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Abstract Understanding what processes govern atmospheric escape and the loss of planetary water is of
paramount importance for understanding how life in the universe can exist. One mechanism thought to be
important at all planets is an “ambipolar” electric field that helps ions overcome gravity. We report the discovery
and first quantitative extraterrestrial measurements of such a field at the planet Venus. Unexpectedly, despite
comparable gravity, we show the field to be five times stronger than in Earth’s similar ionosphere. Contrary to our
understanding, Venus would still lose heavy ions (including oxygen and all water-group species) to space, even if
there were no stripping by the solar wind. We therefore find that it is possible for planets to lose heavy ions to
space entirely through electric forces in their ionospheres and such an “electric wind” must be considered when
studying the evolution and potential habitability of any planet in any star system.

1. Venus and the Polarization Electric Field

Discovering what processes govern the evolution of atmospheres, and specifically the loss of planetary water
and oxygen, is key to determining what makes planets habitable and is a driving science objective behind
recent missions including the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, the
European Space Agency (ESA) Mars Express, and the ESA Venus Express. Of all other planets, Venus is in many
respects the most Earth-like. Its atmosphere, however, is incredibly dry, with four to five orders of magnitude
less water than Earth [De Bergh et al., 1991]. The high deuterium-to-hydrogen ratio [McElroy and Hunten, 1969;
Donahue et al., 1982; De Bergh et al., 1991] is indicative that this was not always the case, and that Venus once
had a substantial quantity of water [Donahue and Hodges, 1992; Hartle et al., 1996; Donahue, 1999], possibly
even forming Earth-like oceans [Svedhem et al., 20071. Although it is thought that Venus lost much of its water
early in its history [Kulikov et al., 2006], one of the major early discoveries of the ESA Venus Express [Svedhem
et al., 2009] mission was that the primary ion species escaping down the comet-like plasma tail were H" and
O™ ions in a water-like stoichiometric ratio of 2:1. Thus, regardless of the original water inventory, atmospheric
escape mechanisms at Venus today appear to be far more effective at driving water and oxygen loss than at
nearby Earth, with a comparable size and gravity. Without an intrinsic magnetic dipole field [Zhang et al.,
2008; Bridge et al., 1967], the prevailing wisdom has been that atmospheric loss is dominated by mechanisms
resulting from stripping by the solar wind [Dubinin et al., 2011]. However, one planetary-driven mechanism
thought to play a supportive (but important) role in both atmospheric evolution [Barabash et al., 2007b;
Dubinin et al., 2011], and the enrichment of light (H*, DY) ion escape [Hartle and Grebowsky, 1990, 1993,
1995; Barabash et al., 2007b] is that of a long hypothesized “ambipolar” electric field (also referred to as a
“polarization” electric field at Venus [Barabash et al., 2007b]).

The ionosphere of any planet consists of ions and electrons in approximately equal numbers. In the absence
of electrical forces, electrons, being three to four orders of magnitude lighter than ions, would easily escape
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Sketch showing the formation of the Electric Wind of Venus
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Figure 1. The induced magnetosphere of Venus and formation of the electric wind.

the pull of gravity guided along the draped magnetic field. However, the Coulomb force restricts their motion
away from the ions. As the electrons pull away, an ambipolar electric field forms to resist their separation, pre-
venting a net charge from forming and satisfying quasineutrality (see Figure 1). The more energetic the elec-
trons, the stronger the electric field must be to restrain them. “Superthermal” (1-70 eV) photoelectrons,
generated by photoionization of the atmosphere, play an especially potent role in generating this field
[Lemaire, 1972] even though they make up a small fraction of the total electron population [Khazanov et al.,
1997]. The potential drop that results from this electric field assists terrestrial atmospheric escape [Moore
et al, 1997] since it reduces the potential barrier required for heavier ions (such as O") to escape and accelerates
light ions (such as H") to escape velocity. An identical physical process is also hypothesized to occur in the solar
wind [Lemaire and Scherer, 1973] (and in the stellar winds from all stars [Scudder and Karimabadi, 2013]),
although it is very difficult to measure and thus has remained theoretical. This potential drop is critical to the
formation of Earth’s “polar wind,” which flows outward along open magnetic fields above our polar caps
[Hanks and Holzer, 1968]. However, given that that the scientific term “polar wind” also encompasses other
acceleration mechanisms, and that at an unmagnetized planet it would not be confined to the poles, we adopt
the nomenclature of “electric wind” as a shorthand to refer to this specific mechanism: the ambipolar electric
field, electric potential drop, and outflow of decelerated electrons and accelerated ions.

Although vital to our understanding of the evolution of our atmosphere, this field is extremely challenging to
measure given its small magnitude. The few attempts made to measure it in Earth’s ionosphere were only
able to estimate an upper bound on the electric potential drop (i.e., the total drop below the observing space-
craft) of <2V [Coates et al., 1985; Fung and Hoffman, 1991]. In addition to these weak ionospheric fields, larger
(=20V) [Kitamura et al., 2012; Winningham and Gurgiolo, 1983; Wilson et al., 1997] parallel potential drops are
frequently observed above spacecraft (i.e., between ~3800 km and infinity [Kitamura et al., 2012]). However,
these higher-altitude potential drops occur entirely above the bulk of our ionosphere and are not to be con-
fused with the ionospheric (<500 km) potential drops discussed in this study.

Similarly, recent investigations of the ionospheric potential drop at other worlds (specifically Mars [Collinson
et al,, 2015] and Titan [Coates et al., 2015a] have also only been able to put an upper limit of <+2V due to
instrumentational limitations and the field’s diminutive strength. Although an ambipolar electric potential
has never been successfully measured in a planetary ionosphere, there is abundant indirect evidence for
the presence of an electric wind at Venus. Hartle and Grebowsky [1990, 1993, 1995] theorized the presence
of an ambipolar electric field from observations of escaping H" and D", by the NASA Pioneer Venus
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Map of Orbit 357 - 13th April 2007
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Figure 2. Map of orbit Ne 357 of the ESA Venus Express in Venus Solar Orbital coordinates where X points toward the Sun, Y
is perpendicular to X and points in the opposite direction to the planet’s velocity vector, and Z completes the right-handed
system pointing up out of the plane of the Cytherean ecliptic. The progress of the spacecraft is marked at 5 min intervals in
Greenwich Mean Time. (a) x versus z view from the “side” of the planet, (b) x versus y, the “top down” view over the north
geographic pole. Approximate locations of the bow shock [Slavin et al., 1980] (solid line) and ionopause [Martinecz et al.,

2008] (dashed line) are included for orientation.

Orbiter and presumed that this electric field dominated light ion escape. Additionally, the observation of hot
superthermal photoelectrons (created in the dayside ionosphere [Coates et al., 2008] and observed in the
magnetotail of Venus [Tsang et al., 2015; Coates et al., 2011, 2015b]) was also presented as indirect evidence
that a “polar wind like” process may be occurring [Tsang et al., 2015; Coates et al., 2011, 2015b]. Similar out-
flows of photoelectrons and associated outflowing ions have also been observed in the induced magneto-
tails of Mars [Frahm et al., 2006, 2010; Coates et al., 2011] and Titan [Coates et al., 2007; Coates, 2009;
Coates et al., 2011; Wellbrock et al., 2012; Coates et al., 2015a] and are also possibly indicative of ambipolar out-
flow. In addition, the photoelectron and escaping ion fluxes were used to estimate the relevant electric wind-
related escape rates at Titan [Coates et al., 2012], Mars [Frahm et al., 2010], and Venus [Coates et al., 2015b].

Although an electric potential drop should theoretically occur at any planet or moon with an atmosphere,
without an understanding of the magnitude of the potential, it is not possible to determine the role and rela-
tive importance that the electric wind plays in atmospheric escape.

2. Measuring the Electric Potential of a Planet

The ionosphere of Venus is a rich source of hot photoelectrons [Coates et al., 2008], which were observed
escaping down the plasma tail on practically every orbit of the European Space Agency’s (ESA) Venus
Express at altitudes of up to 2.3 Venus radii (r,) [Coates et al., 2015b]. Photoelectrons are key to both the gen-
eration and measurement of the electric wind. The energy spectra of Cytherean photoelectrons exhibit bright
spectral peaks resulting from the photoionization of atomic oxygen by ultraviolet (He-ll 30.4 nm) photons
including two peaks at 22.3eV and 23.7 eV, resolved by our instrument as a single merged peak at 23 eV
[Coates et al., 2008, 2011], in addition to a third peak at 27.2 eV. The energy of photopeaks is dictated by atomic
physics. Therefore, any observed shift in their energy can be used to determine the presence, polarity, and mag-
nitude of an external electric potential drop between the ionosphere where the photoelectrons are generated
and the detector onboard the spacecraft [Coates et al., 1985, 2015a; Collinson et al., 2015].This potential drop has
two components: one associated with the electric wind and the other due to spacecraft charging.

To measure the strength of the electric wind using the ESA Venus Express, we therefore require the following:
(1) The spacecraft must be in the right location: on an open magnetic field line connected to both the solar
wind and ionosphere. (2) The spacecraft must carry an electron spectrometer capable of resolving any shift in
known spectral features. (3) The spacecraft must carry a magnetometer so that electrons can be binned by
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Figure 3. Magnetic and particle observations from the ESA Venus Express on
13 April 2007. (a) Spacecraft altitude for context, (b) magnetic observations
from the Venus Express Magnetometer, and (c) ASPERA-ELS electron
spectrogram (time versus energy), with the color scale showing the log of
the differential energy flux, integrated over all 16 anodes; spacecraft
potential measured from the spacecraft charging line, providing a known
and stable electrostatic environment during the region of interest; and the
pitch angle of ELS anodes 14 and 6, showing a fortuitously good and stable
pitch angle coverage during the region of interest.

“pitch angle” (the angle of observa-
tion relative to the magnetic field),
so that we examine only field-
aligned electrons coming from the
ionospheric source. (4) We require a
measurement of the electrostatic
potential due to spacecraft charging
in order to determine what portion
of the observed potential drop is
due to the electric wind. (5) The
spacecraft potential must remain
constant for the 60s integration
required to gain sufficient counting
statistics with our instrument.

3. Evidence for an Electric
Potential: Orbit Ne 357

Figure 2 shows a map of orbit Ne
357, representing our current best
example satisfying our measure-
ment criteria, and Figure 3 shows
Venus Express co-incident observa-
tions from near periapsis. The space-
craft, orbiting in a highly elliptical
24h polar orbit, was flying on a
midnight-midday pass with periap-
sis in the ionosphere over the north
geographic pole. Shortly after the
Venus Express flew into daylight
there was a brief window (06:15
Greenwich Mean Time (GMT) to
06:17 GMT) where it was possible to
make a direct measurement of
electric potential drop at Venus.
This region of interest was addition-
ally fortuitous in that magnetic condi-
tions (Figure 3b) were calm, resulting
in stable magnetic connectivity to the
same approximate region of the
ionosphere during our electron
observations. Before 06:14 GMT, the
only particles measured by the
Analyser of Space Plasmas and
Energetic Atoms (ASPERA-4) Electron
Spectrometer (ELS) [Barabash et al.,

2007a; Collinson et al, 2009] (Figure 3c) were a hot population of shocked solar wind electrons. At lower
altitudes (>06:19 GMT) this population disappears, indicating that the spacecraft was no longer in magnetic con-
nection to the solar wind, and instead ELS measured solely ionospheric photoelectrons with the He-Il photopeak
visible as a line in the spectrogram (Figure 3c). This photoelectron population is highly typical in terms of spectral
features and flux [Cui et al., 2011]. In the region of interest, both populations are observed, and therefore the Venus
Express was in the right place, with the right magnetic connection to both ionosphere and solar wind, to observe

the electric wind.
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Figure 4. Corrected and uncorrected electron spectra from the region of we may now examine the He-ll photo-

interest from ELS anode 14, showing key spectral features and the final peak for any shift and find that
12.4 eV spectral shift resulting from a 10.6 V electric potential drop below although it must have been gener-
the ESA Venus Express. (a) First ELS integration. (b) Second integration. ated in the ionosphere at 23eV, it

arrived at the spacecraft at 12.4eV.
We thus find that these ionospheric photoelectrons have been retarded by a significant planetary electric
potential of ®yenys=10.6V.

Although the electrons have lost energy, such an electric potential would impart +10.6 eV to all planetary
ions. This is sufficient to counter the gravitational binding energy of even an O" ion and directly accelerate
it to escape velocity. Although the ASPERA plasma suite carried an lon Mass Analyzer (IMA) [Barabash
et al., 2007a], taking into account the spacecraft potential, the lowest energy that IMA could see in the region
of interest was 18 eV and the peak of a 10.6eV ion distribution would be below its reach. Although their
populations could not be fully resolved (full details of ASPERA-IMA observations can be found in
Section S2), clear evidence for cold outflowing ionospheric O* and H* ions was observed on orbit Ne 357.

4. A Persistent, Global Feature

In order to see if this potential drop was typical, we searched for more instances of the electron spectral con-
ditions required for measurement: specifically, the confluence of solar wind, photoelectrons, and stable
spacecraft charging line. Venus Express spends only 5 to 10 min out of each 24 h orbit in a region where it
might even be theoretically possible to observe the electric wind. This necessitated a search through two
earth-years of data, from which we identified 14 regions of interest, from six orbits, full details of which are
shown in Table 1. Although the electric wind could only be measured occasionally, we found that (a) any time
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Table 1. Collected Venus Express Measurements of the Total Electric Potential Drop®
Date of Observation  Start of Region of Interest (GMT)  Altitude (km) Photopeak Energy (eV)  Potential Drop (V)

2007-03-29 06:27:00 550 km 11.5eV 1.5V
2007-04-13 06:15:00 629 km 124eV 106V
06:16:00 532 km 12.4eV 10,6V
2007-12-05 02:40:00 353 km 124eV 106V
2008-02-04 04:45:00 349 km 13.5eV 95V
04:46:00 420 km 124eV 106V
04:47:00 514 km 13.5eV 9.5V
04:48:00 628 km 13.5eV 9.5V
04:49:00 763 km 146 eV 84V
2008-03-31 04:05:30 450 km 15.8eV 7.2V
2008-04-08 03:56:00 335km 124eV 106V
03:57:00 382 km 13.5eV 9.5V
03:58:00 453 km 12.4eV 106V
03:59:00 545 km 13.5eV 9.5V
Mean: 493 km 13.1eV 99+1.1V

*Times denote the beginning of a 60 s ASPERA-4 ELS integration; altitude denotes the minimum altitude of the space-
craft during the measurement. The energy is that of the He-Il generated photoelectron peak, corrected for spacecraft
potential, and the potential is that of the total integrated potential drop below the spacecraft.

it was possible to measure an electric potential drop, one was observed, and (b) the magnitude of this drop
was very consistent, with a mean value of ®Oyen s=+9.9V+1.1V.

Figure 5 shows a map of the location where these observations occurred. We find that this force drives escape
from all electric latitudes, whereas at magnetized planets, it is confined to the magnetic poles. For each orbit we
sampled data from the solar wind as near to the region of interest possible (the standard technique when no
second spacecraft is available [Collinson et al., 2014]), finding no evidence for any bias in upstream conditions.
Given this, and the consistency in its strength, our collected observations indicate that the electric wind is a per-
sistent, stable, and global phenomenon, flowing tailward from behind the entire terminator.

5. The Importance of the Electric Wind

Contrary to all expectations [Hartle and Grebowsky, 1993], the electric potential drop in the ionosphere of Venus
is at least five times greater than the upper limits we have in Earth’s topside ionosphere [Coates et al., 1985; Fung
and Hoffman, 1991]. Although parallel electric potentials of comparable magnitude have been observed at
Earth [Kitamura et al., 2012; Winningham and Gurgiolo, 1983; Wilson et al., 1997], all occur at much higher alti-
tudes (3800 km — infinity) [Kitamura et al., 2012], far above the bulk of the terrestrial ionosphere where they
cannot directly act upon ionospheric particles. We therefore discover that it is possible for two terrestrial planets
with similar sizes, surface gravities, and ionospheres [Brace et al., 1983] to have significantly different polariza-
tion electric fields. Based on models developed for Earth [Khazanov et al., 1997], we speculate that one possible
contributing factor in explaining its unexpected strength may be a higher proportion of photoelectrons at
Venus due to its closer distance to the Sun and higher photoionization rates. The greater the admixture of
photoelectrons, the greater the electric field needs to be to restrain then and satisfy quasineutrality. For a
first-order approximation of this ratio at Venus, we used a model derived from the NASA Pioneer Venus
Orbiter Langmuir probe measurements [Theis et al., 1980] to estimate thermal electron densities. When com-
pared to superthermal densities measured by ASPERA-ELS, it corresponds to a ratio between 0.1 and 1%.
This would be a very high fraction for Earth [Khazanov and Liemohn, 1996], and according to Khazanov et al.
[1997], this would translate to a potential drop of approximately 7 V. This is reasonably consistent with our
measurements and supports our hypothesis that the higher admixture of superthermal electrons at Venus is
a contributor to the enhancement of the polarization electric field. For full details of how this approximation
was made, see Section S3, and for the source code of the Theis et al. [1980] model (converted into IDL from
the original Fortran), see Section S4.

The first measurement of an ionospheric ambipolar potential drop is noteworthy, but the unexpected discov-
ery that its magnitude can be so large has profound implications for our understanding of atmospheric loss
processes for all planets. Whilst other loss mechanisms are present [Dubinin et al., 2011], the newly discovered
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by itself for any ion lighter than
18 amu (which includes O" and all
water group ions) to overcome grav-
ity and be directly accelerated to
escape velocities. Thus we find that
it is possible for planets to lose heavy
ions to space entirely through elec-
trical forces in their ionospheres
and that ambipolar fields can play
an even more dominant role in pla-
netary atmospheric escape than pre-
viously considered. We also find that,
contrary to our current understand-
ing, Venus would still lose heavy ions
such as O" to space regardless of any
atmospheric stripping by the solar
wind. Additionally, however, the
electric wind will further enhance
these other escape processes (such
as pickup and acceleration by the
motional electric field of the solar
wind) by transporting ions from the
bulk of the ionosphere (150km
[Brace et al., 1983]) to the ionopause

- . (300+ km [Martinecz et al., 2008]) and
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v ven mechanisms can take effect.

Thus, given their importance,

Figure 5. Map of where the total electric potential drop has been measured, ionospheric ambipolar fields must

in Venus Solar Electric coordinates where X points toward the Sun, Y is rotated . .
to lie in the plane of the interplanetary magnetic field, and Z completes the therefore always be included in any
right-handed system. Units are Venus radii (r,). study of the atmospheric evolution

of Venus, Earth, Mars, Titan, or
indeed any planet in any star system.

The discovery of a powerful electric wind at Venus, an Earth-like terrestrial planet, also has important conse-
quences for the study of exoplanets by missions such as Kepler. If, for example, the electric potential drop in
Earth’s (or another Earth-like planet’s) ionosphere was a Venus-like +12V, then a similar direct loss of heavy
ions would likely occur, regardless of the presence or absence of a planetary dynamo magnetic field, leading
to higher rates of loss. Significant changes to planetary escape rates could impact the ability of a planet to
retain an atmosphere [Zahnle and Catling, 2013; Cohen and Glocer, 2012] and maintain liquid water oceans
and increase the likelihood that a planet loses its oceans during the moist greenhouse phase [Chassefiere,
19971. Such a strong escape mechanism could also impact the redox evolution of a planetary surface
[Caitling et al., 2001]. Given that we believe Venus’ stronger polarization field may arise from its closer proxi-
mity to the Sun, and that most known exoplanets have been found relatively close to their stars (since these
are easier to detect), the possibility of a strong electric wind must be considered when assessing planetary
evolution or the potential for habitability on exoplanets.
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