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ARTICLE

Nonlinear sensitivity of glacier mass balance to
future climate change unveiled by deep learning
Jordi Bolibar 1,2,3✉, Antoine Rabatel 1, Isabelle Gouttevin4, Harry Zekollari5,6 & Clovis Galiez7

Glaciers and ice caps are experiencing strong mass losses worldwide, challenging water

availability, hydropower generation, and ecosystems. Here, we perform the first-ever glacier

evolution projections based on deep learning by modelling the 21st century glacier evolution

in the French Alps. By the end of the century, we predict a glacier volume loss between 75

and 88%. Deep learning captures a nonlinear response of glaciers to air temperature and

precipitation, improving the representation of extreme mass balance rates compared to linear

statistical and temperature-index models. Our results confirm an over-sensitivity of

temperature-index models, often used by large-scale studies, to future warming. We argue

that such models can be suitable for steep mountain glaciers. However, glacier projections

under low-emission scenarios and the behaviour of flatter glaciers and ice caps are likely to

be biased by mass balance models with linear sensitivities, introducing long-term biases in

sea-level rise and water resources projections.
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G laciers are experiencing important changes throughout
the world as a consequence of anthropogenic climate
change1. Despite marked differences among regions, the

generalized retreat of glaciers is expected to have major envir-
onmental and social impacts2,3. Water resources provided by
glaciers sustain around 10% of the world’s population living near
mountains and the contiguous plains4, depending on them for
agriculture, hydropower generation5, industry or domestic use.
Several aquatic and terrestrial ecosystems depend on these water
resources as well, which ensure a base runoff during the warmest
or driest months of the year6. Predicting future glacier evolution
is of paramount importance in order to correctly anticipate and
mitigate the resulting environmental and social impacts. During
the last decade, various global glacier evolution models have been
used to provide estimates on the future sea-level contribution
from glaciers7,8. All these glacier models, independently from
their approach, need to resolve the two main processes that
determine glacier evolution: (1) glacier mass balance, as the dif-
ference between the mass gained via accumulation (e.g. snowfall,
avalanches and refreezing) and the mass lost via different pro-
cesses of ablation (e.g. melt and sublimation of ice, firn and snow;
or calving)9; and (2) ice flow dynamics, characterized by the
downward movement of ice due to the effects of gravity in the
form of deformation of ice and basal sliding. Simulating these
processes at a large geographical scale is challenging, with models
requiring several parametrizations and simplifications to operate.
Recent efforts have been made to improve the representation of
ice flow dynamics in these models, replacing empirical para-
metrizations with simplified physical models9,10. Nonetheless, to
represent the glacier mass balance, the vast majority of large-scale
glacier evolution models relies on temperature-index models.
This type of model uses a calibrated linear relationship between
positive degree-days (PDDs) and the melt of ice or snow11. The
main reason for their success comes from their suitability to
large-scale studies with a low density of observations, in some
cases displaying an even better performance than more complex
models12. However, both the climate and glacier systems are
known to react non-linearly, even to pre-processed forcings like
PDDs13, implying that these models can only offer a linearized
approximation of climate-glacier relationships. Deep artificial
neural networks (ANNs) are nonlinear models that offer an
alternative approach to these classic methods. However, the use of
ANNs remains largely unexplored in glaciology for regression
problems, with only a few studies using shallow ANNs for pre-
dicting the ice thickness14 or mass balance13 of a single glacier.

The French Alps, located in the westernmost part of the Eur-
opean Alps, experience some of the strongest glacier retreat in the
world15–17. Long-term historical interactions between French
society and glaciers have developed a dependency of society on
them for water resources, agriculture, tourism18—particularly the
ski business19—and hydropower generation. This rapid glacier
retreat is already having an environmental impact on natural
hazards20, mountain ecosystems21, and biodiversity6. Without
these cold water resources during the hottest months of the year,
many aquatic and terrestrial ecosystems will be impacted due to
changes in runoff, water temperature or habitat humidity6,21,22.
An accurate prediction of future glacier evolution will be crucial
to successfully adapt socioeconomic models and preserve biodi-
versity. Glaciers in the European Alps have been monitored for
several decades, resulting in the longest observational series in the
world23,24. In this study, we investigate the future evolution of
glaciers in the French Alps and their nonlinear response to
multiple climate scenarios. We perform, to the best of our
knowledge, the first-ever deep learning (i.e. deep artificial neural
networks) glacier evolution projections by modelling the regional
evolution of French alpine glaciers through the 21st century. For

this, a newly-developed state-of-the-art modelling framework
based on a deep learning mass balance component and glacier-
specific parametrizations of glacier changes is used. The climatic
forcing comes from high-resolution climate ensemble projections
from 29 combinations of global climate models (GCMs) and
regional climate models (RCMs) adjusted for mountain regions
for three Representative Concentration Pathway (RCP) scenarios:
2.6, 4.5, and 8.525. The 29 RCP-GCM-RCM combinations
available, hereafter named climate members, are representative of
future climate trajectories with different concentration levels of
greenhouse gases (Table S1). With this study, we provide new
predictions of glacier evolution in a highly populated mountain
region, while investigating the role of nonlinearities in the
response of glaciers to multiple future climate forcings.

Results
Glacier evolution through the 21st century. Our projections
show a strong glacier mass loss for all 29 climate members, with
average ice volume losses by the end of the century of 75%, 80%, and
88% compared to 2015 under RCP 2.6 (±9%, n= 3), RCP 4.5
(−17% +11%, n= 13) and RCP 8.5 (−15% +11%, n= 13),
respectively (Fig. 1 and S1). Differences in projected glacier changes
become more pronounced from the second half of the century,
when about half of the initial 2015 ice volume has already been lost
independent of the considered scenario. Annual glacier-wide
mass balance (MB) is estimated to remain stable at around
−1.2m.w.e. a−1 throughout the whole century under RCP 4.5, with
glacier retreat to higher elevations (positive effect on MB) com-
pensating for the warmer climate (negative effect on MB). Con-
versely, for RCP 8.5, annual glacier-wide MB are estimated to
become increasingly negative by the second half of the century, with
average MB almost twice as negative as today’s average values
(Fig. 1a). MB rates only begin to approach equilibrium towards the
end of the century under RCP 2.6, for which glaciers could poten-
tially stabilize with the climate in the first decades of the 22nd
century depending on their response time (Fig. S1a). An analysis of
the climate signal at the glaciers’ mean altitude throughout the
century reveals that air temperature, particularly in summer, is
expected to be the main driver of glacier mass change in the region
(Fig. 1). Interestingly, future warmer temperatures do not affect
annual snowfall rates on glaciers as a result of both higher pre-
cipitation rates in the EURO-CORDEX ensemble (Fig. 1g–i)26 and
glaciers shrinking to higher elevations where precipitation rates are
higher as a result of orographic precipitation enhancement27. The
increase in glacier altitude also causes the solid to liquid precipitation
ratio to remain relatively constant. Therefore, solid precipitation is
projected to remain almost constant at the evolving glaciers’ mean
altitude independently from the future climate scenarios, while air
temperature is projected to drive future glacier-wide mass changes
(Fig. 1d, g). These results are in agreement with the main known
drivers of glacier mass change in the French Alps28. Overall, the
evolving glaciers are expected to undergo rather stable climate
conditions under RCP 4.5, but increasingly higher temperatures and
rainfall under RCP 8.5 (Fig. 1). These differences in the received
climate signal are explained by the retreat of glaciers to higher
altitudes, which keep up with the warming climate in RCP 4.5 but
are outpaced by it under RCP 8.5.

The glacier ice volume in the French Alps at the beginning of the
21st century is unevenly distributed, with the Mont-Blanc massif
accounting for about 60% of the total ice volume in the year 2015
(7.06 out of 11.64 km3, Fig. 2a). The vast majority of glaciers in the
French Alps are very small glaciers (<0.01 km2), that are mainly
remnants from the Little Ice Age, with a strong imbalance with the
current climate15. Our projections highlight the almost complete
disappearance of all glaciers outside the Mont-Blanc and Pelvoux
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(Ecrins region) massifs under RCP 4.5 (Fig. 2) and RCP 8.5 by the
end of the century. By 2100, under RCP 4.5, these two high-altitude
massifs are predicted to retain on average 26% and 13% of their
2015 volume, respectively, with most of the ice concentrated in a
few larger glaciers (>1 km2, Fig. S4). Glacier landscapes are
expected to see important changes throughout the French Alps,
with the average glacier altitude becoming 300m (RCP 4.5) and
400m (RCP 8.5) higher than nowadays (Fig. 2a and S3).

Nonlinear climate-glacier interactions. Glacier surface mass
changes are commonly modelled by relying on empirical linear
relationships between PDDs and snow, firn or ice melt8–10,29.

Since the climate and glacier systems are known to be
nonlinear13, we investigate the benefits of using a model treating,
among others, PDDs in a nonlinear way in order to simulate
annual glacier-wide MB at a regional scale. We compare model
runs using a nonlinear deep learning MB model (the reference
approach in our study) against a simplified linear machine
learning MB model based on the Lasso30, i.e. regularized multi-
linear regression. Both MB models were trained with exactly
the same data, and all other glacier model parameters were
unchanged in order to allow isolating the effects of the non-
linearities in the MB. A comparison between the two MB models
shows that a nonlinear response to climate forcings is captured by
the deep learning MB model, allowing a better representation of

Fig. 1 21st century glacier-wide MB, geometry and climate signal evolution of French Alpine glaciers. a Glacier-wide annual MB, b Ice volume, c Glacier
area. The cumulative positive degree days (CPDD), snowfall and rainfall d–l, are at the glaciers’ annually evolving centroids. As such, these values reflect both
the climatic forcing and the changing glacier geometry. Summer climate is computed between April 1st and September 30th and winter climate between
October 1st and March 31st. Thin lines represent each of the 29 individual member runs, while the thick lines represent the average for a given RCP.
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Fig. 2 Projected glacier and climate evolution per glacierized massif between 2015 and 2100 under RCP 4.5. a Projected mean glacier altitude evolution
between 2015 and 2100. Massifs without glaciers by 2100 are marked with a cross, b Glacier ice volume distribution per massif, with its remaining fraction
by 2100 (with respect to 2015), c Annual glacier-wide MB per massif, d Annual snowfall per massif, e Annual cumulative positive degree-days (CPDD) per
massif. All values correspond to ensemble means under RCP 4.5. Years in white in c-e indicate the disappearance of all glaciers in a given massif.
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glacier mass changes, including significantly reduced biases for
extreme values (see Methods). A sensitivity analysis of both MB
models revealed nonlinear relationships between PDDs, snowfall
(in winter and summer) and glacier-wide MB, which the linear
model was only able to approximate (r2= 0.41 for the Lasso vs.
r2= 0.76 for deep learning in cross-validation31; Fig. 3).
Regarding air temperature forcings, the linear Lasso MB model
was found to be slightly under-sensitive to extreme positive
cumulative PDD (CPDD) and over-sensitive to extreme negative
CPDDs. Conversely, the linear MB model appears to be over-
sensitive to extreme positive and negative snowfall anomalies.
This behaviour is particularly clear for summer snowfall, for
which the differences are the largest (Fig. 3). In summary, the
linear approximations used by the Lasso manage to correctly fit
the main cluster of average values but perform poorly for extreme
values31. This has the strongest impact under RCP 2.6, where
positive MB rates are more frequent (Fig. 4), as the linear model
tends to over-estimate positive MB rates both from air tem-
perature and snowfall (Fig. 3). When using the linear MB model
(Lasso), glaciers are close to reaching an equilibrium with the
climate in the last decades of the century, which is not the case for

the nonlinear MB model (deep learning). Under warmer condi-
tions (RCP 8.5), the differences between the linear and nonlinear
MB model become smaller, as the topographical feedback from
glacier retreat compensates for an important fraction of the losses
induced by the late century warmer climate (Fig. S8 and Fig. 4).
This behaviour is expected for mountain glaciers, as they are
capable of retreating to higher altitudes, thus producing a positive
impact on their glacier-wide MB (Fig. 5). Alternatively, flatter
glaciers (i.e. ice caps) that are found in other glacierized regions
such as the Arctic, where the largest volumes of glacier ice (other
than the ice sheets) are stored32, cannot retreat to higher eleva-
tions. This means that these flatter ice bodies, under a warming
climate, will be subject to higher temperatures than their steeper
counterparts. In order to investigate the implications of these
results for flat glaciers, we performed additional synthetic
experiments in order to reproduce this lack of topographical
feedback (Fig. 4). Our results point out that this lack of topo-
graphical feedback leads to an increased frequency of extreme
negative MB rates and to more pronounced differences between
the nonlinear and linear MB models (Figs. 4e and 5). Our pre-
vious work31 has shown that linear MB models can be correctly
calibrated for data around the mean temperature and precipita-
tion values used during training, giving similar results and per-
formance to deep learning. However, as shown in our previous
work and confirmed here, the accuracy of linear models drasti-
cally drops as soon as the input climate data diverges from the
mean cluster of values used for training. A similar behaviour is
observed when comparing temperature-index models to more
complex models (e.g. energy balance), with differences increasing
when the conditions considerably differ from the calibration
period33. The lower fraction of variance explained by linear
models is present under all climate scenarios. Both models agree
around the average values seen during training (i.e. −0.78 m.w.e.
a−1), but when conditions deviate from this mean training
data centroid, the Lasso can only linearly approximate the
extremes based on the linear trend set on the main cluster of
average values (Fig. 4). Overall, this results in linear MB models
overestimating both extreme positive (Fig. 4a, b) and negative
(Fig. 4e) MB rates.

We further assessed the effect of MB nonlinearities by
comparing our simulated glacier changes with those obtained
from other glacier evolution studies from the literature, which
rely on temperature-index models for MB modelling. Previous
studies on 21st century large-scale glacier evolution projections
have covered the French Alps7,8. Here, we compare our results
with those from a recent study that focused on the European
Alps10. In that study, a temperature-index model with a separate
degree-day factor (DDF) for snow and ice is used, resulting in
piecewise linear functions able to partially reproduce nonlinear
MB dynamics. Both the Lasso and the temperature-index
MB model rely on linear relationships between PDDs, solid
precipitation and MB. Therefore, their sensitivities to the
projected 21st century increase in PDDs are linear. Despite the
differences in the two modelling approaches (Table S2), both
regional glacier volume projections present relatively similar
results by the end of the century, with volume differences ranging
between 14% for RCP 2.6 to less than 2% for RCP 4.5 (Fig. S7).
Nonetheless, a close inspection of the annual glacier-wide MB
rates from both models reveals similar patterns to those found
when comparing deep learning and Lasso approaches (Figs. S5
and S6). Despite the existence of slightly different trends during
the first half of the century, both the Lasso and the temperature-
index model react similarly under RCP 4.5 and 8.5 during the
second half of the century, compared to the deep learning model.
The two models with linear MB responses to PDDs and
accumulation simulate more positive MB rates under RCP 2.6,

-500

Fig. 3 Nonlinear and linear response to climatic forcing of MB models.
Nonlinear deep learning response and linear Lasso response to a
Cumulative positive degree days (CPDD) anomalies, b winter snowfall, and
c summer snowfall. All climate anomalies are computed with respect to the
1967–2015 mean values. Envelopes indicate ±σ based on results for all 660
glaciers in the French Alps for the 1967–2015 period. The vertical blue and
red lines indicate the distribution of extreme (top 5%) values for all 21st
century projected climate scenarios, with the mean value in the center and
±1σ indicated by dashed lines.
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highlighting their over-sensitivity to negative air temperature
anomalies and positive snowfall anomalies (Fig. S6).

Discussion
Studies have warned about the use of temperature-index models
for snow and ice projections under climate change for

decades34–36. Temperature-index models are known to be over-
sensitive to temperature changes, mainly due to important dif-
ferences in the processes contributing to future warming. This
oversensitivity directly results from the fact that temperature-
index models rely on linear relationships between PDDs and melt
and that these models are calibrated with past MB and climate
data. In the past, shortwave radiation represented a more

Fig. 4 Effect of deep learning nonlinearities on glacier mass balance projections. Average cumulative MB projections of French Alpine glaciers with a
nonlinear deep learning vs. a linear Lasso model for 29 climate scenarios; a with topographical feedback (allowing for glacier retreat) and e without
topographical feedback (synthetic experiment with constant mean glacier altitude). The projections without glacier geometry adjustment explore the
behaviour of glaciers which cannot retreat to higher elevations (i.e. ice cap-like behaviour). b, c, d and f, g, h annual glacier-wide MB probability distribution
functions for all n scenarios in each RCP. Vertical axes are different for the two analyses. Photographs taken by Simo Räsänen (Bossons glacier, European
Alps, CC BY-SA 3.0) and Doug Hardy (Quelccaya ice cap, Andes, CC BY-SA 4.0).
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important fraction in the glacier surface energy budget than the
energy fluxes directly related to air temperature (e.g. longwave
radiation budget, turbulent fluxes), in comparison with a future
warmer climate. Indeed, the projected 21st century warming will
lead to increasing incoming longwave radiation and turbulent
fluxes, with no marked future trends in the evolution of short-
wave radiation37. This will reduce the importance of shortwave
radiation for future ablation rates, and it is expected to result in a
reduction in values of degree-day factors (DDFs) and therefore a
significant change in melt sensitivity to air temperature
variations36. This behaviour has already been observed for the
European Alps, with a reduction in DDFs for snow during the
ablation season of −7% per decade34. Changes in DDFs with
respect to air temperature also strongly depend on albedo, with
ice presenting a substantially more nonlinear response than snow.
Ice melt sensitivity to PDDs strongly decreases with increasing
summer temperatures, whereas snow melt sensitivity changes at a
smaller rate34. These trends explored with energy balance models
from the literature correspond to the behaviour captured by our
deep learning MB model, with a clearly less sensitive response of
glacier-wide MB to extreme climate forcings, particularly in
summer (Fig. 3c). This reduced sensitivity is captured through the
response to summer snowfall anomalies, since the sensitivity to
positive CPDD anomalies is quite similar for the linear and
nonlinear models, as it encompasses both the accumulation and
ablation seasons (Fig. 3a).

At this point, it is important to clarify the different ways of
treating PDDs in the Lasso and the temperature-index MB
models analysed in this study in order to justify analogies. The
temperature-index model includes up to three different DDFs, for
ice, firn and snow, resulting in three parameters. Alternatively,
the Lasso model used here includes 13 DDFs: one for the annual
CPDDs and 12 for each month of the hydrological year. Due to
the statistical nature of the Lasso model, the response to snowfall
anomalies is also highly influenced by variations in PDDs
(Fig. 3c). This results in a higher complexity of the Lasso com-
pared to a temperature-index model. Nonetheless, since they are

both linear, their calibrated parameters establishing the sensitivity
of melt and glacier-wide MB to temperature variations remain
constant over time. This is not the case for the nonlinear deep
learning MB model, which captures the nonlinear response of
melt and MB to increasing air temperatures, thus reducing the
MB sensitivity to extreme positive and negative air temperature
and summer snowfall anomalies (Fig. 3). Moreover, these dif-
ferences between nonlinear and linear models appear to come
from an over-sensitivity of linear models to increasing ablation
season air temperatures, when ice is exposed in a large fraction of
glaciers. Interestingly, this matches the nonlinear, less sensitive
response to summer snowfall in the ablation season of our deep
learning model (Fig. 3c), which is directly linked to summer air
temperatures and has a strong influence on surface albedo.
Conversely, during the accumulation season, glaciers are mostly
covered by snow, with a much higher albedo and a reduced role
of shortwave radiation in the MB that will persist even under
climate change. This translates into a more linear response to air
temperature changes compared to the ablation season (Fig. 3b).
Despite their limitations, temperature-index models, owing to
their simplicity and parsimonious data requirements, have been
widely used for large-scale glacier projections7,8. Here, with our
newly presented approach, we were able for the first time to
quantify the effect that stationary parameters in temperature-
index mass balance models have on transient glacier evolution.
Our results serve as a strong reminder that the outcomes of
existing large-scale glacier simulations should be interpreted with
care, and that newly available techniques (such as the nonlinear
deep learning approach presented here) and observations (e.g. on
various mass balance and radiation components) are opening the
door for updated and better constrained projections.

Our results also highlight the important role played by glacier
geometry adjustment under changing climatic conditions, which
is typical of mountain glaciers38. Our analysis suggests that due to
this positive impact on the MB signal, only relevant differences
are observed between nonlinear and linear MB models for the
lowest emission climate scenarios (Fig. 4a). However, many

Fig. 5 Main implications of nonlinear mass balance response to future warming and topographical feedback for mountain glacier and ice cap
projections. Glacier topography is a crucial driver of future glacier projections and is expected to play an important role in determining the magnitude that
nonlinearities will have on the mass balance signal: ice caps and large flatter glaciers are expected to be more influenced by these nonlinear sensitivities
than steep mountain glaciers in a warming climate. Graphics inspired by Hock and Huss40.
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glacierized regions in the world present different topographical
setups, with flatter glaciers, commonly referred to as ice caps,
covering the underlying terrain39. Such ice caps cannot retreat to
higher elevations in a warming climate, which inhibits this
positive impact on MB40 (Fig. 5). In fact, in many cases the
surface lowering into warmer air causes this impact on the MB to
be negative, further enhancing extreme negative mass balance
rates. In order to investigate the effects of MB nonlinearities on
flatter glaciers, we conducted a synthetic experiment using the
French Alps dataset. We ran glacier evolution projections for
both the deep learning and Lasso MB models, but we kept the
glacier geometry constant, thus preserving the glacier centroid
where the climate data is computed constant through time. With
this setup, we reproduced the ice cap-like behaviour with a lack of
topographical adjustment to higher elevations. The effect of gla-
ciers shrinking to smaller extents is not captured by these syn-
thetic experiments, but this effect is less important for flat glaciers
that are dominated by thinning (Fig. 5). Additionally, glacier
surface area was found to be a minor predictor in our MB
models31. These synthetic experiments suggest that, for equal
climatic conditions, flatter glaciers and ice caps will experience
substantially more negative MB rates than steeper mountain
glaciers. This translates into more frequent extreme negative MB
rates, and therefore greater differences due to nonlinearities for
the vast majority of future climate scenarios (Fig. 4e).

These different behaviours and resulting biases can potentially
induce important consequences in long-term glacier evolution
projections. On the one hand, MB nonlinearities for mountain
glaciers appear to be only relevant for climate scenarios with a
reduction in greenhouse gases emissions (Fig. 4a). The linear
Lasso MB model suggests a stabilization of glacier evolution,
reaching neutral MB rates by the end of the century. This
behaviour is not observed with the nonlinear model, hinting at a
positive bias of linear MB models under RCP 2.6. When com-
paring our deep learning simulations with those from the Lasso,
we found average cumulative MB differences of up to 17% by the
end of the century (Fig. S5b). For intermediate and pessimistic
climate scenarios, no significant differences were found
(Fig. S5c–f), except for the largest glaciers (e.g. Mer de Glace,
29 km2 in 2015), which did show important differences under
RCP 8.5 (up to 75%), due to their longer response time. This
suggests that linear MB models are adequate tools for simulating
MB of mountain glaciers with important topographical adjust-
ment, with the only exception being the most optimistic climate
scenarios and glaciers with long response times. On the other
hand, for flatter glaciers large differences between deep learning
and Lasso are obtained for almost all climate scenarios (Fig. 4e).
Since these flatter glaciers are more likely to go through extreme
negative MB rates, nonlinear responses to future warming play a
more important role, producing cumulative MB differences of up
to 20% by the end of the century (Fig. S5h, j, l). Therefore, linear
MB models present more limitations for projections of ice caps,
showing a tendency to negative MB biases. As previously men-
tioned, here these differences are computed at regional level for a
wide variety of glaciers. Differences for individual glaciers can be
much more pronounced, as large and flat glaciers will have
topoclimatic configurations that produce more extreme MB rates
than small and steep glaciers with a short response time.

The main uncertainties in future glacier estimates stem from
future climate projections and levels of greenhouse gas emissions
(differences between RCPs, GCMs, and RCMs), whose relative
importance progressively increases throughout the 21st century.
With a secondary role, glacier model uncertainty decreases over
time, but it represents the greatest source of uncertainty until the
middle of the century8. Taking into account that for several
regions in the world about half of the glacierized volume will be

lost during this first half of the 21st century, glacier models play a
major role in the correct assessment of future glacier evolution.
The two recent iterations of the Glacier Model Intercomparison
Project (GlacierMIP7,8) have proved a remarkable effort to
aggregate, compare and understand global glacier evolution
estimates and their associated uncertainties. Despite the existence
of a wide variety of different approaches to simulate glacier
dynamics, all glacier models in GlacierMIP rely on MB models
with linear relationships between PDDs and melt, and pre-
cipitation and accumulation. Some of these models use a single
DDF, while others have separate DDFs for snow and ice, pro-
ducing a piecewise function composed of two linear sub-functions
that can partially account for nonlinear MB dynamics depending
on the snowpack. As we have previously shown, these models
present a very similar behaviour to the linear statistical MB model
from this study (Fig. 4 vs. S5). Interestingly, our analysis indicates
that more complex models using separate DDFs for ice, firn and
snow might introduce stronger biases than more simple models
using a single DDF. DDFs are known to vary much less with
increasing temperatures for intermediate values of albedo (i.e. 0.5)
than lower values typical from ice34. Consequently, a simple MB
model with a single DDF (e.g. the Open Global Glacier Model -
OGGM9) is likely to be less affected by an over-sensitivity to
future warming than a more complex model with dedicated
DDFs for ice, snow, and firn. This creates an interesting dilemma,
with more complex temperature-index MB models generally
outperforming simpler models for more climatically homo-
geneous past periods but introducing important biases for future
projections under climate change. Our results suggest that, except
for the lowest emissions climate scenarios and for large glaciers
with long response times, MB models with linear relationships for
PDDs and precipitation are suitable for mountain glaciers with a
marked topographical feedback. On the one hand, this improves
our confidence in long-term MB projections for steep glaciers
made by most GlacierMIP models for intermediate and high
emissions climate scenarios. On the other hand, ice caps present a
different response to future warming, with our results suggesting
a negative MB bias by models using linear PDD and accumula-
tion relationships. Ice caps in the Canadian Arctic, the Russian
Arctic, Svalbard, and parts of the periphery of Greenland are
major reservoirs of ice, as well as some of the biggest expected
contributors to sea level rise outside the two polar ice sheets7. On
top of that, they happen to be among the glacierized regions with
the largest projected uncertainties8. Together with recent findings
by another study41 highlighting the increased uncertainties in ice
thickness distribution estimates of ice caps compared to moun-
tain glaciers, our results raise further awareness on the important
uncertainties in glacier projections for ice caps. These conclusions
drawn from these synthetic experiments could have large impli-
cations given the important sea-level contribution from ice cap-
like ice bodies8. However, to further investigate these findings,
experiments designed more towards ice caps, and including
crucial mechanisms such as ice-ocean interactions and thermo-
dynamics, should be used for this purpose.

In this study, we demonstrated the advantages of using deep
learning to model glacier MB at regional scales, both in terms of
variance and bias. Nonetheless, a better understanding of the
underlying processes guiding these nonlinear behaviours at large
geographical scales is needed. The machine learning models used
in this study are useful to highlight and quantify how non-
linearities in MB affect climate-glacier interactions, but are lim-
ited in terms of process understanding. At present, using complex
surface energy balance models for large-scale glacier projections is
not feasible yet, mainly due to the lack of input data. Therefore,
an alternative nonlinear parameterization for the reduction in MB
sensitivity under increasing air temperatures would be useful.
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This is particularly important for the ablation season and for ice
DDFs, which need to accommodate the progressively decreasing
role that shortwave radiation will play in the future glacier surface
energy budget under warmer conditions. New methods bridging
the gap between domain-specific equations and machine learning
are starting to arise42, which will play a crucial role in further
investigating the physical processes driving these nonlinear
climate-glacier interactions.

By unravelling nonlinear relationships between climate and
glacier MB, we have demonstrated the limitations of linear sta-
tistical MB models to represent extreme MB rates in long-term
projections. Our analyses suggest that these limitations can also
be translated to temperature-index MB models, as they share
linear relationships between PDDs and melt, as well as pre-
cipitation and accumulation. By performing glacier projections
both with mountain glaciers in the French Alps and a synthetic
experiment reproducing ice cap-like behaviour, we argue that the
limitations identified here for linear models will also have
implications for many other glacierized regions in the world.
Uncertainties of existing projections of future glacier evolution
are particularly large for the second half of the 21st century due to
a large uncertainty on future climatic conditions. Our results
indicate that these uncertainties might be even larger than we
previously thought, as linear MB models are introducing addi-
tional biases under the extreme climatic conditions of the late 21st
and 22nd centuries. Through synthetic experiments, we showed
that the associated uncertainties are likely to be even more pro-
nounced for ice caps, which host the largest reserves of ice outside
the two main ice sheets32. This implies that current global glacier
mass loss projections are too low for the lowest emissions climate
scenarios and too high for the highest emissions ones, which has
direct consequences for related sea-level rise and water resources
projections.

Methods
Glacier mass balance modelling. Glacier-wide MB is simulated annually for
individual glaciers using deep learning (i.e. a deep artificial neural network) or the
Lasso (regularized multilinear regression)30. This modelling approach was descri-
bed in detail in a previous publication dedicated to the methods, where the ALpine
Parameterized Glacier Model (ALPGM43) was presented31. ALPGM uses a feed-
forward fully connected multilayer perceptron, with an architecture (40-20-10-5-1)
with Leaky-ReLu44 activation functions and a single linear function at the output.
A He uniform initialization45 was used for the network parameters. The smallest
best performing architecture was used, in order to find a good balance between
predictive power, speed, and extrapolation outside the training data. The training
was performed with an RMSprop optimizer, batch normalization46, and we used
both dropout and Gaussian noise in order to regularize it. The Lasso30, used for the
linear mass balance model, is a linear regression analysis method which shrinks
model parameters, thus performing both variable selection and regularization. A
dataset of 32 glaciers with direct annual glacier-wide MB observations and remote
sensing estimates was used to train the models. For these 32 glaciers, a total of 1048
annual glacier-wide MB values are available, covering the 1967–2015 period with
gaps. In order to simulate annual glacier-wide MB values, (a) topographical and (b)
climate data for those glaciers and years were compiled for each of the 1048 glacier-
year values. (a) Topographical predictors were computed based on the glaciers’
annually updated digital elevation model (DEM). These predictors are composed
of: the mean glacier altitude, maximum glacier altitude, slope of the lowermost 20%
altitudinal range of the glacier, glacier surface area, latitude, longitude and aspect.
(b) Climate predictors are based on climatic anomalies computed at the glaciers’
mean altitude with respect to the 1967–2015 reference period mean values. Models
were trained using the SAFRAN reanalysis dataset47, including observations of
mountain regions in France for the 1958–2015 period. This reanalysis is specifically
designed to represent meteorological conditions over complex mountain terrain,
being divided by mountain massif, aspect and elevation bands of 300 m. Winter
climate data are computed between October 1 and March 31, and summer data
between April 1 and September 30. Climate predictors consist of: the annual
CPDD, winter snowfall, summer snowfall, monthly mean temperature and
monthly snowfall. This creates a total of 34 input predictors for each year (7
topographical, 3 seasonal climate, and 24 monthly climate predictors).

In order to avoid overfitting, MB models were thoroughly cross-validated using all
data for the 1967–2015 period in order to ensure a correct out-of-sample
performance. Three different types of cross validation were performed: a Leave-One-
Glacier-Out (LOGO), a Leave-One-Year-Out (LOYO) and a Leave-Some-Years-and-

Glaciers-Out (LSYGO). Each one of these cross-validations served to evaluate the
model performance for the spatial, temporal and both dimensions, respectively.
When working with spatiotemporal data, it is imperative to respect spatial and
temporal data structures during cross-validation in order to correctly assess an
accurate model performance48. With this cross-validation we determined a deep
learning MB model spatiotemporal (LSYGO) RMSE of 0.59m.w.e. a−1 and a r2 of
0.69, explaining 69% of the total MB variance. Alternatively, the Lasso MB model
displayed an RMSE of 0.85m.w.e. a−1 and an r2 of 0.3531. Simulations for projections
in this study were made by generating an ensemble of 60 cross-validated models
based on LSYGO. Each one of these models was created by training a deep learning
model with the full dataset except all data from a random glacier and year, and
evaluating the performance on these hidden values. This ensures that the model is
capable of reproducing MB rates for unseen glaciers and years. Simulations were then
performed by averaging the outputs of each one of the 60 ensemble members. This
approach is known as a cross-validation ensemble49. Future projections of glacier-
wide MB evolution were performed using climate projections from ADAMONT25.
This dataset applies a statistical adjustment specific to French mountain regions
based on the SAFRAN dataset, to EURO-CORDEX26 GCM-RCM-RCP members,
covering a total of 29 different future climate scenarios for the 2005–2100 period.
This adjustment represents a major improvement over most climate data used to
force regional and global glacier models. The high spatial resolution enables a detailed
representation of mountain weather patterns, which are often undermined by coarser
resolution climate datasets.

Glacier geometry evolution. A well-established parametrization based on
empirical functions50 was used in order to redistribute the annually simulated
glacier-wide mass changes over each glacier. This parametrization reproduces in an
empirical manner the changes in glacier geometry due to the combined effects of
ice dynamics and MB. As for the MB modelling approach, a detailed explanation
on this method can be found in a previous dedicated paper on the methods31. In
our model, we specifically computed this parameterized function for each indivi-
dual glacier larger than 0.5 km2, representing 80% of the total glacierized area in
2015, using two DEMs covering the whole French Alps: a photogrammetric one in
1979 and a SPOT-5 one in 2011. We previously demonstrated that this period is
long enough to represent the secular trend of glacier dynamics in the region31. Both
DEMs were resampled and aligned at a common spatial resolution of 25 m. For
each glacier, an individual parameterized function was computed representing the
differences in glacier surface elevation with respect to the glacier’s altitude within
the 1979–2011 period. This method has the advantage of including glacier-specific
dynamics in the model, encompassing a wide range of different glacier behaviours.
Using this function, the glacier-specific ice thickness and the DEM are updated
every year, adjusting the 3D geometry of each glacier. This enables the recalculation
of every topographical predictor used for the MB model, thus updating the mean
glacier altitude at which climate data for each glacier are retrieved. This annual
geometry adjustment accounts for the effects of glacier retreat on the climate signal
received by glaciers. Glaciers smaller than 0.5 km2 often display a high climate
imbalance, with their equilibrium line being higher than the glacier’s maximum
altitude. Such glaciers are often remnants of the Little Ice Age, and mainly lose
mass via non-dynamic downwasting51. For such cases, we assumed that ice
dynamics no longer play an important role, and the mass changes were applied
equally throughout the glacier.

The performance of this parametrization was validated in a previous study,
indicating a correct agreement with observations31. The dataset of initial glacier ice
thickness, available for the year 2003, determines the starting point of our
simulations. We performed a validation simulation for the 2003–2015 period by
running our model through this period and comparing the simulated glacier surface
area of each of the 32 glaciers with MB to observations from the 2015 glacier
inventory16,52. Then, we ran multiple simulations for this same period by altering the
initial ice thickness by ±30% and the glacier geometry update parametrizations by
±10%, according to the estimated uncertainties of each of the two methods31. These
results revealed that the main uncertainties on glacier simulations arise from the
initial ice thickness used to initialize the model. This is well in agreement with the
known uncertainties of glacier evolution models, with glacier ice thickness being the
second largest uncertainty after the future GCM-RCM-RCP climate members used to
force the model29. Glacier ice thickness observations are available for four different
glaciers in the regions, which were compared to the estimates used in this model. Ice
thickness accuracy varied significantly, with an overall correct representation of the
ice distribution but with local biases reaching up to 100%. The ice thickness data for
two of the largest glaciers in the French Alps were modified in order to improve data
quality. Ice thickness data for Argentière glacier (12.27 km2 in 2015) was taken from
a combination of field observations (seismic, ground-penetrating radar or hot-water
drilling53) and simulations32. The estimated ice thickness for Mer de Glace
(28.87 km2 in 2015) was increased by 25% in order to correct the bias with respect to
field observations31. Since these two glaciers are expected to be some of the few large
glaciers that will survive the 21st century climate, an accurate representation of their
initial ice thickness has an important effect on the estimates of remaining ice.

Model comparison and extraction of nonlinearities. The nonlinearities present
in the simulated annual glacier-wide MB values were assessed by running two
different glacier simulations with two different MB models. The advantage of this
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method is that by only changing the MB model, we can keep the rest of the model
components (glacier dynamics and climate forcing) and parameters the same in
order to have a controlled environment for our experiment. Therefore, we were
capable of isolating the different behaviours of the nonlinear deep learning model
and a linear machine learning model based on the Lasso30. Both machine learning
MB models were trained with exactly the same data coming from the 1048 annual
glacier-wide MB values, and both were cross-validated using LSYGO. In order to
investigate the effects of MB nonlinearities on ice caps, we performed the same type
of comparison between simulations, but the glacier geometry update module
described in the “Glacier geometry evolution” section was deactivated. This syn-
thetic setup allowed us to reproduce the climatic conditions to be undergone by
most ice caps, with their mean surface altitude hardly evolving through time. This
removes the topographical feedback typical from mountain glaciers, and repro-
duces the more extreme climate conditions that ice caps are likely to endure
through the 21st century40. This synthetic experiment is an approximation of what
might occur in other glacierized regions with ice caps. In many aspects, it might be
too optimistic, as many ice caps will have a negative impact on MB through
thinning, bringing their mean surface elevation to lower altitudes, thus further
warming their perceived climate. This means that these differences linked to MB
nonlinearities observed in this experiment could be even greater for such ice caps.
However, the impact of different climate configurations, such as a more continental
and drier climate or a more oceanic and humid climate, would certainly have an
impact on the results, albeit a much less important one than the lack of topo-
graphical feedback explored here. Our synthetic experiment does not account for
glacier surface area shrinking either, which might have an impact on the glacier-
wide MB signal. Nevertheless, we previously demonstrated that glacier surface area
is not an important predictor of MB changes in our models29, and ice caps evolve
mostly through thinning and not shrinking (Fig. 5).

Additionally, the specific responses of the deep learning and Lasso MB models
to air temperature and snowfall were extracted by performing a model sensitivity
analysis. Since the neural network used here virtually behaves like a black box, an
alternative way is needed to understand the model’s behaviour. In order to do so,
we applied a deterministic sampling process as a sensitivity analysis to both the
deep learning and the Lasso MB models. For that, a dataset of input predictors
covering all the glaciers in the French Alps for the 1967–2015 period was generated
from a past MB reconstruction study15. Multiple copies of this dataset were created,
and for each individual copy a single predictor (i.e. CPDD, winter snowfall or
summer snowfall) was modified for all glaciers and years. This allows us to assess
the MB models responses at a regional scale to changes in individual predictors
(Fig. 3). Regarding air temperature, a specific CPDD anomaly ranging from −1500
PDD to +1500 PDD in steps of 100 PDD was prescribed to all glaciers for each
dataset copy. Since both MB models also include monthly temperature data as
predictors, this CPDD anomaly was distributed evenly between the ablation season
(April 1–September 30), following the expected increase in mostly summer
temperatures instead of winter temperatures in the future (Fig. 1). Tests were
performed distributing the CPDD anomalies equally among all months of the year
with very similar results. The same was done with winter snowfall anomalies,
ranging between −1500 mm and +1500 mm in steps of 100 mm, and summer
snowfall anomalies, ranging between −1000 mm and +1000 mm in steps of
100 mm. The anomaly in snowfall was evenly distributed for every month in the
accumulation (October 1–April 31) and ablation seasons, respectively. This
experiment enabled the exploration of the response to specific climate forcings of a
wide range of glaciers of different topographical characteristics in a wide range of
different climatic setups, determined by all meteorological conditions from the
years 1967–2015 (Fig. 3).

Alternatively, the comparisons against an independent large-scale glacier
evolution model were less straightforward to achieve. GloGEMflow10 is a state-of-
the-art global glacier evolution model used in a wide range of studies, including the
second phase of GlacierMIP7,8. Several differences are present between ALPGM,
the model used in this study, and GloGEMflow (Table S2), which hinder a direct
meaningful comparison between both. In order to overcome these differences,
some adaptations were performed to the GloGEMflow output, accompanied with
some hypotheses to ensure a realistic comparison. The first main difference is
related to the climate data used to force the models. GloGEMflow relies on EURO-
CORDEX ensembles26, whereas ALPGM uses ADAMONT25, an adjusted version
of EURO-CORDEX specifically designed for mountain regions. ADAMONT
provides climate data at 300 m altitudinal bands and different slope aspects, thus
having a significantly higher spatial resolution than the 0.11° from EURO-
CORDEX. This implies that specific climatic differences between massifs can be
better captured by ALPGM than GloGEMflow. Nonetheless, since the main GCM-
RCM climate signal is the same, the main large-scale long-term trends are quite
similar. We reduced these differences by running simulations with GloGEMflow
using exactly the same 29 climate members used by ALPGM in this study
(Table S1). The initial glacier ice thickness data for the year 2003 also differs
slightly between both models. The original ice thickness estimates of the methods
used by both models are different10,32, and for ALPGM we performed some
additional modifications to the two largest glaciers in the French Alps (see ‘Glacier
geometry evolution’ for details). Despite these differences, the average altitude
difference of the glaciers between both models is never greater than 50 m (Fig. S10).
Since in ALPGM the climate forcing of glaciers is extracted at the mean glacier
altitude, we do not expect these altitude differences to drive important MB

differences between models. Another source of discrepancy between both models
comes from the different MB data used to calibrate or train the MB models.
GloGEMflow has been previously applied in a study over the whole European Alps,
and its temperature-index model was mainly calibrated with MB data from the
Swiss Alps. Swiss glaciers have displayed less negative MB rates than French
glaciers during the last decades, thus likely introducing a bias in simulations
specific to the French Alps. In order to improve the comparability between both
models, a MB bias correction was applied to GloGEMflow’s simulated MB, based
on the average annual MB difference between both models for the 2003–2015
period (−0.4 m.w.e. a−1) over the French Alps. Finally, there are differences as well
in the glacier dynamics of both models, with ALPGM using a glacier-specific
parameterized approach and GloGEMflow explicitly reproducing the ice flow
dynamics. Nonetheless, these differences have been shown to be rather small,
having a lower impact on results than climate forcings or the initial glacier ice
thickness10.

Data availability
The model output data generated in this study have been deposited in netCDF and CSV
format in a Zenodo repository under accession code Creative Commons Attribution 4.0
International. https://zenodo.org/record/5549758.

Code availability
The source code of the glacier model can be freely accessed in the following repository:
https://github.com/JordiBolibar/ALPGM.
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