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Abstract –Space weather driven atmospheric density variations affect low Earth orbit (LEO) satellites
during all phases of their operational lifetime. Rocket launches, re-entry events and space debris are also
similarly affected. A better understanding of space weather processes and their impact on atmospheric
density is thus critical for satellite operations as well as for safety issues. The Horizon 2020 project Space
Weather Atmosphere Model and Indices (SWAMI) project, which started in January 2018, aims to enhance
this understanding by:

� Developing improved neutral atmosphere and thermosphere models, and combining these models to
produce a new whole atmosphere model.

� Developing new geomagnetic activity indices with higher time cadence to enable better representation of
thermospheric variability in the models, and improving the forecast of these indices.

The project stands out by providing an integrated approach to the satellite neutral environment, in which
the main space weather drivers are addressed together with model improvement. The outcomes of SWAMI
will provide a pathway to improved space weather services as the project will not only address the science
issues, but also the transition of models into operational services.
The project aims to develop a unique new whole atmosphere model, by extending and blending the Unified
Model (UM), which is the Met Office weather and climate model, and the Drag Temperature Model
(DTM), which is a semi-empirical model which covers the 120–1500 km altitude range. A user-focused
operational tool for satellite applications shall be developed based on this. In addition, improved
geomagnetic indices shall be developed and shall be used in the UM and DTM for enhanced nowcast
and forecast capability.
In this paper, we report on progress with SWAMI to date. The UM has been extended from its original
upper boundary of 85 km to run stably and accurately with a 135 km lid. Developments to the UM
radiation scheme to enable accurate performance in the mesosphere and lower thermosphere are described.
These include addition of non-local thermodynamic equilibrium effects and extension to include the far
ultraviolet and extreme ultraviolet. DTM has been re-developed using a more accurate neutral density
observation database than has been used in the past. In addition, we describe an algorithm to develop a
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new version of DTM driven by geomagnetic indices with a 60 minute cadence (denoted Hp60) rather than
3-hourly Kp indices (and corresponding ap indices). The development of the Hp60 index, and the Hp30
and Hp90 indices, which are similar to Hp60 but with 30 minute and 90 minute cadences, respectively,
is described, as is the development and testing of neural network and other machine learning methods
applied to the forecast of geomagnetic indices.

1 Introduction

Precise knowledge of the location and motion of space
objects is important, and this importance is rapidly increasing
with the advent of large constellations (e.g., National
Academies of Sciences, Engineering, and Medicine, 2016;
Muelhaupt et al, 2019). The 250–800 km altitude range, which
is chiefly in the thermosphere, hosts scientific and operational
Low Earth Orbit (LEO) satellites and thousands of other LEO
objects. LEO satellite orbital tracking, satellite launch and
re-entry operations, satellite conjunction analysis, and maintain-
ing the space debris catalogue all need knowledge of the mean
state and variability of the atmosphere, as detailed further below:

� LEO atmospheric operations require knowledge of the
state of the thermosphere near the satellite orbit in order
to calculate satellite drag effects to predict the satellite
orbit, and apply orbital correction if needed. Accurate
orbital prediction is needed in order to track the object
accurately in both time and space. Tracking of LEO
objects is therefore an indispensable task for space agen-
cies (Vallado & Finkleman, 2014; Hejduk & Snow, 2018).

� The ever-increasing amount of space debris poses pro-
blems to active satellites because of increased risk of col-
lisions. Currently, orbit predictions often are not accurate
enough to determine whether a manoeuvre to avoid a col-
lision is warranted. Conjunction analysis requires not only
more accurate thermosphere models, but also accurate
uncertainty estimates, which models currently do not pro-
vide (Poore, 2016; Bussy-Virat et al., 2018).

� The re-entry region is loosely defined as 80–140 km. A
controlled satellite re-entry (de-orbit) requires the applica-
tion of a change in satellite velocity, at the right location
and of the right magnitude, to ensure the de-orbit takes
place over a specific area (e.g. the South Pacific). Uncon-
trolled re-entries also occur quite frequently. In both cases
accurate knowledge of the mean density and its variability
along the final orbital revolutions is needed, but sufficient
accuracy is currently lacking. As an example, for the
uncontrolled re-entry of the European Space Agency
(ESA) Gravity field and steady-state Ocean Circulation
Explorer (GOCE; Drinkwater et al., 2003) satellite in
2013, predictions of the re-entry interface at 80 km varied
by thousands of kilometres even one orbit (~ 90 min)
before the actual event (e.g. Visser & van den IJssel,
2016).

� Satellite launch operations require knowledge of the state
of the atmosphere from the surface up to the LEO satellite
altitude. A better knowledge of the small-scale and local
fluctuations in density and wind in this altitude range is
needed in order to accurately estimate the aerodynamic
forces acting on the launcher fairing as well as to optimize
booster performance.

Key to estimating atmospheric drag is accurate modelling of
the thermosphere (chiefly density) along the trajectory of the
object. The air density exhibits a regular pattern that is con-
trolled by the diurnal, seasonal and solar cycle variations of
solar irradiance (Qian & Solomon, 2012), but it also undergoes
irregular spatiotemporal variations of a few to hundreds of
percent that result from space weather. For instance, during
the geomagnetic storms of October–November 2003 near
400 km altitude the air density was enhanced by 300%–800%
(Sutton et al., 2005; Bruinsma et al., 2006, Krauss et al.,
2015, 2018). Increases in atmospheric drag due to such space
weather events can lead to large changes in the predicted posi-
tion of objects in LEO.

Models of the thermosphere currently used for LEO satellite
operations typically use a semi-empirical approach, and include
the Drag Temperature Model (DTM; Bruinsma et al., 2012;
Bruinsma, 2015), the Jacchia-Bowman (JB) model (e.g.
Bowman et al, 2008) and the Naval Research Laboratory for
mass spectrometer and incoherent scatter radar extended
(NRL MSISE00) model (e.g. Picone et al., 2002). These models
provide coarse resolution representations of the thermosphere
which are adequate to track or predict satellite orbital location.
In addition, DTM and JB do not represent the atmosphere
below the lower thermosphere, and NRL MSISE00 only repre-
sents these lower levels very simply, so currently re-entry or
launcher trajectory calculations are produced by running differ-
ent types of models at different altitudes.

A significant amount of variability in the thermosphere
results from coupling with the lower atmosphere through
upward propagation of planetary waves, tides, and gravity
waves. For example, Liu et al. (2013) indicated that day to
day tidal amplitude variations related to changes in tropospheric
weather patterns can be 25%–50% in the lower thermosphere,
while a number of authors (e.g. Fuller-Rowell et al., 2008;
Goncharenko et al., 2010) have shown the impact on iono-
spheric total electron content associated with stratospheric sud-
den warmings. The upward propagating waves that contribute
to the coupling are not represented in semi-empirical models,
or are only represented incompletely. But, since an ability to
model such coupling processes is important for thermospheric
forecasting and LEO satellite operations, there is therefore a
strong case for the use of a single whole atmosphere model that
represents the neutral atmosphere from the surface up to the top
of the thermosphere (see Jackson et al., 2019 for a summary).
Examples of existing whole atmosphere models include the
Whole Atmosphere Community Climate Model with thermo-
sphere and ionosphere extension (WACCM-X, Liu et al.,
2010, 2018), the Whole Atmosphere Model (WAM, Akmaev
et al., 2008; Fuller-Rowell et al., 2008) and the Ground to top-
side model of the Atmosphere and Ionosphere for Aeronomy
(GAIA, Fujiwara & Miyoshi, 2010).

In SWAMI the aim is to develop a new whole atmosphere
model, which we call the MOdel of the Whole Atmosphere
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(MOWA). MOWA is a blend of the first-principles UM, which
is the Met Office operational numerical weather prediction and
climate model (e.g. Walters et al., 2019), and DTM. We adopt
this approach, rather than using an existing whole atmosphere
model, for a number of reasons.

First, the UM uses a non-hydrostatic formulation of the
atmospheric dynamics, whereas existing surface to thermo-
sphere models use hydrostatic dynamics (although some models
that use non-hydrostatic dynamics are now in development; e.g.
Ullrich et al., 2017). The hydrostatic assumption involves mak-
ing the approximation that all terms in the vertical momentum
equation may be neglected except for the gravity and pressure
terms. This can be a very good assumption at the proper scales,
i.e. when the horizontal length scale is significantly larger than
the vertical length scale, as is the case when only simulating
the lower atmosphere. However, it can be poor assumption in
the thermosphere – for example, Larsen & Meriwether (2012)
report large vertical winds in the thermosphere. These winds
should be better represented in a non-hydrostatic model than a
hydrostatic one, and consequently the interactions between con-
stituent transport, radiation and chemistry and thus thermo-
sphere/ionosphere interactions should be better represented in
the UM. Furthermore, the robustness of the extended UM dyna-
mical core shall be enhanced by incorporating the innovative
implicit representation of molecular viscosity detailed by Griffin
& Thuburn (2018). This scheme damps upward travelling waves
(chiefly acoustic waves and gravity waves) in a physically plau-
sible way in contrast to other commonly used approaches such as
enhanced diffusion and damping of vertical velocities.

Second, DTM2013 is already the most accurate thermo-
sphere model presently available, with relative errors in the
200–300 km altitude range between 5% and 10% (Bruinsma,
2015). The accuracy is achieved through assimilation of recent
density data (from the CHAllenging Minisatellite Payload
[CHAMP; Reigber et al., 1996], GOCE and the Gravity Recov-
ery and Climate Experiment [GRACE; Tapley et al., 2004])
combined with a new solar activity proxy, the 30 cm solar radio
flux (F30) (Dudok de Wit et al., 2014), which is shown to be
better suited than the more commonly used radio flux at
10.7 cm (the F10.7 index) for upper atmosphere specification.
Here, we report improvements to the DTM mainly in the
170–450 km altitude region, by assimilating a more extensive
dataset of observations than has been used in the past. The
aim is for the storm time modeling performance to be signifi-
cantly improved thanks to the high cadence Hp indices. This
additional data assimilation and the new and higher cadence
geomagnetic indices will further strengthen DTM’s position
as the leading model in this area.

A representation of the impacts of space weather in a whole
atmosphere model also requires nowcasts and forecasts of solar
and geomagnetic indices. As mentioned above, recent research
includes replacement of the F10.7 index with the F30 index as
the solar proxy in upper atmosphere models. The progress in
geomagnetic index development and forecasts however is
lagging with respect to the solar activity research, and therefore
this aspect is addressed in SWAMI. The Kp index, which is
commonly used to drive existing thermosphere models, is pro-
vided with a 3 h cadence. Models developed with this cadence
cannot reflect the very short timescale response of the atmo-
sphere to solar wind input (e.g. Oliveira et al., 2017). A higher
cadence index allows a much better timing of such events.

In addition, atmospheric density reacts much faster to solar wind
input (with order of minutes, locally), than can be described with
a 3 hourly cadence. Here, we develop improved geomagnetic
indices in two ways:

� We report on work to develop a new high cadence version
of Kp, called Hp, with cadences of 30 min, 60 min and
90 min to better represent storm-time onset and thermo-
spheric variability. The cadence chosen is partly guided
by a user consultation.

� We develop novel predictions of both traditional and
higher cadence indices. Current automated forecast
algorithms are usually simple (to ensure operational
robustness). Both linear and non-linear approaches for
prediction are applied (Wing et al., 2005; Wintoft et al.,
2017), and the prediction capability of implemented
models differ (see e.g. Boberg et al., 2000; Wing et al.,
2005; Bala & Reiff, 2012).

A further aim of SWAMI is to make the output available for
operational use by satellite operators and other end users.
Currently, when accurate re-entry or launcher trajectory calcula-
tions are needed, they must be executed by running different
types of models at different altitudes, and in addition the atmo-
spheric variability is not provided by those models. SWAMI will
provide the mean state of the atmosphere as well as the variabil-
ity, which can then be used as uncertainty in the calculations.
MOWA will be used to produce a look-up table version, the
MOWA Climatological Model (MCM), which can be run very
quickly on any machine. MCM is an innovative, user-focused
tool for use by satellite operators, launch service providers,
satellite re-entry analysts as well as space weather scientists.
Therefore, it shall benefit the entire user community that requires
knowledge of the mean state of the atmosphere and its variability
as a function of location and time from the surface up to the top
of the thermosphere. The aim is for MCM to be more accurate
and of much higher resolution than the currently available
Committee on Space Research International Reference
Atmosphere (CIRA) model (100 s vs. 1000 s of kilometres,
about 30 vs. 360 min). As such, it will be a first of its kind.
The more accurate reference from the Earth’s surface will also
enable global space weather science in the 80–140 km altitude
range.

Regarding operational implementation, MCM will be made
available to the broad community, including via ESA’s Virtual
Space Weather modelling Centre (VSWMC). VSWMC uses a
cutting-edge framework aimed at providing an integrated envir-
onment for installing and operating models and applications.
This includes support for installing model components on a cen-
tral server as well as on distributed platforms, and definition of
data streams, data exchange mechanisms, and definition and
implementation of coupling mechanisms between models.
There is also process control to allow synchronous or asynchro-
nous execution of model runs, making use of the defined
coupling mechanisms, and the use of a standard approach for
implementation of interoperability based on the High Level
Architecture (HLA) IEEE 1516 standard.

In summary, the overarching goal of SWAMI is to give
Europe a strategic advantage in orbit prediction through thermo-
sphere modelling, and associated user services, and this will
arise via the three main objectives of SWAMI, which are:
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� MODELS: To develop MOWA (covering the 0–1500 km
altitude range), and an operational tool for satellite
re-entry and launch applications (MCM) based on
MOWA. Both models shall provide estimates of both
climatology and space weather variability.

� DRIVERS: To provide nowcasts and forecasts of the new
high cadence Hp geomagnetic indices, to be used in the
UM and DTM. These products are equally useful for a
wide range of space weather services that rely on rapid
geomagnetic activity specification.

� END USER FOCUS: To develop steps (e.g. provision of
software) to transition MCM into operations. A set of
acceptance criteria, e.g. regarding robustness of model
code, near-real-time data processing and forecast delivery,
are being defined to ensure that the model system can be
considered ready for operational use.

The outline of the paper is as follows. An overview of the
aims of SWAMI appears in Section 2, while progress in devel-
oping the DTM and the upward extended version of the UM
appears in Section 3. Work on the higher cadence version of

the geomagnetic index, and on nowcasts and forecasts of this
index, is in Section 4. Section 5 includes plans to develop an
operational version of MOWA and conclusions appear in
Section 6.

2 Concept and methodology

The concept of the SWAMI project appears in Figure 1. The
new models MOWA and MCM, with improved geomagnetic
activity drivers and forecast, are developed via a four-step pro-
cedure shown in the figure. The coupling of the UM and DTM
shall be done over an altitude range that preserves highest accu-
racy in both models before and after the transition: up to about
140 km for UM, and DTM above approximately 170 km, by
means of a fairing function in the 120–180 km altitude range.

In order to produce MOWA and MCM, further develop-
ment of both UM and DTM is first required. The following
methodology is adopted.

The UM includes a comprehensive representation of atmo-
spheric physics and a coupled atmospheric chemistry scheme.

Fig. 1. Overall concept of SWAMI project. Solar activity proxies, in grey, are not developed in SWAMI, but an existing operational data server
is used.
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It is currently used with an upper boundary near 85 km altitude
and the aim in this project is to extend its upper boundary to
around 170 km altitude to enable coupling with the DTM,
which has a lower boundary at 120 km. The upward extension
of the UM requires the following steps:

� Additions to the radiation scheme to account for Non-
Local Thermodynamic Equilibrium (NLTE) effects in the
mesosphere and lower thermosphere (MLT) (Fomichev
et al., 2004), and to extend the UM radiation scheme (the
Suite Of Community Radiative Transfer codes based on
Edwards and Slingo [SOCRATES]; Edwards & Slingo,
1996) to include Extreme Ultra- violet (EUV) and Far
Ultraviolet (FUV) wavelengths (< 200 nm).

� Pass the photolysis rates from the radiation scheme to the
United Kingdom Chemistry and Aerosol (UKCA) scheme
(e.g. Morgenstern et al., 2009), which is the chemistry
scheme used in the UM. This is needed to drive exothermic
chemical reactions. The associated exothermic heating is
responsible for the large rise in temperature with altitude
in the lower thermosphere (see e.g. Marsh et al., 2007).

� To complete the UM lower thermosphere heat budget, a
representation of Joule heating (e.g. Billett et al., 2018)
needs to be included, together with the NO cooling often
observed in the aftermath of geomagnetic storms (Knipp
et al., 2017). The UM has no representation of the iono-
sphere nor electrodynamics. Accordingly, the Joule
heating and NO cooling will likely be extracted from
simulations of the Thermosphere Ionosphere Electrody-
namics General Circulation Model (TIEGCM, e.g. Qian
et al., 2013), which will be run for similar periods to
the extended UM simulations.

� Make changes to the UM dynamics to ensure stability as
the model lid is raised and resolved model wave ampli-
tudes increase as a result of the reduced density. This shall
include the addition of molecular viscosity and diffusion
(Griffin & Thuburn, 2018).

In addition, the UM can be linked to current atmospheric
conditions, by relaxing the UM troposphere and stratosphere
to regular (6 hourly) meteorological analyses, using the
“nudging” approach (Telford et al., 2008). Pedatella et al.
(2013) showed that constraining whole atmosphere model simu-
lations with lower atmosphere observations reduced root mean
square wind errors by 30%–40% in the lower thermosphere.
Therefore, this relaxation shall help to improve the UM thermo-
sphere simulation by linking it to daily varying conditions.

The DTM lower boundary from approximately 120–220 km
is not fitted to data, and it has never been extensively evaluated
because data in that region are extremely rare. Successful
coupling of DTM and UM in the 150–170 km zone requires
enhancing the accuracy of the former model in order to be as
compatible with the UM as is possible taking the different
model algorithms into account. The few available data at the
lower boundary have to be assimilated: GOCE densities from
270 km to 170 km (i.e. up to 3 days before atmospheric
re-entry); Global Ultraviolet Imager (GUVI; Paxton et al.,
2004) O/N2 ratios from the Thermosphere-Ionosphere-
Mesosphere Energetics and Dynamics (TIMED) mission; and
US Air Force daily mean (Storz et al., 2005) and SETA accel-
erometer densities (Forbes et al., 1995). Updated and rescaled

GRACE and CHAMP densities shall also be used together with
new data from Swarm-A.

MOWA can be used operationally in the future but is too
computationally expensive and complicated to exploit for users
themselves. Therefore, a multi-year UM run will be produced
and the climatology of this used to develop a look-up table
driven climatological model (MCM) which will combine the
UM climatology and DTM. MCM will use both the mean state
and migrating diurnal and semi-diurnal tides calculated from the
UM run. The variability in MCM and MOWA shall be repre-
sented at the lower levels by using the standard deviation of
the difference between the UM multi-year climatology and
UM results for each year. Since the multi-year run is planned
to cover 11 years, this will enable a representation of multi-year
atmospheric variability, including contributions from the solar
cycle. The analysis can also be extended to calculate the clima-
tology plus variability related to geomagnetic activity (binned
by Hp index). For speed and simplicity, the MCM shall be
designed based on monthly means and their associated standard
deviations. However, the output from the UM run shall be 3
hourly, which will enable the analysis of MOWA (within the
domain covered by the UM) to be done down to semi-diurnal
timescales. Analysing the variability as a function of time scale
and location enables us to qualitatively as well as quantitatively
evaluate the impact of space weather on the lower thermosphere
in the 120–150 km altitude range.

As part of the development of higher cadence geomagnetic
indices, it is necessary to ensure that the DTM can work both
with Kp and the higher cadence Hp indices. For comparison
with DTM, the high cadence values can be reconstructed back
in time to 1995, as there is 1-minute geomagnetic observatory
data available. An essential part will be concerned with develop-
ing and implementing an effective forecast of the indices for dif-
ferent lead times. The starting point is to develop forecasts using
neural networks, but other machine learning approaches will
also be investigated. The neural network approach has been pro-
ven to be one of the best techniques for finding the multivariate,
non-linear transfer function between input variables (solar wind
parameters) and output variables (the geomagnetic index).

In order to transition the models to an operational state,
interfaces, coupling mechanisms and data streams between the
various components have to be designed, documented and
implemented. The ESA VSWMC project is developing a frame-
work based on HLA that provides mechanisms and tools for
these purposes. The VSWMC architecture will be analysed in
preparation of an implementation of MCM, DTM and the geo-
magnetic indices, and the associated coupling between these
components. In addition, smaller scale prototype services will
be set up outside the VSWMC framework in order to test imple-
mentations. The prototype environment will also allow rapid
deployment of components for testing and validation purposes.

3 Thermospheric modelling

3.1 DTM

Semi-empirical thermosphere models are mainly used in
satellite orbit determination and prediction to compute aerody-
namic drag. They predict temperature, total density and most
often composition too as a function of location (altitude,
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latitude, longitude, local solar time), solar and geomagnetic
activities, and season. The first Drag Temperature Model, devel-
oped in the seventies (DTM78; Barlier et al., 1978), has been
upgraded several times (Berger et al,. 1998; Bruinsma et al.,
2003, 2012, 2014).

DTM models are constructed by fitting to a density data-
base, with the objective of reproducing the mean climatology
of the thermosphere. The quality of the database, i.e. its consis-
tency, accuracy and its distribution in time and space, is
essential to the achievable model accuracy. The spatial resolu-
tion of the models is of the order of thousands of kilometres,
and density variations with smaller scales are sources of geo-
physical noise. The geomagnetic index used to date, Kp, limits
the temporal resolution to 3 h.

3.1.1 DTM development and database

For SWAMI, twomodels are actually under development: an
operational and a research grade model. The density database, of
which the main datasets are shown in Figure 2, underlying the
model development is also not the same. However, for bothmod-
els they notably contain the full CHAMP (Reigber et al., 1996),
GRACE (Tapley et al., 2004) and GOCE (Bruinsma et al., 2014)
high-resolution accelerometer-inferred density datasets. The
research grademodel is based on density data after 2000, because
the high cadence geomagnetic activity indicesHp cannot be com-
puted for the entire density database back to the sixties. Results
presented here on both models are preliminary. The final models
will be computed as late as possible in the project, in 2020, in
order to benefit from new density data (e.g., GRACE Follow-
On densities, additional year of Stella and Cryosat2).

The new density database is very different from the one
used in the construction of DTM2013. We provide in the
following a summary of the changes. It should be noted that
even if data from the same satellites are used, there can be dif-
ferences in the accuracy and consistency. The GOCE (Bruinsma
et al., 2014) and Swarm-A (Van den IJssel et al., 2019) data
used were computed by TU Delft (TUD) for ESA, and the
CHAMP data was computed with the same aerodynamic model

by TUD too. The TUD satellite aerodynamic modelling is much
more complex, and as a result more accurate and realistic, than
the models used in the US Air Force operational High Accuracy
Satellite Drag Model (HASDM; Storz et al., 2005) or at the
Centre National D’Etudes Spatiales (CNES). As a result, their
inferred densities are more accurate. The data were not re-scaled
to HASDM, as was done for DTM2013. An example of the data
scaling as applied to GOCE in DTM2013, i.e. by scaling to
HASDM densities, is displayed in Figure 3. The ESA/TUD
daily mean densities are 19% smaller on average over the mis-
sion than the HASDM densities, and a scaling factor of 1.23
was applied. CHAMP daily-mean densities are also presented
in Figure 3, and the presently used CHAMP TUD densities
are also about 20% smaller than the CNES CHAMP densities
used in DTM2013. The main consequence of using the more
accurate datasets is that DTM2019 predicts smaller densities,
by about 20%, when compared with DTM2013.

Fig. 2. The main total density datasets available for the construction of DTM2019.

Fig. 3. The ESA GOCE densities and the HASDM densities along
the GOCE orbit, computed in daily-means. The ESA GOCE densities
have to be scaled by 1.23 to fit the HASDM densities. Also shown
are CHAMP daily-means. The CHAMP TUD densities have to be
scaled by 1.30 to fit the CHAMP CNES densities.
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The GRACE data were processed by CNES, and were sub-
sequently scaled to the CHAMP and Swarm-A densities in a pro-
cedure that compares densities after normalization to the mean
altitude of both missions only when the orbital planes are within
15� (i.e. 1 h local solar time) of each other at the equator. The
Two Line Element (TLE) global daily mean densities (Emmert,
2009) are the longest datasets available, spanning four solar
cycles, and they were used to estimate solar activity and seasonal
variations only. Stella daily-mean densities, computed by CNES,
did not require scaling because the aerodynamic model for a
sphere is simple. All other datasets used in the construction of
DTM2013, and notably the mass spectrometer data, were used
with very low weights in the present modelling.

Daily-mean densities inferred from satellite drag data of
eight satellites in elliptical orbits, with perigee heights in the
200–500 km range, were kindly provided by Bruce Bowman.
Latitude coverage is from pole to pole taking all objects into
account, and most satellites cover more than a solar cycle.
The densities are computed from the estimated energy dissipa-
tion rates (EDR), i.e. orbit decay, which are derived from the
orbits fitted directly to radar and optical tracking data. This
method thus benefits from the true accuracy of the classified
radar data. The uncertainty of the daily EDR densities is esti-
mated to be 2%–4%. For a complete description of the method
and the data we refer to Bowman et al. (2004). A new data type
has been used in the assessment of the models only, the O/N2
ratio at 135 km from 2002 to 2007 measured by the TIMED/
GUVI instrument (http://guvitimed.jhuapl.edu/).

The solar and geomagnetic activity indices that drive the
model determine if it is the operational or research version.
The indices used in the research model, F30 (Dudok de Wit
et al 2014) and Hp60 (see Sect. 4) respectively, are not consid-
ered sufficiently robust and unfailing in an operational environ-
ment, as F10.7 and Kp respectively are. The algorithm of the
research model has been updated in order to benefit from the
higher cadence of the Hp60 indices, but has otherwise remained
identical to the DTM2013 algorithm.

3.1.2 DTM algorithm

The representation of the total density in the altitude range
120 to approximately 1500 km is achieved by summing the con-
tributions of the main thermosphere constituents (N2, O2, O, He,
H), under the hypothesis of independent static diffuse equili-
brium. The total density q at altitude z is calculated as follows:

q zð Þ ¼
X
i

qi 120 kmð Þfi zð Þ exp Gi Lð Þð Þ: ð1Þ

Partial densities i are specified at 120 km altitude and propa-
gated to higher altitudes employing the height function f(z),

which is based on temperature. The exospheric temperature
and the partial density variations as a function of the environ-
mental parameters L (latitude, local solar time, solar flux, and
geomagnetic activity) are modelled by means of the spherical
harmonic function G(L).

The function G in case of the research model required
modification because of the higher cadence of the Hp60 indices
of 60 min instead of 3 h in case of Kp. The modifications
consisted of purely logistic as well as algorithmic changes.
The latter concerned in particular applying delays as a function
of latitude, as well as using averages over 2–24 h.

3.1.3 Model assessments

A short selection of comparisons is presented of the ISO
models NRLMSISE-00 (Picone et al., 2002), JB2008 (Bowman
et al., 2008) and DTM2013 (Bruinsma, 2015), and the two new
DTM2019 versions. Table 1 lists the statistics of the observed
(O) to model (C) density ratios computed for the complete
main datasets in the DTM2019 database. The effect of the sim-
plified aerodynamic coefficient modelling on the densities used
in all other models is reflected in the mean O/C, which is
systematically smaller than unity for all datasets except Stella
(a sphere).

The statistics over entire datasets cannot reveal improve-
ment in geomagnetic perturbation modelling because storm
events are rare. The solar activity modelling, i.e. the choice of
proxy, is on the other hand reflected in these numbers. The per-
formance is best with the research model, but the operational
model is, despite using F10.7 and Kp, rather good and even
slightly better than DTM2013. A slightly improved perfor-
mance through different weighting and parameter estimation,
and notably the high mean O/C with Swarm-A data, is expected
for the final models.

3.2 Extended UM

The UM is the Met Office weather and climate model and in
most applications is used with an upper boundary near 85 km
altitude (e.g. Walters et al., 2019). The UM was originally docu-
mented by Cullen (1993). A revision to the model dynamical
core followed around 10 years later (Davies et al., 2005). Its cur-
rent dynamical core, ENDGame, solves the non-hydrostatic,
fully compressible deep-atmosphere equations of motion on a
rotating sphere using a semi-implicit semi-Lagrangian formula-
tion (Wood et al., 2014).

The UM parametrizes a range of atmospheric processes,
which operate on smaller length scales than those used in the
dynamical scheme, and are therefore not resolved on the numer-
ical grid. Furthermore, some physical processes such as radiation

Table 1. Statistics (mean O/C, standard deviation of O/C as a percentage, correlation) of the density ratios of the ISO thermosphere models and
the two new DTM versions.

NRLMSISE-00 JB2008 DTM2013 DTM2019_oper DTM2019_res

CHAMP 0.69/23.2/0.97 0.78/20.2/0.98 0.76/19.8/0.98 0.96/19.3/0.98 1.00/18.8/0.98
GRACE 0.75/28.8/0/97 0.83/26.9/0.98 0.76/23.2/0.98 0.99/25.8/0.98 0.98/22.3/0.98
GOCE 0.82/14.3/0.97 0.81/12.4/0.98 0.79/11.6/0.98 1.00/10.7/0.98 0.99/10.6/0.98
Swarm-A 0.89/25.8/0.92 0.92/21.2/0.95 0.78/25.5/0.96 1.09/22.2/0.94 0.98/20.4/0.95
Stella 1.09/30.7/0.94 0.92/47.3/0.94 0.78/20.8/0.95 0.97/20.7/0.95 0.99/19.6/0.95
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are not represented in the equations of motion used in the UM.
Only a few of the parametrizations remain relevant in the simula-
tion of the MLT region. Radiative heating and chemistry are
represented by the SOCRATES radiation scheme (Edwards &
Slingo 1996) and the UKCA scheme (e.g. Morgenstern et al.,
2009), respectively. Gravity waves generated by non-orographic
sources are parametrized by the Ultra Simple Spectral Parametri-
zation (USSP) scheme (Warner & McIntyre, 2001).

3.2.1 Initial UM runs and the nudging scheme

Developments for the UM radiation scheme (as detailed in
Sect. 3.2.2) were not ready at the start of the SWAMI project,
which made the radiation scheme unsuitable for use in the
MLT. Initial UM tests were performed with a raised UM upper
boundary, but with pre-SWAMI parametrizations. This is an
important first test, in order to investigate how stable the UM
is at higher altitudes.

These first simulations are run at a horizontal resolution of
1.25� in latitude � 1.875� in longitude, using existing parame-
trizations and a raised model boundary (specifically 88 levels
extending up to 100 km), developed from the original 85 levels
that extend up to 85 km. Two simulations were carried out, with
September and March start dates, and both failed in the follow-
ing solstice with excessive and unrealistic model winds seen
near the summer pole. Further analysis indicated that these
winds are caused by the inappropriate use of the SOCRATES
radiation scheme at higher altitudes and the consequent produc-
tion of excessive and erroneous heating rates at upper levels (see
Griffith et al., 2020 for further details).

The solution to this is to replace the LTE heating rates
produced by SOCRATES with the new NLTE scheme, which
will give more accurate heating rates above ~65 km. At the time
of the initial tests, the NLTE scheme was not ready. Therefore,
to maintain progress, we developed a scheme to relax the UM
temperatures to a climatological profile, using a nudging scheme
similar to that described by Telford et al. (2008). This nudging
roughly approximates the impact of NLTE radiative heating and
exothermic chemical heating, until such time as these are added
to the UM. The nudging scheme developed here is a Newtonian
relaxation to a globally uniform temperature profile over a given
timescale (by default, 24 h is used). Further details appear in
Griffith et al. (2020).

In the new runs, the UM radiative heating was switched off
above 70 km, and temperature increments from the nudging
scheme were used above 70 km instead. The immediate impact
was that the extended UM run with a 100 km upper boundary
was stabilized, and this paved the way for further UM experi-
ments with higher lids and different vertical resolutions.

At the upper boundary of the 88 level model configuration,
the vertical level height increment is approximately 6 km.
However, this resolution is not appropriate to accurately repre-
sent vertically travelling waves in the MLT. In order to accu-
rately model vertical wavenumbers in atmospheric dispersion
relations (see e.g. Griffin & Thuburn, 2018) the vertical resolu-
tion must be finer than the atmospheric scale height. Ideally, the
vertical resolution should be one quarter of the atmospheric
scale height, so as to interpolate a vertically propagating atmo-
spheric wave appropriately over this scale height, and resolve its
sinusoidal variation. One half of a scale height will not resolve
all vertically propagating waves over this scale height, but will

resolve larger scale waves in an acceptable manner. The analy-
sis by Griffith et al. (2020) indicated that the respective vertical
resolutions used should be 1.5 km and 3 km. As well as testing
different vertical resolutions, simulations with different UM lid
heights were carried out. Heights of 120 km and 135 km were
tested, in addition to the 100 km lid used previously.

A stable simulation with a 1.5 km resolution was only
possible with a 100 km lid. With higher lids the enhanced resolu-
tion led to greater vertical velocities (associated with upward pro-
pagating waves) near the top of the model, which caused the
120 km and 135 km lid runs to fail, evenwhen themodel “sponge
layer”was strongly applied. The sponge layer is additional damp-
ing applied near the UM upper boundary, and is commonly used
in atmospheric models to prevent spurious reflection of vertically
propagating waves from the model lid. In the UM, this sponge
layer scheme works by damping vertical velocity (e.g. Melvin
et al., 2010). Even when a 3 km vertical resolution is used, the
sponge layer has to be strengthened by a factor of at least 4
(for the 120 km lid) and of at least 8 (for the 135 km lid), com-
pared to the 85 km or 100 km runs, to ensure a stable run.

An example of zonal mean zonal wind and zonal mean tem-
perature for June for the UM run with a 3 km vertical resolution
appears in Figure 4. The wind and temperature structures below
100 km are consistent for all runs. Griffith et al. (2020) also
show good agreement between the 85 km and 100 km runs
below 85 km and also good agreement with the Microwave
Limb Sounder temperature climatology and the Upper Atmo-
sphere Research Satellite Reference Atmosphere Project
(URAP) (Swinbank & Ortland, 2003) zonal wind climatology.
However, easterly winds at equatorial uppermost levels in the
135 km run are too strong and the latitudinal and longitudinal
structure of the models fields above around 100–110 km is
increasingly poor compared to fields from other models (not
shown). This is due to the very strong relaxation to the global
mean temperature used in the nudging scheme above around
100 km, where the temperatures rise strongly with height. This
issue is likely to be solved with the introduction of exothermic
heating from the UKCA but in the interim could be addressed
by replacing the global profile in the nudging scheme with a
more detailed temperature climatology. We also had some suc-
cess in producing simulations with a 150 km lid. However,
given the above issues we will not produce any more such simu-
lations until the issues with the latitudinal/longitudinal structure
in the lower thermosphere are addressed.

3.2.2 The NLTE radiation scheme

The UM NLTE radiation scheme was not ready when the
above UM experiments were run, but this scheme has now been
tested and implemented in the UM. This scheme represents
NLTE infrared cooling for the 15 lm CO2 band (Fomichev et
al., 1998) and 9.6 lm O3 band (Fomichev & Blanchet, 1995),
and NLTE heating from the 1.05–4.3 lm CO2 band and the
200–310 nm O3 Hartley band. This NLTE radiation scheme
is commonly used in MLT models, and has been rewritten from
scratch to make it compatible with UM coding standards. In the
UM, the radiative heating is calculated twice, once with
SOCRATES and once with the Fomichev scheme, and then
they are blended at the point where NLTE processes begin to
become important (above 65 km altitude). This transition is
quite smooth and no averaging across the transition zones seems
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Fig. 4. Zonal mean zonal wind (top) and zonal mean temperature (bottom) for UM simulations with a 3 km vertical resolution and with lids at
100 km (left), 120 km (middle) and 135 km (right).

Fig. 5. Change in temperature due to shortwave heating: (top left) not including NLTE effects, and (top right) including non-LTE effects.
Zonal mean zonal wind in June for UM runs with lids at 100 km (bottom right), 120 km (bottom middle) and 135 km (bottom right).
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to be needed. It can be seen in Figure 5 that including NLTE
effects removes erroneous SW heating at the top boundary that
caused instabilities in the UM.

With the inclusion of NLTE radiation, the UM still requires
the nudging scheme to be used to remain stable, but the nudging
can be switched on at 90 km instead of at 70 km as before.
Figure 5 shows that the zonal mean zonal wind in the NLTE
simulations is fairly similar to that in Figure 4, which shows that
the strategy of using nudging in the model development stage is
robust and acts to approximately represent the effects of the
NLTE heating. There are some differences between the wind
fields. The start dates for the runs shown in Figures 4 and 5
are different which explains the different phases of the Quasi
Biennial Oscillation in the equatorial stratosphere in Figures 4
and 5. In addition, the diagonal pattern of westerly winds
extending from around 50 km and 45�S to 45�N and around
100 km is more pronounced in Figure 5 than in Figure 4 and
is in slightly better agreement with the URAP climatology.

3.2.3 Treatment of radiative heating, photolysis
and photoionisation in the FUV and EUV

Solar radiation at FUV and EUV wavelengths <200 nm is
generally absorbed in the mesosphere and thermosphere,
primarily by O2, N2, and O. This results both in photolysis/
photoionisation of these major species along with a number
of minor species, and to direct radiative heating of the atmo-
sphere. Current parametrizations of radiative transfer used in
the UM deal with radiative heating and photolysis in two sepa-
rate schemes. Radiative heating is handled using the two-stream
SOCRATES scheme (Edwards & Slingo, 1996; Manners et al.,
2018) covering wavelengths >200 nm (Walters et al., 2019),
while photolysis >177 nm is handled by the eight-stream
Fast-JX scheme (Wild et al., 2000; Telford et al., 2013).

To parametrize a unified treatment of radiative heating,
photolysis and photoionisation at shorter wavelengths (namely
for the wavelengths <177 nm not currently included in
SOCRATES), a flexible new scheme has been implemented
in the SOCRATES code. This introduces two novel techniques:

1. Replacement of the plane-parallel approximation with the
pseudo-spherical approximation, allowing the calculation
of solar radiation absorbed in the twilight regions of the
atmosphere where the solar zenith angle is greater than
90�. Under the plane-parallel approximation a column
within the UM is treated as a set of flat layers extending
infinitely in the horizontal. In the pseudo-spherical
approximation, the plane-parallel atmosphere is replaced
by a set of spherical shells. Where the local zenith angle
is greater than zero, the direct flux arriving at each layer
will take a different path through these shells, so a sepa-
rate calculation for the direct beam is required for each
layer. This allows calculations where the solar zenith
angle is below the horizontal to the limit where the solar
beam would intersect the surface. The scheme implemen-
ted in SOCRATES has been applied to exoplanet atmo-
spheres (Lines et al., 2018), but is also crucial to
accurately model radiative transfer in the MLT region.

2. Accurate spectral calculation of photolysis rates using a
novel technique to map the fluxes calculated using the
correlated-k method onto a high resolution spectrum.

The correlated-k method essentially reorders the wave-
lengths within a spectral band in order of increasing
strength of absorption and then bins up wavelengths with
similar absorption coefficients. Radiative transfer calcula-
tions need then only be done for each absorption bin, or
k-term. The novel technique here is to retain the informa-
tion on the wavelengths that each k-term represents, so that
the calculated fluxes for each k-term are mapped back to
spectral channels at these wavelengths. The high resolution
fluxes are then convolved with the solar spectrum, photo-
absorption cross-sections and quantum yields in order to
derive accurate photolysis rates for any given photolysis
pathway. An added benefit is that spectra can be diagnosed
at high-resolution, effectively providing line-by-line reso-
lution for the cost of a broad-band calculation.

The rate of photolysis or photoionisation for a given
molecule is:

J ¼
Z

rQA dk

where r is the absorption cross-section of the molecule
(in m2), Q is the quantum yield, and A is the actinic flux,
which is the integrated radiative intensity over all directions.
The integral is over all wavelengths (k). The quantum yield
is read in as part of the standard configuration file (or spectral
file). In the case of highly energetic photons causing photoio-
nisation it is possible for the photoelectron to cause further
dissociation/ionisation events. This can be parametrized by
providing scaled quantum yields. The summation over chan-
nels is done by weighting each channel by the incoming solar
spectrum, which may be specified at arbitrary time resolution
in an extended spectral file.

The radiative heating rate is determined from the flux diver-
gence across the layer. Where photolysis occurs some of the
absorbed flux is used to dissociate or ionise the molecules. This
fraction of the energy is therefore not (immediately) available to
increase the temperature of the gas and should instead be handled
by the chemistry scheme for possible release in exothermic reac-
tions. The proportion of the flux used for photolysis is deter-
mined at the same time as the photolysis rates within each
channel. The flux divergence used for photolysis is then summed
over channels in the same way as the photolysis rates and then
summed over all photolysis pathways. The residual heating is
determined by subtracting this from the total flux divergence.

The scheme developed here has been designed to be applic-
able over the entire spectral range from X-ray to near-infrared
wavelengths. This is entirely configurable through the use of
an external spectral file which contains all the information on
the wavelength breakdown, the gas absorbers present, gas
absorption coefficients, photolysis pathways and quantum
yields, the solar spectrum (optionally time varying), Rayleigh
scattering coefficients, and eventually cloud and aerosol absorp-
tion and scattering parameters. An initial configuration has been
developed covering the wavelengths 0.05–320 nm. Following
Solomon & Qian (2005) we have used absorption cross-sections
and quantum yields from Fennelly & Torr (1992) for EUV, and
Henke et al. (1993) for the X-ray, for the species O2, N2, O and
N. Shortward of 65 nm the photoelectron enhancement factors
derived by Solomon & Qian (2005) are used to enhance the
quantum yields. In the FUV, gas absorption coefficients are
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derived from the recommendations in the JPL report 15-10
(Burkholder et al., 2015). Quantum yields for the important
region around the solar H Lyman-a line (121.6 nm) are taken
from Lacoursiere et al. (1999). O2 absorption dominates
throughout the far-UV with complex absorption spectra over
particular wavelength ranges such as the Schumann-Runge
bands at 175–205 nm. The k-term mapping technique
automatically concentrates channels in these complex parts of
the spectrum.

Future work will refine this configuration for use in the UM
to provide photolysis and heating rates in the MLT region.
These can then be passed to the improved UKCA, which is
being developed in a separate project.

3.2.4 The viscous scheme

While the non-hydrostatic formulation of the UM should
lead to a more accurate representation of thermospheric
dynamics, at this stage the model is not stable enough to run
in the thermosphere. Griffin & Thuburn (2018) showed in idea-
lised studies that the UM has difficulties simulating an acoustic
wave propagating upwards into the thermosphere. These acous-
tic waves are simulated by a non-hydrostatic core, but are absent
from any hydrostatic solution. The acoustic waves can be
important in geomagnetic storms (e.g. Deng et al., 2008), so
they need to be represented as realistically as possible. This
can be done using realistic damping that controls the growth
of wave amplitude with decreasing density, rather than the crude
use of high levels of artificial model diffusion.

Molecular viscosity and diffusion are real physical processes
that have a significant damping effect on vertically propagating
waves in the thermosphere (above 130 km) where the timescale
at which molecular viscosity and diffusion act becomes shorter
than the growth rate of acoustic waves (Griffin, 2018). Griffin
(2018) found that with a standalone version of ENDGame the
inclusion of vertical molecular viscosity and diffusion acts to
reduce acoustic wave amplitudes above 130 km, and hence
improves the model stability. Including molecular viscosity
and diffusion in the UM will be very important for its stability
as it is extended upwards. Its inclusion may also negate the need
for the sponge layer in the UM in simulations with a top model
boundary extended higher than 130 km.

Including vertical molecular viscosity and diffusion in the
UM is non-trivial. They act on very short timescales compared
to the timestep used by the UM’s semi-implicit dynamical
solver, and so it must be included with the dynamics in a fully
coupled way. Trying to include it separately from the dynamics

causes time-splitting errors to be generated if the timestep used
is too large (greater than one minute). As the vertical molecular
viscosity and diffusion cannot simply be added as an increment
to the right-hand side of the dynamical equations, as with other
UM parametrization schemes, this makes the coding of the
scheme very complex. In addition, the full UM uses a different
solver (an incremental solver close to that described by Allen &
Zerroukat, 2016) to that used by the stand-alone version of
ENDGame used by Griffin (2018) (multigrid solver – e.g.
Buckeridge & Scheichl, 2010), so the scheme needs to be
re-implemented.

The Euler governing equations with stress tensors including
viscosity coefficients is given by Griffin (2018). The additional
viscous coefficients are all functions of thermodynamic vari-
ables and include the coefficients of molecular viscosity and
thermal diffusivity. After Allen & Zerroukat (2018), a final form
of the equation which includes viscous terms is derived, and
which can be used as input for the incremental solver. The
viscous scheme will be implemented as a change to the inputs
of the UM’s incremental solver in the dynamical core. Less
approximations are made with this method compared to that
used with the multigrid solver in the stand-alone version of
ENDGame, so it may even give an improvement in accuracy.

Pseudocode for the entire viscous scheme has been written
up and internally reviewed, to confirm the veracity of the
scheme. The process of producing the code for the scheme is
underway. Unit tests have been being added to the various
routines in the scheme to make the code more robust and easier
to debug. These have involved, for example, checking that all
the inputs and outputs from the code are within expected para-
meters, checking that the thermodynamic variables take physi-
cally realistic values, or checking that the arrays being passed
through the routines are the correct sizes.

4 New geomagnetic indices

4.1 High cadence, open-ended geomagnetic
index Hp

The SWAMI project aims at a high cadence geomagnetic
index that resembles the Kp index. Here, high cadence means
that the time resolution of the index is higher than the 3-hourly
resolution of the Kp index. A number of geomagnetic indices,
which are available for different purposes and based on different
principles, are shown in Table 2. The newly developed, high
cadence index Hp is based, as much as possible, on the

Table 2. Summary of geomagnetic indices.

Index Time resolution Comment

Hp (incl. Hp90, Hp60, Hp30) 90, 60, 30 min Based on Kp method
Kp 3 h Sub-auroral and mid-latitude
AE (incl. AL, AU, AO) 1 min AE = AU � AL: overall electrojet activity;

AO = 0.5(AU + AL): equivalent zonal current
PC 1 min Energy input from solar wind, merging electric field
Dst 1 h Magnetospheric ring current intensity
Wp 1 min Pi2-activity, timing of substorm onset
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algorithm to derive the Kp index and it is designed to have the
same frequency distribution of index values as the Kp index.
The Hp index is currently produced with three different time
resolutions of 90 min (Hp90), 60 min (Hp60) and 30 min
(Hp30). Likewise, the geomagnetic ap index, which is the linear
version of the Kp index, is provided in the versions ap90, ap60
and ap30. The Kp index has a maximum value of 9. This means
that all geomagnetic events that are above a certain threshold
will be assigned a Kp index of 9. An adaptation to make the
Hp indices open-ended is in development and will allow to
describe very high levels of geomagnetic activity with
Hp = 9+, 10�, 10o, 11� and so on.

The Kp index (Bartels, 1957a, b; Mayaud, 1980; Menvielle
& Berthelier, 1991; Siebert & Meyer, 1996) is a measure of par-
ticle radiation effects observed in sub-auroral to mid-latitude
geomagnetic field records and thus a proxy for the energy input
from the solar wind into the ionosphere and thermosphere. This
energy input is modulated by magnetospheric processes and the
magnetic effects tracked by Kp are mostly caused by iono-
spheric electric currents associated to the polar electrojet and
their field aligned currents. The Kp index (and ap index) is pro-
duced and distributed by the German Research Centre for
Geoscience, and is endorsed by the International Association
of Geomagnetism and Aeronomy (IAGA).

The PC index describes polar cap currents and also repre-
sents a measure of the solar wind energy input (Troshichev et
al., 1988, 2006). The AE indices (Davis & Sugiura, 1966;
Tomita et al, 2011) are caused by ionospheric currents asso-
ciated to the polar electrojet and are a measure of solar wind
energy input and of magnetospheric processes. AE and PC, like
Kp, are based on data corrected for quiet-time geomagnetic
variations as well as for local time and seasonal effects.

AE and PC are based on instantaneous values of the
geomagnetic field, they are available in near real-time (NRT)
with 1 minute time resolution. Kp is a range index, related to
the maximum difference of the magnetic variation within a
UT 3-hourly interval, i.e. one index value is assigned for the
period from 00:00 UT to 03:00 UT, one from 03:00 to 06:00
UT, and so on.

The low temporal resolution of the Kp index is a disadvan-
tage for space weather applications. On the other hand, the Kp
index goes back to 1932 and is very well established as space
weather tool (e.g. NOAA space weather scales are based on it).

Another advantage of the Kp index arises from the location
of the 13 geomagnetic observatories it is based on. During
strong events, the auroral oval expands and this leads to an
increase in geomagnetic activity at sub-auroral and mid-
latitudes, which are tracked by Kp.

Other indices with higher time resolution, like the Dst
(1-hour resolution, a measure of the magnetospheric ring
current; Sugiura & Hendricks, 1967) or the Wp index (1-min
resolution, indicator of substorm onset time; Nosé et al.,
2012), are not very well correlated to energy input from the
solar wind.

In contrast to the other geomagnetic indices listed in Table 2,
the Kp index values 0, 0+, 1�, 1o, 1+, 2�, . . ., 9�, 9 are
discrete and limited to a maximum value of 9. This is another
disadvantage of the Kp index, since extreme events above a
certain threshold will always be given a Kp = 9, instead of being

subdivided into different values, depending on the strength of
the event.

The new index shall be as useful as possible for existing
services and models, which predominantly use Kp. Our aim
here is to provide a new geomagnetic index that resembles, as
much as possible, the well-established Kp index both in terms
of reliability, availability and properties, e.g. in the frequency
distribution of its index values. The development of a new,
Kp-like index with higher cadence than Kp will be briefly
described in the following. This index will be open-ended, i.e.
extreme events can be assigned values of Hp = 9+, 10�, 10o,
10+, . . ., depending on the amplitude of the event.

Kp is determined from the standardised local K values for
each observatory. While Kp is a measure of global energy input
from the solar wind and magnetosphere into the ionosphere and
thermosphere, the local K values from individual observatories
are also used for regional investigations and therefore we also
develop high cadence K value equivalents, i.e. H90, H60, and
H30 values.

Both the definitive Kp index and the nowcast Kp index are
available from GFZ. The definitive index is calculated at GFZ
semi-monthly from the K values provided by the Kp observa-
tories. The nowcast K and Kp indices are calculated at GFZ
from near real-time observatory data provided. For the K values,
the FMI-method is used (Sucksdorff et al., 1991), which was
found to be the best computer-based algorithm (Menvielle et
al, 1995). The methodology to determine H and Hp values,
described in the following, is based on the nowcast K and Kp
used at GFZ. In the following we describe this process.

The Hp indices are based on the same geomagnetic observa-
tories as the Kp index. The subtraction of the quiet time curve is
taken from the FMI method. A slightly different approach is
taken when determining the range of the geomagnetic variation
(after subtraction of the quiet curve) in the index interval
(90, 60, 30 min). For K, the range between the variation’s mini-
mum and maximum is always used. For H, we use either this
range, or the maximum difference between the geomagnetic
variation and the quiet curve, whichever is larger. In practice,
we found that this deviation from the K determination method
had very little influence on the result.

Thus, for each index interval we determine one disturbance
value in nT for the two horizontal components and choose the
larger one as being representative for this index interval. We
found the resulting disturbance values (in nT) for the shorter
index intervals to be systematically smaller than for the 3-hourly
intervals. The disturbance values are then mapped to the index
values H = 0, 1, 2, . . ., 9, such that the frequency distribution of
the H indices for a specific observatory is identical to the
frequency distribution of the K index values. For example, for
Niemegk observatory, a disturbance between 330 nT and
500 nT yields K = 8. These boundaries for H = 8 at Niemegk
are 254 nT and 371 nT for H90 = 8; 218 nT and 337 nT for
H60 = 8 and 190 nT and 267 nT for Hp30 = 8. The lower
boundaries compensate for the systematically lower disturbance
values in the shorter index interval.

The H values are standardized with the same tables for
local time and seasonal dependency as the K values and
averaged over all observatories to yield a mean value. These
mean values are then mapped to the Hp values such that the
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resulting Hp index has the same frequency distribution as the
Kp index.

In Figure 6 an example for Kp and Hp indices is shown for
2 days where strong geomagnetic activity occurred. Strong geo-
magnetic variation was observed at all 13 Kp stations from
22:30 on Sept. 7 to 02:15 on Sept. 8 as well as from 12:00 to
15:00 on Sept. 8. These times are marked in light blue. The time
series of the two consecutive days shows several aspects of the
characteristics of Kp and Hp and their relationship:

� The Hp indices follow Kp closely if Kp changes are small
and gradually, as, e.g., on Sept. 7 from 00:00 to 15:00 and
on Sept. 8 from 03:00 to 09:00.

� At times of strong geomagnetic activity (light blue area)
Kp and Hp indices show similarly high values.

� The Hp indices follow Kp closely during larger changes
in Kp, if these are caused by geomagnetic activity that
(by chance) commences at or shortly after the start of a
3-hourly Kp interval, such as on Sept. 8, at 12:00 UT.

� The temporal evolution of the Hp indices show significant
differences from the Kp values for strong changes in geo-
magnetic activity that commences at other times than the
start of a 3-hourly Kp interval. This is observed on
Sept. 7 at 21:00 UT to 21:30 UT, when Kp = 8�, while
Hp90 = 4, Hp60 = 4+ and Hp30 = 5�.

In summary, these examples indicate that the high cadence
Hp indices track the Kp index well. A more detailed description
of the derivation and the properties of theHp indiceswill be given
in a dedicated publication emerging from the SWAMI project.

Currently, a test dataset for the years 2003–2005 and 2017
and its description is available for download (Matzka et al.,
2019). These years were chosen to include the Halloween storm
in 2003 and a large number of moderate geomagnetic storms (in
2005) as well as the recent geomagnetic storm in September
2017 (e.g., Curto et al., 2018). It should be noted that the pub-
lished test dataset of Hp is a version of the index that is not yet
open-ended, and consequently the maximum value of Hp is
limited to 9o. In 2020, the high cadence, open-ended Hp index

will be made available by GFZ in near real-time and as an
archive back to 1995. (Disclaimer to users of the dataset: Please
carefully test and validate all your model output and services for
which you use the Hp indices [including the ap90, ap60, ap30]
as input parameter. This is especially true when these models
and services were originally derived or parameterized with the
Kp index).

4.2 Index nowcasting and forecasting

The prediction of satellite orbits relies on the prediction of
the thermosphere conditions that in turn relies on the prediction
of geomagnetic conditions. The Kp index is widely used for a
number of applications. For the orbit propagation up to the
current time one can use the near real-time Kp index when avail-
able as discussed in Section 4.1. However, such a near-real-time
Kp still comes with a delay, and projections into the future
require a nowcast of Kp as well as predictions.

One simple approach can be to use an average Kp index
(“average Kp”) model. That would certainly be inaccurate but
would allow predictions. Slightly more elaborate predictions
can be based on the most recent values of Kp (“persistence
Kp”), where Kp is forecast to be the same as the last available
Kp. While this model would also not result in an “accurate”
prediction, it will statistically reflect the general state of the
geomagnetic activity as it will be based on recently estimated
Kp from the measurements. An even more elaborate approach
would be to use the measurements from the previous solar rota-
tion (“recurrence Kp”). Such predictions would not only
account for the general level of activity during a particular solar
cycle, but may provide a more or less accurate forecast of the
recurrent geomagnetic activity that is driven by the fast solar
wind streams originating from the coronal holes. An additional
improvement of the forecast can be made by utilizing the solar
wind measurements (“SW model”). Combining all these data-
sets one can utilize all of the observations and data including
history of Kp and solar wind conditions (“full model”).

While predictions using various tools and inputs similar to
described above have been done in the past (Costello, 1997;

Fig. 6. Kp and Hp indices on September 7 and 8, 2017. Two periods of strong magnetic variation at all Kp stations are marked in light blue.
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Boberg et al., 2000; Balikhin et al., 2001; Boaghe et al., 2001;
Wintoft et al., 2017; Tan et al., 2018), until recently it remained
unclear how each of these models based on different data com-
pare to each other, if they were combined what the relative con-
tribution of each of these models would be, and how their
performance depends on the forecast horizon – the time interval
in the future for which the forecast is issued.

To objectively evaluate the importance of different input
data, Shprits et al. (2019) developed a series of models based
on neural networks. To make sure that the evaluation of the
accuracy of the models does not depend on the interval for
validation of the network, the authors used a K-fold cross vali-
dation technique. The main idea of K-fold cross validation is
that the entire interval of time-series is divided into a number
of intervals. After that, one of the intervals is excluded and
models are developed (hereafter referred to as “trained”) on
the remaining dataset and tested on the excluded time interval.
Such a validation is repeated for each of the time intervals one
by one. The net value of the error is estimated as an average
from all models trained in the manner as described above.

Shprits et al. (2019) utilized 1-minute propagated solar wind
measurements from 2005 until 2016 obtained from the OMNI-
Web data service. They first divided the considered time interval
into 11 yearly periods and then performed a K-fold cross valida-
tion. Each cross-validation used one year that was excluded
from training for validation and the rest of the data for training.
Training and validation were repeated 11 times, resulting in
11 training errors and 11 validation errors. The average of all
of these errors was used as an indicator for the average over a
solar cycle of each of the models. For a more detailed descrip-
tion of the model parameters and datasets, please see Shprits et
al. (2019).

The results of the models and their K-fold cross validation
are shown in Figure 7. For nowcasting (estimation of the current

conditions or short-term predictions), the simple models based
on average values of Kp and values from the previous solar
cycle turned out to be more accurate than the persistence predic-
tions. Addition of the solar wind data resulted in a much more
accurate prediction. Interestingly enough, the accuracy of the
model based only on the solar wind was very similar to the
accuracy of the model that utilized near-real-time and historical
values of Kp, leading to the rather surprising result that the
accuracy of predictions cannot be improved by augmenting
them with real-time estimates. That does of course not mean that
real-time measurements are not important as they can give the
most accurate values of Kp for the recent history.

For predictions more than 12 h into the future, the value of
the solar wind predictions decreases as current solar wind con-
ditions cannot help predict the future. For such longer-term pre-
dictions the historical measurements and in particular recurrence
(values from the previous solar cycle) start playing an important
role. The models based on historical values for horizons of over
two days outperform the solar-wind based models.

It should be noted that while some of the applications of
geomagnetic conditions depend on the average values, predic-
tions of the majority of space-weather related phenomena
depend on storm-time values of the Kp index. The accuracy
of storm-time predictions is much lower. First of all, conditions
may be changing fast during the CME-driven storms. Another
complication is that machine-learning based models tend to be
more tailored towards lower values of Kp, as quiet times occur
much more often than disturbed geomagnetic conditions.
Storm-time Kp accounts for less than 1% of all Kp time series.
Forecasts trained on the original Kp time series tend to system-
atically underestimate storm-time Kp data as the majority of the
data points used as an input are quiet-time values. Figure 8
shows the errors in different forecasts models for Kp � 4 and
Kp > 4.

Fig. 7. Root mean square (RMS) error for K-fold validation (cross-validation errors) for all models described above for different horizon times
of predictions. The solar wind-based model has a lower RMS error than Kp-based models, while the recurrence model outperforms the solar-
wind based model for longer horizon times. The full model provides a smooth transition between the Kp-based and solar-wind based models
(adapted from Shprits et al., 2019).
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To account for this, Shprits et al. (2019) suggested to per-
form a resampling of the data. They showed that resampling
can significantly improve the results. For the development of
the neural network the input dataset consists of values of Kp
and values of the solar wind immediately preceding the current
time. Such a dataset can be augmented by duplicating the points
corresponding to high Kp. Such a duplication or “resampling”
continues until the number of high Kp values becomes equal
to the number of low Kp values. When such a rebalanced data-
set is used for training, the empirical model puts much more
weight on storm-time values and the accuracy of the forecast
for high Kp may be improved. Shprits et al. (2019) also sug-
gested that other methods that can put more weight on high
Kp values can result in similar improvements for the storm-time.
These can potentially be methods that allow to specify the cost
function for the training that can “pay more attention” to high
values of Kp than to low values. While tailoring of the model
to disturbed geomagnetic conditions may result in improve-
ments during storm times, it will also decrease the accuracy
during quiet time as less attention will now be paid to the most
typical values of Kp from 0 to 4–5. Tailoring of the methods
and testing of the methods for particular applications should
be the subject of future research.

While tests of Shprits et al. (2019) provided a systematic
error estimation for the models based on neural networks, it
remained unclear if the accuracy could further be improved
by utilizing different methods for regression. To address this
question, Zhelavskaya et al. (2019) compared the performance
of a number of machine learning (ML) methods for predicting
the Kp index. In particular, they used Linear Regression (LR),
Gradient Boosting (GB) (e.g. Friedman, 2001) and artificial
Feedforward Neural Networks (FNN).

They also analyzed the input data and tested various ML
methods to reduce the dimensionality of the input data, which
in this case was historical measurement of the solar wind
parameters. This procedure is usually referred to as “feature
selection” in ML. As the predictions utilize time series, the
number of input values for the training (in ML referred to as
“features”) grows when high cadence is considered, and the
number of inputs may be very large when the long-term history
is considered. Handling of such large input datasets may be
computationally demanding and can result in so-called “over-
training” (or “overfitting”), which will decrease the accuracy.

Moreover, it becomes more difficult to evaluate the importance
of each of the inputs for the model.

To find the most important subsets of inputs, Zhelavskaya et
al. (2019) used a number of methods that included: Random
Forest (RF) (Ho, 1995), Fast Function Extractor (FFX)
(McConaghy, 2011), Maximum Relevancy Minimum Redun-
dancy (MRMR) (Ding & Peng, 2005; Peng & Ding, 2005),
and Mutual Information Maximization (MIM) (Bollacker &
Ghosh, 1996). The Random Forest is widely used for ML
due its fast training speed. The FFX is based on symbolic
regression and allows to infer the main features due to its white
box approach. The MIM and MRMR methods are based on the
concept of mutual information (MI). MI is a quantity that
represents the “amount of information” that can be obtained
from one random variable through observation of another
random variable. See Figure 1 in Zhelavskaya et al. (2019)
for further illustration of these methods.

Fig. 9. Comparison of models obtained with different regression
methods: RMS error (top) and correlation coefficient (bottom)
(adapted from Zhelavskaya et al., 2019).

Fig. 8. Accuracy of considered models as a function of forecast horizon for (a) (Kp � 4), and for (b) Kp > 4 (adapted from Shprits et al., 2019).
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The obtained results (Fig. 9) show that the performance of
the models as measured by the RMS error and Correlation coef-
ficient for all considered models was rather similar and much
lower than that of the reference models based on persistence
of Kp or average Kp (not shown on Fig. 9). This most likely
implies that significant improvements to the prediction of Kp
cannot be obtained by simply using another regression method.
To achieve future improvements, predictions based on solar
wind observations such as predictions with global heliospheric
codes should be used. Such codes can provide advanced fore-
casts of the solar wind that may produce much more accurate
Kp predictions for longer term horizon up to 1–2 days, which
is the time it takes for the disturbances on the Sun to reach
the Earth.

5 Research to operations

5.1 Design of MCM

As indicated above, the extended UM and the improved
DTM shall be blended together to produce MOWA. The exact
blending methods (fairing functions) have not yet been estab-
lished. MOWA can be used operationally in the future but is
too computationally expensive and complicated to exploit for
users themselves. Therefore, MOWA will be used to develop
MCM, in the form of look-up tables. Optimum search and inter-
polation algorithms will be researched in the last year of the
project (2020), and the temporal and spatial resolution of the
look-up tables will be evaluated to guarantee minimal loss of
precision. This model, together with the DTM, shall provide a
quick and easy method for satellite operators to plan re-entry
and launch operations, without using the full UM.

MCM is focused on providing an operational model for
orbit propagation and re-entry computations. This requires:

� Easy usage and integration in larger projects;
� Good computational performance.

In order to achieve this, the design shown in Figure 10 has
been devised. It exposes a common interface for the UM and
DTM models, so that the user of the MCM can use both com-
bined models (together with the blend function) without worry-
ing about the underlying internals.

Finally, as detailed in the user and software requirements
(see Sect. 5.2), the model will be accessible with just a date
and time, an altitude and a location (specified in terms of lati-
tude and longitude), although the input interface will also allow
the user to employ their own estimation of space weather
indices.

5.2 Requirements for operational application

To decide and establish the user requirements for opera-
tional application, a survey was sent to 19 samples, and 8
answers were obtained. The participants came from public, pri-
vate, research and non-research institutions. The questions cov-
ered topics related to the distribution of the computational
model, the information that the possible users think is of more
interest, in which aspects space weather affected their operations
or research, what interface would be more interesting for their
applications, etc.

Using the information drawn from this survey, the following
user requirements were derived:

� The prototype models implementation shall be made
available in the form of source code;

� The prototype models must be accessible from Python
code;

� DTM and MCM shall be made available to the users with
a single-entry point;

Fig. 10. Diagram of the basic components of the MCM model. The exact altitude ranges are yet to be defined.
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� The prototype library shall be made available for Linux
systems;

� The prototype shall be disseminated in a website that
allows running it from a web browser;

� The prototype shall allow using the models with minimal
inputs (date, location and altitude);

� The prototype shall allow the users to optionally use their
own space weather indices;

� The prototype library will reject erroneous user inputs;
� The models shall be integrated in the VSWMC
framework;

� The prototype library models shall expose a unique atmo-
spheric model comprising the DTM and MCM;

� The library will cover altitudes from 0 to 1500 km;
� The run-time performance of the library will be compar-
able to the performance of the isolated underlying models;

� The prototype shall be verified against results of the stan-
dalone models.

These requirements will ensure that the software developed
for this project is in line with what a typical user in need of this
model is expecting. A Python package following the design
specified in Section 5.1 will be published and made easily avail-
able at the SWAMI project website, the VSWMC framework
and other possible channels of distribution. In addition, there
will be a web API integrated in the project website that will
allow for running requests over the Internet.

6 Conclusions

In this paper, we report on progress with SWAMI to date.
The aim is to produce a high quality whole atmosphere model
that is suitable for operational use.

The DTM has been re-developed using a more accurate and
consistent neutral density observation database than has been
used in the past. In addition, new data from Swarm-A, TLE
global mean densities and the US Air Force EDR densities have
been assimilated into a new operational model DTM2019_oper.
Assessment of this model shows it is slightly more accurate than
DTM2013 and that DTM as a whole maintains its advantage
over other models like NRLMSISE-00 and JB2008. A research
version of DTM, called DTM2019_res, has also been developed
which uses Hp60 indices instead of Kp as a geomagnetic proxy,
and F30 instead of F10.7 as solar activity proxy. The perfor-
mance of this model over the entire observational dataset is
good, and this reveals DTM’s ability to represent the impacts
of solar activity on the thermosphere. Assessment of the impacts
of individual geomagnetic storms, and thus the impact of using
Hp60 instead of Kp, is a more complex task that has yet to be
completed.

The UM has been extended from its original upper bound-
ary of 85 km to run stably and accurately with a 135 km lid.
Initial simulations did not employ any changes to the model
to account for the MLT other than the use of a raised lid. It
was quickly realised that use of a nudging scheme (Griffith et
al., 2020) to approximate MLT radiative and chemical heating
was required, and initial runs used this, with the UM
SOCRATES radiative heating switched off above 70 km. The
zonal mean wind and temperature fields from these runs
compare quite well with climatology but the latitude/longitude

structure above around 100 km is increasingly inaccurate, which
reveals issues with nudging to a global mean temperature pro-
file. This can be addressed by introducing improved radiation
and chemistry schemes to the UM and switching off the nud-
ging. A first step towards this has been the introduction of a
NLTE radiation scheme (Fomichev et al., 2004) and the use
of nudging only above 90 km instead of 70 km. Work to extend
the SOCRATES radiation scheme to include the FUV and EUV
wavelengths was presented. An initial configuration covering
the wavelengths 0.05–320 nm for the species O2, N2, O and
N has been developed and its performance is satisfactory. The
next step is to further refine and validate this scheme and extend
it to other relevant species and to pass the associated photolysis
rates to an upgraded UKCA scheme in order to calculate
exothermic chemical heating. At this stage the nudging scheme
can be turned off.

The availability of the UM up to 135 km means that code
has been written to read, compare and blend UM output with
DTM, which is the first step towards developing MOWA and
MCM. This initial comparison has highlighted the inaccuracies
in the UM mentioned above. The blending between UM and
DTM will likely also be more accurate if the UM lid can be
raised further, to around 150–170 km. Initial attempts to run
the UM at these altitudes has required a very strong “sponge”
layer or have failed. These can be addressed by introducing a
molecular diffusion and viscosity scheme. This will introduce
realistic damping and enhance model stability. The scheme
has already been developed by Griffin & Thuburn (2018) but
needs to be adapted to run with the UM dynamical solver.

A higher cadence geomagnetic index is required in order to
better represent thermospheric variability related to geomagnetic
storms. Hp30, Hp60 and Hp90 indices, which are like the Kp
index, but use 30 min, 60 min and 90 min cadences, respec-
tively, are described here. The new indices are designed to
resemble, as much as possible, the Kp index in terms of reliabil-
ity, availability and properties such as the frequency distribution
of its index values. It was shown that the Hp indices follow Kp
for small and gradual Kp changes and during strong geomag-
netic activity Kp and Hp indices show similarly high values.
The temporal evolution of the Hp indices show significant dif-
ferences from the Kp values for strong changes in geomagnetic
activity that commences at other times than the start of a
3-hourly Kp interval. Overall, this suggests the Hp indices are
behaving in the way they were designed to. A test Hp dataset
is now available for users. An open-ended version, not capped
at Hp = 9, is under development to allow a more detailed
description of extreme events.

The development and testing of neural network and other
machine learning methods applied to the forecast of geomag-
netic indices is also an important part of SWAMI since this will
lead to improved thermospheric forecasts for all the models
used or developed in SWAMI. An initial assessment showed
that for nowcasting, simple models based on average values
of Kp and values from the previous solar cycle turned out to
be more accurate than the persistence predictions. Addition of
the solar wind data resulted in a much more accurate prediction.
For predictions more than 12 h into the future, recurrence
(values from the previous solar cycle) starts playing an impor-
tant role.

Forecasts trained on the original Kp time series tend to
systematically underestimate storm-time Kp data as the majority
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of the data points used as an input are quiet-time values.
Duplication (or “resampling”) of the points corresponding to
high Kp, in order to produce a rebalanced dataset for training,
can lead to improved index forecasts during storm times, though
at the expense of decreasing the accuracy during quiet times.
Such tailoring should be the subject of future research. While
the above tests provided a systematic error estimation for the
models based on neural networks, it remained unclear if the
accuracy could further be improved by utilizing different
methods for regression. To address this question, the perfor-
mance of the LR, GB and FNN machine learning methods were
compared. The performance of all these models was rather simi-
lar, which most likely implies that significant improvements to
the prediction of Kp cannot be obtained by simply using another
regression method. To achieve future improvements, predictions
based on solar wind observations such as predictions with
global heliospheric codes should be used.

In summary, we demonstrate significant scientific and
operation progress towards improved European orbit prediction
capabilities and provide guidance for future development in this
field.
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