 9
0.4 22>
> L 3 154
e = ¢
Roctas —— (VP) (pkf data) -~
0.2 P (VP) (pkf data) s |
-~ —— (VP) (pkf analytic) < 7 S -
- pkf analytic d 104 - ~ e P
R ——= (V™) (pkf data) - L Cemm—oTEEEEIIo—e-
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Figure 6. Time evolution of the spatial average over the domain of the predictability-error vaif@naed length scaléb), computed from

the PKF for the nature (blue) and the numerical model (orange). The analytical PKF approximation (Eq. 48) for the numerical model is in
green. The model-error variance (Eq. 29a) and length scale (Eq. 49) are also represented (in dashed lines) for the spatial averaged of the PK
results shown in Fig. 7a and b (red), and the analytical approximation (purple).

ual. This is the situation encountered in the present numerwhich relates the increase of the model-error variance to
ical setting: the predictability-error variance of the nature isthe numerical diffusion. Note that the numerical diffusion
1, which is larger than the bias (that is at mos2 When is not the only process that induces a model error; e.g. the
comparing the nature and the numerical model evolution inphase shift due to the correction of the numerical veloc-
Fig. 3), while the predictability-error variance of the numeri- ity %u@u in Eqg. (38b) is also a source term, while it has
cal model rapidly fails with, at its worst, a reduction of 60% been removed from by the averaging here. Hence, Eq. (50)
of the predictability-error variance of the nature (see the re-provides the order of magnitude of the model-error vari-
duction atx D 0:6D when comparing Fig. 4a and b). It re- ance at time D 0:1T: when considering the initial condi-
sults that the ow-dependent modelling (Eqg. 21) may apply tions P.t D 0/ D Iﬁ:2 andVP.t D 0/ D 1, and the order of
here. magnitude of the diffusion coefcierth i 0:1x2=t (see

In order to focus on the ow-dependent part of Eq. (21), Fig. 2b), the typical value of the model-error variance com-
the approximation (Eq. 27) is considered. Hé?®,is com-  puted from Eq. (50) iV ™i.0:1T/ 0:12. This is in accor-
puted from the parametric approach discussed in Sect. 2.4Jance with the typical values observed in Fig. 7a for that
with the parameters of Eq. (29), where the predictability- time. Note that the heterogeneity of the model-error variance
error covariance statistics are computed from Eg. (36) foreld is due to the heterogeneity of the diffusion eld® as
the nature and Eq. (40) for the numerical model. Note thatdiscussed previously in Sect. 4.2.2.
in this 1-D domain situation, Eq. (29b) is equivalent to the Then, the model-error variance continues to grow, with a

computation of the local correlation length scales by peak of uncertainty that evolves with the ow. In this numeri-
s cal experiment, with the magnitude of tR& being constant
LMt-x/ D vm ) (49) and equal to 1, the magnitude of the model-error variance
o 9pP=€p/2 \P=LP/2 V™D ¥P VP, shown in Fig. 6a, evolves from Eq. (48a) as

I
The ow-dependent model-error covariance parameters are. m 12 2
shown in Fig. 7, with the variance in panel (a) and the length 1 12C 4h it
scale in panel (b). h
At the initial time, as there is no model error, the model- when using the initial valuek Pi.0/ D %”% andhvPi.o/ D

error variance is zero. But then, the model-erro’r) variance1:0. Note that Eq. (51) asymptotically behaves as 1
should increase linearly because the sink tegi/P that 1t 1= 12 o . :

is the only non-zero right-hand-side term in Egs. (36a) and\?vh_ich is i’nV\;hcir:r dgn?;_h('; wit%].?;elssitrzilzt’:}g}wms?r?%d? /t|me,
(40a) (see also the spatially averaged dynamics; Eq. 47a) is 8’5 at the end of the simulation '
source of model-error variance at the initial time, so that for ™ )

smallt, the order of magnitude &f™ is given by

(51)

The model-error length scale, given by Eq. (49), is more
dif cult to interpret (Fig. 7b) because of the oscillation due
to the periodic domain. However, the evolution of the spatial

. hi .
Wit hvPi.0r; (50) average of the length-scale elds (dashed red line in Fig. 6b)

h Pi.O/
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Figure 7. Flow-dependent model-error covariance, modelled from Eq. (2R3 5 M C Q, and computed from the PKF for the nature and
the Euler-upwind scheme. The variar{e@ and the length scale (normalized by)db) are represented for times franD 0:1T totD T at
each 01T (for t D 0, the model error is null). Comparison with the ensemble estimation of the vali@rmed the length scalg) of PM2
(Eq. 53).

shows an increase of the averaged length scale with the timeyguld have begn replaced by the covariance mafikD

which is in accordance with the order of magnitude for theg = 3181-" gwgl/T given by (see Eq. A5 in Appendix A)

model-error length scale (Eq. 49) computed from the analyt-

ical approximations (Egs. 48 and 51), wtiiPi.t/ D 1 and ma " AT amt T

FePi.t/ Iy (dashed purple line in Fig. 6b). PaciD5gciC MPGD' C MP:D ; (53)
Note that the model-error length scale is much smaller,

but not null, which will balance the large length scale of WithDD M N. In practice ™ can be estimated from the

the predictability-error covariance matr®. Hence, as ex- ensemble of 6400 error$'§ D R"3, M"3, where"3,

pected, the model error modelled by Eq. (21) is a heterogeis one of the analysis errors detailed in Sect. 4.2 and wikiere

neous covariance that depends on the state and the time: it is the TL dynamics associated with the high-order numerical

ow dependent. approximationlb of N . Because in the present experiment
It is interesting to compark gr, with the covariance of  the dynamics of the nature and of the model are lirfetet.is

the unbiased errdrg@, D .N M/"§ that appearsinthe de- ¢ompyted here d™2D R."8,/ M ."2,/. The estimated

composition of the forecast error (see Eq. A3 in Appendix A) yariance and length-scale elds 8" are shown in Fig. 7c

" np nma o ay. and d. Compared with the PKF modelling (Fig. 7a and b), the

ac1D "qc1C"ac1C "ac1-Xal: (52) time evolution shows a similar behaviour, but the variance of

Indeed, if the errors on the right-hand side of Eq. (52) wereP™2is smaller, as well as its length scale. In this simulation,

decorrelated (which they are not), thérﬁ‘Cl in Eq. (17)  the contribution of the terms i@, Eq. (53), is to reduce the
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variance with a maximum of:@ at the end of the simulation. Hence, the use of the PKF is important because Eq. (21)
However, the minimum of variance of the predictability error needs to estimate not only the predictability-error covariance
is also nearly 8. Thus, ifP™® was considered in place of matrix of the numerical model but also the one of the na-
5™ then a residual variance of orde20vould be needed ture. If an ensemble estimation of the latter matrix is possi-
(e.g. inQ) so to obtain a magnitude of forecast error similar ble in the research, e.g. by computing an ensemble of high-
to the predictability of the nature. resolution forecast witl in place of the naturd\ , it is too
Hence, the present numerical experiment illustrated ancostly for real-time applications. It results that it is dif cult
characterized the ow-dependent part of the model-error co-to use Eq. (21) in an ensemble method. Compared with an
varianceP™, modelled by Eq. (21), in the situation where the ensemble method, the PKF remains to compute the evolu-
model error is related to the discretization of the advectiontion of a reduced set of covariance parameters by computing
by a heterogeneous wind, leading to a numerical model thaequations similar to the one encountered in geosciences. For
is more diffusive than the nature. In this experiment, a linearthe passive tracer in 1-D, the PKF dynamics consists in three
increase in time, followed by a saturationtin has been equations: for the transport of the concentration, the dynam-
found for the order of magnitude of the model-error variance.ics of the variance and the dynamics of the local anisotropy
The residual climatological covarianeg@in Eq. (21), hasyet (here a diffusion coef cient related to the correlation length
to be estimated (not considered here). scale). So, the numerical cost of the PKF (three equations)
for the tracer (one equation) is about 3 times the computa-
tion of a single forecast compared to the dozens of members
often used in ensemble methods (from which the statistics
5 Discussion are corrupted by the sampling noise).
For the dynamics of a tracer, the PKF applies in 1-D
Before concluding, we end this work by addressing someas well as in 2-D and 3-D domains, where the number of
general points about the ow-dependent model which hasequations are this time of ve in 2-D and eight in 3-D (the
been introduced here. additional equations are for the components of the local
The originality of the present contribution is two-fold. anisotropic tensor). However, in general, the use of the PKF
First, we have formulated a theoretical background corre-s limited by the knowledge of the parameter dynamics. The
sponding to the model-error covariance matrix and intro-formalism of the PKF is adapted for dynamics given by par-
duced a modelling for its ow-dependent part, Eq. (21). This tial differential equations, as for the advection of a tracer, but
provides a theoretical framework to the correction of the pre-the design of a multivariate PKF formulation is needed to ad-
dictability error introduced in M2000s. Then, we have pro- dress multivariate dynamics. Note that for the model error as
vided theoretical and quantitative results about the diffusivepresented here, the knowledge of the modi ed equation is a
effect due to the discretization that can lead to a loss of variprerequisite that can be dif cult to determine in general.
ance as observed in M2000s: this has been done by combin- While the PKF is designed from the TL approximation,
ing the formalism of the PKF and the modi ed equation. The it is a second-order Gaussian lter that is a particular imple-
interest for this modelling of the model-error covariance is mentation of non-linear Kalman-like Iters (Cohn, 1993): for
supported by the results of M2000s, who have observed amon-linear dynamics, the PKF equation of the mean state de-
improvement of the quality of the analysis in their data as-pends on the second-order moments. However, for long-term
similation system of stratospheric observations. predictions, or when the magnitude of the error is too large,
The ow-dependent component of the model-error covari- the PKF would fail to provide an accurate estimation of the
ance introduced here can be computed in practice, becausedbvariance matrices.
relies on (1) the analysis uncertainty as characterized by the
analysis state and its error covariance that can be estimated in
data assimilation; and (2) the time evolution of the analysis-6 Conclusions
error covariance by the nature and by the numerical model
that can be computed from an ensemble method or from thén this contribution, the part of the model-error covariance
PKF approach. due to the spatiotemporal discretization scheme is explored
Note that, if the difference between a low- and a high- by considering the parametric approximation for the Kalman
resolution forecast is often used to compute the model-errorlter (PKF). The PKF approach applies for a system whose
at a given time, this does not tell anything about the model-dynamics is given by a set of PDEs. In the PKF formulation,
error covariances at that time. At most, the model errors col-covariances are approximated by covariance models char-
lected for a large number of dates, and for the same foreacterized by a set of covariance parameters, whose dynam-
cast time, can be used to compute the climatological biascs is deduced from the PDEs of the system, supplemented
and the climatological model-error covariance. To captureby an appropriate closure if necessary. We focused on the
the error of the day following Eq. (21), the computation of class of covariance model distinguished by the variance eld
the predictability-error covariance matrices is needed. and the local anisotropic tensors (VLATcov). Therefore, for
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VLATcov matrices, the covariance dynamics is given by the dissipative than the nature, the model-error variance provided
dynamics of the variance and the local anisotropic tensorsby the PKF should be a lower bound of the true model-error
whose dynamics are deduced from the partial differentialvariance, which needs a residual climatological covariance to
equations of the system. account for the bias.

In the case where the numerical model presents a dis- While there is no data assimilation experiment here, this
sipation due to the discretization, or where the numericalcontribution provides a theoretical background on the model-
model is more dissipative than the nature, we introducederror covariance that sheds light on a study previously done
a modelling of the model-error covariance, where its ow- by Ménard et al. (2000) and Ménard and Chang (2000)
dependent part is approximated as the difference between th@12000s), who have observed a loss of variance in the assim-
parametric approximation of the predictability-error covari- ilation of a stratospheric tracer by using a Kalman lter: the
ance matrix of the nature and of the numerical model, plusvariance forecasted was lower than the theoretical variance
a residual climatological covariance matrix. This modelling that is supposed to be conserved for the advection (Cohn,
of the ow-dependent part can be computed in real appli- 1993). Actually, interpreted as an account of the model er-
cations because it relies on quantities that can be estimatedor due to the discretization scheme, the correction made by
the analysis state and its analysis-error covariance matrix (oM2000s is similar to the modelling of the ow-dependent
some of its characteristics). For a dynamics given by a parpart of the model-error covariance matrix we proposed here.
tial differential equation, the parametric predictability-error In particular, M2000s have observed that the Kalman lter,
covariance matrix of the nature is deduced from the evolu-with the corrected predictability-error covariance, required
tion equation, while the predictability-error covariance ma- less residual climatological model error (see Ménard et al.,
trix of the numerical model is computed from the modi ed 2000, Sect. 5) and an improvement of the analysis-error
evolution, i.e. the partial differential equations that best ts statistics (see Ménard et al., 2000, Fig. 11), and thus indi-
the numerical solution. cated that the modelling of the model error, as proposed here,

The ability of the parametric approach to characterize parts in better agreement with optimality of the nature. Hence,
of the model-error covariance dynamics has been illustratedhe bene t of the ow-dependent modelling introduced here
in a numerical test bed in 1-D. We have considered the transappears to be supported by the improvement of the analysis
port of a scalar by a heterogeneous velocity eld. In this observed by M2000s in their experiment.
case, the parametric dynamics of the forecast error shows The methodology introduced here has shown the potential
that the variance is conserved along the ow, while the local of exploring the model-error covariance from the parametric
anisotropic tensor is transported by the ow and deformed bydynamics of error covariance. While the characterization of
the gradient of the velocity. the model-error covariance is a challenge, as in air quality

For this transport dynamics, two numerical schemes havdorecasts (Emili et al., 2016), the parametric approach ap-
been considered: an Euler-upwind scheme and a sempears as a new theoretical tool to tackle this issue. In order
Lagrangian scheme in the case of a linear interpolation. Theo represent the uncertainty of the small scales, it would be
modi ed equations of both schemes make an additional hetinteresting to combine the parametric approach with other
erogeneous dissipation and a perturbation of the velocity apprew methods, e.g. the modelling under location uncertainty
pear, whose characteristics depend on the spatiotemporal digResseguier et al., 2017).
cretization (d, dx), the trend and the shear of the ow. Be-  However, the parametric dynamics faces closure issues
cause of the numerical diffusion, the variance of the pre-that have to be addressed depending on applications. Here,
dictability error is not conserved and a coupling with the the investigation of diffusive model errors has been made
anisotropy appears. This effect has been noted as well in 3possible thanks to the Gaussian closure of P18. For other
D global transport models (Ménard et al., 2020) where thekind of numerical errors, an appropriate closure will have to
loss of error variance is stronger for short correlation lengthbe speci ed, either from theoretical closures or from the data
scales. as suggested by the data-driven and physics-informed identi-

An ensemble of forecasts has been introduced, taken agation of uncertainty dynamics of Pannekoucke and Fablet
the reference, to compare the true covariance evolution witi{2020).
the parametric approximation. The numerical experiment
shows the ability of the parametric dynamics to reproduce
the predictability-error covariance dynamics. Then, the mod-
elling of the ow-dependent part of the model-error covari-
ance matrix has been computed and discussed. In particular,
we discussed the growth of the model-error variance from
the understanding of the PKF dynamics, showing a linear in-
crease in time followed by a saturationtin=2.

With the ow-dependent formulation being introduced for
modelling the situation where the numerical model is more
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Appendix A: Expressions for the forecast error whereN is the propagator of the TL nature along the analysis

state trajectory (see Sect. 2.1 for details). Then, the forecast
The aim of this section is to provide the demonstrations oferror (Eq. A2) expands as

some decompositions of the forecast error: the usual expres-
i i imilati i wp n " .
sion as encountered in dgta assmﬂa‘uon, an expression wh(_eréqCl D"4c1C ac1C "qea-Xgh (A3)
the model error is considered with respect to the analysis
state and an expression that makes the predictability errowhere" g‘gl is de ned by
appear with respect to the nature.

" g‘gl D.N M/"g: (A4)
Al Expression of the forecast error as usually
encountered in data assimilation Note that" g‘gl ishunbizlased (at least when the analysis error

The forecast error is de ned in Eq. (9) as the difference IS unbiased?{ LeE "8 PO' so that the covariance matrix
wf t

act DM ger t9-X§/ Xgey- Thanks to Eq. (4), the true g PMa DE "M Ma /T \which expands as
state at timeigc1 can be replaced so that q -1
" a t n ty. T

ac1DMtger 19 Xg! Miger t9-Xg/ Caca-Xqli (AD) PIGiDNPENTCMPEMT  NPGMT C NPMT
which makes the model error appear, dened by

Eq. (5) as"fciDMuge; tq Nigey tg- However, with  Replacing the TL mode¥ with ND M D leads to
Mt tg-Xg/ DMy, .X& "§/ which expands for
small analysis error as T T

Y PP D5M,C MP3D' C MPEDT = ; (A5)

Mitger to-Xg/ DMy to-X§ M"§;
T T
(M denotes the propagator of the TL model along the analyVhere5 gc; D NPGNT - MPGM™ (see Eq. 18).

nma . . ™ .
sis state trajectory; see Sect. 2.1 for details), the forecast error AS" g1 contains the predictability error, a nal expression
(Eq. A1) becomes of the forecast error can be obtained as shown now.

"qc1 DM S C ey X/, A3 Expression of the forecast error formulated in

o terms of nature predictability
which is written as

Wt pePon N T A2) Considering the de nition of the prgdictability error (Eq. 12),
qCl ™ gC1™ qCl-"a® the forecast error (Eq. A3) is rewritten as

where" 301 D M"‘a is the predictability error (Eq. 12) with ¢

respect to the model. Equation (A2) is the expression of the 9€

forecast error usually introduced in data assimilation (Daley,

1992, see Eqg. 2.8). Note that in this expression, the modeﬁ] p va

. o e natureg¢ ~, DN g

error is evaluated at the true staté, while it is never known . :

) ) . . : . Note that Eq. (A6) can be obtained directly from the

in practice. It would be interesting to consider an expression

with known quantities, e.g. with the analysis state; this is nowde nition of the forecast error (Eq. 9) as follows. By re-
,e.g. : X . a a
detailed in the next subsection. placing the forecast witm tyc1 tq.Xq/ D Niye, tq.xq/ C

L DN"EC" T X, (A6)

hich makes the predictability error appear with respect to

"g‘CI.Xé"/, the forecast error is rst written aég(:lD
A2 Expression of the forecast error considering the Nitycs tq.xg‘/ Nitgca tq.Xé/C"g“Cl.Xg‘/, where the def-
model error with respect to the analysis state inition of the ”aturexécn D thm tq,xé/ has been used.

Then, rewritingN,c; t;-X§/ D Ngey - X& " al,whose
Taylor expansion iNt,, tq.Xé/ DN, tg-X§/ N"§,

q
leads to the forecast error (Eq. A6).

The forecast error (Eq. A2) can be obtained by rewriting the
model-error term 65m01-X(§/ D "qu.Xg‘ "&/. Hence, the
Taylor expansion o‘qul, with respect tcxg‘ for small error
and lead time, leads to

nm o typnm ya; gem o wea. Appendix B: Approximation of the model-error metric
aclan = acl e acLXg d tensor eld

whered"™ denotes the differential of the model ertdf D ) )
M N (Eg.5)which exists wheM andN are both differ- Here, we consider the particular case where the model-error
entiable, so thad"™D dM  dN . It results that covariance model is approximated as Eq. (27), i.e.

" t nm a na. m m .
mXY DI XA M N P" 5MDEP PP,
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assuming this matrix is a covariance matrix. The local metric t , an expansion at ord€. t/ only requires to express the
tensor can be diagnosed from the Taylor expansion of thesecond-order derivative at the lead order, which is from
model-error correlation function:

@D u@CCO.t; xt/ (C3)
Mx;xC x/ D p !
h PN xIPM.XC Xx.XC x/ Then, from the time derivative, the second-order derivative
PP.x;xC x/ PP.x;xC X/ : (1) °@n be replaced by
Under an assumption of local homogeneity of the variance,@C D @ u@C/CO.t; x/;
PM.x;x/  PMxC x;xC x/,PP.x;xI ®P.xC x;xC x/ D @@C u@CCo.t; x
andPP.x;x/  PP.xC x;xC x/,which leads to the expan-
sion Consequently, the second-order deriva@gc can be de-
duced from spatial derivative of Eqg. (C3) and is written as
M x;xC x/ P Xt 1 L %2
o PM. x; X/ 2l Mg @CD @.u@C/CO.t; x/;
PP.X; 1 -
PP xI Li xijz, - (B2) D @u@C u@CCO.t; x/:
PM.x; x/ 2 %

It results that Eq. (C2) is written as
h i

Sincejj xjj5, D x"gx X, the correlation is expanded as .
@C5 @@cC u @uac u@C D

Mx;xC x/ 1
X
1.7 Py sleP PP/ oy u @ —@c co.t%x?,
> X X PP.x;xlgy PP.x;xlgy X (B3) 2
After identi cation with the expected form of the expansion so that
1 @ CU@CD @CCO.t?% x?, (C4)
mx:xC x/ 1 Ejj xjjérxn; (B4) &
whereUDu +@iC5u@uand D§.x ut/aretwo
it follows that functions oft andx.
1
Do 9Pl VPG (B5) _ . . .
9P.x/ VP.x/ Appendix D: Computation of the modi ed equation for

. . a semi-Lagrangian scheme
where the variance is denoted ®P.x;x/ D ¥P.x/ and grang

PP.X;x/ D VP.x/. The aims of this section are two-fold: the rst goal is to ob-
tain a discrete scheme from the semi-Lagrangian procedure,
and the second goal is to deduce the modi ed equation of the
discrete scheme.

For the sake of simplicity, the linear advection dynamics

The modi ed partial differential equation associated with the @ C u@c D O'is rst considered with a velocity > 0.

numerical scheme (Eq. 37) is the partial differential equa- From the characteristic curve resolution, it follows that
tion of a smooth functior€, solution of the scheme, so that C-tqc1;Xi/ D C.tg;x; /, where the originating poiny; is as-

Appendix C: Computation of the modi ed equation for
the Euler scheme

c.qtiix/ DCY ie. sumed in between pointg 1 andx;, which means that the
' CFL constraintu t < x is veri ed. This originating point
Ciqu Ciq ciq ciq 1 can be approximated ag Dx; u;jt, and if a linear in-
n D ui— —; (C1)  terpolation is considered for the computationcdf; x; /, it
) o follows that
for which the Taylor formula in time and space on the order
2.y 2 X X X X
of 0.t % x“/is Ctgx/D 1 — 21 4 ¢ I 1 0 (D)
. , Xi X 1 Xi Xi 1
C—@CCO0.t4/D uj t uj t
ac 2@ D—c¢,C 1 — ¢ (D2)
X X
X
u @ —@Cco.x? : C2
@ 2 @ (€2) Hence, the numerical scheme is written as
The second-order time derivative can be replaced from the LUt uj t .
equation (Eq. C2) itself, at an appropriate order. Due to the®aCLi D i 1€ 1 G (D3)
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The modi ed differential equation is obtained by replac-
ing ¢ by a smooth functiort) the solution of the numerical
scheme (Eq. D3). The computation of the modi ed equation
is similar to the Euler case detailed in Appendix C, leading
to

@CC u %@JC%U@U @CD

11,
- —-u“t : D4
Sux  su @c (D4)

Whenu < 0, the differential equation is written as

@CC u %@JC%U@U @CD

1 1,
—. —u“t : D
5 u/ X Su @c (D5)

Hence, in the general situation,

@CC u %@JC%U@U @C D

1 1
Ejujx Euzt @c; (D6)

whatever the sign of the velocity.
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