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Abstract. Although snow depth on sea ice is a key parameter
for sea ice thickness (SIT) retrieval, there currently does not
exist reliable estimations. In the Arctic, nearly all SIT prod-
ucts use a snow depth climatology (the modified Warren-99
climatology, W99m) constructed from in situ data obtained
prior to the first significant impacts of climate change. In the
Antarctic, the lack of information on snow depth remains a
major obstacle in the development of reliable SIT products.

In this study, we present the latest version of the altimetric
snow depth (ASD) product computed over both hemispheres
from the difference of the radar penetration into the snow
pack between the Ka-band frequency SARAL/Altika and the
Ku-band frequency CryoSat-2. The ASD solution is com-
pared against a wide range of snow depth products includ-
ing model data (Pan-Arctic Ice-Ocean Modelling and As-
similation System (PIOMAS) or its equivalent in the Antarc-
tic the Global Ice-Ocean Modeling and Assimilation System
(GIOMAS), the MERCATOR model, and NASA’s Eulerian
Snow On Sea Ice Model (NESOSIM, only in the Arctic)),
the Advanced Microwave Scanning Radiometer-2 (AMSR2)
passive radiometer data, and the Dual-altimeter Snow Thick-
ness (DuST) Ka–Ku product (only in the Arctic). The ASD
product is further validated in the Arctic against the ice mass
balance (IMB) buoys, the CryoSat Validation Experiment
(CryoVEx) and Operation Ice Bridge’s (OIB) airborne mea-
surements. These comparisons demonstrate that ASD is a rel-

evant snow depth solution, with spatiotemporal patterns con-
sistent with those of the alternative Ka–Ku DuST product
but with a mean bias of about 6.5 cm. We also demonstrate
that ASD is consistent with the validation data: comparisons
with OIB’s airborne snow radar in the Arctic during the pe-
riod of 2014–2018 show a correlation of 0.66 and a RMSE of
about 6 cm. Furthermore, a first-guess monthly climatology
has been constructed in the Arctic from the ASD product,
which shows a good agreement with OIB during 2009–2012.
This climatology is shown to provide a better solution than
the W99m climatology when compared with validation data.
Finally, we have characterised the SIT uncertainty due to the
snow depth from an ensemble of SIT solutions computed for
the Arctic by using the different snow depth products previ-
ously used in the comparison with the ASD product. During
the period of 2013–2019, we found a spatially averaged SIT
mean standard deviation of 20 cm. Deviations between SIT
estimations due to snow depths can reach up to 77 cm. Us-
ing the ASD data instead of W99m to estimate SIT over this
time period leads to a reduction in the average SIT of about
30 cm.
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1 Introduction

Since the launch of CryoSat-2 (CS-2) in 2010 (Wingham
et al., 2006; Parrinello et al., 2018), sea ice thickness (SIT)
observations are routinely derived from altimetric measure-
ments. The principle is to measure the fraction of the sea ice
above the sea level, called the sea ice freeboard, from dif-
ferences between the heights in leads (cracks in the ice re-
ferring to the local sea level) and the heights of the ice floes
(Laxon et al., 2003). By integrating such sea ice freeboard
estimations in the hydrostatic equilibrium equation, several
SIT products have been computed (e.g. Laxon et al., 2013;
Kwok and Cunningham, 2015; Guerreiro et al., 2017; Paul
et al., 2018; Landy et al., 2019; Laforge et al., 2020).

Among the parameters involved in the SIT calculation,
snow depth (sd) over sea ice is one of the most significant
contributors adding to the overall SIT uncertainty (e.g. Giles
et al., 2007; Zygmuntowska et al., 2014; Guerreiro et al.,
2016). For example, it is necessary to account for the snow
loading (Laxon et al., 2013) and for the decrease in altimet-
ric radar speed as it penetrates into the snow pack (Kwok
and Cunningham, 2015; Mallett et al., 2020). In fact, vari-
abilities in snow properties affect radar signals and then the
snow depth measurements. More generally, snow cover has
strong impacts on the sea ice (e.g. Massom et al., 2001; Pow-
ell et al., 2005; Bin et al., 2008; Sturm and Massom, 2009;
Ricker et al., 2014) that affects the entire climate system (e.g.
Ingram et al., 1989; Ledley, 1991; Eicken et al., 1995; Sin-
garayer et al., 2006). Because of its high albedo and a low
thermal conductivity, the snow regulates the transfer of so-
lar heat energy penetration across the ice–ocean interface
(e.g. Grenfell and Maykut, 1977; Sturm et al., 1997). It acts
as an insulator, slowing down sea ice melt in summer and
slowing down sea ice growth in winter (e.g. Perovich et al.,
2003; Sturm and Massom, 2016). Such processes of sea ice
formation and melting govern sea ice physical and chemi-
cal properties that impact the biological processes in sea ice
(Van Leeuwe et al., 2018). The vertical distribution of light
under sea ice that controls biological processes and biogeo-
chemical fluxes is also strongly linked with the snow depth
(e.g. Perovich, 2007; Arndt and Nicolaus, 2014; Arndt et al.,
2017). In addition snow accumulated over sea ice from pre-
cipitation represents a tank of freshwater likely to be car-
ried into the ocean. Recent increases in seasonal ice have
promoted the amount of snow water discharge in the ocean,
which impacts the freshwater budget (Andersen et al., 2019;
Overland et al., 2019). Snow cover also modifies surface
roughness that impacts the air–ice drag coefficient and trans-
fer coefficients of latent and sensible heat fluxes (Andreas
et al., 2005).

Despite evidence of its major importance, snow cover over
sea ice is still not sufficiently understood. Until now, nearly
all SIT products in the Arctic are computed using the snow
depth of the modified Warren-99 climatology (W99m; War-
ren et al., 1999). W99m is mainly constructed using snow

depth observations obtained from the Soviet North Pole drift-
ing stations based in the central Arctic, collected during the
last century (1950–1980s). Considering the ongoing rapid
modifications of the Arctic due to climate change, several
studies have shown these data to be outdated, even with the
modification of snow depth reduction (by 50 %) applied over
the seasonal ice zone (Kurtz and Farrell, 2011; Kern et al.,
2015; Kwok et al., 2011). The climatology of Forsström et al.
(2011) provides snow depths in areas outside the central Arc-
tic where the W99m climatology is not working properly.
More recently, Shalina and Sandven (2018) have created an
improved snow depth climatology taking into account snow
depth observations obtained during campaigns over seasonal
ice. However, it is still based on data collected mainly in
the 1960s, 1970s and 1980s. Apart from the data used to
construct these climatologies, several campaigns have pro-
vided snow depth measurements in the Arctic. Between 1997
and 1998, the SHEBA (Surface HEat Budget of the Arctic
Ocean) project has highlighted the complex temporal and
spatial snow depth variations (Perovich et al., 1999; Sturm
et al., 2002). The ice mass balance (IMB) buoys, originally
deployed by the US Army CRREL-Dartmouth Mass Bal-
ance Buoy Program during the SHEBA project have mea-
sured snow depths since the 2000s. It allows for monitor-
ing changes in the sea ice volume in key areas of the Arctic
(Richter-Menge et al., 2006). Since 2003, the CryoSat Val-
idation Experiment (CryoVEx) campaigns (e.g. Haas et al.,
2006; Helm et al., 2006; Skourup et al., 2013; Hvidegaard
et al., 2006) have provided data with the main goal of investi-
gating radar penetrations into ice and snow cover. Their mea-
surements include bi-frequency altimetry snow depth estima-
tions as of 2017 (see Sect. 3.3). In 2003, the AMSR-Ice03
campaign (Sturm et al., 2006) was carried out in the Beau-
fort Sea region to validate the Advanced Microwave Scan-
ning Radiometer for the Earth Observing System (AMSR-E,
from 2002 to 2011; Kelly, 2009) passive microwave snow
depth data. The same year, an equivalent mission (ARISE)
took place in East Antarctica (Massom et al., 2006). Since
2009, and until their final campaign in 2020, the Opera-
tion Ice Bridge (OIB; see Sect. 3.3) campaigns have pro-
vided airborne snow depth measurements each year between
March and April in the Arctic (Kurtz et al., 2013; Koenig
et al., 2010) using a frequency modulated continuous wave
(FMCW) snow radar (Kurtz and Farrell, 2011). Note also that
Webster et al. (2014) assess spring snow depth distribution on
the Arctic sea ice from 2009–2013 airborne OIB radar obser-
vations. In parallel, in situ snow thickness data were collected
in 2009 at the Danish GreenArc 2009 ice camp in the north
of Greenland (Farrell et al., 2011). Between February and
March 2015, snow depth was measured in the Nansen Basin
during the N-ICE expedition (Granskog et al., 2016), demon-
strating among others the impact of heavy precipitation on
thin ice growth (Merkouriadi et al., 2017). From September
2019 to October 2020, the international MOSAIC expedi-
tion monitored the central Arctic (Shupe et al., 2020) provid-
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ing, among others, data on snow precipitation, snow water
equivalent and Magnaprobe snow depth measurements (e.g.
Munoz-Martin et al., 2020). Hence, several campaigns have
been conducted during the last two decades in the Arctic, all
of which have provided crucial information and proved in-
valuable as reference data.

Compared to the Arctic, snow depth measurements, and
more generally sea ice in situ data, are very limited in
the Antarctic. Actually, several CryoVEx and OIB missions
have been conducted in the Antarctic, but the data are still
only available in raw L1b level and are difficult to inter-
pret. To the best of our knowledge, only the meereis data
portal (https://seaiceportal.de/en/, last access: March 2021)
provides snow buoy data of snow accumulation (Grosfeld
et al., 2016) (for both hemispheres), but the comparison
with snow depth is not direct. It is, for instance, limited
by the flooding of ice floes due to the heavy snow load-
ing occurring in the Antarctic. Currently, the main expe-
dition providing snow depth data in the Southern Hemi-
sphere is the ASPeCt programme (Worby et al., 2008a), es-
tablished in 1996 to model the role of the Antarctic sea ice in
the coupled atmosphere–ice–ocean system. Recent ASPeCt
standardised data (Kern, 2020) cover the period 2002–2019
with an amount of information that is too sparse for a re-
liable assessment. Future validations in the Antarctic will
also benefit from the recent AWI IceBird campaigns carry-
ing a snow radar since 2019 (https://www.awi.de/en/science/
climate-sciences/sea-ice-physics/projects/ice-bird.html, last
access: March 2021).

At a basin scale, several sea ice models produce snow ac-
cumulation estimations from atmospheric reanalyses. These
are converted into snow depth over sea ice by considering sea
ice drifting and thermodynamic transfers of the coupled sea
ice and snow system (Blanchard-Wrigglesworth et al., 2015;
Lecomte et al., 2011). Likely due to biases in precipitation
inputs and omission of snow processes, these global sea ice
models hardly reproduce consistent on-ice snow depths (e.g.
Holland et al., 1993; Serreze et al., 2000; Déry and Tremblay,
2004; Leonard and Maksym, 2011; Blazey et al., 2013). Notz
(2012) states that an improved representation of the snow
on sea ice in models is the most urgent task, and recently,
Kaminski et al. (2018) argued that assimilating snow depth
products could considerably increase sea ice model perfor-
mances.

Therefore, a solution allowing us to provide large-scale
information on the spatial and temporal variation in snow
depth and to improve the performance of seasonal sea ice
forecasts is to use satellite data. For now, only a few datasets
exist. The first snow depth estimates come from passive ra-
diometric data. Among the various sensors that have been
deployed (e.g. the SMMR, Chang et al., 1987, or the SSM/I,
Grody, 1991), the most relevant estimations of snow depth
over sea ice have been calculated from spectral vertical gradi-
ents of brightness temperatures (Comiso et al., 2003; Worby
et al., 2008b) of AMSR-E and its successor AMSR2 (Lee

et al., 2015). In spite of the relevant long-term availabil-
ity of data, the commonly used snow depth retrieval algo-
rithm is not adapted for multi-year ice (MYI) zones (Brucker
and Markus, 2013). Consequently, AMSR’s official data in
the Arctic are only calculated in first year ice (FYI) re-
gions. As far as we know, the AMSR2 product version of
the University of Bremen (AMSR2B; Rostosky et al., 2018)
and very recently the SPICES project snow depth retrieval
method (Mäkynen et al., 2020) are the only attempts to com-
pute snow depths in the Arctic MYI zones. The dataset de-
veloped from the work of Rostosky et al. (2018) is avail-
able but has the inconvenience of being re-calibrated from
OIB data, which limits their availability to the months of
March and April. With the same disadvantage of depending
on OIB, Maaß et al. (2013) and Zhou et al. (2018) have pro-
posed algorithms to retrieve snow depth from SMOS (Soil
Moisture Ocean Satellite), with mitigated results. Recently,
Braakmann-Folgmann and Donlon (2019) proposed to com-
pute snow depth by combining AMSR2 and SMOS data with
a neural network approach.

Studies have also estimated snow depth on sea ice in
the Antarctic (e.g. Kacimi and Kwok, 2020; Maksym and
Markus, 2008). AMSR-E and AMSR2 also provide snow
depths in the Antarctic. Compare to the Arctic it covers the
whole domain since all sea ice is considered as seasonal ice.
The recent work of Kacimi and Kwok (2020) estimated the
Antarctic snow depth from the difference between the total
freeboard obtained from ICESat-2 lidar measurements and
sea ice freeboards of CS-2. They show a very low variability
in CS-2 freeboards compared to ICESat-2 and that ICESat-2
freeboards explained >90 % of the variance in snow depth.
They also highlight that the validation sea ice parameters in
the Antarctic remains a challenge since no seasonally or re-
gionally diverse datasets from field records can be used to
assess the large-scale satellite retrievals. Based on this, they
urge that more sustained and extensive field measurements
must be conducted. Note that such lidar minus Ku-band snow
depths can also be computed in the Arctic. Finally, we note
that a recent study of Fons et al. (2021), an update from the
former approach experimented by Fons and Kurtz (2019), di-
rectly retrieves snow freeboard from CS-2 using a two-layer
scattering model and shows promise in estimations of SIT in
the Antarctic.

An alternative to passive microwave radiometry is to
derive snow depth estimations from bi-frequency altimet-
ric measurements. Recently, Armitage and Ridout (2015)
have demonstrated this possibility by considering the dif-
ference of penetration between the Ku-band frequency CS-2
(13.5 GHz), assuming it is reflected near the snow–ice inter-
face, and the Ka-band frequency SARAL/Altika (35.7 GHz),
assuming it is reflected near the top of the snow pack, i.e
the air–snow interface. Thereafter, a preliminary altimetric
snow depth (ASD) version covering the 2013–2016 winter
period has been developed at the LEGOS during the ESA
CryoSeaNICE project (Guerreiro et al., 2016). Meanwhile,
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Lawrence et al. (2018) also developed a bi-frequency al-
timeter snow depth product (DuST) available for the Arc-
tic. Similar to AMSR2B, the main difference between ASD
and DuST is that DuST relies on a re-calibration of the Ka–
Ku freeboards using OIB data, in this case to account for
the difference of operating mode between CS-2 and SARAL
(synthetic aperture radar (SAR) versus low-resolution mode
(LRM) modes). These two products are the only existing
publicly available snow depth products from altimetry.

A recent study of Zhou et al. (2021) presented an inter-
comparison of available snow depth products from re-
analyses, passive radiometry and altimetry (DuST). Similar,
this paper reviews the state of the art by comparing current
main snow depth estimations. Yet, the main objective is to
present and assess the upgraded version of the ASD prod-
uct (see Sect. 2), covering the 2013–2019 period in both
hemispheres. The article fits in with the upcoming HPCM
CRISTAL mission (Kern et al., 2020) and aims to demon-
strate the potential of such snow depth data to further spe-
cific studies on, for instance, improved sea ice volume esti-
mations, freshwater budgets, snow properties or data assim-
ilation. Except from an analysis of the impact of the snow
depth uncertainty on SIT retrieval, it does not explicitly ad-
dress these questions.

The paper is organised as follows:

– First, we detail the methodology to process the ASD
product and present all the datasets used in this study.

– Section 4 compares ASD with the other main exist-
ing snow depth satellite and model data in both hemi-
spheres.

– The datasets are then assessed against OIB, CryoVEx
and IMB validation data in the Arctic in Sect. 5.

– To circumvent the temporal limitation induced by
SARAL, we propose in Sect. 6 a preliminary snow
depth climatology based on ASD.

– Section 7 aims to quantify the SIT level of uncertainty
due to the snow depth from an ensemble of SIT estima-
tions calculated from the satellite and model snow depth
datasets presented in the previous sections.

– We finally discuss and conclude, emphasising current
needs for snow depth data in sea ice studies.

2 Data processing of ASD

The Altimetric Snow Depth (ASD) product presented here
is an upgraded version of the data presented in Guerreiro
et al. (2016). It has been developed at the LEGOS labora-
tory in the framework of the ESA CSAO+ (http://cryosat.
mssl.ucl.ac.uk/csao/index.html, last access: March 2021) and
Polar+ Snow on Ice projects. It has been freely available

from the AVISO+/ODATIS national data centres since mid-
2020 (http://ctoh.legos.obs-mip.fr/data/sea-ice-products, last
access: March 2021). The ASD product includes data from
March 2013 to October 2019 provided on a monthly basis
for the 6 winter months (from November to April in the Arc-
tic and from May to October in the Antarctic). It is pro-
jected onto a 500× 500 EASE2 grid with a 12.5 km pixel
size resolution. Snow depth calculation is based on the dif-
ference of penetration between Altika, the Ka-band range al-
timeter of SARAL (which is assumed to be reflected at the
air–snow interface), and SIRAL, the Ku-band range altime-
ter of CS-2 (which is assumed to be reflected at the snow–
ice interface). The main assumption is that the difference be-
tween these two surface elevations is only due to the pen-
etration of the Ku radar in the snow pack and that the Ku
radar penetrates fully to the snow–ice interface. Note that
the validity of this hypothesis is strongly linked with the
space and time variability in snow properties such as snow
density, grain sizes, the liquid water content or the surface
roughness. We use the CS-2 Ku-band waveforms in pseudo
LRM (PLRM) extracted from geophysical ocean prod-
uct (GOP) (https://earth.esa.int/documents/10174/125272/
CryoSat-Baseline-C-Ocean-Product-Handbook, last access:
March 2021) generated by the ESA CryoSat Ocean Processor
(Bouffard et al., 2018a). The Ka-band SARAL/Altika wave-
forms are extracted from the Centre national d’études spa-
tiales (CNES) SGDR-T (Sensor Geophysical Data Record)
official products. Note that SARAL’s orbit is limited to 81.5◦

in latitude, which reduces the coverage of snow depth data in
the Arctic. The use of a degraded version of the CS-2 SAR
waveforms (the PLRM mode) allows us to have a footprint
in accordance with the LRM mode of SARAL/Altika wave-
forms, which avoids having different impact of the surface
roughness. Since the latest Baseline-C PLRM GOP was only
available from 2017 at the time we computed the ASD data,
we have used the Baseline-B for the period 2013–2016. It
does not impact ASD since we use only the L1b product lev-
els which have identical waveforms on both baselines. How-
ever, the Baseline-B does not include the SARIN (interfer-
ometric synthetic aperture radar) data. The next version of
the ASD product will be produced with only the Baseline-C
PLRM GOP to include all SARIN mode zones.

The first step to compute ASD data consists in extracting
heights, H , from both Ku-band and Ka-band satellite wave-
forms following Eq. (1):

H = alt− (range− (tropodry+ tropowet+ iono

+MSS+ tideocean+ tidebar)), (1)

where alt is the satellite altitude, range is the altimetric range
retracked from the waveforms, tropodry is the dry tropo-
spheric correction, tropowet is the wet tropospheric correc-
tion, iono is the ionospheric correction, MSS is the DTU15
mean sea surface correction (Andersen and Knudsen, 2015),
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tideocean is the oceanic tide corrections, and tidebar is the
barometer tide correction.

The surface classification between heights corresponding
to ocean surfaces (leads) and heights of sea ice surfaces (ice
floes) is performed using the waveform pulse-peakiness (PP)
criteria calculated from the waveforms (Eq. 2):

PP=
max(WF)∑NWF
i=1 WFi

, (2)

where WF is the discrete waveform echoes, and NWF is the
number of along-track measurements. Following Guerreiro
et al. (2017), surfaces with a PP larger than 0.3 are consid-
ered as leads, and surfaces with a PP smaller than 0.1 are
considered as sea ice floes. Observations with a PP between
0.1 and 0.3 are considered as mixed echoes and are discarded.
This criteria is the same for SARAL and CS-2.

Altimetric ranges (range parameter in Eq. 1) of leads
and floes are thereafter calculated using the TFMRA (Helm
et al., 2014) with a 50 % threshold. A 25 km median fil-
ter is then applied to the 20 Hz along-track surface height
of sea ice floes and sea ice leads. For each observation, the
sea level anomalies (SLAs) under floes are calculated as the
median value of all leads in a 25 km radius around the con-
sidered along-track point. Freeboard heights are computed
by fb=Hfloe−Hlead, where Hfloe is the heights of the ice
floes and Hleads the heights of the leads. Finally, a 25 km
radius median smoothing is applied to the retrieved free-
boards. The reason is that we assume that the ASD product
should not be able to provide relevant information at smaller
scales. However, additional analyses and comparisons with
validation data would be necessary to properly characterise
this point. Note that the ability to consistently observe small
scales would certainly be significantly improved in the future
dual-frequency snow depth products from the CRISTAL mis-
sion. In the first ASD data version (Guerreiro et al., 2016),
snow depths were only calculated at CS-2 and SARAL cross-
ing track points. For this version, snow depths are calculated
from the difference between monthly EASE2 gridded free-
boards as sdr = fbKa− fbKu, where sdr is a radar snow depth.
Furthermore, to compute snow depth (sd), we need to take
into account the decrease in the Ku radar echo velocity as it
penetrates into the snow pack (Ulaby et al., 1986; Kwok and
Cunningham, 2015):

sd= sdr× (1+ 0.51× ρs)
(−1.5), (3)

where ρs is the snow density, set to 300 kg/m3. Note this for-
mulation agrees with the conventional interpretation to cor-
rect for the slower wave propagation speed through snow, as
recently shown in Mallett et al. (2020).

To estimate snow depth uncertainties, we assume that er-
rors are unbiased, uncorrelated and follow the Gaussian prop-
agation law. Snow depth uncertainty is then given by

δsd =

√
(δsdr ×C)

2+ (sdr×B × δρs)
2, (4)

with

C = (1+ 0.51× ρs)
−1.5,

B =−1.5× 0.51× (1+ 0.51× ρs)
−2.5,

δsdr =

√
δ2

fbKa
+ δfb2

Kur
and δρs = 3.2.

The freeboard uncertainties δfb =
√
δ2
Hleads
+ δ2

Hfloes
are calcu-

lated along-track from the statistical dispersion of heights in
a 12.5 km radius. Since sea ice topography can significantly
vary within this area, we assume that the statistical dispersion
of floes is the same as that of the leads.

δ2
Hfloes
=
σHleads

Nfloes
and δ2

Hleads
=
σHleads

Nleads
(5)

Using this methodology, Fig. 1 presents an example of ASD
snow depth estimations and its associated uncertainties in the
two hemispheres. In the Antarctic, thicker snow is located in
the Weddell Sea and, to a lesser extent, in the coastal zones
of the Bellingshausen and Amundsen seas. It is also relevant
to identify the very low snow values associated with the Ross
Ice Shelf. In the Arctic, the snow distribution follows well the
dynamics of sea ice, the most characteristic of which is the
export of MYI in the Beaufort Gyre. This figure also shows
that the ASD data are very different from the W99m cli-
matology, in which the W99m climatology tends to exhibit
thicker snow layers over sea ice. The ASD mean level of un-
certainties (of about 4 cm on average with standard deviation
of 1 cm) are smaller than the deviations between these two
products (on average about 6 cm with standard deviation of
7 cm).

3 External datasets

This section presents the various snow depth datasets used in
this study. For both hemispheres, the time period of model
and satellite products ranges from 2014–2019 for the Arctic
and 2013–2019 for the Antarctic (with limitations for some
data products for both hemispheres), as explained in Fig. 2.
Table A4 specifies the time period of the different satellite
and model data.

3.1 Satellite data

3.1.1 DuST

The DuST (Lawrence et al., 2018) data are provided in
the Arctic on a 1.5◦ longitude× 0.5◦ latitude grid by
the CPOM/UCL (http://www.cpom.ucl.ac.uk/DuST/, last ac-
cess: March 2021). They are available for the 6 winter month
(November to April) until 2018. Similar to ASD data, DuST
relies on the difference of penetration between the Ka-band
SARAL/Altika and the Ku-band CS-2 radar altimeters. How-
ever, unlike the ASD product (which uses the CS-2 PLRM
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.

Figure 1. Maps of the altimetric snow depth (ASD) annual mean snow depth (a) and its uncertainties (d) in the Antarctic and the Arctic (b
and e) for 2015. The third column presents the annual mean snow depth map of the modified Warren-99 climatology (c) and its difference
with the ASD product (ASD-W99m) in the Arctic (f) in 2015.

data; see Sect. 2), the DuST product uses SAR mode free-
board estimates of CS-2. The CS-2 and SARAL (LRM
data) data are then calibrated against data from National
Aeronautics and Space Administration’s (NASA’s) OIB air-
borne measurements to align the freeboard observations from
SARAL/Altika with the snow–air interface and the freeboard
observations from CS-2 with the snow–ice interface. Al-
though this method provides a generic approach adaptable to
different footprints (e.g. ICESat-1 and 2), it has the disadvan-
tage of being dependent on the OIB data which are mainly
located near the Canadian Archipelago and the Beaufort Sea
and are only obtained during March and April.

3.1.2 AMSR2

The Advanced Microwave Scanning Radiometer-
2 (AMSR2) is a passive radiometer on board the
JAXA/GCOM-W (Japan Aerospace Exploration Agency’s
Global Change Observation Mission – Water) satel-
lite launched in 2012. Snow depth on sea ice retrieval
is based on the gradient ratio of vertically polarised
brightness temperature at 19 and 37 GHz (Markus and
Cavalieri, 1998), and two snow depth products are avail-
able. The first product (AMSR2-NSIDC), described
in Meier et al. (2018), is accessible on the NSIDC
(https://nsidc.org/data/AU_SI12/versions/1, last access:
March 2021). It provides daily L3 snow depth data in

12.5 km× 12.5 km stereopolar grids constructed as 5 d
running averages. Data are only calculated over FYI (with
MYI concentration of less than 20 %). This is due to the
fact that MYI has a spectral signature similar to snow cover
over FYI. Because of this limitation, we mainly focus on the
Bremen AMSR2B product (Rostosky et al., 2018) developed
at the Institute of Environmental Physics of the University
of Bremen. This product is available on a daily basis from
November 2012 to April 2018 on a polar stereographic grid
with a 25 km× 25 km resolution. Unlike in AMSR2-NSIDC,
March and April snow depth data are also calculated over
MYI for AMSR2B. Other months are only available over
FYI. Note that the algorithm used to calculate snow depth
over MYI is also calibrated with observations from OIB.

3.2 Model data

3.2.1 PIOMAS

The pan-Arctic Ice-Ocean Modelling and Assimilation
System (PIOMAS; Global Ice-Ocean Modeling and Assim-
ilation System, GIOMAS, in the Antarctic) is a pan-Arctic
coupled ocean and sea ice model developed for climate
applications (Zhang and Rothrock, 2003). Snow depth
data are provided on a daily basis in a 360× 120 gener-
alised curvilinear coordinate system from the PIOMAS
model version 2.1 (http://psc.apl.uw.edu/research/projects/
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arctic-sea-ice-volume-anomaly/data/model_grid, last ac-
cess: March 2021). The atmospheric surface forcing fields
are issued from NCEP–NCAR reanalysis. Ocean and Sea
Ice Satellite Application Facility (OSI SAF) sea ice concen-
tration from EUMETSAT is assimilated in near real time.
A complete description can be found in Schweiger et al.
(2011).

3.2.2 MERCATOR

In the framework of the Copernicus Marine Environment
Monitoring Service (CMEMS), Mercator Ocean implements
a real-time global analysis and forecasting system at 1/12◦

resolution. This system is based on the NEMO ocean plat-
form (Madec et al., 2015) and is driven by atmospheric
conditions from the ECMWF Integrated Forecast System
(IFS) analysis and forecasting system. The sea ice model
component is the Louvain-la-Neuve sea ice model (LIM-2)
(Fichefet and Maqueda, 1997; Vancoppenolle et al., 2012).
The unique sea ice quantity assimilated within the system is
the near-real-time sea ice concentration from OSI SAF pro-
vided by CMEMS. The accumulation of the snow depth onto
sea ice originates from ECMWF snowfall forcing fields. A
complete description can be found in Lellouche et al. (2018).
Snow depth data used in this study have been provided on a
monthly basis on the ORCA tripolar grid. This LIM-2 model
configuration will be referred to as the MERCATOR model.

3.2.3 NESOSIM

The NASA Eulerian Snow On Sea Ice Model (NESOSIM)
is a 3D snow budget model configured to produce snow
depth and density over sea ice in the Arctic Ocean. Data
used in this paper are snow depth monthly mean maps pro-
vided on a 100 km × 100 km stereographic polar grid is-
sued from the NESOSIM 1.0 configuration (Petty et al.,
2018). It is freely available at https://earth.gsfc.nasa.gov/
cryo/data/nasa-eulerian-snow-sea-ice-model-nesosim (last
access: March 2021). Snowfall data forcing fields are the
ECMWF ERA-Interim global reanalysis and a median of
three reanalyses: the 55-year reanalysis of the JRA, NASA’s
MERRA and ASR, version 1.

3.3 Validation data

The validation data presented in this section are only com-
pared with ASD in the Arctic. As mentioned in the introduc-
tion CryoVEx and OIB data in the Antarctic are still only
L1b. IMB buoys are only in the Arctic. The geographical lo-
cations of the validation data are shown in Sect. 4.3.

3.3.1 CryoSat Validation EXperiment (CryoVEx)

These airborne data are a joint effort of the DTU Na-
tional Space Institute and ESA (in cooperation with AWI).
The main goal of the project is to quantify and vali-

Figure 2. Times series of annual mean snow depth of the differ-
ent products in both hemispheres. Annual means are calculated as
the average of the spatial means of all monthly grid maps. Only
the 6 winter months are considered in the calculation (November–
April in the Arctic and May–October in the Antarctic). Note that the
AMSR2 data are not represented in the Arctic since the AMSR2-
NSIDC product is only available over FYI, and the AMSR2B prod-
uct is only available with its full spatial coverage (FYI and MYI) in
March and April.

date CS-2’s ability to measure SIT. Since 2003, the Cry-
oVEx missions have provided both laser (ALS, airborne
laser scanner) and Ku-band radar (ASIRAS, ESA airborne
Ku-band interferometric radar) altimetric measurements.
In addition, in 2017, the data include for the first time
along-track total freeboards from the Ka-band KAREN al-
timeter (Haas et al., 2017), allowing us to compute Ka–
Ku snow depth estimations. These data have been devel-
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oped by AWI in the context of the ESA CryoSeaNICE
project. For further information, please see the technical
report at https://earth.esa.int/eogateway/documents/20142/
1526226/CryoVEx2017-final-report.pdf (last access: March
2021).

3.3.2 Operation Ice Bridge (OIB)

OIB is one of the largest airborne missions in polar regions
aiming to determine sea ice properties. Among others, it
carries a snow radar measuring the snow–air and snow–ice
interfaces of the signal scattered by the area illuminated
beneath the aircraft. All information concerning the different
campaigns and instruments can be found in the literature
(e.g. Newman et al., 2014; Kurtz et al., 2013; Armitage
and Ridout, 2015). OIB snow depth data presented in
this paper are the NSIDC OIB Quicklook version (Kurtz
et al., 2012; King et al., 2015) validated from in situ data
of the BROMEX campaign (Nghiem et al., 2013). These
data are available at https://daacdata.apps.nsidc.org/pub/
DATASETS/ICEBRIDGE/Evaluation_Products/ (last ac-
cess: March 2021). For comparison with the ASD dataset,
we use all spring campaigns during the period of 2014–2018.
For comparison with the ASD climatology, we use all OIB
spring campaigns during 2009–2012.

3.3.3 Ice mass balance (IMB) buoys

IMB data (Perovich et al., 2021) are issued from the US
Army CRREL-Dartmouth Mass Balance Buoy Program.
They provide point measurements of the ice mass balance
characterised by a combination of snow and ice conditions
(Richter-Menge et al., 2006; Perovich and Richter-Menge,
2015). Snow depth data are collected at 4 h intervals from
acoustic sounders. In this study we analyse the data of three
winters (2013–2014, 2014–2015 and 2015–2016). Note that
we do not use the data of 2017 and 2018 because they are
still provisional and subject to revision.

4 Comparison between snow depth data

4.1 Methodology

Model and satellite snow depth estimations are projected
onto a 12.5 km pixel size EASE2 grid (similar to ASD) us-
ing a linear 2D multivariate interpolation. For each product
we compute monthly mean maps for the 6 winter months
(November–April in the Arctic and May–October in the
Antarctic) for both hemispheres from March 2013 to October
2019. These maps are provided for 2015 in the Supplement
(Figs. S1 to S13). Note that to improve the consistency of
the analyses we always use the larger common time period
for all the compared products. Thus, the covered time peri-
ods may vary depending on the availability of the snow depth

products. Three statistical diagnoses are used to characterise
the differences between snow depth datasets:

1. The climatic annual mean is simply the average of all
monthly snow depth maps from all years.

2. The mean annual variability (MAV) is the average, for
the years y, of the annual snow depth standard deviation
(SDy(sd)) maps computed from the six monthly mean
maps. The MAV is calculated at each grid point follow-
ing Eq. (6):

MAV=
1
Ny

∑
y
(SDy(sd)) with

SDy(sd)=

√
1
Nm

∑
m
(sdy,m− sdy)

2, (6)

where sdy,m is the monthly snow depth map of the
month m (m= 11,12,01,02,03,04 in the Arctic and
m= 05,06,07,08,09,10 in the Antarctic) for the year
y, and sdy is the snow depth annual mean map of the
year y. Nm and Ny are the number of months (six in
our case) and the number of year in the considered time
period, respectively.

3. The mean interannual variability (MIV), which is the
average of the interannual standard deviation SDm(sd)
maps for the 6 winter months m over the 2013–2019
time period. The MIV is calculated at each grid point
following Eq. (7):

MIV=
1
Nm

∑
y
(SDm(sd)) with

SDm(sd)=

√
1
Ny

∑
y
(sdy,m− sdm)

2, (7)

where sdm is average snow depth map of the month m.

For now, the lack of available relevant snow depth data
in the Antarctic limits these comparisons to the Northern
Hemisphere. Comparisons with all in situ and validation data
are performed with a comparable methodology: snow depth
model and satellite gridded maps are projected along the
aircraft trajectories using a bilinear interpolation. Airborne
and in situ are generally daily data, and the comparisons are
performed with the mean maps of the month to which that
day belongs. In order to achieve similar spatial scales in the
comparisons, we have applied a 25 km window rolling mean
to smooth the external data. Due to the non-Gaussianities
within 25 km sections, we have noticed that the smoothing
has a mean effect which slightly tends to reduce the mean
value of data. It is important to consider that this allows us to
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correct potential bias that would be induced by a difference in
resolution. Note that the space and time consistency in reso-
lution between all model and satellite data is also ensured by
projection onto similar grids. Since snow depth products and
validation data are available over different time periods (see
table A4), the comparisons are also performed for different
time periods. Our approach is to take, for each comparison,
the time period common to all the compared data. The aim
is to provide reliable statistics. For each comparison, a label
specifies the considered time period.

4.2 Comparison between satellite and model
estimations

4.2.1 Results in the Arctic

Here, we compare the ASD, DuST and AMSR2B snow depth
data in the Arctic by considering the months of March and
April over the 2014–2018 period (Fig. 3). These climatic
“seasonal” means and interannual variability presented in
Fig. 3 are the mean and the standard deviation of all monthly
maps of March and April over this time period. Statistical
diagnoses are summarised in Table A1.

On average, the ASD data are about 3 cm lower than the
AMSR2B data and 6 cm lower than the DuST data. ASD
data present the stronger snow depth gradients (associated
with a higher spatial standard deviation) with clear distinc-
tions between low snow depths over thin sea ice regions (e.g.
Laptev Sea region) and higher snow depths over regions of
thicker sea ice (e.g. Queen Elizabeth Islands region). Ex-
cept in the MYI zones, AMSR2B data are quite smooth and
characterised by a weak variability compared to that of the
two altimetric products. In MYI zones (towards Queen Eliz-
abeth islands) AMSR2B has the highest snow depths. We as-
sume that it might be related to the snow depth retrieval al-
gorithm, inadequate over thick ice. Indeed, the statistical re-
sults which are presented in the Appendix (Table A1) show
that the two Ka–Ku products (ASD and DuST) are in good
agreement in terms of spatial variability and the magnitude of
their annual cycle considering the entire set of data over the 6
winter months. Note that DuST presents the highest climatic
“seasonal” mean solution, even higher than W99m (see also
Fig. 2). In addition, DuST and ASD spatial distributions are
comparable, showcasing that the difference between the two
Ka–Ku altimetric products is likely a bias resulting from the
re-calibration of the DuST data with OIB (this point will also
be discussed in the next sections). This underlines the con-
sistency of this methodology used to compute bi-frequency
snow depth estimations in the absence of external data (ASD)
since DuST calibration is limited by the spatial and temporal
availability of OIB.

Figure 4 compares the ASD snow depth estimations with
the outputs of three sea ice models in the Arctic (NESOSIM,
MERCATOR and PIOMAS). The statistical diagnoses pre-
sented in Sect. 4.1 are used. They are summarised in Ta-

ble A1. Amongst the three models, the MERCATOR model
provides lower snow depth estimations throughout with a cli-
matic mean of 7.4 cm and lower mean interannual and annual
variability of about 3 cm. On the contrary, climatic means of
PIOMAS and NESOSIM are similar both in terms of spatial
distribution and pan-Arctic mean (with values of respectively
15.5 and 16.2 cm). Considering annual and interannual vari-
ability, PIOMAS presents high values that are more evenly
spread. In contrast, NESOSIM is characterised by lower val-
ues everywhere except in the Greenland and the Kara seas.

In spite of some comparable large-scale spatial patterns,
these results highlight the large deviations between the ASD
data and the model solutions. One striking feature is the
transport of MYI along the Canadian coast by the Beaufort
Gyre (see also Fig. 1), which is nearly non-existent in model
solutions. The patterns of deep snow over MYI are well rep-
resented in the models but do not extend along the Cana-
dian coastline towards the Beaufort Sea, as is the case for
ASD. Overall, the models tend to overestimate snow depths
nearly everywhere compared to the ASD data. The ASD data
climatic mean is lower (12.3 cm), and zones of thin snow
layers (e.g. around 120◦ E) are less pronounced in models
(except by MERCATOR, where snow depth is low every-
where). Models also present higher variability. However, in
all datasets the maximum variability occurs between 0 and
90◦ E, which is relevant because of the proximity to the open
ocean and the existence of strong meteorological events (e.g.
Semenov et al., 2019; Dong et al., 2019). Although investi-
gating what causes these discrepancies is beyond the scope of
this article, the strong sensitivity of the models to the reanal-
ysis snowfall forcing data (e.g. Boisvert et al., 2018; Petty
et al., 2018) could play a predominant role here.

4.2.2 Results in the Antarctic

ASD is currently the only publicly available altimetric snow
depth product in the Antarctic. One major advantage com-
pared to the Arctic is that the SARAL orbit does not affect the
data coverage since all the Antarctic sea ice is below 81.5◦ S.
Similarly to what has been done in the previous section for
the Arctic, Fig. 5 compares ASD with the AMSR2-NSIDC
data and the GIOMAS and the MERCATOR sea ice model.
The statistics are summarised in Table A2.

In spite of a comparable climatic mean and some coherent
spatial distributions such as the transport of snow in the Wed-
dell Gyre, ASD and AMSR2-NSIDC data show significant
discrepancies. Unlike what we have observed in the Arctic,
ASD data are relatively smooth with a weak spatial variabil-
ity. In comparison, AMSR2-NSIDC data are characterised
by strong contrasts between large snow depth patterns in the
Weddell Sea and to a lesser extent in the western part (from
150◦ E to 90◦W) and areas with nearly no snow (eastern part,
between 0 and 150◦ E). As in the Arctic, AMSR2-NSIDC an-
nual and interannual variability is lower and much more lo-
calised than in the ASD data. ASD and AMSR2-NSIDC re-
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Figure 3. Comparisons of satellite snow depth estimations in the Arctic. (a, b, c) Bi-monthly March and April “climatological” snow depth
mean maps calculated over the period 2014–2018 for the ASD data (a, d), the DuST data (b, e) and the AMSR2B data (c, f). (d, e, f) The
standard deviation between all the data used to calculate the mean snow depth maps (equivalent to the mean interannual variability computed
with March and April over the same 2014–2018 time period).

produce well the thin snow pattern of the Ross Ice Shelf. One
other relevant difference between these two datasets is the
systematic decrease in snow depth in October in the AMSR2-
NSIDC data (see Table A2).

The presence of thicker snow in East Antarctica for ASD
is consistent with Worby et al. (2008b) in that comparisons
with ARISE in situ data have shown radiometric measure-
ment snow depth underestimations. Wet-snow conditions due
to flooding might be responsible for radiometric brightness
temperature contrasts. The low variabilities in the Weddell
Sea for ASD were not expected since winter snow proper-
ties are extremely variable (Massom et al., 1997). In addition
the large bias with AMSR2-NSIDC raises questions. Since
the Ku band is supposed to better penetrate in cold and dry
snow (Willatt et al., 2011), one hypothesis is that the pres-
ence of saline and warm moist basal snow layers, even in
the absence of flooding (Massom et al., 2001; Perovich and
Richter-Menge, 1994), lead to ASD underestimations. For
AMSR2-NSIDC, the snow depth retrieval algorithm is prob-
ably not well adapted for rougher snow that can be compared
to MYI in the Arctic.

With a climatic spatial mean of about 34.6 cm, GIOMAS
simulates everywhere very high snow depths compared to the
other solutions. Considering what is provided in the litera-
ture (e.g. Worby et al., 2011), these values clearly seem to

be overestimated. With the exception of the Weddell Sea, the
MERCATOR model and ASD present comparable snow pat-
terns with substantial coastal values not seen in the AMSR2-
NSIDC data. However, the MERCATOR model displays
thicker snow everywhere but in the Weddell Sea, while the
presence of deep snow is a well observed feature, which is
supported by ASD (e.g. Massom et al., 1997; Eicken et al.,
1994). Because of highly dynamic weather conditions, with
persistent strong winds in the Antarctic, snow thickness dis-
tribution is not directly related to snowfalls (Massom et al.,
2001). Conversion from precipitation to snow depth is then
very different to the Arctic, and Antarctic snow pack is not
a uniform slab. These features should partly explain model
difficulties and differences between the two hemispheres.

4.3 Comparison with in situ and airborne data

4.3.1 OIB

OIB data are compared to all the datasets presented in the
previous sections. We only consider OIB observations below
81.5◦ N from the 2014–2018 campaigns. Figure 6 shows an
along-track example from the OIB flight on 29 March 2015,
and Fig. 7 presents scatter plots comparing the various snow
depth products with the OIB data over the entire 2014–2018
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Figure 4. Comparisons between the ASD data and model snow depth products (PIOMAS, NESOSIM, MERCATOR) in the Arctic. The first
column presents the “climatic mean” snow depth maps, the second column the “annual variability” and the third column the “interannual
variability” as presented in Sect. 4.1. These diagnoses are calculated from March 2013 to April 2019 for ASD (first row), PIOMAS (second
row) and MERCATOR (fourth row) and from March 2013 to April 2017 for NESOSIM (third row).
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Figure 5. Comparisons between ASD data and other snow depth estimations in the Antarctic (AMSR2-NSIDC, MERCATOR, GIOMAS).
The first column presents the “climatic mean” snow depth maps, the second column the “annual variability” and the third column the
“interannual variability” as presented in Sect. 4.1. These diagnoses are calculated from May 2013 to October 2019 for the ASD data (first
row), the AMSR2-NSIDC (second row) and the MERCATOR model (third row) and from May 2013 to October 2016 for the GIOMAS
model data (fourth row).
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Figure 6. Along-track comparison between the snow depth products and the OIB snow radar data acquired on 29 March 2015 in the Arctic.
The red envelope refers to the ASD uncertainties. The geographical map specifies the geographical location of this particular 1 d OIB track.

time period (including all spring OIB campaigns within this
period). Statistical results are summarised in Table 1.

One striking feature is the good consistency between ASD
and OIB in terms of magnitude and spatial variability. The
OIB data are almost within the ASD envelope of uncertain-
ties (in shaded red) at all times. These consistencies between
OIB and ASD data are also demonstrated in several other
OIB tracks provided in the Supplement (Figs. S14 to S17).
The DuST Ka–Ku data present an along-track variability
similar to ASD but tend to overestimate snow depth com-
pared to OIB. This reinforces the hypothesis that the main
difference between ASD and DuST is a bias. The AMSR2B
data also reproduce the large-scale snow depth variability
quite well but overestimate at a level comparable with DuST
when compared to OIB. The DuST and AMSR2B overesti-
mations are quite consistent with Kwok et al. (2017), who
found that this OIB product tends to have thinner snow than
the NOAA Wavelet Airborne Snow Radar dataset, which has
been used for re-calibrations. In fact, it is important to be
aware that various OIB datasets have been produced, lead-
ing to a variety of snow estimations that can reach 7 cm on
FYI and 12 cm on MYI (Kwok et al., 2017). The variabilities
in snow properties from OIB daily basis data to the monthly
means of the other datasets certainly explain some of the de-
viations.

Models hardly represent the along-track variability and
do not reproduce small-scale patterns. A resolution that is
too coarse could partly explain this feature. As expected,
the MERCATOR model snow thicknesses are far below the
others, whereas the PIOMAS and NESOSIM solutions pro-
vide comparable results (see also Table 1). As expected, the
W99m climatology strongly overestimates snow depths and
is clearly a less optimal solution in this case.

4.3.2 IMB

The comparison between snow depth estimations and the
IMB data for the winters of 2013–2014, 2014–2015 and
2015–2016 is presented in Fig. 8. Statistical results are sum-
marised in Table 2. Except for AMSR2B, which is only avail-
able for the months of March and April, all comparisons are
performed using the exact same spatial coverage considering
only data below 81.5◦ N. Note that only very limited IMB
data are available south of 81.5◦ N for the winter of 2015–
2016.

Figure 8 and Table 2 show how the satellite-derived mean
values are closer to the in situ observations than the model.
However, the seasonal changes captured in the IMBs are not
reproduced well by the satellite products or the models. This
could reflect sampling differences as the IMB observations
consist of hourly point data that are not representative of
the wider averages of the gridded satellite or model prod-
ucts. DuST and ASD along-track variability is once again
very similar, with DuST being overall higher, highlighting
the very likely bias between these two products.

4.3.3 CryoVEx

Figure 9 presents the snow depth products projected along
the CryoVEx flight track measured on 31 March 2017. This
figure gathers the CryoVEx snow depth estimations calcu-
lated from (a) the difference between the Ku-band ASIRAS
radar freeboard and the ALS laser (ALS/ASR) total free-
board and from (b) the Ku-band ASIRAS radar freeboard and
the Karen (Ka/ASR) total freeboard. Note that because of
SARAL’s spatial coverage limitation (latitude< 81.5◦) and
the absence of the SARIN mode in the CS-2 ESA Baseline-
B GOP (used to construct the ASD data; see Sect. 2), only
the track of the 31 March 2017 CryoVEx survey of Baffin
Bay can be compared with the ASD data.
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Figure 7. Scatter plots between the snow depth products and OIB snow radar data considering the 2014 to 2018 missions. The red line is the
linear fitting line. For NESOSIM, 2018 is not included.

Table 1. Statistics of the comparison between OIB snow radar data and the various snow depth products considering the OIB spring cam-
paigns of 2014–2018.

OIB ASD DuST PIOMAS MERCATOR NESOSIM W99m AMSR2B

Mean (cm) 18.6 18.5 24.8 22.9 11.5 21.1 33.9 22.6
SD (cm) 7.5 6.9 6.5 10.4 4.4 8.5 1.5 5.8
Mean bias (cm) – ≈0.0 -6.2 −4.3 7.1 −2.6 −15.03 −4.0
RMSE (cm) – 5.9 8.7 10.2 9.8 8.4 17.0 7.1
R – 0.66 0.62 0.50 0.45 0.51 0.16 0.63

Ka/ASR estimation exhibits very thin snow thickness (<
10 cm). Although it might be expected in this area (Landy
et al., 2017), this solution still contains unrealistic negative
values due to the fact that ASIRAS and KAREN freeboards
are nearly equivalent over FYI (without negative values). The
main difference between snow depths calculated from the
laser and the Ka-band-radar snow depth estimations seems to
be a bias. Except around 71.3◦ N, where a specific event may
have occurred, the ASD snow product tracks the magnitude
of the CryoVEx airborne data, with ALS/ASR and Ka/ASR
acting respectively as an upper and lower bound and being
within ASD’s range of uncertainty (in red shading). How-
ever, the along-track variability is not well reproduced by any
dataset. The MERCATOR and NESOSIM models also show

similar magnitudes as the CryoVEx snow depth estimations
(ALS/ASR and Ka/ASR), while PIOMAS and the W99m cli-
matology clearly overestimate. AMSR2B and DuST overes-
timate snow depth, while the DuST along-track variability is
comparable to ASD.

5 Towards an ASD snow depth climatology

In spite of the consistency of the ASD data highlighted in
the previous sections from comparisons with airborne and
in situ data, the limited temporal coverage (only available
post-2013) remains an important limitation to the use of
these data. Considering the low interannual snow precipita-
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Figure 8. Along-track comparison between the snow depth products and the IMB in situ data. (a) IMB buoys compared with satellite data,
both passive and active, and (b) IMB buoys compared with model data. The right column shows geographical maps from data for all three
periods (2013–2014, 2014–2015, 2015–2016). The maps present the geographical location of the three IMB buoys.

Table 2. Statistics of the comparison with IMB data and the various snow depth products considering data acquired during 2013–2016.

IMB ASD DuST PIOMAS MERCATOR NSIM W99m AMSR2B

Mean (cm) 21.6 19.14 25.51 19.37 7.61 18.32 28.03 24.88
SD (cm) 2.2 3.17 2.90 4.68 2.17 3.68 5.16 1.05
RMSE (cm) – 4.73 5.50 5.11 14.32 4.96 8.2 3.71
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Figure 9. Along-track comparison, in the Arctic, between the snow depth products (models and satellites) and the CryoVEx snow depth data
calculated from the Ka-band KAREN radar (blue) and the ALS laser (dark blue) with the Ku-band ASIRAS radar during the 31 March 2017
campaign. The map specifies the geographical location of the CryoVEx track.

tion variability compared to that of the spatial variability (e.g.
Figs. 2 and 4), one solution would be to develop an ASD cli-
matology. For that purpose, we have constructed a prelimi-
nary altimetric snow depth climatology in the Arctic by aver-
aging all the ASD snow depth maps of each month during the
2013–2019 period (designated as ASD-clim). An equivalent
climatology could also be constructed for the Antarctic, but
the lack of validation prevents its validity to be demonstrated
at present. To demonstrate the relevance of this climatology
in the Arctic for the years prior to 2013, the ASD-clim data
are projected on all the tracks of the four OIB missions oc-
curring between 2009 and 2012 and are presented in Fig. 10.

Figure 10 shows that the ASD climatology would be a bet-
ter solution than W99m, at least for the CS-2 time period.
This is highlighted with the lower bias (−0.1 m compared
with−0.14 m), the higher correlation coefficients (0.71 com-
pared with 0.06) and the lower RMSE (0.06 m compared with
0.17 m). Furthermore, even as a climatology, we obtained a
correlation between the ASD-clim and OIB of the same or-
der of magnitude as obtained by direct correlation between
ASD and OIB measurements (Fig. 7). However, as future
work, a more refined computation should be investigated. In
particular, an important point would be to provide a relevant
snow product representing the Envisat era. Since the W99m
can be considered as relatively consistent until the year 2000,
a mixed ASD and W99m product (ASD-W99m), including,
for instance, a time dependency, could be considered. Also,
it could be relevant to take into account the sea ice type in-
terannual variability as is done for W99m.

Another critical point of the ASD data (for instance for sea
ice volume estimations) is the reduced spatial coverage due
to the SARAL orbit. While during the time period of Envisat,
this does not become an issue since its orbit is equivalent to
that of SARAL; the absence of data north of 81.5◦ N is a

major limitation to SIT estimations. A combination of ASD
with W99m and/or model data could be done to extrapolate
the data. Potentially, one could also investigate a combina-
tion of ASD with W99m and/or models to extrapolate the
data. In the Antarctic, we do not encounter the same issue
since the orbit does not reduce the spatial coverage, and FYI
is generally considered to be the only sea ice type present
in the Southern Ocean. Then, such a climatology would be
a solution to compute SIT estimations over the Envisat and
CS-2 time period provided that the temporal variability in
precipitation is investigated. Note that experimental SIT es-
timations (Hendricks et al., 2018) have already been done in
the Antarctic in the framework of the Sea Ice Climate Change
Initiative (SI-CCI). These data used a snow climatology elab-
orated from AMSR-E and AMSR2 data in a nearly equiva-
lent manner to what has been presented here.

6 Impacts of snow depth on SIT estimation

Since there is still no validated freeboard product in the
Antarctic, this analysis has only been performed in the Arc-
tic. From the CS-2 radar freeboard product presented in
Guerreiro et al. (2017), extended to 2019, we have computed
SIT estimates using the various snow depth datasets pre-
sented in this study. They are calculated from the CS-2 L1b
ESA Baseline-C SAR waveforms (Bouffard et al., 2018b)
with the methodology presented in Sect. 2. Freeboard heights
are converted into SIT assuming hydrostatic equilibrium be-
tween snow-covered sea ice and the ocean (Eq. 8).

SIT=
ρwfbice + ρssd
ρw− ρi

(8)
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Figure 10. Scatterplots comparing the ASD and the W99m climatologies with OIB by considering all the tracks of the 2009, 2010, 2011 and
2012 OIB missions.

As in Ricker et al. (2014), we assume the seawater density
(ρw) is set to 1024 kg/m3. Consistent with the approach of
Laxon et al. (2013), sea ice density (ρi) is set to 882 kg/m3

for MYI and 917 kg/m3 for FYI (Alexandrov et al., 2010).
Furthermore, the snow density (ρs) is set to 300 kg/m3. A
distinction between FYI and MYI follows the EUMETSAT
OSI SAF sea ice type classification. The sea ice freeboard
fbice is calculated from the radar freeboards, taking into ac-
count the reduction in radar velocity within the snow layer,
which depends on snow depth data following Eq. (3). SIT
monthly maps are calculated for each snow depth product
presented in previous sections. These monthly maps are pro-
vided for the winter of 2015 in the Supplement (Figs. S18 to
S24). Figure 11 presents the annual mean time series of the
spatial mean of all these SIT solutions (except for AMSR2B
which is only calculated in March and April).

Except for the MERCATOR model (which has shown to
be overall significantly low), using the ASD data provide the
lowest pan-Arctic mean SIT estimations. The highest SIT es-
timations are obtained with the DuST product (and W99m),
highlighting the impact of the bias previously identified be-
tween these two solutions (ASD and DuST). Considering the
various snow products together (except for the MERCATOR
model), the spatial mean SIT annual mean values are dis-
tributed between 1.2 and 1.6 m. This leads to a pan-Arctic
SIT ensemble mean of 1.4 m (mean of the dotted blue line in
Fig. 11) associated with a mean maximum deviation of 29 cm
(mean of differences between the maximum and minimum
dotted blue lines). This mean maximum deviation, which is
approximately the mean difference between ASD and DuST,
represents about 20 % of the mean SIT. Considering the good
consistency between ASD and the validation snow depth data
(demonstrated in Sect. 4.3), actual SIT products computed
using W99m should tend to significantly overestimate sea
ice volume in the Arctic. For instance, taking a deviation of

Figure 11. Arctic annual mean time series (2014–2019) of the av-
eraged SIT solutions computed using various snow depth products
(models and active/passive satellite-based). Spatial coverage is de-
fined by the smallest sea ice extent. The dotted blue lines define the
annual mean, minimum and maximum values between all solutions
(except for MERCATOR). The AMSR2 data are not represented
since they are not available over the period.

about 0.3 m (≈ the mean deviation between ASD and W99m
in 2015) and a mean Arctic sea ice extent of 13× 106 km2

(approximately the mean sea ice extent of 2015), the result-
ing SIT overestimation would lead to a sea ice volume excess
of about 4×103 km3, which represents about 3.5×1015 L of
freshwater. Such an uncertainty is not negligible compared
to the 8000± 2000 km3 change in the western Arctic fresh-
water content between 1995–1996 and 2009–2010 relayed
in Giles et al. (2012). To give an illustrating example, this
uncertainty of 3.5× 1015 L of freshwater would be roughly
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equivalent to 6 months of the Amazon water discharge (con-
sidering a debit of about 2× 108 L/s). Deviations of only a
few centimetres of snow depth (≈ 6 cm of mean deviation
between ASD and W99m snow depths in 2015; see Fig. 1)
have strong impacts on the freshwater budget.

Although this provides a relevant overview, such large-
scale pan-Arctic means do not show the spatial and tem-
poral variability in the various SIT solutions. For instance,
while DuST and W99m provide comparable SIT pan-Arctic
mean estimations, the spatial and temporal information in-
cluded in these two datasets are very different (e.g. Figs. 2
and 3). To better characterise the impacts of snow depth on
SIT, we propose to consider the deviations between these
SIT estimates for each month of each year and at each grid
point. Such an ensemble of SIT solutions will allow us to
characterise the level of uncertainty due to discrepancies be-
tween the different snow depths. For the month m of year y,
the standard deviation (SDy,m(SIT)) and the maximum de-
viation (maxdevy,m(SIT)) maps are calculated with Eqs. (9)
and (10). SITy,m, p is the SIT solution provided by the snow
product p, and SITy,m is the mean map between all these
SIT estimations. Np is the number of snow depth products,
and maxp(SITy,m, p) and minp(SITy,m, p) are respectively
the maximum and minimum monthly maps between the SIT
solution of the snow depth products.

SDy,m(SIT)=

√
1
Np

∑
p
(SITy,m, p−SITy,m)

2 (9)

maxdevy,m(SIT)=max
p
(SITy,m, p)−min

p
(SITy,m, p) (10)

For each winter month, interannual mean, minimum and
maximum maps of these two statistics (standard deviation
SDy,m(SIT) and the maximum deviation maxdevy,m(SIT))
can then be computed from Eqs. (11) to (16), where Ny is
the number of years.

SDm =
1
Ny

∑
y
(SDy,m(SIT)) (11)

maxdevm =
1
Ny

∑
y
(maxdevy,m(SIT)) (12)

max(SDm)=max
y
(SDy,m(SIT)) (13)

max(maxdevm)=max
y
(maxdevy,m(SIT)) (14)

min(SDm)=min
y
(SDy,m(SIT)) (15)

min(maxdevm)=min
y
(maxdevy,m(SIT)) (16)

These statistics quantify the SIT uncertainty, caused only
for snow depth, assuming that deviations between snow
depth solutions refer to the snow depth level of uncertainty.
We define two cases: (1) “obs snow products”, which con-
siders ASD, DuST, W99m and AMSR2B, and (2) “all snow

products”, which includes in addition the PIOMAS, MER-
CATOR and NESOSIM model solutions. Note that ASD-
clim is not used in calculations in order to avoid the re-
dundancy with ASD data. Considering “obs snow products”,
Fig. 12 presents maps of the metrics presented in Eqs. (11) to
(16) for April. In addition, the monthly minimum, mean and
maximum maps over the period 2014–2019 are presented for
April in the Supplement (Fig. S25). All the results are sum-
marised in Table A3 which presents, for each winter month,
the spatial mean value of these maps. The spatial mean of the
monthly mean SIT maps (SITy,m, p) are also included.

The highest impacts on SIT are generally located near
coastal zones and marginal ice zones. In these areas, maxi-
mum standard deviation can reach up to 50 cm and maximum
deviation to 80 cm when considering “obs snow products”.
Due to larger differences between model and observations,
in particular MERCATOR, these values are higher with “all
snow products” (see Table A3). Except for these specific lo-
cations that mostly account for maximum values, the stan-
dard deviation maps are rather uniform. This suggests that
spatial mean values (presented in Table A3) are a relevant
indicator.

The large deviations between minimum and maximum
(standard deviation and/or maximum deviation) maps in-
dicate significant variations in the SIT level uncertainty
due to snow depth variability from one year to another.
On the contrary, spatial mean standard deviations do not
vary significantly in between months. Considering “obs
snow products” and all winter months, we obtained a SIT
mean standard deviation of ≈ 20 cm (14 %)± 11 cm (31–
9 cm interval; see Table A3) and mean maximum devi-
ation of ≈49 cm (35 %)± 25 cm. These values increase
to ≈27 cm (20 %)± 9 cm for the standard deviation and
≈76 cm (58 %)± 25 cm for the maximum deviation when
we take into account “all snow products”. Therefore, com-
pared to the deviation (roughly 30 cm) that can be extracted
from the difference between ASD (red line) and the SIT max
line (dotted blue) in Fig. 11, we obtain higher maximum de-
viations using this methodology. It suggests that considering
large-scale global means could tend to underestimate impacts
of snow depth on SIT and therefore the SIT uncertainty. Note
that in addition to a more refined methodology, taking into
account AMSR2B, which can reach high values, might have
a small impact here as well.

Besides providing a relevant quantification of the impacts
of snow depth on SIT, such a “multi-observation” approach
also provides a space and time variability in uncertainties. It
also avoids the necessity of relying on the strong, and usual,
assumption of Gaussian propagation of de-correlated errors.
These uncertainty estimates are very important for data as-
similation, in which the characterisation of observation er-
ror is of main importance to constrain models (e.g. Stewart
et al., 2008; Bunzel et al., 2016; Janjić et al., 2018). Note
that there are a growing number of research programmes
and international initiatives which aim at coordinating efforts

The Cryosphere, 15, 5483–5512, 2021 https://doi.org/10.5194/tc-15-5483-2021



F. Garnier et al.: Advances in altimetric snow depth estimates based on bi-frequency Ka–Ku measurements 5501

Figure 12. Interannual minimum (min(SDm), first column), mean (SDm, second column) and maximum (max(SDm), third column) maps
of the standard deviation (first row) and the maximum deviation (second row) for the month of April (m= 04). The snow products used to
compute the maps are ASD, DuST, AMSR2B and W99m. These maps correspond to the case “obs snow products”.

for better characterising uncertainties and provide traceable
quality indicators to sea ice earth observation (EO) products
(e.g. World Meteorological Organisation (WMO) workshop
at AWI, European Union/European Commission (EU/EC)
Polar Science Week).

7 Discussions and conclusions

In this study, we have presented a Ka–Ku snow depth prod-
uct computed, in both hemispheres, from the data obtained
by altimeters on board the satellites SARAL (Ka-band) and
CS-2 (Ku-band). This product has been compared over the
period 2013–2019 with the other Ka–Ku snow depth prod-
uct (DuST, only in the Arctic), AMSR2 passive radiometer
snow depth estimations, W99m (only in the Arctic) and snow
depth solutions of the models PIOMAS (GIOMAS in the
Antarctic), MERCATOR and NESOSIM (only in the Arc-
tic). Thereafter, all these products have been evaluated, in
the Arctic, against OIB airborne data, IMB snow buoys and
CryoVEx airborne campaign data, including Ka–Ku, as well
as ALS and Ku, snow depths. In the Antarctic, the lack of
validation data remains a major obstacle to the assessment of
sea ice products. It is currently a primary focus of the ESA
CSAO+ project.

In the Arctic, we observed a good agreement between the
two Ka–Ku products (ASD and DuST) in terms of spatial dis-

tributions and annual and interannual variability, but DuST is
always high biased by about 6.5± 0.5 cm (see Table A1). Al-
though this is likely due to the re-calibration of the DuST
product with OIB data mainly measuring thick snow, this
bias probably also indicates variabilities in Ku-band penetra-
tion related to snow properties. Only the surface roughness
is considered in the ASD calculation, but the impact of other
snow properties should be analysed and considered.

The AMSR2B (and also AMSR2-NSIDC over FYI) data
also tend to overestimate snow depths compared to ASD in
the Arctic. This overestimation is lower than DuST, on aver-
age of about 3 cm, and does not seem to only be a bias since
AMSR2B spatial patterns present noticeable differences. We
reiterate that comparisons with AMSR2B have only been
conducted in March and April because the data are not avail-
able over MYI for the other months. This absence of vari-
ability except in the MYI zone where AMSR2B has been re-
calibrated is a surprising feature that needs to be considered
when using these data.

Comparisons with models in the Arctic have highlighted
that the MERCATOR model is always biased low when com-
pared to the other products and simulates limited snow depth
variability. This is mainly due to the use of the ERA-Interim
forcing fields that underestimate precipitation. The impacts
of other parameters such as the albedo or the amount of pre-
cipitation falling into the ocean should be investigated. In
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contrast, NESOSIM and PIOMAS spatial patterns are con-
sistent with ASD and have a bias on average of a few cen-
timetres high. We found comparable representations in PI-
OMAS and NESOSIM, although NESOSIM presents higher
snow depths over MYI and higher variability. In spite of con-
sistencies, these two models hardly represent the MYI sea ice
drift in the Beaufort Gyre that can be observed in satellite ob-
servations. Note that we have not considered in this study the
recent SnowModel-LG model that should consistently cap-
ture the Arctic snow depth over sea ice spatial variability
(Stroeve et al., 2020; Liston et al., 2020). We refer to Zhou
et al. (2021) for a comparison between the SnowModel-LG
and various snow depth observation products.

In evaluation and for comparison of the snow depth prod-
ucts, we have compared OIB, CryoVEx and in situ IMB
snow depths over the Arctic. Comparisons with OIB have
shown satisfying consistencies with the ASD estimations.
We found a RMSE of about 6 cm with a correlation coeffi-
cient of 0.66. By comparison, the DuST product has a RMSE
of 8.7 cm and AMSR2B of 7 cm. Note that this higher RMSE
for DuST, in spite of a re-calibration, probably comes from
the OIB version used for re-calibrating. Indeed, DuST is re-
calibrated against the OIB NOAA Wavelet Airborne Snow
Radar dataset which is expected to present higher snow depth
values. In addition, further analysis could be done in order to
link the space and time variability in these biases with snow
properties The various snow depth products are less consis-
tent when comparing with IMB, although ASD mean val-
ues present a consistent order of magnitude. Due to the data
coverage, validation with CryoVEx has been limited to one
single track (where both Ku-band radar (ASIRAS), Ka-band
radar (KAREN) and lidar scanner (ALS) were available). We
observed that KAREN and ASIRAS snow depth estimations
are low, including a non-negligible amount of negative val-
ues. ASD data always remain in between the laser-Ku (ALS-
ASR) and Ka–Ku (Ka/ASR) CryoVEx snow depth estima-
tions.

Since the results of such comparisons with validation data
can vary from one methodology to another (e.g. grid sizes,
smoothing kernel, dataset versions), they do not aim to as-
sess the best snow depth product. However, they demonstrate
how ASD provides a relevant snow depth solution, in good
agreement with several validation data, and that ASD allows
for the characterisation of the deviations between the differ-
ent snow depth products. A more refined comparison with
the CryoVEx data (including various tracks) is mandatory to
understand the relative impacts of roughness and penetration
and their link with snow properties. For instance, Willatt et al.
(2011) show that the Ku-band dominant scattering surface
can significantly vary with snow temperature, with a reduced
penetration when temperatures increase. This feature could
enhance an underestimation of ASD data with the warming
of temperatures due to climate change. It also points out the
difficulty to retrieve snow depth from altimetry beyond the

6 months of winter as variations in snow properties are most
important in the summer period.

In the Antarctic, for satellite-based observations, spatial
mean snow depth values of AMSR2-NSIDC and ASD are
quite close. However, we found that AMSR2-NSIDC esti-
mations are very low in zones of thin snow, while it tends to
strongly overestimate snow depths in areas of thick ice. Such
patterns of very thin snow have not been observed in the Arc-
tic. Also patterns of thick snow are very likely due to the re-
trieval algorithm that is not adapted for thick ice. Regarding
models, over the Antarctic, the MERCATOR model simu-
lates mean values in better agreement with ASD. However,
thicker snow patterns and the clockwise drifts in the Weddell
Sea are not captured by the model. The GIOMAS model sim-
ulates very high snow depths nearly everywhere, likely lead-
ing to unrealistic snow depth representations. Sea ice mod-
els are generally very dependent on atmospheric forcings,
and differences in snow accumulation in models can lead to
very different snow depths. Model biases are largely due to
the lack of consistent observations, which has, so far, limited
the tuning of snow parameters such as albedo or snow diffu-
sion coefficients (Chevallier et al., 2017; Uotila et al., 2019).
These comparisons highlight snow properties in the Antarc-
tic that are very different than in the Arctic. Such opposite
model behaviours in the two hemispheres argue that a single
model tuning of parameters may not be adapted for a global
configuration. In the context of data assimilation, the positive
impacts of the integration of SIT (Fiedler et al., 2021; Mas-
sonnet et al., 2015) could also be enhanced using ASD either
by improving the SIT observations or by enabling the simul-
taneous use of freeboard and snow depth data to constrain the
models.

An important limitation of the ASD snow depth data is its
temporal coverage, imposed by SARAL which has only been
available since 2013. To circumvent this limitation, we have
shown that a simple monthly climatology, constructed as the
average of ASD snow depth maps over the 2013–2019 pe-
riod, could be a relevant option. More specifically, we have
demonstrated that such a climatology could provide a more
reliable solution than the W99m climatology, which strongly
overestimates snow depths and is useless outside the central
Arctic due to extrapolation. Indeed, comparison between the
ASD climatology and the 2009–2012 OIB missions shows
good consistency (comparable results of similar magnitude
as when comparing the actual ASD product with OIB cam-
paigns from 2014–2018), while W99m is on average biased
about 14 cm high with an associated RMSE of 17 cm (when
comparing with OIB). Such a climatology should be refined
in order to provide relevant snow depth representations for
at least the Envisat and CS-2 time period. For instance, the
possibility of constructing a climatology using both ASD,
AMSR and W99m information should be investigated.

A better snow depth representation significantly improves
SIT estimates. In this context, this study has investigated the
impacts of different snow depth products on SIT. Meanwhile,
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we have also presented a methodology to characterise the SIT
level of uncertainty due to the snow depth deviations between
products. The approach constructed an ensemble of SIT solu-
tions using the different snow depth products over the 2013–
2019 period, thus providing an estimation of the SIT level
of uncertainty due to snow depth discrepancies and its space
and time variability. Note that equivalent methodologies are
frequently used in multi-model approaches. Taking only into
account the satellite products AMSR2B, ASD, DuST and the
W99m climatology over the 2013–2019 period, we found a
spatially averaged mean standard deviation of 20 cm (14 %
of the pan-Arctic mean SIT) and mean maximum deviation
of 49 cm (35 % of the pan-Arctic mean SIT) between the
different SIT estimations. Deviations between SIT estima-
tions reached up to 77 cm (55 % of pan-Arctic mean SIT) in
marginal and coastal zones.

We have highlighted in this study that the DuST and ASD
products, albeit computed from data acquired by the same
sensors at the same time, present some significant differences
due to the methodology applied. The main difference is that
for ASD we compare LRM data (PLRM for CS-2), while
DuST compares LRM data with SAR data. The advantage
of comparing LRM data together is that they have compara-
ble footprint sizes, by which the difference reduces the ef-
fects of surface roughness to highlight the effects of volume
backscatter and penetration. DuST, on the other hand, relies
on the calibration of the measurements on OIB without tak-
ing into account effects of the surface roughness. In fact, dif-
ferences in surface roughness and the effect it has on radar
penetration and retrieval of surface elevation is currently one
of the other main contributors to the SIT uncertainty budget
(e.g. Hendricks et al., 2010; Landy et al., 2020), which still
needs to be further investigated. We have only considered
the roughness as mainly depending on the size of the foot-
print, but the backscattering coefficient variability is not as
trivial and depends on several snow physical properties such
as density, grain size, salinity and/or moisture (e.g. Lund-
berg et al., 2006; Adodo et al., 2018; Nandan et al., 2020).
That is, specular surfaces have stronger nadir scattering of
the radar pulse, affecting the shape of the radar echo and,
in turn, the retrieval of the surface elevation. Empirical re-
trackers like TFMRA have been shown to be sensitive over
rougher surfaces (e.g. Ricker et al., 2014) In particular, com-
pared to physical retracking they have been shown to overes-
timate sea ice freeboards over rougher ice while also underes-
timating sea ice freeboard over smooth, thin ice (e.g. Laforge
et al., 2020; Landy et al., 2020). In turn, when assuming
that snow depth can be retrieved from the difference between
the Ku-band and Ka-band freeboards, the effect that surface
roughness, and particularly the Ku-band volume retrodiffu-
sion/penetration, has on the retrieval of the surface elevation
warrants further investigation. An analysis of these depen-
dencies is out the scope of this study, but it is necessary to
further use the ASD data to improve our understanding of
snow properties.

The use of two satellites, operating in different modes,
with different orbits, also leads to important uncertainties
and differences that cannot be neglected. The high-priority
candidate mission, CRISTAL, which shall require a dual-
frequency Ka–Ku SAR altimeter, could address some of
these issues. The fact of having coincident and collocated
SAR measurements obtained from the same platform, with
similar ground footprints for both frequencies, will enable
direct comparisons and a better understanding of the rela-
tive impacts of the surface roughness, radar penetration and
volume backscattering. In this context, ASD demonstrates
the possibilities of dual-frequency snow depth estimations,
which could be further improved using physical retracking
(as opposed to empirical re-trackers which have their own
limitations, e.g. Ricker et al., 2014). In addition, CRISTAL
will also mitigate the issue of the spatial coverage limitation
of 81.5◦ N imposed by SARAL in the Arctic. It is also impor-
tant to note that the CRISTAL mission is the only altimetric
mission planned to succeed CS-2 and avoid a gap of observa-
tions. Note that this Copernicus mission is not yet officially
selected. If it is not confirmed, sea ice thickness measure-
ment by radar altimetry above 81.5◦ N will end with the CS-2
mission. Prior to potential CRISTAL data, comparisons with
the very recent ICESat-2 and CS-2 snow depth estimations
(Kwok et al., 2020) computed from the difference between
laser and Ku-band measurements certainly provide impor-
tant first results. Moreover, the recent change in CS-2 orbit
to align with ICESat-2 (CRYO2ICE), providing collocated
measurements with ≈ 3 h temporal delay, also allows for the
investigation of Ku-band penetration and the discrepancies
that different radar footprints can introduce.
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Appendix A: Appendices

Table A1. Statistical comparison of the different snow depth estimations in the Arctic over the 6 winters of the 2013–2019 period. AMSR2’s
data are not indicated since only the months of March and April were available.

Arctic ASD MERCATOR PIOMAS NESOSIM W99m DuST

Interannual mean (cm)

11 10.3 2.5 7.8 9.7 14.9 17.1
12 10.6 4 10 11.9 15 17.5
01 11.4 6.5 14 14.8 17.1 18.1
02 12.4 8.8 17.5 18 18.8 19.1
03 13.8 10.8 20.9 20.7 20.4 20.3
04 15.3 11.6 23 22.38 19 20.9

Climatic mean 12.3 7.4 15.5 16.2 17.5 18.8

Interannual variability (cm)

11 4.8 1.4 3 2.4 2 4.3
12 4.6 2 3.5 3 1.8 4
01 4.5 2.6 4 3.1 2.3 4.3
02 4.4 3 4.4 3.5 2.6 4.3
03 4.7 3.9 5.5 4.3 2.6 4.5
04 5.2 4.3 5.8 4.7 3 4.9

Mean ≡MIV 4.7 2.9 4.4 3.5 2.4 4.4

Annual variability (cm)

2013–2014 4.2 3.3 5.5 5 4.3 4.3
2014–2015 4 3.1 5.8 5 4.1 3.9
2015–2016 4.1 2.7 4.7 4.1 3.8 4.2
2016–2017 4.2 3.9 6.1 4.9 4.4 4.2
2017–2018 4.2 4 6.9 x 3.6 3.8
2018–2019 4.2 3.9 6.5 – 3.2 –

Mean≡MAV 4.18 3.5 5.9 4.8 3.9 4.1

Table A2. Statistical comparison of the different snow depth estimations in the Antarctic over the seven winters of the 2013–2019 period.
MIV signifies mean interannual variability, and MAV signifies mean annual variability.

Antarctic ASD MERCATOR GIOMAS AMSR2

Interannual mean (cm)

05 14.9 10.2 26.1 17.3
06 15.2 12.8 29 18
07 16 16.9 33.5 18.7
08 16.7 21.3 37.3 19.2
09 17.8 25.2 40.5 17.4
10 19.7 26.5 41.2 15.2

Climatic mean 16.7 18.8 34.6 17.6

Interannual variability (cm)

05 6 3.5 8.4 5.6
06 5.9 4.5 7.8 5.5
07 5.9 5.2 7.1 5.5
08 5.6 5.6 6.6 5.3
09 6.2 6.1 6.5 4.9
10 7.4 6.7 7 5.3

Mean≡ MIV 6.2 5.3 7.2 5.3

Annual variability (cm)

2013 5.5 6.7 7.5 4.1
2014 5.2 6.6 6.6 4.3
2015 5.1 6.8 6.4 3.7
2016 5.5 5.4 9.2 4.2
2017 5.6 6.4 – 3.7
2018 5.5 6.7 – 3.8
2019 5.4 6.0 – 4.1

Mean≡MAV 5.4 6.4 7.4 4
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Table A3. Statistical impact of the various snow depths on SIT in the Arctic over the 2013–2019 time period. The upper part considers all
the snow depth products while the upper part consider only the products based on observations (ASD, DuST, AMSR2B and W99m). Note
that AMSR2B SIT estimations on MYI are only taken into account for the months of March and April.

All snow products m11 m12 m01 m02 m03 m04 Mean

Mean 0.94 1.08 1.25 1.42 1.59 1.65 1.32

SD
mean 0.27 0.26 0.25 0.26 0.27 0.28 0.27
min 0.20 0.19 0.18 0.18 0.18 0.18 0.18
max 0.35 0.34 0.34 0.34 0.37 0.41 0.36

Max dev
mean 0.74 0.74 0.71 0.72 0.78 0.84 0.76
min 0.55 0.54 0.50 0.49 0.51 0.53 0.52
max 0.98 0.97 0.95 0.97 1.09 1.23 1.03

Obs snow products m11 m12 m01 m02 m03 m04 Mean

Mean 1.09 1.21 1.34 1.48 1.62 1.65 1.40

SD
mean 0.21 0.21 0.21 0.20 0.19 0.19 0.20
min 0.10 0.11 0.10 0.10 0.09 0.08 0.09
max 0.32 0.32 0.31 0.30 0.31 0.30 0.31

Max dev
mean 0.51 0.52 0.50 0.48 0.47 0.47 0.49
min 0.24 0.24 0.24 0.23 0.22 0.20 0.23
max 0.78 0.80 0.78 0.75 0.76 0.77 0.77

Table A4. Time period of snow depth products used in this article. Note that the current data availability may have changed since this article
was written.

Long name Acronym Reference Data coverage

Altimetric snow depth ASD Present paper March 2013–April 2019

Dual-altimeter Snow Thickness DuST Lawrence et al. (2018) March 2013–April 2018.

AMSR2 data of the University
of Bremen

AMSR2B Rostosky et al. (2018) March 2013–April 2018

AMSR2 data from the National
Snow and Ice Data Center

AMSR2-NSIDC Meier et al. (2018) March 2013–present

The Pan-Arctic (Global) Ice-
Ocean Modelling and Assimila-
tion System (v2.1)

P(G)IOMAS Schweiger et al. (2011) March 2013–April 2019

LIM-2 model in the PSY4V3
MERCATOR configuration

MERCATOR Lellouche et al. (2018) 2013–2019

The NASA Eulerian Snow On
Sea Ice Model (v1.0)

NESOSIM Petty et al. (2018) 2013–2017
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Appendix B: List of acronyms

Acronym Long name
ALS Airborne laser scanner
ASD Altimetric snow depth
AMSR Advanced Microwave Scanning Radiometer
ARISE Antarctic Remote Ice Sensing Experiment
ASIRAS ESA Airborne Ku-band Interferometric Radar
ASPeCt Antarctic Sea Ice Process and Climate
ASR Arctic System Reanalysis
AVISO+ Archiving, Validation and Interpretation of Satellite Oceanographic data
AWI Alfred Wegener Institute
BROMEX Bromine, Ozone and Mercury Experiment
CMEMS Copernicus Marine Environment Monitoring Service
CNES Centre national d’études spatiales
CPOM Centre for Polar Observation and Modelling
CRISTAL Copernicus Polar Ice and Snow Topography Altimeter
CRREL Cold Regions Research and Engineering Laboratory
CryoSeaNICE CryoSat SciEnce-oriented data ANalysis over Sea-ICE areas
CryoVEx CRYOsat Validation Experiment
CS-2 CryoSat-2
CSAO+ CryoSat+ Antarctic Ocean
DTU Technical University of Denmark
DuST Dual-altimeter Snow Thickness
EASE Equal-Area Scalable Earth
ECMWF European Centre for Medium-Range Weather Forecasts
ERA-Interim Re-Analysis Interim
ESA European Space Agency
EUMETSAT European Organisation for the Exploitation of Meteorological Satellites
FMCW Frequency modulated continuous wave
FYI First year ice
GCOM-W Global Change Observation Mission – Water
GOP Geophysical ocean product
HPCM High Priority Copernicus Candidate Mission
ICESat-2 Ice, Cloud, and Land Elevation Satellite-2
JRA Japanese Meteorological Agency
JAXA Japan Aerospace Exploration Agency
LEGOS Laboratoire d’Etudes en Géophysique et Océanographie Spatiales
LIM Louvain-la-Neuve Sea Ice Model
LRM Low-resolution mode
MERRA Modern-Era Retrospective analysis for Research and Applications
MYI Multi-year ice
N-ICE Nansen Basin during the Norwegian young sea ice
NASA National Aeronautics and Space Administration
MOSAIC Multidisciplinary drifting Observatory for the Study of Arctic Climate
NCAR National Center for Atmospheric Research
NCEP National Center for Environmental Prediction
NEMO Nucleus for European Modelling of the Ocean
NSIDC National Snow and Ice Data Center
SMMR Scanning Multichannel Microwave Radiometer
SMOS Soil Moisture Ocean Satellite
SLA Sea level anomaly
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SSM/I Special Sensor Microwave/Imager
SPICES Space-borne Observation for Detecting and Forecasting Sea Ice Cover Extremes project
IFS Integrated Forecast System
IMB Ice mass balance
ODATIS Online Data Extraction Service
OIB Operation Ice Bridge
OSISAF Ocean and Sea Ice Satellite Application Facility
PLRM Pseudo low-resolution mode
PP Pulse peakiness
SAR Synthetic aperture radar
sd Snow depth
SGDR Sensor Geophysical Data Record
SIT Sea ice thickness
SHEBA Surface HEat Budget of the Arctic Ocean
TFMRA Threshold first maximum re-tracker algorithm
UCL University College of London
W99m Warren-99 modified climatology

Data availability. The ASD data used in this study are freely avail-
able at http://ctoh.legos.obs-mip.fr/data/sea-ice-products (CTOH,
2021) In the case of unavailability please contact the authors Flo-
rent Garnier (FG) or Sara Fleury (SF) to access the data.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-15-5483-2021-supplement.
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