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Abstract

Over the last decades, international attempts have been made to develop realistic space weather prediction tools
aiming to forecast the conditions on the Sun and in the interplanetary environment. These efforts have led to the
development of appropriate metrics to assess the performance of those tools. Metrics are necessary to validate
models, to compare different models, and to monitor the improvements to a certain model over time. In this work,
we introduce dynamic time warpifBTW) as an alternative way of evaluating the performance of models and, in
particular, of quantifying the differences between observed and modeled solar wind time series. We present the
advantages and drawbacks of this method, as well as its application to Wind observations and EUHFORIA
predictions at Earth. We show that DTW can warp sequences in time, aiming to align them with the minimum cost
by using dynamic programming. It can be applied for the evaluation of modeled solar wind time series in two
ways. The rst calculates theequence similarity factpa number that provides a quamttion of how good the

forecast is compared to an ideal and a nonideal prediction scenario. The second waggtizattiime and
amplitude differences between the points that are best matched between the two sequences. As a result, DTW can
serve as a hybrid metric between continuous measureffgegisthe correlation coefien) and point-by-point
comparisons. It is a promising technique for the assessment of solar windspraroviding at once the most
complete evaluation portrait of a model.

Uni ed Astronomy Thesaurus concepisignetohydrodynamidd 964); Time series analysid€916); Solar wind
(1534); Space weathd037)

1. Introduction of the solar wind properties in the upper corona. Another large
P?ategory of models are the physics-based models that consist
is directly linked to a better understanding of the capabilities entirely of MHD codes. Such models can either reconstruct the

provided by the space weather prediction models CurrentlygIobaI solar corona alone, such as the Magnetohydrodynamics

available to the operational and scieattommunity. A large Around a Spher¢MAS) model (Miki et al. 1999 Lionello

number of such models have been developed over the pag al. 2003, or the heliospheric domain alone, such as the

decades, aiming to reconstruct the solar corona and th eliospheric parts of ENLI(Odstril & Pizzo 1999 and
heliospheric environmerfsee, e.g., MacNeice et &018 for UHFORIA (Pomoell & Poedis2019. Some models can

an overview of the available models and their capabilities reconstruct both dpmalns, such as the MAS model for corona
Some models are fully empirical, such as the PDF modeland heliosphergRiley et al. 2011 or the AWSoM model
(Bussy-Virat & Ridley2014), the PROJECTZED modéRiley (Meng et QI.2013._ Last but not least are models based on
et al. 2017, and the Analog Ensemble mod@wens et al. tomographic techn!ques. For example, HeITc(tjan:kson etal.
2017). Others require extensive empirical tuning, such as, e.g.,1998 Jackson & Hick2002 Jackson et a02 is a tool that

the WangSheeleyArge model(WSA: Arge & Pizz0200Q reconstructs the solar wind, including coronal mass ejections
Arge et al.2003 2004), which is one (,)f the most widely used (CMES)' by .employmg mterplanet_ary scintillation of astro-
operational coronal ,models or the Empirical Solar Wind nomical radio sources that are viewed through the ambient

Forecast mode[ESWF; Reiss et ak016, which relates the solar wind plasma. - . .
areas of the coronal holes, as observed in EUV, to the solar Space weather prediction models are subject to continuous

wind speed prediction at the Lagrangian poift1), based on g:hanges and improvements. There_fore, It is of utmost
Vrénak et al. (2007. Some models combine empirical importance for space weather forecasting applications to record

approximations with physiosee, e.g.. the MULTI-VP model and quantify these changes over time. The differences in
by Pinto & Rouillard2017) usiﬁg.tH’e PESS model for the performance among different models should also be recorded,
reconstruction of the lower corona and relying on the solution &9+ MAS versus ENLIL versus EUHFORIA, or among

: - : combinations of different models. For example, an overview of
of magnetohydrodynami®HD) equations for the calculation the coupling between the WSA coronal model and the time-

® Original content from this work may be used under the terms dependent MAS SOI.ar wind model .IS given in Linker et al.
(2018, and an overview of the coupling between the MULTI-

of the Creative Commons Attribution 4.0 licendeny further . . . .
distribution of this work must maintain attribution to the au@§and the title VP coronal model and EUHFORIA-heliosphere is given in

of the work, journal citation and DOI. Samara et a(202]). Metrics are the only way of quantitatively

Improving the accuracy of space weather forecasting at Eart
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understanding which setup provides the best results, based obe applied to the evaluation of time series during CME arrivals
the users needs and goals, every time. at specic points of interest. Nevertheless, the reasons that led
A number of metrics proposed through the years are beingus to focus on solar wind time series are summarized as
used by the scientc community. Oweng$2018 presents an  follows:
overview by categorizing such metrics in two large groups:
point-by-point metrics and time window metrics. The former
category includes the so-called error functions, such as the
mean-square errMSE), the mean absolute error, the rms
error, or general skill scores constructed by the aforementioned.
All of them are widely used to compare the amplitudes between
observed and predicted time series in a point-by-point manner.
Another subcategory of point-by-point metrics is binary
metrics. Binary metrics show whether large-scale structures

1. The solar wind forecast at Eafttr at any other point in
the heliosphejeusually deals with long and variable time
series(in the order of days, weeks, or even months,
depending on the godlsFor the correct prediction and
assessment of both the fast and the slow solar wind, we
need to evaluate the whole range of the available data set.
This procedure is much more complicated than assessing
CME signatures for which the arrival of the shbck
magnetic cloud is well deed during a limited time

of the solar wind(e.g., high-speed streams, abbreviated as interval (in the order of houjsand, thus, allows the easy
“HSS$) have arrived at the point of interest or not. This guanti cation of both the amplitude and the time delay.
technique is based on hiniss statistics between the observed 5 \yhen we focus on the assessment of fast streams in the
and predicted time series once specirequirements are solar wind, the majority of the modeled HSSs arrive later
ful lled (e.g., HSS arrives within a specitime window and or earlier than observddee Hinterreiter et 82019. As a

has an an amplitude and gradient value above a speci result, there is always a time difference between the
thresholg. For example, by setting a solar wind velocity observed and predicted large-scale variations in solar
threshold at 500 km s and by taking into account a speci wind time series. DTW is an ideal technique for
interval in time(e.g., 2 dayk this binary technique indicates evaluating these variations, since it aligns time series by

whether a solar wind feature was captured by both the observed  warping them in time.
and predicted time seri€sit), whether it was observed butnot 3. |n some cases, it is not clear how and if the predicted data

predicted(mis9, whether it was predicted but not observed should be matched with the observed dégee the
(false alarry or, lastly, whether neither observations nor the example in Figurel(a)). Hence, a technique that
forecast indicated the arrival of an evémtie negative; see, guanti es the overall performance of two sequences is
e.g., Reiss et aR016 Hinterreiter et al2019. required, regardless of the idemil structures.

The mentioned metrics are necessary for quantifying the _. . .
differences between observed and predicted time series. They F'ﬁ.ur?l shg)lvys a com|c|)ar|son of tr:je oEser\(bydt_he \év't?d
are not sufcient, though, to present a complete picture of the Satellite; Ogilvie et al. 1995 and the predicted(by

; ; e UHFORIA) solar wind time series for Carrington rotations
comparison bgtweer_] observ_at|ons_, and predictions. The_ mo CR9 2197 and 2198. It covers the time interval from 2017
signi cant de ciency is found in their weakness of quantifying N ber 6 to 2017 D ber 30. Based on the Richard
time uncertainties. A solution to this problem can be given by ovember © 1o ecember Su. Based on the Richardson-

using time window metrics. The simplest time window Cane lis(Cane & Richardso003 Richardson & Can2010,

; L : nly one CME was recorded inencing Earth during that
approach is to conduct a case-by-case analysis in which th@MY , ;
time differences between the arrivahding times of observed period. This was on 2017 December 25, so we will not

. ._comment on the time interval after this date, to avoid any
a_md modeled_ events can be record:_ad. Neve_rthe_k_ass, this is Eancertainties. Between 2017 November 6 and 2017 December
time-consuming procedure that requires a priorind@®ns of

each event as discussed in Owga819. The same author 24, seven HSSs were idergid, based on the criteria proposed
. A ; . y Jian et al(2006. We cross-validated the associated coronal
introduces an alternative time window approach, the so-calle

. i oles on the Sun by checking the Atmospheric Imaging
scale-selective approach, based on which agreements betwe%sembly(Lemen et al2012 images from the Solar Dynamics

observations and predictions are taken into account at a ra”gébservatory(Pesnell et al2019, as well as NOAA full-Sun

of time scales. As the time scales become increasingly Coarsgy awings® Figure 1(2) shows an example of an unclear HSS
false alarms and missed events are canceled out. This teChniq"P‘éconstru'cted case. More spezilly, it is uncertain whether
allows an assessment of the time scales at which the forecasfe st modeled HS®n red; see thé black arryworresponds
prowde; a Spect accuracy level. L . to the rst observed HS@with a maximum velocity of up to

In this paper, we introduce the dynamic time warping 700 kms %), which impacted Earth between 2017 November
(DTW) technique as an additional method for assessing solalg 519 2017 November 12. or to the second. slower HSS
wind time series. It is a powerful tool that combines the gpserved between 2017 November 15 and 2017 November 18
qualities of both point-by-point and time window metrics and, (with a maximum velocity of up to 500 km s %). Therefore,
as a result, is very useful for providing a more complete jnstead of trying to determine whether an HSS arrived at Earth,
assessment of the relation between predictions and observand which one, it is more practical to determine how similar the
tions. DTW nds matching solar wind signatur@s/en weak  time series are overall. In Figuigh), we notice three HSSs
ones of slow speed, or H§Ss order to quantify their in yencing Earth between 2017 December 3 and 2017
underestimated or overestimated arrival times, their amplitudespecember 24. Therst two were modeled arriving later than
and their durations. Even though this technique was introducedexpected by EUHFORIA. For the third HSS, we are uncertain
many decades ago, and has been used extensively in othefit was actually predicted by the model. These examples show
scienti ¢ elds, we will show how it can be applied to the that assessing the time series as a whole, instead of trying to
evaluation of solar wind time series, for the better under-

standing of mOdeled S_Olar Wiﬂd prles (long-term and short- 6 nynsy/ www.ngdc.noaa.gdsty space-weathésolar-datésolar-imageryy
term) and their comparisons with measurements. DTW can alsccompositefull-sun-drawingsbouldef
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Figure 1. Solar wind speed time series of the obseifbhae) and predictedred) data for CR 219panel(a)) and CR 2198panel(b)). The arrow in pandl) points

to the unclear modeled HSS structure, and we are not sure if it corresponds to the observed HSS between 2017 November 6 and 2017 November 12 0r to the sec
slower HSS observed between 2017 November 15 and 2017 November 18sfTin® arrows in pangb) show the two HSSs that are reproduced by the model but

arrive late compared to observations. The third arrow in the same panel corresponds to the uncertain HSS case, and we are not sure if this wHseprestieied b

evaluate uncertain cases on a one-by-one basis, is often theumulative cost or DTW score, a single number that DTW

optimal solution. produces that translates to an estimation of the minimum
“effort’ that the technique put in to align the observed and

. . o has estimated the bgsind less costlyalignment between the
DTW 'is a well-known technique for estimating the gata points, we can explicitly quantify the differences in time
similarities between two time series that have similar patterns,, q amplitude between the two sequences. This is the second

but differ in time (Keogh & Pazzani200L Goérecki & : . . .
Luczak2013 and references thergitt was initially developed g:%\/'g ;VZ'SE]E)E g}ertglc;?/;;ns?aeﬂiggflted’ from which we can

for speech recognition purposes, where smeeiords are
recognized by their audio signal ptes (Itakural975 Sakoe
& Chiba 1978 Myers et al.1981 Muller 2007). Over the
years, it was met with great interest by other scientields,
such as meteorology, robotics, medicine, music processing, and DTW determines how similar two time series are by
manufacturing, and it is widely used in data mining for time providing a temporal alignment between them, in an optimal
series clustering and classation purposes(Keogh & way and under certain constraingsliiller 2007). Strictly
Pazzanil998 2001, and references thergiDTW is a distance  gpeaking, DTW is not a metric, as it violates the triangular
from the latter is that DTW can manage time distorti@ang  foliowing three principlegMiiller 2007 Jeong et al2011):

et al.2017 and does not always obey the triangular inequality

(Vidal et al.1988. More specically, it allows the drifting of 1. The rst and last point of one sequence should be
the vector components along the time axis when a comparison matched with therst and last point of the other sequence
between two sequences is made. The sequences are eventually (but it is not necessary for their matches to be unique
nonlinearly warped along the time dimension to match each 2. The mapping of the elements should be monotonically

2.1. Properties and Requirements of DTW

other(Miller 2007, Gorecki & Luczak2013. A recent study increasing(it cannot go backwards in tirpe

by Laperre et al(2020 used this technique for evaluating the 3. There should be no data gaps, namely, every point should
Dst forecast with machine learning. In this work, for thist be matched with at least one other poithie con-
time, we will apply the DTW technique as a means of tinuity rule).

quantifying the differences between observed and modeled
time series in solar wind forecasting. For this, we will use DTW 7 g the denition of a distance measure as a metric,sgest/ mathworld.
in two different ways. Therst way is based on the so-called wolfram.cont Metric.html

3
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The method nds the optimal alignment between two some of these techniques. The outputs from these three methods
sequences bynding the path through the DTW cost matrix were also tested for the cases investigated in this work, but they
that minimizes the total cumulative cost among all the otheryielded ambiguous results. Therefore, for the purposes of this
possible path§Keogh & PazzanR001; Miller 2007 Ratana- study, we only focus on classic DTW, as it leads to the most
mahatana & KeogR004). This path is called the warping path, transparent output.
and it characterizes the mapping between the two time series of It is important to note that even though singularities are
interest. The DTW cost matrix idled based on the following  considered a drawback of DTW by many authors, we that
equation: for solar wind time series, the best alignment between two

- . . . . : - sequences cannot be achieved without them. Identical time
DGJ)  Bs.q) min{D(i  1j 300G 1) PEj B, series have no singularities. As we deal with nonidentin#l
D similar) time series, we expect singularities to occur as a way of

whereD(i, j) is the cumulative DTW cost or distance, and ©Ptimally matching the points between them.

(s, g)=1|s «q| corresponds to the Euclidean distance
between the poins from one time series and the point 3. Data Preprocessing

qi from the other time series. Thest element of the array In order to apply DTW efciently to the evaluation of
D(0, 0 is equal to (so, Go). After the DTW cost matrix has  modeled solar wind time series, we need to adopt a number of
been lled, the warping path can be efently found. For that,  constraints that will best serve our needs. We focus on the
dynamic programming is used to evaluate the recurrence thagvaluation of the solar wind bulk speed, as it is the best-
de nes the cumulative DTW distan€Xi, j) as the Euclidean = modeled solar wind characteristic in EUHFORIA.0.4; see,
distance, (i,j), found between two elements and the minimum €.g., Pomoell & Poedt201§. The same procedure can be
of the cumulative distances of the adjacent elem@uatana-  applied to other solar wind signatures, such as, e.g., density,
mahatana & Keog2004 Gérecki & Luczak2013. magnetic eld, temperature, etc.

2.2. Drawbacks of DTW and Ways of Eliminating Them 3.1, Sensitivity on the Initial and Final Points of the Sequences

The weak point of DTW is the so-callétpathological We are interested in approximately two years of continuous
alignment probleri,namely, the fact that a data point in one splar wind datg2017 November2019 SeptembgrThe rst
time series can be linked to a large subsection of points in thgmportant task is to separate this interval into smaller periods,
other time series(Keogh & Pazzani2001 Gorecki & for two reasons:rst, because it will be easier for future users to
Luczak 2013 and references therginThese pathological compare an upgraded version of EUHFORW any other
alignments are called singularities. Many techniques have beefnode) with the current version; and second, because it is faster
proposed to alleviate this problem. Three of the most widely to evaluate shorter periods, rather than a single, extended one,
used techniques can be summarized as folliMengh & since DTW has a quadrati©(nw)) complexity (Keogh &
Pazzan001): Pazzank001;, Ratanamahatana & Keo@®04 and references

: ; ; . therei). Nevertheless, recent studies have shown that for many

1. Windowing (Berndt & Clifford 1994): the allowable applications, DTW complexity is reduced to liné@(n); Dau
et al. 2019, similar to the complexity of the Euclidean
distance.

Special attention is needed during the division of the large
time interval into smaller periods, since DTW is highly affected

Although this approach constrains the maximum size of a?rﬁsthii 'tnolt'gl I?[ntdh:avvr?gllgt?aﬁ tgﬁnigqﬁrigci‘z ronré?]tvsvaé tcc):gg
singularity, it does not prevent their occurrence. Howeve tr?' is not alwa tr?e best solutio ga an HSS ma.
2. Slope weightingKruskall & Liberman1983 Sakoe & WEver, this 1S ways st solution, as y

; oo ; be cut by the articial start and end time of the CRee
Chiba 1978: if the equation that calculates the . . . .
accumulated cost is replaced wib(i, j) H,j) Figure2(a)). For an optimal evaluation with DTW, we require

; : ; : - s that solar wind featureésuch as HSSsare fully covered,
min{D(i 1.j 9, XD 1)), XD(i, ] 1}, where preferably with quiet background solar wind times before and
after the time period under stuBee the comparison between
Figures2(a) and (b)).

elements of the cumulative matrix are restricted to those
that fall into a warping window. In other words, a data
point in one time series cannot be matched with all of the
data points in the second time series, but can only be
matched with the points found in a spexctime window.

Xis a positive real number, we can constrain the warping
by changing the value of. As X gets larger, the warping

path is increasingly biased toward the diagonal We now consider a simple example with random time series
3. Step patterns or slope constrair{tsakural975 Myers Fi 3 sh h DTpr h P! four diff t | '

et al.1981): we can replace the cumulative cost equation | '9Ur€ s SOWs how ehaves 1n four difierent cases. in

: o ; . : . the rst case, we compare two identical time series. In the

with D@, j)  E,j) — minD( 4 3, bl 1, second case, we shift one of the two sequences one value alon

j 2),D(@( 2,j 1)}, which corresponds to the step th is Kkeeping th initial and ? ints. In the third 9

pattern. Using this equation, the warping path is forced to ex-axis, hefetplng fer:];ame infial andal points. In el Ir h
move one diagonal step for each step parallel to an axis €23€: We Shift one of the two sequences one value alonyg the
axis, maintaining the exact same pattern. In the last case, we

Besides these three methods, a number of DTW variants hav&eep the two time series as in the initial example, but we only
been proposed with the aim of reducing singularities. For shift the rst element of the red time series up one value along
example, the derivative DT\IDDTW; Keogh & Pazzari2001), the y-axis. The DTW cost matrix for each case is shown as a
the weighted DTW(WDTW,; Benedikt et al.2008, and the green heat map. Theaxis andy-axis of the heat maps
value-derivative DTW(VDDTW; Kulbacki & Bak 2002 are correspond to the index numbers of the elements in each time
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Figure 2. An example of the extension of a not-well-selected time interval, where thenice of an HSS is still ongoing at the end of that intef@alCR 2197,
where the effect of an HSS is still ongoirflg) The extension of CR 2197 until a point at which the observed and predicted data are very close to each other during
quiet solar wind levels.

series. The darker shades of green correspond to higher In the third cas€Figure3(c)), in which we have shifted the
estimated costs, based on Equatid). Each matrix cell red sequence along tlyeaxis, we see that the DTW score and
corresponds to a link between two points of the two series. Thethe sum of the diagonal are different to zero. Moreover, the
last (bottom righ} cell in the DTW cost matrix indicates the warping path deviates a lot from the diagonal. To understand
DTW score, which is a representation of the minimum effort better how DTW behaves during the vertical shifting of a
the technique put in to align the two time series. sequence, we compare in Fig3(e)) the same time series as in
Inthe rst casdFigure3(a)), where identical time series are Figure 3(a), having shifted only the rst element of the red
considered, the DTW score is zero and the warping path is theséquence along theaxis. The DTW score and the sum of the
diagonal of the cost matrix. This means that every element indiagonal in this case are again different to zero, but the warping
sequence 1 was only matched with its exact corresponding?@th is the diagonal itself. o
(and identicgl element in sequence 2. In the second example N Figure4, we follow the same procedure as in Figréut
(Figure 3(h)), the DTW score is again equal to zero, but the for sequences from our data set. We employ Wind data from
warping path deviates from the diagonal, due to the time seried® time period 2017 December 3 to 2017 Decembg(C30

being shifted along thg-axis. This means that thest and 198. In Figure 4(a), we show how DTW behaves when

last points from one sequence were matched twice with point<2MParing the observed solar wind bulk speed with the same
. . ; . __data set, assuming the ideal scenario in which the observed and
from the other sequence, thus creating two singularity points.

M ‘callv. th ¢ point f ies 1 tched predicted time series are exactly the same. Xragis in the
ore specically, the TSt point from series 1 was matched 4o sarjeg plots corresponds to the index number of the
with two points from series Zhorizontal shifting in the

. . . . elements that actually describe time, thus“tirae elements
warping path, while the last point from series 2 was matched |ape) 1n Figured(b), the observed data set has been shifted
with two points from series (vertical shifting in the warping

A ey v forward by one day. The gap that is created between elements 0
path. The question is how we can dlstlngm_sh between the gpq 144(1 day) is then lled with the value at time 0 of the

rst and second cases, when no heat hapsing paths are  nonshifted(blue) time series. The same happens for the gap
provided, e.g., in large data sets, when we want to quickly that is created between elements 3744 and g@8last day
evaluate the sequences of interest. The answer is given byf the nonshiftedblue) time series. It is lled with the value at
calculating the sum of the diagonal elements of the costtime 3888 of the shiftered time series. The DTW score in
matrix. For example, when we compare identical time seriesthis case is zero, and the warping path follows the same pattern
the sum of the elements along the diagonal should be zeroas described in Figu@(b). Nevertheless, when comparing the
opposite to the case where the time series are shifted alongerformance between the observed and predicted time series,
the x-axis. we rarely have the initial andnal points of the sequences
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Figure 3. Alignments, warping paths, and heat maps of random time series. The DTW score and the sum of the cost-matrix diagonal are also calculated for each ca
The DTW alignments are shown in green when one series is shifted compared to tHg)athertwo series are identicéh) Series 2 from panéh) has been shifted

along thex-axis with respect to series 1. The initial anthl points stay xed.(c) Series 2 from pangh) has been shifted along tkeaxis with respect to series (&)

Series 2 is identical to series 1, except for its initial point, which has been shifted one value alpagishe

matched in the way shown in Figutéb). The same sequences 3.2. The Importance of the Applied Smoothing

as in Figureg(s) and(b) are shown in Figuré(c), but now the The second important task is to apply an optimal smoothing

shifting occurs by ””f‘g in the 1 day s_h|fted interval with the_z. to the observed time series. This is a subjective procedure that
data record(_ed by Wind one day earlier. As a result, the 'n't'aldepends on the goals of the study, the data set, and the user.
and nal points of the sequences are not the same anymoreygyally the real data, as recorded by Wind at L1, contain high-
The DTW score in thls_ case is 5242.86. This number does NOkrequency uctuations, opposite to the modeled time series,
have a meaning yet; it only rects the fact that the cost of which are described by a smooth tréRijure1). For a proper
aligning the two time series is much larger than in the cases otomparison between the observations and predictions, it is
Figures4(a) and(b), and it arises due to the alignments of the optimal to smooth the observed time series in a similar way to
rst 144 and nal 144 points. the modeled ones, as local minima and maximaence the
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Figure 4. The same as Figu but for time series observed by Wind during CR 2198. The DTW alignments are shown in green when one series is shifted compared
to the other(a) The two time series are identicd) The red series was shifted by 1 day compared to the blue one. The initiat@mbints of the two time series
overlap.(c) The red series was shifted by 1 day compared to the blue one, while their initial@rmbints do not overlap. On the contrary, the 1 day data gap has
been lled in with data observed by Wind 1 day earlier.

DTW result and generate more singularities. This happenswindow. The approximate maximunt in EUHFORIA between
because the method aims to match loeadtuations to parts of  the arrival of the observed anadeled HSSs for the time interval
the modeled time series where nactuations have been of interest(2017 November2019 Septembgis 2 days, so a
detected. Figurg(a) shows such an example. The alignment of time window oft 2 days is applied for our purposes. Some other
the points is not optimal, and the cumulative DTW cost is studies have shown that there is a mismatch by at least 1 day and
larger than for the case where the fasttuations have been up to 3 days between the arrival of modeled and observed solar
smoothed. However, we should also be careful not to smoothwind structuregsee, e.g., Owens et @008 MacNeice2009
out important features. An analytic example of how different Gressl et al2014 Jian et al.2015 Reiss et al2016§ Temmer
smoothing inuences the results is presented in Figa®s, et al. 2018. Setting a window like this also reduces the
(c), and(d). In this gure, we apply a time-centered smoothing, computational time in calculagirthe cost matrix. No constraints
based on moving averages of 6 hr, 12 hr, and 24 hr, to the Windregarding slope weighting or step pattern are further imposed
time series shown in Figurd(c). In the event that the because we do not want to bias the alignment of the points toward
smoothing window exceeded the size of the array, we appliedone or another direction.
data padding, by reecting about the edges of thest last In Figure6, we show the DTW cost matrikieat mapand the
elements. alignment of the time series presented in Figd(e) and
Besides the different smoothing, we keep the same temporaFigure5(c) when we apply a time window constraintd? days.
resolution for both time series under comparison. This meansThe DTW score and alignment of the points are the same, as is the
that both sequences have the same number of elements, evevarping path. The only thing that changes is the extent of the
though DTW can also be applied to unequal time sé€ses, DTW matrix. We notice that it is now onlylled in within a zone
e.g., Wong & Wong2003 Zhang et al202], and references along the diagonal. This is because of tha day window
therein. In our analysis, we adopted a 10 minute resolution andrestriction that we imposed, which does not allow the alignment of
a 12 hr smoothing window as the ideal setup for Wind and points outside that time window. The subset of the matrix that the
EUHFORIA time seriegsee Sectiom). warping path is allowed to visit is called"aarping window or
“band (Ratanamahatana & Keogk004. In our case, we
i i implement a band similar to the SakGhiba band(Sakoe &
3.3. Window Constraint Chiba1978. The reason that the DTW score and warping path
After the time series preprosity, we discuss the employed are the same in this particular example is because the maximum
DTW constraints. Therst restriction comefsom the fact that the ~ time difference between the two sequences is 1 day. Therefore,
time warping of the sequences needs to be done within a speci OUr results are not affected by the window constraint.
time interval. We have to restrict all of the possible matches of the
points within a spect time window, otherwise the temporal
alignment between them could be indie. For solar wind 3.4. In uence of CMEs
forecasting purposes, it is undesirable for a point at day one to be During the considered time intervals, 15 CMEs were
matched with a point at dayve, six, seven, or more if the recorded inuencing Earth. Five of them occurred very close
temporal uncertainty of the pretions lies within a smaller time  to each other, between 2019 May 6 and 2019 May(s2@
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Figure 5. The same as Figurg but for time series with different smoothirfg) A comparison between time series with no smoothing and 12 hr smoothing. In panels

(b), (c), and(d), 6 hr, 12 hr, and 24 hr smoothing has been applied to both time series, respectively. The red sequence is always shifted by 1 day compared to the bl
one, similar to Figuré(c).

Cane & Richardsor2003 Richardson & Can@010. Even way that we do in this paper; namely, to ignore the potential
though most of the periods we evaluated did not include anyCME structures and to apply DTW as if these structures never
CMEs, for those cases in which CMEs were detected, weoccurred. Only then will the decreagar increasg of the
ignored them as events and applied DTW normally, as if theseDTW score be consistent and comparable to the one
structures were not there. As a result, our recommendation focalculated based on the current EUHFORIA version, allowing
a future user who wants to assess an improved version ofus to track how the change of the model uences the
EUHFORIA for the same time intervals is to work in the same modeling output.
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In Figures7(a), (b), and (c), we show the application of
DTW between observations an@) the ideal prediction
scenariob) the mean model, an@) our predicted data set,
respectively. After calculating the DTW scores for each of
these cases, we quantify the similarity of the observed and
predicted time series. This is done through the sequence
similarity factor(SSH, which we dene as:

DTW.cordO, M)
DTW.cordO, O)

whereO, M, andO stand forObservedModeled andAveraged
Observediata, respectively. The SSF is equal to zero when we
have achieved the perfect forecast, and equal to one when our
forecast is as bad as a straight average line prediction. In
Figure7(c), the SSF between the observed and predicted time
series is 0.021, very close to the perfect scenario of=S&F
(Figure 7(a)).

The fact that DTW dynamically warps the sequences in time
and, as a result, is able to locate which point from one time
series better corresponds to a point from the other time series is
a huge advantage compared to other metrics. In their study,
Owens et al(2005 noted that one of the most frequent metrics
used, MSE, has a very sigeiant drawback, even if it is a
useful tool for a rst-order assessment of time series. This
drawback comes from the fact that a straight (iMedel A, red
dotted line in Figurd) can sometimes give a lower MSE when
compared to observations, from a time series that is very
similar to observations but shifted in tinf®odel B, black

(a) DTW score = 5242.86, dashe_d line in _Figuré). DTW overcomes this problem,
Sum(diag) ~ 33.7- 106 opposite to t_he S|mple error functions that are completely based

on the Euclidean distance meas(see, e.g., the comparison

Figure 6. The same as Figur(c) and Figure5(c), but with a time window between the DTW scores calculated in Figifi@ and(c) and

constraint of: 2 days. the example shown in Figu®. Nevertheless, there are still
L . some cases for which the straight average line performs better
4. Application of DTW for Assessing the Performance of  {han our modeled data set. For these cases, it is not the potential
Solar Wind Time Series shifting in time that causes this discrepancy, as this has already

DTW can be applied in two ways for the evaluation of been solved by DTW. On the contrary, the variability inyhe
modeled solar wind time series. Thest way compares the axis, which is sometimes opposite to what is observed in the
DTW score of the predicted time series to an ideal and areal datge.g., the model predicts valleys in place of peaks, and
nonideal(referenck case scenario. The second way quasi  Vice versy is the reason why we get DTW scores that are

the time and amplitude differences between each point of thdarger than the ones calculated for the straight-line scenario. As
time series, as aligned by DTW. a result, it is reasonable for such cases to obtain an SSF that is

higher than one.

SSF [0, ], (P

4.1. First Way of Applying DTW: The Sequence Similarity 4.2. Quantication of Time and Amplitude Differences

Factor (SSh Besides the SSF, DTW permits the estimation of time

The Wind data for CR 2198lue time series in Figuré) differences and amplitude differences between the points that
will be considered our observations, while the same data setare best aligned. This important feature is not easily provided
shifted by 1 dayred time series in Figu®, will constitute our by other metrics that can usually quantify only one of these
predictions. The ideal scenario will be thawless forecast in  aspects at a time. Figur@&) and(b) show histograms of the
which the red time series is identical to the blue (e time and amplitude differences between the aligned points of
Figure4(a), for which the DTW score 0 and surfdiag) = 0). the sequences presented in Figif@®. A maximum t of 1
If the case we study is not the ideal one, then the DTW scoreday can be observed in Figudéa), which was expected since
will not be zero and will not have an actual meaning unless it isthis is by how much we shifted our data. Fig9(b) shows a
compared to(a) the ideal scenario angb) a nonideal maximum Vv, of 60kms?®. The maximum difference in
(referencg prediction. We dene this reference prediction as velocity arises at the beginning of the time series, when our
the mean model of observations, which represents the forecagiredicted data séted time serigsis higher than the observed
of the average observed speed for the period of interest. Such ane (blue time serigs
model has no variations in time, and will later prove useful for ~We note that the alignments of the points provided by DTW
the direct comparison of the DTW results with traditional do contain singularities, i.e., when a point from one sequence
metrics(see Sectiom). can be matched with two or more points from the other
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(a) DTWscore (O, M) = 0 (b) DTWscore (0, 0) = 253850.04 (¢) DTWseore(O, M) = 5242.86

Figure 7. Examples of the rst approach to evaluate the performance of the predicted solar wind time series compared to obsgjvatiensleal prediction
scenario with DTW.,dO, M) 0. (b) The nonidedlreference case prediction scenario with the maximum DTW score for thatcspie@ interval for which
DTWgeordO, O)  253,850.04(c) Our actual observed and predicted time series with RIMD, M) ranging between 0 and 253,850.04.

Figure 8. An example of an observed data etlid line) and two predicted time seri@dodel A, red dashed line, and Model B, black dashed.lidedel A is just a
straight line, while Model B is very similar to the observed data but shifted in time. The MSE of Model B is larger than the one calculated for Modied) Ahahean
straight-line prediction performs better than a prediction that is very similar to observations, but shiftedadéptel from Owens et &0095.

sequence. Even though singularities are generally assumed tcolumn of Tablel. Then, we adopt the smoothing and window
be a drawback of DTW, wend their existence necessary, as constraints(see Section8.2 and 3.3 respectively Finally, we
they help to ensure the best possible alignment between timeuantify EUHFORIAs performance compared to observations by
series. As a result, thet andv, presented in the histograms are employing both of the DTW ways mentioned in SectiorThe
not only relevant to the time and amplitude differences of the upper panel of Figur&0 shows the DTW alignment for the time
points that are uniquely aligned between them, but also to theperiod with the lowest SSF. This corresponds to the time interval
singularity points. By improving the model and, consequently, between 2019 July 8 and 2019 July @@&riod 20, during which
the solar wind forecasting, these singularities are minimized, EUHFORIA performed the best compared to all of the other
the DTW score becomes lower, and a better agreement with th@eriods we considered in this study. In the samare, we also
observations is achieved. present histograms of the time avelocity amplitude difference
between the observed and predicted data sets. The time difference

5. Evaluating the Performance of Solar Wind Time Series  between the two sequences B days, which is the maximum

in EUHFORIA temporal window we imposed for the alignment. The velocity
amplitude differences are the latvamong all of the other periods,
with a maximum of 40 km s-. The application of DTW to the rest
of the periods is shown in Figui&in the Appendix and the SSFs

In this section, we apply the DTW method to the solar wind are summarized in the fourth column of Tahle

velocity time series as meldd by EUHFORIA v1.0.4 for To prove our point about the sigeiant advantages that DTW
the period 2017 Novembe&019 September. The setup of offers compared to traditional metrisge Sectiod), in the fth
EUHFORIA is the same as the one presented in Pomoell &column of Tablel we present the results of EUHFOR$A
Poedts(2019 and Hinterreiter et ali2019. We rst split the performance compared to observations, as evaluated using a
considered time interval into smaller periods, as listed in the secontraditional MSE-based skill score metric. This metric isnael

5.1. SSF versus Traditional Skill Scores: Using the Mean
Model as a Reference Model

10
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(a) (b)
Figure 9. Histograms of the time and velocity amplitude differences between the aligned points, as matched (@) Bifttigram of time differencds t in days.
(b) Histogram of velocity differences Vi, in km s %).

Table 1
Evaluation of the Performance of the EUHFORIA Solar Wind Time Series Based on the SSFs and Skill Scores for the Individual Periods of Interest

Period Dates No. of Elements SREn Skill Scorgnean SSk7days Skill Scorgzgays
1 2017-11-06 to 2017-12-03 3889 1.07 2.59 4.33 4.46
2 2017-12-03 to 2017-12-30 3889 0.70 1.74 2.99 2.00

3 2017-12-30 to 2018-01-18 2737 0.49 0.94 1.19 0.77

4 2018-01-18 to 2018-03-07 6913 1.43 3.91 2.78 3.19
5 2018-03-07 to 2018-04-17 5905 0.83 1.93 1.70 1.34

6 2018-04-17 to 2018-05-16 4177 0.69 1.09 1.93 1.47

7 2018-05-16 to 2018-06-12 3889 0.66 1.12 1.62 1.30

8 2018-06-12 to 2018-07-29 6769 0.80 1.65 1.15 0.83

9 2018-07-29 to 2018-09-02 5040 0.87 1.56 1.68 1.73

10 2018-09-02 to 2018-09-29 3889 0.42 0.90 1.03 0.72

11 2018-09-29 to 2018-10-31 4608 0.43 0.78 0.66 0.80
12 2018-10-31 to 2018-11-23 3313 0.48 1.15 1.90 1.76

13 2018-11-23 to 2018-12-24 4465 0.47 0.92 1.37 1.29
14 2018-12-24 to 2019-01-21 4033 1.07 1.81 1.89 1.07
15 2019-01-21 to 2019-02-19 4177 0.36 1.02 1.92 2.88

16 2019-02-19 to 2019-03-24 4753 0.90 1.41 1.69 1.05

17 2019-03-24 to 2019-04-19 3745 1.09 2.73 1.90 1.88
18 2019-04-19 to 2019-06-03 6481 1.17 2.54 1.75 2.07
19 2019-06-03 to 2019-07-08 5041 0.63 1.56 0.64 0.42

20 2019-07-08 to 2019-07-26 2593 0.15 0.64 0.25 0.54
21 2019-07-26 to 2019-08-22 3889 0.49 0.80 1.52 1.54
22 2019-08-22 to 2019-09-19 4033 0.86 1.06 2.89 1.37

Note. A 10 minute resolution and a 12 hr smoothing window was adopted. The subsergat8 and“27 days indicate which reference model was employed each
time. The bold values correspond to cases at which the SSF and Skill Score provided opposite performance evaluations for the time series of interest.

as: assessment results for the same petisels numbers in bold
MSE Periods 2 and 6 correspond to such controversial examples for
Skill Score ———, Skill Score [0, ]. (3B which SSF<1, meanifg that EUHFORIA performed better
ref than the mean model, but at the same time the Skill Sebre

The nominator corresponds to the MSE between observationgneaning that EUHFORIA _performed worse th_an the _mean
and EUHFORIA, while the denominator corresponds to the M0d€l- To clarify the situation, we present the time series for
MSE between observations and a reference model. In this:[hes’e particular periods in Figutd. We notice that in both

. ) - cases EUHFORIA predicted the observations better than the
section, the reference model will be the mean model. Similar to,,aan model. As a result, we should expect a 83Fand a

Equation(2), a Skill Score equal to zero corresponds to the gyl Score < 1. Nevertheless, due to the time lag of the
perfect prediction, while a Skill Score equal to one means thatpredicted time series compared to the Wind data, and the
the prediction performs the same as the reference model. For mability of the traditional skill score to capture the overall
Skill Score higher than one, the reference model performsshape of the sequence, the MSE of the mean model was lower
better than our predictions. than the MSE of the EUHFORIA time series. This resulted in a
Comparing the SSF and Skill Score values in columns four Skill Score >1, which does not reect the actual bad

and ve of Tablel, we see that even though both measures performance of the mean model in terms of forecasting the
have been similarly deed they sometimes provide different variability in the solar wind.

11
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Figure 10.DTW alignmeniupper pangland histograms of the time and velocity differerg@ser panelsbetween 2019 July 8 and 2019 July(@&ériod 20, during
which EUHFORIA performed the best compared to all of the other considered periods. The timeanithef the upper panel corresponds to evenly spaced time
elements with a time difference of 10 minutes between each other.

5.2. SSF versus Traditional Skill Scores: Using the 27 Day DTW is not a metric by denition, as it violates the triangular
Persistence Model as a Reference Model inequality, it acts like one. It obeys the rule of continuity,
monotonicity, and the fact that thest and last points of one

In this section, we perform the same test as in Sebtibiut sequence should be matched with at least e and last

we employ a different reference modéhe 27 day persistence ) fthe other. It calcul lati h led
model (Owens et al2013, which is widely used within the points of the other. It calculates a cumulative cost, the so-calle

space weather community. Based on this model, we assume thBJrY(\a/ssirﬁotirr?{ev\\/,\mZZ trﬁgirresgtr'zésrntgngogzqﬁ;ralgg?Lrj}?fetr\,\;ﬁ ttilrrnnee
the solar wind speeds measured over a full solar rotation predlc;ETW has already been used in other disciplines, but this is the

the future solar rotation as well. The SSF and Skill Score result rst time that it has been adanted and applied for the purbose of
for the individual periods of interest are summarized in the sixth . P APl 1€ purp
evaluating the performance of solar wind time series.

and seventh columns of TalleWe notice that in all but three We have di d the bete and restrictions of th
periods(periods 3, 8, and 3@he SSFs and Skill Scores agree € have discusse € bete a estrictions ot the
technique, and presented two complementary ways in which

with the evaluation of the EUHFORIA time series. Namely, DTW b loited t th | ind dicti
when the SSK 1 and the Skill Score 1, both measures rect can be exploited 1o assess e solar wind prediclions

that EUHFORIA performs better compared to the 27 day provided by a model. Therst way calculates the DTW score
persistence model, and vice versa between observations and predictions, as well as between

In Figuresl2(a) and(b), we present the time series for two of ?hbserva'uons andtha reference moﬁel._tV\?etheTr:atlp of
the three periods for which the SSF and Skill Score showed ese scores as the sequence similarity 488h. This is a
opposite results. In both cases, the 27 day persistence modélk'" score that is equal to zero for a perfect forecast, equal to
predicts the Wind data better’ than EUHFORIA, not only one when the forecast performs the same as the reference
because of the number of HSSs that it captures, but aIsandel' and higher than one when the malgirediction is
because it better reproduces the HSS amplitudes. |reven worse than the prediction from the reference model. The

Figures12(c) and (d), we further show two cases for which Second way in which DTW can be exploited is by evaluating
the SSFs and Skill Scores agree. In the former case, the 27 d pe time and amplitude differences between the points ahgngd
persistence model performs better than EUHFORIA, and that i2Y_the tr)‘nethod. As a result, DTW can be ﬁsed as a hhyb”d
re ected in the SSF and Skill Score numbers. In the latter case{,:netr'lC _etweenf (;ont|nuo(lj,|s meazurem_e(ets: as, e.g, t s
EUHFORIA performs better than the persistence model, with c0relation coefcien and point-by-point comparisons, by

both the SSF and Skill Score numbers being lower than unity.Simultaneously assessing time and amplitude differences, a
property not often found in traditional metrics.

We then assessed the performance of solar wind predictions
from EUHFORIA for an interval of approximately two years

In this study, we have introduced an alternative way of (2017 November2019 Septembgr This interval was rst
assessing the performance of solar wind time series, the sodivided into smaller periods for faster and more accurate
called dynamic time warpindDTW) technique. Although  evaluation. To acknowledge the advantages of DTW and

6. Conclusions and Discussion

12



The Astrophysical Journal, 927:187(19pp, 2022 March 10 Samara et al.

@ (b)

Figure 11. The Wind observationflue), EUHFORIA output(red, and mean moddblack are shown for periods ganel & and 6 (panel ). The SSFs and
traditional Skill Scores are also presented in the upper right parts of each panel.

(2) (b)

(© (d)

Figure 12. The Wind observationdlue), EUHFORIA outpuf(red), and 27 day persistence modealack are shown for periods (@anel(a)), 8 (panel(b)), 12 (panel
(c)), and 19(panel(d)). The SSFs and Skill Scores are also presented in the upper right parts of the panels.

understand its differences to traditional skill score metrics, wesimilarities between the prtes of two data sets, thus it should
performed two tests:rst, we evaluated our predictions based be used in conjunction with other measures to provide the most
on the SSF and an MSE-based skill score metric by employingcomplete picture of a modslperformance.

the mean model as a reference model; and second, we repeatedThe use of DTW can also be extended to the evaluation of
the same procedure, but this time we employed the 27 dayother solar wind signatures besides velocity, such as the solar
persistence model as a reference. The former test showegind density, temperature, magnetield, pressure, etc. More-
that in 50% of caseld 1 out of 22 periodsthe SSF and MSE-  gver, an extension of DTW, the so-called multidimensional
based skill score yielded opposite results. In particular, thepTyy (see Shokoohi-Yekta et 2015 Abdullah & Keogh2016

MSE-based skill score indicated that the mean modelgng references therginpermits the assessment of multiple
performed better than the EUHFORIA simulations, even geqyences, i.e., in the case of multidimensional simulations, in

though EUHFORIA reproduced the observations much better, yicy time series from different locations around E¢otrany
T2$tdls§§$\7vnfy dbetwe_en”the twothmeasures a”$ei from (tthther point of intereptare considered. This technique enables
%clallt)é c\)/vhich o?ntyf?c?rrr?lgﬁeysvgaﬁnc%Sbeegltfrnggrsrelg 'g:%g?o $attern comparisons between multiple time series at the same
b 9 P ime, which is particularly useful for the evaluation of spatial

oint from another sequence, opposite to conventional L . . )
P q PP uncertainties during the arrival of an HSS at a measuring

Euclidean metrics. Next, employing the 27 day persistence . .~ .
model as the reference model in our study, we concluded that itsatelllte. The multidimensional DTW could also be extended to

performed better than EUHFORIA in predicting the observa- the identi cation of HSSS by evalqatjng the various signatu'res of
tions, for 19 out of 22 periods of interest. In 3 of those 19 cases,Pasma and magnetic characteristics. For example, during the
the SSF and MSE-based skill score resulted in oppositearr'V§| of an HSS at a particular point of interest, the solar wind
assessments, with the latter metric providing misleadingdensity, temperature, pressure, magnetid, and interplanetary
evaluations for the predictions, due to its inability to capture magnetic eld polarity should conform to speci patterns and

the overall shape of the time series. Therefore, we prove thabehaviorgsee Jian et ak006for more details which should be
DTW can be used as an objective quardition measure for  recognized by the method. These ideas have not been tested in
model evaluation. In addition to MSg@nd other traditional  the frame of the current study, but they constitute promising
metricy, it provides more detailed information on the ideas for the future.

13
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For consistent evaluations of modeled solar wind time seriesFrancg, the Centre National 'Btudes Spatiale{CNES,
with DTW, we recommend avoiding periods that include Francg, and the Université Paul Sabat{&lPS. The validation
potential CME inuence at Earth. If this is not possible, the of solar wind with EUHFORIA is being performed within the
user can still apply the DTW by ignoring the CME signatures. BRAIN-be project SWiM (Solar Wind Modeling with
The DTW score will be slightly different then, compared to the EUHFORIA for the new heliospheric missign3his project
case in which there were no CMEs. As mentioned in has received funding from the European Unédrorizon 2020
Section3.4, 15 CMEs were idented as inuencing Earth research and innovation programs under grant agreements No.
between 2017 November and 2019 September. For most of th870405 (EUHFORIA 2.0 and 870437 (SafeSpage S.P.
individual periods listed in Tablé, there were no observed acknowledges support from the projects CI84089 (C1
CMEs. However, for the cases in which CMEs were detected,project Internal Funds KU LeuvgnG.0D07.19N (FWO-
we ignored them for the application of DTW. Therefore, a Vlaanderejy and SIDC Data ExploitatioESA Prodex-1p
future user who wants to assess an improved version offhe computational resources and services used in this work
EUHFORIA for the same time intervals should work in the Were provided by the VS@Flemish Supercomputer Center
same way; namely, treat the potential CME structures as if theyunded by the Research Foundation FlandewO) and the
were not there. Only then will the decregseincreasgin the Flemish Government Department EWI.

DTW score be consistent and comparable to the one calculated Software:The DTW code used for this work was based on
using EUHFORIA v1.0.4, allowing us to track how the change Senin(2008, Nipun (2020, and Abhishek2020), and it can

of the model inuences the modeling output. We note that P& found at httpsi/ github.coni SamaraEvangeli®@TW_
DTW could be applied separately to CME time series, in termsForSolarwWindEvaluation

of the evaluation of the shock, the, Bomponent, or other

in situ parameters.

Appendix
The authors would like to acknowledge the anonymous DTW Alignments and Histograms between 2017 November
referee for the fruitful comments that improved the content of and 2019 September

the paper. They would also like to thank Emmanuel Chané for |n Figure 13, we present the optimal DTW alignments
his insights and big contribution to this work, which helped the petween the Wind observations and EUHFORIA predictions,
project to grow. Moreover, they extend their acknowledgmentsas well as histograms of the time and amplitude differences for
to Eamonn Keogh for the helpful discussions and advice onall of the individual periods listed in Table The green lines
DTW. E.S. was supported by a PhD grant awarded by theshow how points from the blue time series are matched with
Royal Observatory of Belgium. C.V. is funded by the Researchpoints from the red time series. The DTW score as well as the
Foundatior—Flanders, FWO SB PhD fellowship 11ZZ216N. SSF are shown in the upper right parts of each time series plot.
EUHFORIA is developed as a joint effort between KU Leuven Moreover, the histograms of each period provide a good idea of
and the University of Helsinki. Work at IRAP was supported the minimum and maximum differences in time and velocity
by the Centre National de la Recherche Sciguie (CNRS, between the two sequences.
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Figure 13.DTW alignments and histograms of the time and velocity differences for the 22 periods under assessment, between 2017 November and 2019 Septemt
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Figure 13. (Continued)
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Figure 13. (Continued)
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Figure 13. (Continued)
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