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A B S T R A C T   

Recent studies have shown that the global mean sea level (GMSL) is accelerating. For improved process un
derstanding and sea level projections, it is crucial to precisely estimate the GMSL acceleration due to externally- 
forced global climate change. For that purpose, the internal climate variability-related signal of the GMSL needs 
to be removed from the GMSL record. In the present study, we estimate how the observed GMSL rate has evolved 
with time over the altimetry era (1993-present), with the objective of determining how it is influenced by the 
interannual variability. We find that the GMSL rate computed over 5-year moving windows, displays significant 
interannual variability around 6–7 years and 12–13 years, preventing from robust acceleration estimation. To 
remove from the observed GMSL time series, the interannual variability, possibly related to internal climate 
modes, like ENSO, PDO, IOD, NAO or AMO, we use two methods previously widely applied in the literature: (1) 
multiple linear regression of the GMSL against some climate indices, and (2) Empirical Orthogonal Function 
(EOF) decomposition of the gridded sea level data to isolate the interannual signal. Although the interannual 
signal of the corrected GMSL time series is reduced, a cycle around 6–7 years still remains in the GMSL rate. We 
discuss possible sources of the remaining 6-7-year cycle, including the limitation of the methods used to remove 
the interannual variability.   

1. Introduction 

Until recently, it was believed that the global mean sea level (GMSL) 
had risen almost linearly during the altimetry era (since 1993). However 
recent studies based on the TOPEX/Poseidon and Jason altimetry mis
sions, accounting for the instrumental drift of the onboard altimeter of 
the TOPEX/Poseidon satellite (Watson et al., 2015; Beckley et al., 2017; 
Ablain et al., 2017), have shown that the GMSL is accelerating (Watson 
et al., 2015; Dieng et al., 2017; Yi et al., 2017; Nerem et al., 2018; Von 
Schuckmann et al., 2020), a result confirmed by other altimetry missions 
such as ERS-1 & 2 and Envisat (Veng and Andersen, 2020), and also by 
tide-gauge records (Dangendorf et al., 2019). 

However, the altimetry-based GMSL record, more than 27-year long, 
is also impacted by interannual/decadal variability due to internal 
climate modes of the coupled ocean-atmosphere system. Previous 
studies have shown in particular that the terrestrial water storage and 
ocean thermal expansion components of the GMSL budget display a 
strong interannual variability related to El Niño-Southern Oscillation 

(ENSO) (Nerem et al., 2010; Boening et al., 2012; Fasullo et al., 2013; 
Cazenave et al., 2014; Piecuch and Quinn, 2016; Hamlington et al., 
2019, 2020). Separating the respective contributions of internal climate 
variability and external forcing factors, in particular those due to 
human-induced global warming, to present-day global mean sea level 
rise is a major issue for improved detection of the global mean sea level 
acceleration, process understanding and precise modelling of future sea 
level variations. 

In this study, we estimate the temporal evolution of the GMSL rate, 
firstly using the observed altimetry-based time series (January 1993 to 
December 2019), and secondly after removing the interannual vari
ability in the GMSL using two methods:  

1. The multiple linear regression method (called hereinafter method 1) 
(e.g., Zhang and Church, 2012), consisting of regressing the GMSL 
time series with respect to the main climate modes such as MEI 
(Multivariate ENSO Index), PDO (Pacific Decadal Oscillation), IOD 
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(Indian Ocean Dipole), NAO (North Atlantic Oscillation) and AMO 
(Atlantic Meridional Oscillation).  

2. The EOF method (called method 2) (Han et al., 2017) consisting of 
isolating the EOF modes of gridded sea level data that are related to 
the interannual variability. 

We then recompute the rate of the corrected GMSL and its evolution 
through time and compare the results obtained by each of the two 
methods. 

2. Data 

2.1. Altimetry-based sea level data 

Two sources of data have been used:  

1. The Climate Change Initiative (CCI) sea level product (http://www. 
esa-sealevel-cci.org) from the European Space Agency (ESA) from 
January 1993 to December 2015 (version 2.0). This product com
bines data from the TOPEX/Poseidon, Jason-1/2, GFO, ERS-1/2, 
Envisat, CryoSat-2 and SARAL/Altika altimetry missions and is 
based on a new processing system with dedicated algorithms and 
adapted data processing strategies (Legeais et al., 2018). It is avail
able as a gridded 1/4◦ x 1/4◦ data set over 82◦N and 82◦S latitudinal 
range. This time series has been extended as of January 2016 by sea 
level data from CMEMS (Copernicus Marine Environment Moni
toring Service) (http://marine.copernicus.eu/). The TOPEX-A 
instrumental drift due to aging of the TOPEX-A altimeter placed in 
the TOPEX/Poseidon mission from January 1993 to early 1999 has 
been corrected, applying the correction proposed by Ablain et al. 
(2017). This consists of removing a trend of − 1.0 mm/yr over 
January 1993 to July 1995 and + 3.0 mm/yr over August 1995 to 
February 1999. The glacial isostatic adjustment (GIA) correction is 
applied (a value of − 0.3 mm/yr is considered, Peltier, 2004).  

2. The sea level data from the Goddard Space Flight Center (GSFC) 
(https://sealevel.nasa.gov/understanding-sea-level/key-indicators/ 
global-mean-sea-level/). The GSFC data set is based on the TOPEX/ 
Poseidon, Jason-1, Jason-2 and Jason-3 data averaged over the 66◦S 
- 66◦N domain directly from the along-track sea surface height data. 
To account for the TOPEX-A altimeter drift, the internal calibration- 
mode range correction, included in the TOPEX ‘net instrument’ 
correction, (supposed to be suspect owing to changes in the altime
ter’s point target response) has been suppressed from the GSFC data 
set (Beckley et al., 2017). It is also corrected for GIA, considering a 
value of − 0.3 mm/yr. 

The GMSL data sets have been analysed over January 1993 to 
December 2019, i.e., a complete 27-yr long time span. 

Being interested in the GMSL interannual variability and long-term 
trend, we removed the annual and semi-annual signals to each time 
series, through a least-squares fit of 12- and 6-month periods. For some 
of the analyses presented below, the GMSL time series have been 
quadratically detrended to highlight the interannual variability. 

2.2. Climate modes 

In this study, we considered the following climate indices: MEI, PDO, 
IOD, NAO and AMO. 

MEI is the Multi variate ENSO index representing El Niño Southern 
Oscillation. It combines information of surface pressure, sea surface 
temperature, surface wind and outgoing long-wavelength radiation over 
the tropical Pacific. PDO and IOD are derived from sea surface tem
perature data, respectively north of 20◦N in the Pacific, and over the 
Indian Ocean. NAO is defined by the sea level pressure difference be
tween Azores and Iceland, while AMO represents the average sea surface 
temperature of the North Atlantic Basin. The corresponding time series 
have been downloaded from publicly accessible data websites (date of 
download: 22 December 2020): 

Fig. 1. Quadratically detrended GMSL time series over 1993–2019 for the CCI/CMEMS GMSL (blue curve) and GSFC GMSL (red curve). The shaded areas represent 
the GMSL uncertainty at 90% confidence level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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MEI: https://psl.noaa.gov/enso/mei/data/meiv2.data 
PDO: https://www.ncdc.noaa.gov/teleconnections/pdo/ 
IOD: https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/ 
NAO: https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pn 

a/nao.shtml 
AMO: https://psl.noaa.gov/data/timeseries/AMO/ 

The time span January 1993 to December 2019 has been considered 
for the climate indices, as for the GMSL time series. For further analyses, 
in the climate index time series we removed 6- and 12-month cycles 
through a least-squares fit. For the computation of the power spectrum 
densities, a trend has been removed and a 3-month smoothing has been 
performed. 

Fig. 2. Periodogram of the initial quadratically detrended GMSL time series over 1993–2019. (a): CCI/CMEMS; (b) GSFC. The 95% confidence level (noted CL) is 
shown by the horizontal dashed line. 
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2.3. Interannual variability of the observed GMSL and associated GMSL 
rate 

We first show the quadratically detrended (QD) GMSL time series 
over January 1993–December 2019 for the CCI/CMEMS and GSFC data 
sets (Fig. 1). We note that the two curves agree reasonably well but the 
CCI/CMEMS curve displays in general lesser amplitude during extremes, 

as a result of the 3-month smoothing applied to this data set (Legeais 
et al., 2018). The year-to-year fluctuations are highly correlated with 
MEI, hence with the occurrence of ENSO events, as shown in many 
previous studies (e.g., Nerem et al., 2010; Cazenave et al., 2014). The 
uncertainties of the GMSL presented here are based on Ablain et al. 
(2019), and are reported with a 90% confidence level. The latter study 
considers three types of errors: (a) biases in the GMSL between 

Fig. 3. GMSL rate computed over 3-year, 4-year and 5-year windows shifted by 1-month (grey, orange and blue curves respectively). The shaded areas represent the 
rate uncertainty at 95% confidence level. Panels (a) and (b) correspond to the CCI/CMEMS and GSFC rates respectively. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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successive altimetry missions, characterized by bias uncertainties at a 
given time; (b) drifts in GMSL characterized by a trend uncertainty; and 
(c) other measurement errors which exhibit temporal correlations. 
These time-correlated residual errors are characterized by their standard 
deviation and by the correlation timescale (Ablain et al., 2019). 

We next investigate the dominant periodicities of the two QD GMSL 
time series (Fig. 2). For that purpose, we have used the Lomb-Scargle 
periodogram. The Lomb-Scargle periodogram is a method that allows 
efficient computation of a Fourier-like power spectrum estimator for 
detecting and characterizing periodic signals in unevenly sampled data 

Fig. 4. Periodograms of the GMSL rate computed over 5-year (a) and 4-year (b) windows shifted by 1-month, considering the 1993-2019-time span for the CCI/ 
CMEMS GMSL. The 95% confidence level (noted CL) is shown by the horizontal dashed line. 
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(e.g., VanderPlas, 2018). We use the plomb function provided by 
MATLAB to calculate the power spectral density estimate of the 
quadratically detrended time series of interest. As sample rate, we 
consider 12 samples per year. We represent the logarithm of the mul
tiplicative inverse of the frequency, which is the period in years. We also 
estimate probability of detection of the estimated period, that measures 
the peak significance level. We set the threshold at the 95% confidence 
level. The detection probability shows the probability that a peak in the 
spectrum is not due to random fluctuations. 

Fig. 2 displays dominant peaks around 3 years and 12–13 years. The 
GSFC periodogram also shows a peak at 6–7 year, that is only barely 
significant in the CCI/CMEMS spectrum. 

Since our initial objective was to investigate how the GMSL rate 
evolves with time, we next compute the GMSL rate over successive 3- 
year, 4-year and 5-year windows shifted by 1-month, considering both 
the CCI/CMEMS and GSFC data sets. The corresponding curves are 
shown in Fig. 3. 

The rate uncertainty estimation is based on the Deming regression 
(Deming, 1943; Wu and Yu, 2018) in which a linear fit is computed 
accounting for the uncertainties of the variables, in our case the un
certainty in the GMSL proposed by Ablain et al. (2019). The best slope 
and intercept are computed by minimizing the chi-square calculated 
using both standard deviation on the dependent and independent vari
ables. The uncertainty of the fitted parameters is computed using a 
Monte Carlo simulation with 1000 iterations, assuming that errors are 
Gaussian and centered. The algorithm used can be freely downloaded 
from the MATLAB Central File Exchange (https://www.mathworks.co 
m/matlabcentral/fileexchange/45711-linear-fit-with-both-uncertainti 
es-in-x-and-in-y) (retrieved 31 December 2020). Note that all un
certainties reported in the rates are given at the 1.96-sigma level, i.e., 
95% confidence level. 

For each data set, we note that the three curves (corresponding to the 
3-year, 4-year and 5-year windows) show an overall similar behaviour, i. 
e., an irregular increase with time along with steep increases in 
1995–2001 and 2009–2014. The 3-year window case displays much 
higher interannual oscillations, as expected. 

In Fig. 4 are shown the periodograms of the QD (initial) GMSL rate 
for the 4-year and 5-year windows (only the CCI/CMEMS time series is 
considered here). 

For both the 4-year and 5-year windows, the GMSL rate shows sig
nificant peaks around 6 years and 11–12 years. 

2.4. Removal of the interannual variability of the GMSL 

The presence of the strong interannual variability signal in the GMSL 
rate may prevent from accurately estimating trend and acceleration of 
the GMSL. Therefore, it is important to remove it from the GMSL before 
computing the rate and its evolution through time (e.g., Cazenave et al., 
2014; Nerem et al., 2018). In the present study, this is done by removing 
the interannual signal using two different methods, as described below. 

2.5. Method 1 (Regression method) 

This method has been applied in several studies (e.g., Zhang and 
Church, 2012, Palanisamy et al., 2015) and references therein). The 
method consists of computing a linear regression of the GMSL time series 
with respect to an ENSO-related climate index (usually MEI). In effect, as 
shown in the literature (e.g., Nerem et al., 2010; Cazenave et al., 2014), 
the dominant source of interannual variability in the GMSL is due to 
ENSO. But other climate modes also influence the GMSL (e.g., Zhang and 
Church, 2012). Hence, additional climate indices should be considered 
at the same time, e.g., PDO, IOD, NAO and AMO: 

GMSL(t) = a0 + a1t+ a2t2 + a3MEI(t) + a4PDO(t)+ a5IOD(t)+ a6NAO(t)
+ a7AMO(t)

(1) 

In Eq. (1) above, t is time. The least-squares fit consists of estimating 
the a0 to a7 coefficients. We applied this approach to the CCI/CMEMS 
time series. Note that for this computation the climate index times series 
are not detrended (only seasonal cycles are removed). That part of Eq. 
(1) related to the climate indices has been further removed to the 
original GMSL time series. The corresponding removed signal is shown 

Fig. 5. Interannual signal removed from the original GMSL (CCI/CMEMS data) using method 1 (blue curve) and method 2 (red curve). The MEI index is super
imposed (grey curve). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Periodogram of the QD GMSL time series corrected for the regressed signal (method 1) over 1993–2019. The 95% confidence level (noted CL) is shown by the 
horizontal dashed line. 

Fig. 7. GMSL rate (CCI/CMEMS data) over 5-year windows shifted by 1-month. Corrected GMSL (method 1; red curve); corrected GMSL (method 2; blue curve). The 
shaded areas represent the rate uncertainty at 95% confidence level. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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in Fig. 5. 
The interannual signal removed from the GMSL by method 1 is 

highly correlated with the MEI index, with a correlation of 0.91. The 
computed regression coefficients are a3, MEI = 1.39, a4, PDO = 0.11, a5, 

IOD = − 0.92, a6, NAO = 0.07, and a7, AMO = 2.88. We next removed the 
regressed signal shown above to the initial GMSL. Fig. 6 shows the 

periodogram of the QD GMSL (CCI/CMEMS dataset) corrected for the 
regressed signal. 

Compared to Fig. 2a (periodogram of the initial QD GMSL), the 
amplitude of the 3-yr peak has decreased, but the peak is still there. A 
similar comment can be made for the 12-13-yr peak. On the other hand, 
the 6-7-yr peak barely significant in the initial GMSL is now well above 

Fig. 8. Periodogram of the corrected GMSL rate (method 1). (a) 5-year window; (b) 4-year window. The 95% confidence level (noted CL) is shown by the horizontal 
dashed line. 
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Fig. 9. Modes 1, 2, 3 and 4 of the EOF decomposition of the C3S gridded sea level time series over 1993–2019. Principal components and associated spatial patterns 
are shown in the left and right panels respectively. 
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the 95% confidence level. Note that to check the robustness of the re
sults, we reproduced the above computation using the Hilbert trans
forms of the climate indices. Similar results were obtained (not shown). 
In particular the same peaks as those seen in Fig. 6 are found, with the 
same level of confidence. 

We next recomputed the GMSL rate after correcting for the inter
annual variability by method 1. The corrected GMSL rate is shown in 
Fig. 7 for the 5-yr moving window case. 

Compared to the original GMSL rate, we note some difference in the 
evolution with time of the corrected GMSL rate. The step like behaviour 
seen in the uncorrected GMSL rate (Fig. 3a) is less visible. Rather, we 
note a long-term increase in the rate on which is superimposed some 
interannual variability. The periodogram of the corrected GMSL rate 
(method 1; 5-year window) is shown on Fig. 8a. The spectrum shows two 
peaks at 6–7 years and 12–13 years. 

To check whether the 6-7-year peak is not an artifact of the 5-year 
window choice, we also show the same spectrum but considering a 4- 
year window for computing the rate (Fig. 8b). We still see the two sig
nificant peaks around 7-year and 13-year, indicating that the 6–7-year 
cycle seen in Fig. 8a does result from some aliasing related to the 5-yr 
window choice. 

What is the origin of the 6-7-yr and 13-yr cycles in the corrected 
GMSL rate? Are they unrelated to the dominant climate indices 
considered here? Or do they result from an imperfect removal of the 
interannual variability by method 1? The next section intends to address 
the second option by considering a different approach. 

2.6. Method 2 (EOF decomposition) 

Another method widely used in the literature to remove the inter
annual variability in the GMSL is to apply an EOF decomposition to 
GMSL grids in order to isolate the modes related to the main climate 
indices, in particular ENSO. Some variant of this method has been 
developed. For example, Hamlington et al. (2019) employ a 

cyclostationary empirical orthogonal function (CSEOF) analysis (Kim 
et al., 2015). As in the EOF, the CSEOF method decomposes space-time 
data into a series of modes that consist of a spatial component and a 
corresponding temporal component but the main difference with the 
EOF is that the spatial component is time dependent, which allows the 
spatial pattern of each CSEOF mode to vary in time, with the temporal 
evolution of the spatial pattern constrained to be periodic with a 
selected “nested period”. Hamlington et al. (2019) argue that CSEOF is 
superior to the classical EOF for two reasons: (1) no need to target a 
specific climate signal, and (2) CSEOFs allow for temporally lagged 
covariation between different climate variables that may be otherwise 
difficult to extract. This last point is particularly important when 
simultaneously analysing multiple variables. However, a limitation of 
this method is the need to select a nested period prior to performing the 
analysis. 

Here we apply the widely used EOF decomposition (e.g., Han et al., 
2017), considering that the two methods provide essentially similar 
results. 

We used gridded sea level time series provided by the Copernicus 
Climate Change Service (C3S) downloaded from https://climate.coperni 
cus.eu/ESOTC/2019/sea-level, over January 1993 to October 2019 (the 
last available date at the time of downloading), and computed the 
dominant modes of the EOF decomposition. Fig. 9 shows the first four 
modes of the EOF decomposition of the gridded GMSL data. 

The first mode shows the well- known spatial trend patterns in sea 
level (e.g., Legeais et al., 2018). It explains 14.5% of the total variance. 
Modes 2, 3 and 4, which explain 11.43% of the total variance, display 
ENSO signatures in the Pacific Ocean and IOD in the Indian Ocean (Han 
et al., 2019). 

We further considered modes 2, 3 and 4, assuming they represent 
most of the interannual variability of the sea level signal. After 
combining the spatial component of each mode with the corresponding 
principal component, we geographically averaged the sea level signal 
associated with the 2nd, 3rd and 4th modes (applying an area 

Fig. 10. Periodogram of the QD GMSL time series corrected for the interannual signal (method 2) over January 1993–October 2019. The 95% confidence level 
(noted CL) is shown by the horizontal dashed line. 
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weighting) and removed it from the original GMSL. The interannual 
signal associated with modes 2, 3 and 4 (method 2) is shown in Fig. 5. It 
correlates rather well with that of method 1, except during the 
1997–1998 ENSO event. The correlation with MEI amounts 0.63. 

The periodogram of the corrected GMSL (method 2) is shown in 
Fig. 10. It has a dominant peak at 3.6 year and a secondary one at 6.3 

year, like the corrected GMSL (method 1) (Fig. 6). However, unlike the 
latter, the 13-yr peak is below the 95% confidence level. 

We further computed the rate of the corrected GMSL (method 2) over 
5-year windows shifted by 1 month (Fig. 7), as well as the corresponding 
periodogram (Fig. 11a). As for method 1, we also show the periodogram 
of the corrected GMSL rate (method 2) computed over 4-year windows 

Fig. 11. Periodogram of the corrected GMSL rate (method 2) over January 1993 to October 2019. (a) 5-year window; (b) 4-year window. The 95% confidence level 
(noted CL) is shown by the horizontal dashed line. 
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(Fig. 11b). 
In both cases (5-year and 4-year windows), the spectrum of the 

corrected GMSL rate has a significant peak at 6–7 year, and a smaller one 
at 12–13 yr. 

3. Discussion 

In this study, we applied two methods to remove the interannual 
variability in the GMSL time series and in the GMSL rate. However, in 
both cases, there remains significant peaks at 6–7 years and to a lesser 
extent at 12–13 years. It is unlikely that such cycles are due to errors in 

the geophysical corrections applied to the altimetry data. In effect, 
Ablain et al. (2019) did not report any periodic errors at 6–7 years and 
12–13 years in their GMSL budget error analysis. Similarly, aliasing 
effects caused by high-frequency signals incorrectly sampled by the 10- 
day or 35-day orbital cycles of altimetry missions cannot cause such 
interannual cycles (M. Ablain, personal communication, January 2021). 
Could they still be related to the internal climate variability imperfectly 
removed by the methods considered here? Fig. 12 shows the periodo
grams of the climate indices considered in section 2.5. The Nino-3.4 
index (downloaded the 22 December 2020 from https://psl.noaa.gov 
/gcos_wgsp/Timeseries/Nino34/) is included in order to check how 

Fig. 12. Periodograms of the climate indices (MEI, Niño3.4, PDO, IOD, NAO and AMO) over January 1993–December 2019. The 95% confidence level (noted CL) is 
shown by the horizontal dashed line. 
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much its periodogram differs from that of MEI. 
From Fig. 12, we note that several indices display significant energy 

around 6 year and 12 year. This is the case of MEI, PDO and NAO. AMO 
has a peak at 6–7 year but not at 12 year. Note that the power spectra of 
MEI and Niño3.4 are similar; thus, no need to also consider Niño3.4. It 
may well be that the two methods considered here imperfectly remove 

the GMSL interannual variability. In effect, in method 1, the regression 
to climate indices is defined from atmospheric and oceanic surface 
variables which are not necessarily appropriate to account for variations 
of the global mean sea level, an integrated quantity. Besides, method 1 
implicitly assumes that the climate indices are independent. But studies 
have shown that is likely not the case. For example, García-García and 

Fig. 13. Periodograms of the components of the sea level budget (steric sea level, Antarctica ice sheet, Greenland ice sheet, terrestrial waters and glaciers) from the 
Sea Level Budget Closure project of the ESA Climate Change Initiative over January 1993 to December 2016. The 95% confidence level (noted CL) is shown by the 
horizontal dashed line. 
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Ummenhofer (2015) indicate that AMO and ENSO are not independent 
entities, AMO modulating ENSO characteristics. Similarly, PDO and IOD 
are likely related to ENSO through non-linear interactions. Besides, the 
internal climate variability may be impacted by anthropogenic climate 
change but so far, no consensus exists between climate models about the 
effect of external forcing on the climate modes, in particular ENSO, as 
discussed in Cazenave et al. (2020)’s review. 

Method 2 removes more interannual signal than method 1 (in 

particular the 12–13-year cycle) but not totally. It is possible that the 
separation between the different climate indices is imperfectly reflected 
by the modes computation, the interannual signal being possibly 
distributed in many more modes than considered here (note however 
that modes higher than 4 contain significant noise, hence considering 
more modes may be inappropriate). It is also possible that the interan
nual variability in the GMSL results from complex interactions of various 
signals affecting each component of the sea level budget (see below). 

Fig. 14. Periodograms of the rates of the sea level budget components (steric sea level, Antarctica ice sheet, Greenland ice sheet, terrestrial waters and glaciers) from 
the Sea Level Budget Closure project of the ESA Climate Change Initiative over January 1993 to December 2016. The 95% confidence level (noted CL) is shown by the 
horizontal dashed line. 
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It is worth noting that a 6–7-year cycle is found in many variables of 
the Earth system, e.g., in the Earth’s rotation, in the magnetic field, in 
crustal deformations, in the Earth’s oblateness and other low-frequency 
terms of the Earth’s gravity field (e.g., Abarca del Rio et al., 2000; Ding 
and Chao, 2018; Watkins et al., 2018; Chao and Yu, 2020, and references 
therein). While some of these 6-year fluctuations are attributed to Earth 
deep interior processes occurring in the core and at the core-mantle 
boundary (e.g., for the Earth’s rotation and the magnetic field; e.g., 
Ding and Chao, 2018), for some other variables, climate-related pro
cesses occurring in the surface fluid envelopes or at the Earth’s surface 
may rather be invoked. For example, the Earth’s mean surface temper
ature, or separately the sea surface and land surface temperatures, 
display a clear cycle at 6-year period (not shown). A 7 cycle has been 
reported in the European surface temperature (Jajcay et al., 2016; Meyer 
and Kantz, 2019), possibly related to NAO. 

While deep Earth processes are likely not responsible for the 
remaining cycles seen in the corrected GMSL rate, components of the 
GMSL (steric sea level, land ice melt, land water storage changes) partly 
driven by the internal variability of the climate system exhibit signifi
cant energy around 6–7 year and 12–13 year. This can be checked using 
the GMSL contributions computed over 1993–2016 by the Sea Level 
Budget Closure project of the ESA (European Space Agency) Climate 
Change Initiative (data freely available, downloadable at https 
://climate.esa.int/en/projects/sea-level/;Horwath et al., 2021). We 
considered the various data sets provided by this project for the steric 
sea level, glaciers, Greenland and Antarctica ice sheets and terrestrial 
water storage components, and computed their periodograms (Fig. 13) 
for the available 1993–2016-time span (i.e., shorter by 3 years than the 
time span of the present study). We also computed the periodograms of 
their rates (Fig. 14; 5-year windows). From Figs. 13 and 14, we note that, 
except the Antarctic ice sheet, components and their rates exhibit sig
nificant energy at 3–4-year, 6–7 year and 12–13 year. This is the case in 
particular of the steric sea level, a quantity integrating ocean tempera
ture and salinity data over the upper ocean depth (down to 700 m up to 
2004 and to 2000 m as of 2005). Its rate of change has two main cycles 
around 6 year and 12 year. A similar observation can be made for the 
glaciers and Greenland ice sheet rates. It is thus not really surprising that 
using climate indices defined by surface climate variables only, does not 
fully remove the whole interannual signal of the GMSL. 

What this study indicates is that estimating the GMSL acceleration 
over the altimetry era is complex because of the remaining contamina
tion of the interannual variability on this record of limited length (27 
years). Our analysis shows that none of the two methods considered here 
is really superior to the other. The empirical removal of the signal 
related to climate indices (methods 1 and 2) leaves significant interan
nual variability in the corrected GMSL and its rate. However, method 2 
better removes the 12–13-year signal than method 1. 

The initial goal of this study was to provide a precise estimate of the 
change in rate of the GMSL over time, during the altimetry era, by 
removing the interannual variability. However, unexpectedly, two cy
cles at 6–7 year, and to a lesser extent at 12–13 year, still remain in the 
GMSL rate after empirically correcting for the interannual signal. How 
much does these residual cycles impact previous estimates of the GMSL 
acceleration remains unknown. Watson et al. (2015) found an acceler
ation of 0.037–0.041 mm/yr2 over 1993–2014. Nerem et al. (2018) 
estimated the GMSL acceleration to 0.084 +/− 0.025 mm/yr2 over 
1993–2017 correcting for the Pinatubo eruption and removing the 
interannual variability applying the cyclostationary EOF approach. Yi 
et al. (2017) estimated the GMSL acceleration to be 0.27 +/− 0.17 mm/ 
yr2 over a short period (2005–2015). Veng and Andersen (2020) found a 
value of 0.095 +/− 0.009 mm/yr2 over 1991–2019 and noted that ac
count of Pinatubo eruption and ENSO effect on this time span lowers the 
acceleration by only 0.01 mm/yr2, suggesting that extending the GMSL 
time series should minimize the interannual variability contamination. 
These published accelerations either are uncorrected for the interannual 
variability or account for ENSO only. Accounting for additional effects 

may provide slightly different acceleration estimates in view of the 
difficulty of robustly remove all sources of interannual variability 
affecting the GMSL. 

This is summarized in Table 1 that gathers the accelerations esti
mated for the original GMSL, and corrected GMSL for the two methods 
(errors are 1-sigma errors based on the least-squares fit). Method 2 
lowers the acceleration by 0.02 mm/yr2 compared to the original value 
(same time interval, same time series). Table 1 also provide recently 
published acceleration estimates. 

From Table 1, we conclude that empirically removing the internal 
variability as proposed in this study, as well as in Nerem et al. (2018) 
and in Veng and Andersen (2020), has finally a limited impact on the 
acceleration estimate. Extending the GMSL record will likely lead to 
more robust estimates of the sea level acceleration. Besides, more 
investigation is definitely needed to improve the methodology required 
to remove the interannual variability of the GMSL when estimating its 
acceleration. 
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