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Abstract. Airborne measurements of CO2, CO, and CH4
proposed in the context of IAGOS (In-service Aircraft for a
Global Observing System) will provide profiles from take-off
and landing of airliners in the vicinity of major metropolitan
areas useful for constraining sources and sinks. A proposed
improvement of the top-down method to constrain sources
and sinks is the use of a multispecies inversion. Different
species such as CO2 and CO have partially overlapping emis-
sion patterns for given fuel-combustion-related sectors, and
thus share part of the uncertainties related both to the a pri-
ori knowledge of emissions and to model–data mismatch er-
ror. We use a regional modelling framework consisting of
the Lagrangian particle dispersion model STILT (Stochas-
tic Time-Inverted Lagrangian Transport) combined with
the high-resolution (10 km× 10 km) EDGARv4.3 (Emission
Database for Global Atmospheric Research) emission inven-
tory, differentiated by emission sector and fuel type for CO2,
CO, and CH4, and combined with the VPRM (Vegetation
Photosynthesis and Respiration Model) for biospheric fluxes
of CO2. Applying the modelling framework to synthetic IA-
GOS profile observations, we evaluate the benefits of using
correlations between different species’ uncertainties on the
performance of the atmospheric inversion. The available IA-
GOS CO observations are used to validate the modelling
framework. Prior uncertainty values are conservatively as-
sumed to be 20 %, for CO2 and 50 % for CO and CH4, while
those for GEE (gross ecosystem exchange) and respiration
are derived from existing literature. Uncertainty reduction for
different species is evaluated in a domain encircling 50 % of

the profile observations’ surface influence over Europe. We
found that our modelling framework reproduces the CO ob-
servations with an average correlation of 0.56, but simulates
lower mixing ratios by a factor of 2.8, reflecting a low bias in
the emission inventory. Mean uncertainty reduction achieved
for CO2 fossil fuel emissions is roughly 38 %; for photo-
synthesis and respiration flux it is 41 and 44 % respectively.
For CO and CH4 the uncertainty reduction is roughly 63 and
67 % respectively. Considering correlation between different
species, posterior uncertainty can be reduced by up to 23 %;
such a reduction depends on the assumed error structure of
the prior and on the considered time frame. The study sug-
gests a significant uncertainty constraint on regional emis-
sions using multi-species inversions of IAGOS in situ obser-
vations.

1 Introduction

As widely recognized at the international level, there is a
need for reduction in anthropogenic emissions (IPCC, 2014).
This however implies the necessity for reliable climate pre-
dictions from atmospheric models in order to allow policy-
makers to make informed decisions. Unfortunately, current
climate predictions are hampered by excessive uncertainties;
for example intercomparisons of different models show im-
portant differences in their predictions as shown in Friedling-
stein et al. (2006). This makes it difficult to assess the better
environmental policies to implement. Because most biogenic

Published by Copernicus Publications on behalf of the European Geosciences Union.



9226 F. Boschetti et al.: Multi-species inversion and IAGOS airborne data

fluxes in Europe are influenced by human activities, with
22 % of Europe’s land dedicated to agriculture (FAO, 2013)
and 45 % covered by forests, of which 80 % is managed for
wood supply (UNECE, FAO, 2011), understanding and man-
aging these biogenic fluxes must also be a component of any
policy to reduce anthropogenic emissions.

A commonly used approach to estimate carbon budgets
by teasing apart sources and sinks in a given spatial domain
is the atmospheric Bayesian inversion. Atmospheric inver-
sions combine prior knowledge from emission inventories
with atmospheric observations acting as a top-down con-
straint to produce better posterior knowledge. As the main
goal of this study is to assess the benefit of inter-species cor-
relations in reducing the uncertainty of the posterior state
space, we are particularly interested in the effects of such
correlations on the uncertainty reduction, defined as the dif-
ference between prior and posterior uncertainty normalized
by the prior. The vast majority of published papers on atmo-
spheric inversions investigate the budget of a single species,
usually a long-lived greenhouse gas like CO2 (e.g. Röden-
beck et al., 2003) or CH4 (e.g. Hein et al., 1997; Bousquet
et al., 2006), but the technique can also be applied to ac-
tive species like CO (Bergamaschi et al., 2000). Note that
carbon dioxide is a special case as atmospheric CO2 mix-
ing ratios result from a combination of strong anthropogenic
sources with strong sources and sinks from biospheric pro-
cesses, calling for a separation of anthropogenic fluxes from
biospheric fluxes. One way to achieve such a separation is to
measure CO alongside CO2, and use CO as a proxy for CO2
anthropogenic emissions. Several studies have made use the
correlations among different species. One of the first exam-
ples is the work from Enting et al. (1995) on CO2 and 13CO2,
while Brioude et al. (2012) attempted to derive a CO2 emis-
sion inventory without a prior emission estimate, instead us-
ing inventories of CO, NOy , and SO2. Similarly, Peischl et
al. (2013) made use of CO and CO2 inventories to help quan-
tifying sources of CH4 in the Los Angeles basin. The ability
to measure multiple species has proved useful, also in re-
mote sensing. For example, Pandey et al. (2015) made use
of simultaneously retrieved CO2 and CH4 total column to re-
duce scattering effect. Further examples of studies making
use of co-emitted species can be found in atmospheric chem-
istry (Konovalov et al., 2014; Berezin et al., 2013; Pison et
al., 2009). More focused on exploiting inter-species correla-
tion to reduce uncertainty in Bayesian inversion, Palmer et
al. (2006) made use of CO2–CO correlations to improve in-
version using data from the TRACE-P aircraft mission, while
Wang et al. (2009) employed a similar method using satellite
data, obtaining a reduction in the flux error of a CO2 inver-
sion.

So far the lion’s share of the studies investigating atmo-
spheric inversions make use of both continuous in situ and
flask measurements from ground-based observational net-
works of tall towers (e.g. Kadygrov et al., 2015; Sasakawa et
al., 2010). However, as profiles collected from aircraft easily

exceed the height of towers, airborne data may also offer an
interesting option. This alternative was tested in some recent
studies that made use of aircraft profiles alone or in combina-
tion with other data sources (e.g. Brioude et al., 2013; Gour-
dji et al., 2012). Methods to maximize the cost-effectiveness
of airborne data are the use of unmanned aircraft (drones) and
commercial airliners. The latter, in particular, allow for col-
lecting data on a regular basis without requiring a particularly
small or light sensor. The most important projects making
use of commercial airliners are CONTRAIL (Comprehensive
Observation Network for Trace Gases; Machida et al., 2008)
and MOZAIC/IAGOS (Measurements of Ozone and water
vapour by in-service AIrbus aircraft/In-service Aircraft for a
Global Observing System; Marenco et al., 1998; Petzold et
al., 2015). Both projects have been running for more than
2 decades and have produced extensive datasets that have
proven to be important in the fields of atmospheric modelling
and satellite calibration and validation (Zbinden et al., 2013;
Sawa et al., 2012). Regarding carbonaceous species, CON-
TRAIL has so far collected CO2 mixing ratio measurement,
while IAGOS is focused on CO. In the next years the IA-
GOS fleet will simultaneously provide CO, CO2, and CH4 at-
mospheric concentration measurements (Filges et al., 2015),
enabling the use of multi-species synergy in modelling ap-
plications. This synergy follows the fact that the collocated
measurements share the same atmospheric transport and have
partially correlated emission uncertainties.

This paper is focused on investigating the benefits of such
a multi-species inversion on uncertainty reduction in com-
parison with a single-species inversion. To achieve this goal,
we set up a synthetic experiment utilizing the measurement
times and locations collected from the IAGOS projects in the
year 2011. The present paper is intended to pave the way for
future studies making use of multi-species IAGOS datasets
when they become available. A receptor-oriented framework
was set up to derive flux interactions between the atmo-
sphere and the biosphere using IAGOS data. The modelling
framework is composed of a Lagrangian particle dispersion
model (LPDM, specifically the STILT model), a diagnostic
biosphere–atmosphere exchange model (the VPRM model),
gridded emission inventories, global tracer transport model
output that provides the tracer boundary conditions for the re-
gional domain, and a Bayesian inversion scheme. The present
work is based on the modelling framework used in Boschetti
et al. (2015) and builds upon that by adding other species, and
using a formal Bayesian inversion. A multi-species inversion
was carried out in order to exploit the correlations in un-
certainties between CO2, CO, and CH4, specifically in their
respective uncertainties in a priori anthropogenic emissions
and in model representation error. The aim of this multi-
species inversion is to provide better estimates of anthro-
pogenic emissions, and, in the case of CO2, to better separate
the biospheric from anthropogenic contributions. This paper
is structured as follows: a short description of the different
components of the modelling framework is given in Sect. 2;
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in Sect. 3 we present and discuss our results; Sect. 4 gives the
conclusions.

2 Material and methods

2.1 Modelling framework

Before describing the different models composing the mod-
elling framework, we introduce some specific terminology
to reduce ambiguity in Sect. 2.1.1–2.1.6. Quantities that can
be observed are termed “species” or “trace gases”, corre-
sponding in this case to total CO2, CO, and CH4. These three
species are simulated using five “modelled species”, namely
CO2 from fossil fuels, CO2 related to GEE (gross ecosystem
exchange), CO2 related to respiration, CO, and CH4. Mod-
elled species related to anthropogenic emissions are mod-
elled as the sum of contributions from different “emission
sectors” (Table 1) and“fuel types” (Table 2); for further dif-
ferentiation, anthropogenic and biospheric contributions are
split into monthly contributions. Simulated fluxes specific for
different modelled species, emission sectors, fuel types, and
months of the year are called “flux categories”. In this sec-
tion, a brief description of the different models that make up
the modelling framework is given. For more detailed infor-
mation, see Boschetti et al. (2015).

2.1.1 Vertical profile input data

In this study the modelled profiles have identical structure to
those collected from the IAGOS fleet of commercial airlin-
ers. More precisely, the spatial and temporal coordinates of
different observations will be used as input for the modelling
framework, whereas the observed values of atmospheric mix-
ing ratios of CO and meteorological parameters themselves
will play a role in calibrating the modelling framework.

Central for this work is the concept of the mixed layer
(ML), the lower part of the troposphere in which trace gases
are well mixed due to turbulent convection in the timescale of
an hour or less, and in which the effect of regional surface–
atmosphere fluxes is the strongest. As input to the inversion
we use the enhancement of the species’ mixing ratio within
the mixed layer relative to that in the free troposphere (FT),
similar to the approach described in Boschetti et al. (2015).
This mixed layer enhancement best reflects the influence of
regional fluxes. To compute this, we take the average mix-
ing ratio within the mixed layer and subtract the value taken
at 2 km above the mixed layer top (zi), i.e. well within the
free troposphere. The zi is a very important parameter in at-
mospheric modelling, and accounts for most of the transport
uncertainty in the vertical domain. In fact, when assuming
that the mixed layer is the part of the troposphere in which
trace gases are well mixed due to turbulent convection, given
a certain amount of trace gas in the ML, its mixing ratio will
depend strongly on its depth zi . More precisely, even if the
model has correctly reproduced the amount of trace gas in

the real mixed layer, if the modelled zi is lower (higher) than
the actual one, then the simulated ML mixing ratio will be
higher (lower) than it actually should be. In the present study,
modelled zi is corrected according to Boschetti et al. (2015,
Sect. 2.2.1)

2.1.2 Transport–flux coupling

The modelling framework is composed of a regional trans-
port model (STILT), the EDGAR (Emission Database for
Global Atmospheric Research) emission inventory to model
anthropogenic emissions, VPRM (Vegetation Photosynthe-
sis and Respiration Model) to model emissions from the bio-
sphere, and output from global transport models for lateral
boundary conditions for the different modelled species. The
expressions “anthropogenic emissions” and “fossil fuel emis-
sions” are considered synonymous in this paper and are used
to indicate the sum of fossil fuel and biofuel emissions, with-
out including contributions from LULUCF (Land Use, Land-
Use Change and Forestry).

For regional transport we make use of the LPDM STILT
(Stochastic Time-Inverted Lagrangian Transport; Lin et al.,
2003) to derive the sensitivity of the atmospheric mixing
ratio measurement to upstream surface–atmosphere fluxes,
so-called “footprints”. Briefly, for each measurement loca-
tion and time (also called receptor point), the model releases
an ensemble of virtual particles that are driven back in time
using wind fields from ECMWF and turbulence as stochas-
tic process; the residence time within the lower half of the
mixed layer is used to determine the potential contribution
from surface fluxes, and the cumulative sum of these contri-
butions determines the footprint that identifies the part of the
domain with a certain influence on a single receptor point.
To represent the mixed layer enhancements, the footprints
for receptors within the boundary layer are averaged, and the
footprint for the free tropospheric receptor is subtracted from
this, resulting in a footprint for the mixed layer enhance-
ments. This footprint is then matrix-multiplied with an emis-
sion map from an emission inventory, resulting in a simulated
mixing ratio enhancement corresponding to the regional con-
tribution at the measurement location.

A detailed description of STILT is given in Lin et
al. (2003) and Gerbig et al. (2003). We use STILT coupled
with emission models for both anthropogenic (EDGAR) and
biosphere (VPRM) fluxes on a regional domain that covers
most of Europe (33 to 72◦ N,−15 to 35◦ E) with a spatial res-
olution of 1/8◦ for latitude and 1/12◦ for longitude, roughly
corresponding to 10 km. The MACC reanalysis (Inness et al.,
2013, downloaded from http://www.ecmwf.int, last access:
23 June 2016) was used for lateral boundary conditions for
CO mixing ratios, whereas for CO2 and CH4 we used out-
put from the Jena CarboScope (Rödenbeck et al., 2003; CO2
data available from www.bgc-jena.mpg.de/CarboScope/, last
access: 10 February 2016), which are based on forward sim-
ulations of global-inversion optimized fluxes with the TM3
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Table 1. Specific emission sectors accounted for in the state vector and aggregated categories as used in Fig. 8.

Adj IPCC Description Aggregated

1 1a1a power generation energy
2 1a1bcr other transformation non-energy use energy
3 1b1 solid fuel production energy
4 1b2abc gas flaring energy
5 1b2ac oil prod., distribution, and flaring energy
6 1b2b gas production and distribution energy
7 1a3a+1c1 international and domestic aviation transport
8 1a3b road transport transport
9 1a3ce non-road ground transport transport
10 1a3d+1c2 inland waterways and shipping transport
11 1a2+6cd industrial combustion (non-power) industry
12 2a cement and lime production industry
13 2befg+ 3 chemical industry and solvents industry
14 2c metal industry emission industry
15 1a4 buildings buildings
16 4a enteric fermentation in agriculture agriculture
17 4b manure management agriculture
18 4c rice cultivation agriculture
19 4f agricultural waste burning agriculture
20 6a solid waste disposal in landfills waste
21 6b wastewater treatment waste
22 7a fossil fuel fires FF_fuels

Table 2. Specific fuel types accounted for in the state vector and
aggregated categories as used in Fig. 8.

Fuel type Aggregated
fuel type

1 brown coal coal
2 hard coal coal
3 peat coal
4 gas derivatives gas
5 natural gas gas
6 heavy oil oil
7 light oil oil
8 solid waste waste
9 venting and flaring oil
10 other∗ other
11 gas biofuels bio
12 liquid biofuels bio
13 solid biofuels bio

∗ The category “other” is derived by summing the
contribution from those processes in which it is
difficult to establish the specific fuel responsible for
the emissions.

transport model (Heimann and Körner, 2003). TM3 fields
have lower resolution, but they are chosen for their consis-
tency with measurements from the ground-based network. In
addition, spatial resolution is of relatively minor importance
for the contribution from the lateral boundary as it is far away
from the measurement locations.

For fossil fuel emissions, we use a model based on the
EDGAR v4.3.1 emission inventory (European Commission,
2016) modified following the same approach taken for COF-
FEE (CO2 release and Oxygen uptake from Fossil Fuel Emis-
sion Estimate; Steinbach et al., 2011; Vardag et al., 2015).
More precisely, to obtain hourly resolved emissions from the
original EDGAR annual fluxes for different emission cate-
gories we add specific temporal activity factors (Denier van
der Gon et al., 2011) to account for differences in emissions
due to seasonal, weekly, and daily cycles. In addition, the dif-
ferent emission categories are further split into contributions
from different fuel types from British Petroleum’s Statistical
Review of World Energy 2014 (BP, 2014). The World En-
ergy Outlook from IEA as alternative source of information
was not chosen, as the report from BP was available earlier
(April 2015 vs. November of the following year). This al-
lows for taking into account changes in emissions between
different years. Such an emission model provides hourly re-
solved fluxes for each fossil fuel flux category with a spatial
resolution of roughly 10 km on our regional European do-
main. For each of the three anthropogenic modelled species
(CO2, CO, and CH4), different emission maps are used as
input. Temporal profiles are then applied to these sector- and
fuel-specific emission maps. To also take into account the
contribution from the biosphere we use VPRM. VPRM sim-
ulates realistic patterns at small spatial (10 km× 10 km) and
temporal (hourly) scales and is used here to provide the a pri-
ori fluxes for biosphere–atmosphere exchange of CO2. This
model is described in detail in Mahadevan et al. (2008).
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STILT transport is driven by meteorological fields from
the ECMWF IFS (12 h forecasts twice daily at 3-hourly tem-
poral resolution), which have a spatial resolution of 0.25◦

with 61 vertical levels. In the following, we will refer to the
STILT/EDGAR/VPRM/MACC/TM3 combination of trans-
port, simulated fluxes and advected boundary conditions as
merely “STILT” for simplicity.

2.1.3 Bayesian inversion

Atmospheric inversions provide an estimate of the distribu-
tion of sources and sinks over the domain’s surface from
available concentration measurements (top-down approach).
This can be formalized in the following linear relation:

y =Kλ+ ε, (1)

where the y vector contains the n observations, and K is
the Jacobian matrix that relates the observations with the
state vector λ. In the present study the focus will be on
surface–atmosphere gas exchanges due to biospheric pro-
cesses and anthropogenic emissions. So the observations are
trace gas mixing ratios at different times and locations, K is
the product of a transport operator H that maps flux sensi-
tivities at different times and locations with a set of gridded
fluxes F for the categories of interest, while the state vec-
tor λ contains the m scaling factors for the flux categories
of interest. H has n rows and a number of columns equal to
h=Nx ×Ny ×Nt ×Ns respectively the number of pixels in
the emission model along the x and y axes, the number of
(hourly) simulations in the whole year of interest, and the
number of state vector elements, resulting in a huge matrix.
As the matrix F describes the different simulated gridded
fluxes, it is comparably large and has h rows andm columns.
By considering K as the result of the product of these two
large matrices, it is possible to limit its dimensions to only
n rows and m columns; this allows for simplifying the criti-
cal task of relating observation with simulated fluxes of the
categories of interest. The state vector accounts for specific
emission sectors (Table 1) and fuel types (Table 2) for each
one of the three modelled species from the EDGAR emission
model, plus gross fluxes (gross ecosystem exchange, GEE,
and respiration, R) modelled by VPRM for five different
vegetation classes. For both anthropogenic and biospheric
fluxes the temporal resolution of the state vector is monthly.
The number of state vector elements per month amounts to
69 scaling factors for the different fuel- and sector-specific
anthropogenic emissions for each species, and 10 scaling
factors for biosphere–atmosphere exchange (respiration and
photosynthesis for each of the five vegetation classes), so in
total 217 scaling factors per month, or 2604 scaling factors
for the full year. To avoid large memory requirements for H
and F matrices, their product is directly computed within the
STILT code. The random error ε accounts for measurement
error related to uncertainty in the observation and to model–
data mismatch resulting from model uncertainty.

Bayesian inversion combines observations (IAGOS pro-
files) with a priori information (scaling factors and their a
priori uncertainties) to reconstruct the most probable state
vector. Optimum posterior estimates of the scaling factors
are obtained by minimizing the following cost function J
(Rodgers, 2000):

J (λ)= (y−Kλ)T S−1
ε (y−Kλ)+

(
λ−λprior

)T
S−1

prior(λ−λprior), (2)

where the first and the second term are the observational
constraint and the prior constraint term respectively. The
prior scaling factors for the fluxes of the different tracers are
set equal to one. Sε is the error covariance matrix for the
mismatch between simulated and observed mole fractions
(model–data mismatch) and accounts for instrumental uncer-
tainty, uncertainty related to the transport model, and other
sources of uncertainty like boundary conditions and flux ag-
gregation not accounted for through the state vector adjust-
ment. Sprior is the error covariance matrix for the prior scal-
ing factor; its implementation requires a different approach
for biospheric and anthropogenic fluxes. The detailed error
structure for model–data mismatch and prior uncertainty is
described in the Sect. 2.1.4. Minimizing the cost function re-
sults in an optimal posterior estimate of the state vector λ that
is consistent with both the measurements and the prior model
estimates:

λ̂=
(

KT S−1
ε K+S−1

prior

)−1
(KT S−1

ε y+S−1
priorλ). (3)

The error covariance matrix of the optimal posterior state (the
posterior uncertainty) is given by

Spost = (KT S−1
ε K+S−1

prior)
−1. (4)

Note that this quantity depends on neither the prior fluxes
nor the measured mixing ratios, but only on their respec-
tive uncertainties and on the transport matrix K. In this
study, the inverse of the matrices was calculated using the
R function “solve’‘ from the base package of R version 3.0.0
(http://www.r-project.org/, last access: 30 April 2013).

The targeted quantities of this study are the aggregated
emissions over a specific area at a specific timescale (e.g.
month); those quantities can be derived from the prior and
posterior state through a spatiotemporal aggregation operator
A that allows for the conversion of scaling factors into phys-
ically representative quantities. As the pseudo-observations
are clustered around a single location (Frankfurt), it is very
likely that the fluxes over the whole European domain are
not constrained. Therefore, as a spatial aggregation scale we
chose an area from which fluxes have a significant contri-
bution to the observations made at Frankfurt. For this we
compute the temporally accumulated footprint values (cf.
Sect. 2.1.2) for the whole year 2011, and select those spa-
tial pixels that correspond to 50 % of the total (spatially inte-
grated) footprint (Fig. 1). Note that by using this aggregation
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Figure 1. Cumulative sum of the ML footprints for all the flights
into or out of Frankfurt airport (FRA) in the year 2011. The grey
line delineates the 50 % footprint.

scale we assume perfectly known distribution within a given
flux category that can result in aggregation error, especially
with respect to biogenic fluxes, that are not as well known as
anthropogenic fluxes. However, the chosen domain of aggre-
gation is quite small, and the total anthropogenic fluxes are
divided according to species, emission categories, fuel types,
and months. This results in 69 degrees of freedom per month
for each anthropogenic species and 10 degrees of freedom
per month for the biospheric fluxes; for this reason we ex-
pect the aggregation error not to be a particularly important
source of uncertainty. The prior and posterior uncertainty of
these targeted quantities (σprior and σpost) is obtained by ap-
plying the aggregation operator to the respective uncertainty
covariances:

σprior =

√
AT SpriorA and σpost =

√
AT SpostA. (5)

Different versions of the aggregation operator were created
for this: emissions categories are aggregated according to dif-
ferent fuel types (coal, oil, gas, bio, waste, and other) and
according to emission sectors (energy, transport, industry,
buildings, agriculture, waste, and fossil fuel fires). Note that
only these aggregated fluxes are optimized, not the individual
gridded fluxes of the emission inventories.

To quantitatively assess the information provided by the
inversion, the reduction of uncertainty in the posterior com-
pared to the prior estimate is a useful measure. The uncer-
tainty reduction (UR) is defined as

UR= 1−
σpost

σprior
. (6)

The uncertainty reduction ranges from 0 (posterior as large
as the prior uncertainty) to 1 (posterior negligible compared
to the prior uncertainty).

Figure 2. Prior error correlation matrix (a) used in the multi-species
inversion, and the respective components for modelled species (b),
emission sectors (c), and fuel types (d). Matrix (a) is the element-
wise product of matrices (b), (c), and (d). Each matrix has the same
dimensions (2604× 2604) reflecting the length of the state vector.
The matrices are shown for only 1 month here, for illustration. The
grey lines indicate subsets of the flux categories according to dif-
ferent modelled species (blocks), ordered as follows from top to
bottom and from left to right: anthropogenic CO2, CO, CH4, GEE,
and respiration. In the single-species inversion, the correlation val-
ues in the off-diagonal blocks of matrix (b) are set to zero. In the
complete matrix, correlation between fluxes from different months
is also set to zero.

2.1.4 Prior error structure

As in this study a multi-species inversion with CO, CO2, and
CH4 is envisioned, we have the chance to exploit the corre-
lations in the uncertainties of the different trace gases related
to both a priori fluxes and model–data mismatch. This is par-
ticularly true for CO and CO2 because they share a larger
part of the emission sources, which implies correlations in
the respective uncertainties. In the multi-species inversion,
such information is stored in the areas of the error covariance
matrices that describe covariance between different modelled
species (off-diagonal “blocks” in Fig. 2b for Sprior and Fig. 3b
for Sε). In the single-species inversions, said covariance is
set to zero, corresponding to a situation where the differ-
ent species are completely independent of one another. Con-
versely, the measurement uncertainty is stored in the main
diagonal of the Sε (Fig. 3d).

We used a single year (2011) dataset restricted to the
vertical profiles centred at the Frankfurt airport (FRA) and
restricted to daytime during well-mixed atmospheric con-
ditions (10:30 to 17:30 CET). The dataset contains 1098

Atmos. Chem. Phys., 18, 9225–9241, 2018 www.atmos-chem-phys.net/18/9225/2018/



F. Boschetti et al.: Multi-species inversion and IAGOS airborne data 9231

pseudo-observations, 366 for each of the three observable
species, whereas the state vector contains the scaling factors
for 2604 flux categories, each equal to one in the prior.

The prior error covariance matrix can be expressed as fol-
lows:

Sprior = Cpriorρprior, (7)

where Cprior is the prior error correlation matrix (Fig. 2a)
and ρprior is a prior rescaling matrix described in Sect. 2.1.5
(Fig. 4a). First we describe how Cprior is generated. The prior
error correlation matrix is a square matrix of rank 2604, re-
flecting the length of the state vector, and results from the
product of three components (Fig. 2b, c, and d) account-
ing for correlations between flux categories according to the
modelled species, emission sectors, and fuel types respec-
tively. In four different instances, a correlation of 0.7 is ap-
plied:

1. between different anthropogenic modelled species;

2. between GEE and respiration;

3. between different emission sectors;

4. between different fuel types.

Such a correlation implies that the explained variance for
each constraint, everything else being equal, is roughly 50 %
(0.7 to the square equals 0.49), with the rest remaining in-
dependent. In addition, the correlation between fossil-fuel-
related and biosphere-related scaling factors is zero, and the
same holds for fluxes of different months, indicating com-
plete independence from one another. In this study, we as-
sume a certain annual total domain-wide flux uncertainty,
and then break it down by sectors, fuels, and months by in-
flating the error. By assuming no correlation between differ-
ent months we ensure maximum flexibility in the system to
retrieve month-to-month changes based on the observations.
We assume correlation between months is possible, but it
has not been investigated here. It is unclear how good the
seasonal variation in emissions from the inventories actually
is; so in order to not rely too much on these we chose zero
correlation. Investigating the effects of different correlation
set-ups for the seasonal cycle could be the focus of future
research.

2.1.5 Prior error scaling

After having specified the prior error correlation matrix
Cprior, we now describe how we rescale it to obtain Sprior;
for this task we rewrite Eq. (7) as

Sprior = Cpriorρprior =

=


C11 C12 C13
C21 C22 C23
C31 C32 C33

0
0
0

0 0 0 Cbio



Table 3. Relative uncertainty of the prior fluxes aggregated domain-
wide and annually for the different cases.

CO2 CO CH4

Case 1 20 % 50 % 50 %
Case 2 10 % 50 % 50 %
Case 3 10 % 25 % 25 %


1/ρ1ρ1 1/ρ1ρ2 1/ρ1ρ3
1/ρ2ρ1 1/ρ2ρ2 1/ρ2ρ3
1/ρ3ρ1 1/ρ3ρ2 1/ρ3ρ3

0
0
0

0 0 0 ρ2
bio

 , (8)

where each Cij is a subset of the fossil fuel part of Cprior
(block) as shown in Fig. 2, and each ρi is defined as

ρi =

√√√√√√√
A′Ti CiiAi ′(∑
j

Aij ′ εi

)2 , (9)

where A′ is the aggregation operator for annual fluxes over
the full domain, and εi is the corresponding relative prior
uncertainty, assuming the values specified in Table 3 for dif-
ferent cases. Case 1 is considered as the default case, with
prior uncertainty values conservatively assumed to be 20 %
for CO2, and 50 % for CO and CH4. Conversely, Cbio covers
the biosphere part of Cprior, and for

∑
Ai
′εi for ρbio we use

a prior uncertainty of 0.54 GtC y−1, as derived in Kountouris
et al. (2018) for the VPRM model. The biospheric part of the
prior error covariance matrix assumes no correlation with the
fossil fuel species.

The posterior of each Bayesian inversion depends on its
specific prior. As the multi- and single-species inversions
have different prior uncertainty structures, the uncertainty re-
duction for targeted quantities cannot be directly compared
(Eq. 4). To be able to compare the two inversions, we re-
quire that the a priori aggregated uncertainty of the targeted
quantities remains the same, and distribute it differently each
time; the prior rescaling matrix ρprior is needed for this task.
The benefits were tested for observations taken in different
months and for three different error structures in the prior
uncertainty. As a priori aggregated uncertainty we use a per-
centage of the aggregated modelled emissions for fossil fuels
across the whole year. Table 3 shows the percentage values
used for different cases.

2.1.6 Model–data mismatch error structure

In an atmospheric inversion, the model–data mismatch from
every uncertainty source (such as measurement uncertainty,
transport model uncertainty, spatial representation error due
to limited model resolution, and boundary condition inac-
curacies) needs to be taken into account. In our inversion
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Figure 3. Model–data mismatch correlation matrix (a) used in the
multi-species inversion, species correlation matrix Ss (b), temporal
correlation matrix St (c), and squared measurement uncertainty (d).
Note that the measurement uncertainty is expressed in ppm for CO2
and ppb for CO and CH4. Each matrix has the same dimensions
(1098× 1098) reflecting the length of the observation vector, but
here only the data of July are plotted to increase visibility. The grey
lines indicate different species in the observation vector (blocks),
ordered as follows from top to bottom and from left to right: total
CO2, CO, and CH4. In the single-species inversion, the correlation
value in the off-diagonal blocks of matrix (b) is set to zero. The
structure in Ss in (c) is a result of the uneven temporal distribution
of the observations within the month.

scheme, we parameterize both the transport model uncer-
tainty and the measurement uncertainty, with the latter play-
ing a minor role. The model–data mismatch covariance ma-
trix (Sε) is constructed according to the following equation:

Sε = CsCtε
2
tran+ ε

2
meas, (10)

where Cs accounts for correlations between different ob-
served species (Fig. 3b), Ct accounts for the temporal cor-
relation (Fig. 3c), εtran is the total transport error, and ε2

meas
accounts for all of the non-transport-related errors like spa-
tial representation error and lateral boundary conditions
(Fig. 3d).

The assumed measurement uncertainty is 1 ppm for CO2,
20 ppb for CO, and 20 ppb for CH4, while εtran is time de-
pendent and assumed to be proportional to the modelled en-
hancement due to regional fluxes. The assumed measure-
ment uncertainty is higher than the expected instrument pre-
cision because it also includes in addition the uncertainties
related to spatial representation and lateral boundary condi-
tions. εtran is characterized as follows by different compo-

nents in the vertical and horizontal domain:

εtran = enh

√(
ε2

tran_h+ ε
2
tran_v

)
, (11)

where enh indicates the modelled enhancement, and both the
horizontal transport error εtran_h and the vertical transport er-
ror εtran_v are characterized as percentage error; εtran_h is as-
sumed to be 50 %, while εtran_v is a profile-specific relative
error with a mean value of about 10 %. The vertical trans-
port error accounts for the fact that the shallower the mixed
layer is, the more difficult it is to model the atmosphere. We
assume that after zi correction the remaining error is of the
order of 50 m (related to the vertical resolution of the profile
data), so the relative error εtran_v is assumed to be the ratio of
50 m to the modelled zi ; in this way we obtain an error that
gets larger the shallower the mixed layer is. For the horizontal
component, an uncertainty of 50 % is a conservative estimate
based on Lin and Gerbig (2005), where the horizontal trans-
port error is found to be 5.9 ppm for CO2. This, combined
with about 10 ppm of drawdown in the mixed layer relative
to the free troposphere, gives something like 50 % error in
the regional flux signal. The vertical component is so much
smaller in percentage since the simulated mixing ratios are
already corrected for mismatch between modelled and ob-
served zi .

In the multi-species inversion, the transport error corre-
lation across species is 0.7 (Fig. 3b), while in the single-
species inversion this is set to zero. Time correlation is as-
sumed to decay exponentially with an exponential constant
of 12 h. The between-species correlation for model–data mis-
match related to transport uncertainty reflects the fact that
species are partially co-emitted and share the same atmo-
spheric transport (and its related uncertainty).

2.2 Synthetic experiment

Pseudo-data generation

As explained in the introduction, in situ measurements are
not available for all of the three trace gases of interest, but
only for CO. For this reason this paper aims to evaluate the
benefits of a multi-species inversion over a corresponding
single-species inversion by performing a synthetic experi-
ment, using pseudo-observations derived by perturbation of
the model outputs based on a priori state vector values. More
precisely, the pseudo-observation vector is obtained by ma-
trix multiplication between the Jacobian matrix K and what
we assume to be the true state vector. The true state vector it-
self is obtained by using the sum of the prior state vector (all
values equal to one) and a random realization of the prior er-
ror, truncated to avoid negative state vector values. In detail,
the error realization is obtained by multiplying a randomly
generated, normally distributed vector with the prior error
covariance matrix. This ensures that such a realization has
the same error correlation as the prior uncertainty. Where the
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Figure 4. The final rescaling matrix ρprior (a) and the prior error
covariance matrix Sprior (b). Note that ρprior can be defined as the
element-wise ratio of Sprior to Cprior.

result of such matrix-vector product is negative, the same op-
eration is performed recursively until all elements of the state
vector are positive. This ensures that the difference between
the true and prior state vector has the same error correlation
structure as described by the prior error covariance matrix.

3 Results and discussion

Before evaluating the performance of the inversion scheme
in reducing the uncertainty of the state space, a closer look
at the ability of the modelling framework to reproduce the
enhancements is necessary. Unfortunately, this can be done
only for CO as actual measurements are not available for the
other species. Figure 5 shows the mean daily enhancement of
the three fossil fuel species for both observations and model
outputs using prior emissions. A common feature of the three
trace gases is that lower values tend to occur during summer
time due to better mixing of the atmosphere. Conversely, en-
hancement values tend to be higher during winter, reflecting
the more stratified atmosphere of the cold months.

In Fig. 5 the modelled CO plot was multiplied by a fac-
tor of 2.8, corresponding to the mean ratio between observed
and modelled CO enhancements, similar to what was found
in Boschetti et al. (2015). Mixing ratio values are highly vari-
able, but the model provides a good indication of the tem-
poral variation of the ML enhancement; the squared corre-
lation coefficient between observed and modelled CO en-
hancements is 0.62, while the standard deviation of corrected
model and observation residuals is 85 ppb; note that by not
accounting for the zi correction, such values would be 0.56
and 87 ppb respectively. The median of the mixing ratio en-
hancement for the three trace gases is 2.8 ppm for CO2,
18.6 ppb for CO, and 26.6 ppb for CH4. For CO2 this sea-
sonal difference is enhanced due to the simultaneous pres-
ence of both anthropogenic and biogenic emissions. During
summer, values are slightly negative due to strong photosyn-
thesis fluxes from growing vegetation from the active com-
bined with deeper vertical mixing. Negative values arise in
31 % of the cases predominantly during the warmer months,

implying that during the growing period uptake by photo-
synthesis dominates over release from combustion and res-
piration. Both CO and CH4 experience higher values during
winter due to the shallow mixed layer usually associated with
cold temperatures, and lower values during summer as higher
temperatures cause the mixed layer to reach higher altitudes;
differences related to seasonal domestic heating and trans-
portation may also play a role. In addition, enhancement for
both species is occasionally negative, most likely owing to
advection of polluted air masses in the free troposphere. An
alternative explanation is that strong winds at lower heights
can disperse the emissions in the boundary layer and create
a situation in which the mixing ratio in the FT is higher than
in the ML.

Figure 6 shows the prior and posterior error covariance
matrices for the base multi-species inversion. Note that CO2
from anthropogenic emissions is assumed to be independent
from biogenic emissions; therefore prior error correlation be-
tween these categories is zero. The posterior error covari-
ance matrix for the multi-species inversion (Fig. 6b) shows
lower values corresponding to an average uncertainty reduc-
tion of 23 % across all state vector elements, while the poste-
rior error covariance matrix for the single-species inversion
(not shown) is characterized by a mean uncertainty reduction
of 20 %. This result implies that the multi-species inversion
improves the uncertainty reduction by roughly 15 %. Nega-
tive values in the posterior error correlation matrix are to be
expected because different categories are bound together by
correlations and therefore are not free to vary independently.

Figures 7 and 8 show a priori, a posteriori, and “true”
fluxes related to different aggregated fuel types and to dif-
ferent emission categories as described in Tables 1 and 2 for
the months of July and December. Figure 8 also shows the
biospheric contribution (as absolute values) scaled down by
a factor of 10. As is to be expected, the biospheric contribu-
tions show strong differences according to the seasonal cycle,
while anthropogenic emissions remain rather stable. How-
ever, it is worth pointing out that while the fossil fuel prior
is similar for both months, the assumed truth can be rather
different due the random assignment of the prior error real-
ization. In most cases, the posterior adapts and is therefore
closer to the truth than the prior; the posterior uncertainty
is also visibly reduced, as expected. Regarding the different
tracers, CO2 and CO show a somewhat similar pattern in-
dicating a partial overlap in dominating emission categories
while CH4 is dominated by different contributions in both
fuel types and emission categories.

Our modelling framework is currently not well suited to
account for unreported sources of CH4 due to the lack of in-
formation about natural gas and oil production operations,
or from recent and old mining areas. Many recent studies
have discussed the problem, mainly referring to shale basins
exploited via hydraulic fracturing in the USA (e.g. Kort et
al., 2016; Karion et al., 2015; Lyon et al., 2015). For exam-
ple, Karion et al. (2015) concludes that EDGAR underesti-

www.atmos-chem-phys.net/18/9225/2018/ Atmos. Chem. Phys., 18, 9225–9241, 2018



9234 F. Boschetti et al.: Multi-species inversion and IAGOS airborne data

Figure 5. Mean daily enhancement of mixed layer vs. free tropospheric mole fractions. Modelled mixing ratios are shown as black lines,
while the observed CO is shown as a blue line. Note that the modelled values for CO have been multiplied by a factor of 2.8, corresponding
to the mean ratio between observed and modelled CO enhancements, to match the observed values.

Figure 6. Prior error covariance matrix (a) and corresponding pos-
terior error covariance matrix (b).

mates methane emissions associated with oil and gas indus-
try by a factor of 5 in the USA. However, the situation over
the European continent may be quite different. In a review
about risk assessment of shale gas development in the UK,
Prpich et al. (2015) reports that the European Union is gen-
erally much more cautious about unconventional oil and gas
sources, while a recent study on a methane plume over the
North Sea (Cain et al., 2017) concluded that the bulk signa-
ture of said plume originated from on-shore coal mines and
power stations in the Yorkshire area.

In general, the absence of some emission sources in an
inventory is equivalent to the assumption of having point
sources not included in the emission map, but still contribut-
ing to the measurements. The inversion scheme would typ-
ically react to this by assigning such point sources in some
other sectors to another fuel type. As a result, the posterior
enhancements would be biased low in proximity of those
point sources, and (slightly) biased high for influences from
other regions with the same sector or fuel type. This issue
should definitely be considered in future study making use
of actual CO, CO2, and CH4 observations from IAGOS but

Figure 7. Prior, posterior, and true (pseudo-data) fluxes in physical
units aggregated for different fuel types. Note that as the true fluxes
are the result of a random perturbation of the prior, they do not
describe an actual situation in the physical world. So, for example,
the fact that the true value of CH4 fluxes in July is lower than the
same value in December should not be surprising.

has limited effects on this paper, as our main focus is on the
benefits of inter-species correlation on the posterior uncer-
tainty in a synthetic experiment.

Note that our modelling framework does not allow for sim-
ulating CO biogenic fluxes during the growing season. Warm
days in summer correspond to large amount of biogenic
volatile organic compounds (VOCs) being emitted from veg-
etation, producing CO at non-negligible levels. According
to Hudman et al. (2008), anthropogenic emissions account
for only 31 % of CO emissions in the USA during summer.
Conversely, according to estimates from EDGAR, CO an-
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Figure 8. Prior, posterior, and true (pseudo-data) fluxes in physical
units aggregated for different emission sectors for CO2 (a), CO (b),
and CH4 (c). Absolute values of biosphere–atmosphere exchange
fluxes of CO2 are included in (a), but scaled down by a factor of 10.
Note that as the true fluxes are the result of a random perturbation
of the prior, they do not describe an actual situation in the physical
world. So, for example, the fact that the true value of CO for trans-
port in July is higher than the same value in December should not
be surprising.

thropogenic emissions during summer are about 18 % of the
annual anthropogenic emissions. Combining these two re-
sults, one could conclude that CO production from biogenic
sources accounts for roughly 42 % of total annual CO emis-
sions.

CO2 and CO are dominated by combustion sectors
(Fig. 8). The most important emission sectors for CO2 are
energy, industry, transport, and building, each contribut-
ing 7–10 in July and 6–14 MtC month−1 in December.
Dominant fuels (Fig. 7) for CO2 are coal, gas, and oil,
whose prior fluxes (pseudo-data) have a magnitude of 6–
11 Megatons of carbon per year (MtC month−1) in July and
8–14 MtC month−1 in December. For CO the most impor-
tant emission sector is heating of buildings during winter,
contributing a flux of 0.19 MtC month−1. Contributions from
industry and transport dominate during summer, with magni-
tudes of 0.04 and 0.05 MtC month−1, respectively. The domi-
nant fuel for CO is biofuel with 0.19 MtC month−1 emissions
during winter. The secondary industrial and transport con-
tributions originate in summer from oil and biofuels with a
magnitude of 0.06–0.08 MtC month−1 and from agricultural
waste burning with a magnitude of 0.06–0.11 MtC month−1.

Contrary to CO2 and CO, CH4 is determined by non-
combustion sectors, more specifically by a contribution of
0.15 MtC month−1 flux from agriculture (manure manage-
ment and rice cultivation) in July with secondary con-

tributions from waste and energy with a magnitude of
roughly 0.06–0.08 MtC month−1 in both July and Decem-
ber. Other non-combustion sectors, in particular wastewa-
ter treatment and landfills contribute to a total of 0.16–
0.24 MtC month−1 of emissions. These non-combustion sec-
tors contribute to less than 20 % of total CO2 emissions, with
1.13 MtC month−1 from the cement and lime industry and
less than 20 % of the total CO emissions (0.03 MtC month−1

from the metal industry).
The contribution to CO2 from biospheric primary produc-

tion (a sink for atmospheric CO2) is about 100 MtC month−1

in July, which drops to almost zero in December, while
respiration values are 50 MtC month−1 in July and roughly
15 MtC month−1 in December.

As further assessment of the inversion performance, we
tested the ability of the inversion scheme to capture the truth
compared with a perturbed version of the prior. Such per-
turbed version is obtained by adding a random distribution
with mean and standard deviation equal one to the prior state
space, similar to how the truth is obtained. For each simu-
lated species we calculated the total annual fluxes for prior,
posterior, truth, and perturbed prior. From these total fluxes
we then derive the overall residual between prior and truth,
posterior and truth, and perturbed prior and truth. It is clear
from Table 4 that while the overall bias between posterior and
truth is lower than the prior–truth bias, the bias between per-
turbed prior and truth is much higher, implying that the per-
formance of the inversion is not an artifact of the pseudo-data
generation. In addition, it was found that the truth–posterior
bias of the multi-species inversion is mostly slightly lower
compared to the single-species inversion. The difference is
between −2.2 and 7.6 %, according to the simulated species,
with an overall value of 0.3 %.

Improper characterization of the error correlation may re-
sult in systematic bias in the posterior estimate. As men-
tioned in Sect. 2.1.6, inter-species correlation, the correla-
tion between different fuel types and the correlation between
different emission sectors in Sprior, is assumed equal to 0.7
(Sect. 2.1.4). To assess how well the system will reproduce
the true fluxes with incorrectly specified correlations, a series
of experiments was performed in which the inter-species cor-
relation in Sε remains equal to 0.7, while the three correlation
coefficients in Sprior assume different values ranging from 0.1
to 0.9. Table 5 shows the residuals between total annual pos-
terior fluxes and total annual true fluxes for the five simulated
species, derived similarly as for Table 4. We found that for
all species the uncertainty reduction increases with correla-
tion. More precisely, from correlation 0.1 to 0.9, the annual
uncertainty reduction for anthropogenic CO2 increases from
26.6 to 51.7 %, while the increase is lower for GEE (from
72.4 to 73.1 %) and respiration (from 39.3 to 41.3 %) because
the biospheric fluxes are independent from other species. For
CO, the uncertainty reduction increases from 60.7 (with cor-
relation 0.1) to 66.4 % (with correlation 0.9). The annual un-
certainty reduction for CH4 increases from 60.5 to 67.5 %.
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Table 4. Overall bias for different species between the prior and
both posterior and perturbed prior. The percentage values in paren-
theses are the corresponding prior–truth bias.

Prior–truth Posterior–truth Pert. prior–truth
(MtC y−1) (MtC y−1) (MtC y−1)

CO2 FF −14.2 1.5 (−111 %) −8.8 (−38 %)
CO −0.95 −0.29 (−69 %) −1.08 (+13 %)
CH4 0.36 0.11 (−68 %) 0.84 (+133 %)
GEE −81.8 −17.9 (−78 %) −116.8 (+43 %)
Respiration 39.5 20.6 (−48 %) 62.2 (+58 %)

In addition, the posterior–truth biases are always lower
than the prior–truth biases. The posterior uncertainty values
(1σ ) are usually larger then the corresponding bias values as
expected, except for CO and for CH4 with prior correlations
equal to 0.9. Thus the posterior is not significantly different
from the truth. Conversely, the prior (not shown) is signif-
icantly different from the prior in the majority of cases for
fossil fuel fluxes, and in some cases also for biogenic fluxes.
The effect of assuming the incorrect error correlations ap-
pears to be in general small, possibly implying a relative ro-
bustness of our methods. Following this result, the fact that
CH4 is only partially co-emitted with CO2 and CO should
not affect the inversion in a strong way. For all of the exper-
iments, the residuals between true and posterior fluxes are
lower than residuals between true and prior fluxes for each of
the simulated species; the difference between the cases with
maximum and minimum residuals is around 4.2 %. In addi-
tion, we found that the posterior aggregated fluxes in the nine
experiments are not significantly different from each other,
implying that the system is fairly robust against errors in the
assumed inter-species correlation.

Before investigating the benefits of correlations between
different tracers, it is worthwhile to evaluate the uncertainty
reduction in the monthly budgets for all five modelled species
(Fig. 9, based on targeted spatial domain in Fig. 1). The first
thing to note is that for all of the five trace gases the posterior
uncertainty is lower than the prior one, as it should be. In
addition, prior uncertainty varies through the year, reflecting
modulation in emission fluxes obtained by adding activity
factors to describe the seasonal, weekly, and daily cycle.

Prior uncertainty assumes values around 0.4–
0.6 MtC month−1 for CO2, 5–15 ktC month−1 for CO,
and 15 ktC month−1 for CH4. For GEE the prior uncertainty
is between 0.3 and 46.7 MtC month−1, and for respiration
it is 5.1–19.0 MtC month−1. Posterior uncertainty for CO2
is 0.24–0.38 MtC month−1 for fossil fuel emissions, 0.3–
9.9 MtC month−1 for GEE, and 3.1–10.4 MtC month−1 for
respiration, while it has a range of 3.3–4.7 for CO and
2.7–7.0 ktC month−1 for CH4. Mean uncertainty reduction
of the monthly values is 38 % for fossil fuel emissions of
CO2, 41 % for GEE, and roughly 45 % for respiration, 63 %
for CO, and about 67 % for CH4. It is worth pointing out that

Figure 9. Comparison between prior and posterior monthly uncer-
tainties for the five tracers. The posterior uncertainty is plotted for
both the multi-species inversion, accounting for inter-species corre-
lations, and the single-species inversion, in which all of the species
are independent. Both prior and posterior uncertainty are expressed
in physical units. The spike in the prior methane uncertainty esti-
mate for the month of March depends on the emission inventory
and is related to the cycle of agricultural activities.

such values are higher than the mean uncertainty reduction
in the scaling factors (23 %); this happens because the most
representative emission sectors are those influencing the
observations the most and thus are also the most constrained.

In addition, note that in this case, the posterior uncertain-
ties for single- and multi-species inversions are similar for
the modelled species, with the exception of the CO2 anthro-
pogenic contributions. To generalize this last result, we tested
the benefit of a multi-species inversion for the different cases
of prior uncertainty values shown in Table 3. As an indica-
tor for the benefit of including correlation between differ-
ent species, we use the ratio between posterior uncertainty
of the multi-species inversion and the posterior uncertainty
of the corresponding single-species inversion. A value of 1
means that there is no benefit from adding an inter-species
correlation to the inversion, while values greater than 1 mean
that a multi-species inversion is even less constrained than a
single-species one. We expect this indicator to be less than
1, meaning that inter-species correlations actually improve
the constraint power of the inversion. As before, we consider
here the uncertainties of the retrieved budgets for the 50 %
footprint, where the surface influence is strongest (Fig. 1).
Values of this uncertainty ratio for the different trace gases
as function of month are shown in Fig. 10 for the different
cases listed in Table 3. The benefit of including inter-species
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Table 5. Residuals between total annual posterior fluxes (post) and total annual true fluxes (truth) for the five simulated species (in MtC y−1)
and different inter-species correlation values in the prior error covariance matrix (first column). The corresponding posterior uncertainty was
added for each post–truth value.

Correlation Post–truth CO2 FF Post–truth CO Post–truth CH4 Post–truth GEE Post–truth respiration

0.1 −6.3± 16.4 −0.3± 0.2 −0.1± 0.3 −18.5± 23.6 −19.0± 27.5
0.2 −4−4± 16.1 −0.3± 0.2 0.0± 0.3 −18.6± 23.5 −19.2± 27.4
0.3 −2.7± 15.9 −0.3± 0.2 0.0± 0.3 −18.6± 23.4 −19.5± 27.3
0.4 −1.3± 15.6 −0.3± 0.2 0.0± 0.3 −18.5± 23.4 −19.7± 27.3
0.5 −0.1± 15.2 −0.3± 0.2 0.0± 0.2 −18.4± 23.3 −20.0± 27.2
0.6 0.8± 14.6 0.3± 0.2 0.1± 0.2 −18.2± 23.2 −20.3± 27.1
0.7 1.5± 13.7 −0.3± 0.2 0.1± 0.2 −17.9± 23.2 −20.6± 26.9
0.8 1.9± 12.4 −0.3± 0.2 0.2± 0.2 −17.6± 23.1 −20.9± 26.8
0.9 1.5± 10.4 −0.4± 0.2 0.3± 0.2 −17.3± 23.0 −21.1± 26.5

correlations shown in Fig. 10 does not depend on different
manifestations of the true fluxes, but only on the posterior
uncertainty of the multi- and single-species inversions.

All of the species experience a reduction in the posterior
uncertainty ratio due to the addition of inter-species corre-
lation; said reduction is up to 20 % for fossil fuel CO2 and
up to 10 % for the other species; in addition, anthropogenic
CO2 is more sensitive to the prior relative error values than
CO and CH4. As the uncertainty of GEE and respiration is
not modified, they show little to no variation for different
cases (Fig. 10). There is a dependence of the benefit of the
multi-species inversion over the single-species inversion on
the prior uncertainty values (differences between Cases 1–3),
with the largest difference for fossil fuel emissions of CO2.
Interestingly for Case 2 with reduced prior uncertainty for
fossil fuel CO2 emissions the benefit nearly doubles over the
default case (Case 1). Also reducing the prior uncertainties
of CO and CH4 emissions (Case 3) more or less compen-
sates for this increase in benefit. The reason for both of these
results is probably to be found in Eq. (8). In fact, changing
the prior uncertainty in CO2 emissions means to also change
the off-diagonal blocks linking the different species together.
However, by reducing the anthropogenic CO2 uncertainty
from 20 to 10 % (Case 2), the diagonal block for CO2 in
the prior uncertainty changes by a factor of 4, while the off-
diagonal blocks change only by a factor of 2. This effectively
ties the emissions of CO2 tighter to the emissions of the other
species, resulting in greater benefit from a multi-species in-
version over a single-species inversion. Conversely, when all
prior uncertainties are reduced by a factor of 2 (Case 3), both
diagonal and off-diagonal blocks are reduced by a factor of
4. This explains why Case 1 and Case 3 show similar ben-
efit values. Note that the assumed prior uncertainties for the
default case (Case 1) are quite conservative; therefore lower
uncertainties were chosen for Cases 2 and 3. While the abso-
lute benefit of adding inter-species correlation is not a game-
changer, it is worth pointing out that such improvement also
comes with only slightly greater computational effort than
multiple independent single-species inversions.

Figure 10. Benefit of a multi-species inversion over the correspond-
ing single-species inversion (dotted line) per different species per
months of the year. The benefit has been tested for the three differ-
ent cases of Table 3. Note that CO2 refers to fossil fuel emissions
only, and RESP and GEE refers to the biospheric fluxes. Note that
“unc.” stands for uncertainty.

In order to assess the contribution of inter-species correla-
tion in the prior uncertainty vs. that of model–data mismatch
uncertainty, Fig. 11 also shows the resulting posterior uncer-
tainty ratios for Case 1 (Table 3) from inversions only using
prior or model–data mismatch correlation. For the anthro-
pogenic component of CO2, the greatest constraint is given
by the prior correlation, while for GEE, respiration, and CH4
the strongest contribution is from the model–data mismatch
correlation. In the case of CO, the inter-species correlations
for different components are dominant for different months
of the year. What makes CO sensitive to different correla-
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Figure 11. Benefit of a multi-species inversion over the correspond-
ing single-species inversion (dotted line) per different species and
month. The benefit has been tested for a “normal” inversion fea-
turing both prior and model–data mismatch (mdm) correlation be-
tween different species (black) or only one of these two components
(red and orange). Results refer to Case 1 of Table 3 (black line of
Fig. 10). Values derived from Palmer et al. (2006) for the month
of March are indicated with a diamond. Note that “unc.” stands for
uncertainty.

tion structures during different seasons is CO enhancement
showing a stronger seasonal cycle compared to, for exam-
ple, the fossil fuel component of the CO2 enhancement, with
average values of around 150 ppb (25 ppm for CO2) for Jan-
uary and around 9 ppb (4 ppm for CO2) for July. This results
in a much weaker constraint on the CO emissions from the
CO observations during summer, but there is still some con-
straint through the other species such as CO2 via the a priori
correlation in the emissions.

Palmer et al. (2006; in the following referred to as P06)
studied the importance of inter-species correlation to im-
prove inverse analysis using airborne data from the TRACE-
P mission conducted in March/April 2001 over the western
region of the Pacific Ocean. P06 derived a prior error correla-
tion lower than 0.2 by analysing the uncertainty of emission
factors from an Asia-specific emission inventory (Streets,
2003), which is significantly smaller than the correlation of
0.7 assumed in the present study. P06 deemed CO2–CO prior
correlation greater than 0.5 to be unrealistic for the emissions
in Asia, which is mostly associated with the uncertainty in
emission factors for CO of 67 % for fossil fuel emissions and
240 % for biofuel emissions in China (P06 Table 1). How-
ever, for the European region used in the present paper we
argue that values around 0.7 are appropriate. The resulting

uncertainty in the CO2–CO ratio, diagnosed from the prior
error covariance matrix used in this study, is about 50 % for
both biofuel and fossil fuel emissions in Europe, which we
regard as reasonable. To compare results from P06 with those
from the present study, ratios of posterior uncertainties re-
sulting from inversions using correlations between CO2 and
CO of 0.7 in the prior uncertainties and to those using no cor-
relations have been extracted from Fig. 7 in P06 and are also
shown as orange diamonds in Fig. 11. It is easy to see that
for anthropogenic CO2, the value derived from P06 is higher
than in our study, while the two values are very similar for
CO. Similarly, posterior uncertainty ratios using model–data
mismatch correlations of 0.7 between CO2 and CO are de-
rived from Fig. 8 of P06 and are shown as red diamonds. In
this case, the value derived from P06 is slightly lower than
in our study for anthropogenic CO2, while the two are again
very similar for CO.

From this comparison we can see that the estimates of the
benefit of including inter-species correlation in atmospheric
inversions in P06 and in this paper are of the same order of
magnitude for anthropogenic CO2 and almost identical for
CO, suggesting a general continuity of results.

4 Conclusions

The present paper presents a synthetic experiment aiming to
evaluate the effects of exploiting correlations between dif-
ferent trace gases in an atmospheric inversion. We quantita-
tively described the capability of the modelling framework
to reproduce observations, the performance of the inversion
scheme in reducing the uncertainty of the different trace
gases, and the benefits of multi-species inversions compared
to corresponding single-species inversions. We also describe
a method to re-scale different prior uncertainty covariance
matrices so that the corresponding posterior uncertainties are
actually comparable.

Where possible, we compared model outputs with avail-
able observations. Such comparison, possible only for CO,
showed a good degree of agreement between the model and
observations with an overall correlation of roughly 0.75;
modelled values for CO enhancement underestimate the ob-
served ones by a factor of roughly 2.8, compatible with what
was found in Boschetti (2015). It is found that posterior un-
certainty is much lower than the prior for all of the five simu-
lated species. The mean uncertainty reduction for CO2 emis-
sions from fossil fuels is roughly 38 %, for GEE it is around
41 %, while for respiration it is roughly 44 %. For CO and
CH4 the uncertainty reduction is about 63 and 67 % respec-
tively. Finally, we described quantitatively the benefit of us-
ing multi-species inversions by exploiting correlations in dif-
ferent chemical species. It is found that considering correla-
tions between different trace gases can reduce the posterior
uncertainty by up to about 20 % for monthly fluxes. These
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benefits are however dependent on the error structure of the
prior uncertainty.

The present paper paves the way for future studies using si-
multaneous measurements of different trace gases. This will
be especially important in the context of the upcoming rou-
tine measurements of CO2, CO, and CH4 vertical profiles
within IAGOS. As IAGOS makes use of commercial air-
liners, such profiles will be collected in the vicinity of ma-
jor international airports, and hence in the vicinity of ma-
jor metropolitan areas, where many different human activ-
ities take place simultaneously. In such a context, any im-
provement in the constraint of atmospheric inversions will
be particularly useful. A possible improvement in this anal-
ysis would be to evaluate the effects of different correlation
factors specific to different pairs of anthropogenic species,
fuels, and emission sectors.
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ide mole fraction measurements are available at the IAGOS data
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